Gloster CXP-1001

Taiwan flag UK Union Jack Republic of China / United Kingdom (1947)
Jet Fighter – 1 Mockup Built

A modern interpretation of the Gloster CXP-1001 Blueprint (theblueprints.com)

The Gloster CXP-1001 jet fighter was the result of a joint Anglo-Chinese design venture initially conducted in 1946 to provide the Republic of China with a modern and efficient jet fighter. Based on the Gloster E.1/44, the CXP-1001 would have been the first jet aircraft to enter service in China. Plagued by slow development and lack of funding, the CXP-1001 was never fully completed, although a mockup was produced. Despite the fact that the Gloster CXP-1001 was one of the most important milestones of Chinese aviation, it is relatively unknown to both the Eastern and Western world due to its obscurity.

History

With the conclusion of the Second World War, both the Communist Chinese forces under Mao Zedong and Chinese Nationalist forces under Chiang Kai-Shek were preparing themselves for the inevitable continuation of the Chinese Civil War, a conflict between the two factions that had been going on since 1927. The American Lend-Lease programme greatly assisted the modernization of the Nationalist forces during the Second World War, equipping them with contemporary weapons and vehicles. The Communist forces, on the other hand, relied on mostly obsolete weapons from the Qing-era (pre-1912). Despite this, the Nationalists expected fierce resistance from the Communists, and the fact that members from the former Imperial Japanese Army Air Service and Manchukuo Imperial Air Force were helping the Communists build up an air force alarmed the Nationalist ranks. In order to gain an upper hand on the Communists, Chiang authorized a technical mission to the United Kingdom in early 1946 to investigate the possibility of a joint Anglo-Chinese program for a fighter, a bomber and a jet fighter. After extensive negotiating, the Gloster Aircraft Company agreed to initiate a collaborative jet fighter design with China. Following an agreement on July 18th of 1946, thirty Chinese designers and engineers were to be given facilities at the Design and Drawing Offices at Hucclecote, Gloucestershire for twelve months. A team of thirty-three British designers was to reside with the Chinese in order to mentor them on improving the Chinese aircraft industry. The Chinese team arrived sometime in September of the same year and they were brought to a section of the Brockworth factory where workshops and offices were set aside for the Chinese to study the British aircraft industry. Interestingly enough, each member of the Chinese delegation was gifted an Austin 8 car for the duration of their stay. Another term of the aforementioned agreement was that, after six months, the Nationalist government could send a list of specifications to Gloster and they would design and produce three jet prototypes for them within thirty months. The prototypes would then be shipped to mainland China, where the Nationalists could decide whether or not to acquire a manufacturing licence.

During the initial days, the Chinese designers were rarely allowed to see anything of value, as the Air Ministry had, quite expectedly, declared most of the projects that were being worked on as secret. Technology such as the Gloster Meteor fighter, the Rolls-Royce Nene Mk.2 and E.1/44 fighter were all hidden from the Chinese. Despite this, the Chinese were able to negotiate a Rolls Royce Nene Mk.1 jet engine manufacturing licence, but the British Ministry of Air secretly ordered Rolls-Royce to delay the contract as much as possible.

With the worsening situation back in China, the Chinese delegate in Britain reached out to Gloster and asked them to prepare a contract for the design of a single-seat fighter aircraft powered by either the Rolls-Royce Nene or de Havilland Ghost turbojet with assistance from the Chinese engineers. As such, Gloster representatives consulted the Ministry of Air for permission to adapt the Gloster E.1/44 jet fighter to the specifications set by the Chinese, but refrain from production. This request was granted and the new aircraft proposal was assigned the designation of “CXP-102” (Chinese Experimental Pursuit) on May 14th of 1947. During development, it was noted that the situation in China worsened every day for the Nationalists and a stable aircraft industry back home would take a considerable amount of time to set up. Colonel Wu, part of the military attache and negotiator with Gloster decided to once again contact the Gloster firm with the hopes of securing a more advanced design which could be immediately exported to China for use. This time, the Ministry of Air stepped in and voiced their objections to providing a foreign air force with a jet fighter whose performance would match or even surpass the latest British fighters fielded. To make matters worse for the Chinese, more and more Gloster staff were being reassigned to work on the Gloster F.43 and F.44/46 projects, as there was a limited design capacity in the United Kingdom at the time. The Foreign Office was also hesitant on supplying a future prototype to China due to the civil war China was facing. However, they did approve of a manufacturing license as they predicted that the design was still two or three years away from completion, and that the Civil War would be over by then.

With the proposal for an already completed design rejected, Gloster and the Chinese staff began to redesign the CXP-102 to meet higher standards. This new design would be based on the E.1/44 once again, but also incorporated many parts used on the Gloster Meteor (such as the landing gear) for simplicity and quicker design. Although considered to be a clean and efficient design by the designers, the CXP-1001 was unfortunately plagued with slow development and lack of funding. By early 1949, the design was almost completed and a preliminary plan for two prototypes was made. Only a mockup and a couple of components were made before Colonel Lin (another Chinese military attache member) contacted Gloster on February 3rd to halt all work on the CXP-1001 due to the string of defeats suffered by the Nationalists. Gloster received the confirmation to halt work on February 28th but agreed to complete all unfinished blueprints and ship them to Formosa (Taiwan) along with a scale model and the mockup of the CXP-1001. The Nationalists planned to finish the work by themselves, but this would never happen as on June 12st of 1949, the British freighter Anchises was inadvertently bombed by Nationalist aircraft whilst in Shanghai. The incident soured relations between the two countries, and the British decided to freeze the blueprint and mockup shipment in October of 1950. After two years in limbo, the CXP-1001 would finally meet its fate as on November 25th of 1952, the Gloster Aircraft Company decided to dispose of all the materials on the CXP-1001 without informing the Nationalist Chinese. The Ministry of Supply (MoS) commented on this saying that disposing of the materials was justified as this was an outdated design, but also stated that they were not responsible for the actions of Gloster.

No photos of the CXP-1001 mockup or scale model are known to exist to this day but the Jet Age Museum in Staverton, Gloucestershire appears to possess official sketches of the CXP-1001 which can be seen in Tony Butler’s book British Secret Projects: Jet Fighters Since 1950. Though ultimately not making it past the mockup stage, the CXP-1001 remains one of the most important milestones of Chinese aviation history, being the first jet fighter design in which Chinese engineers were involved and would have been the first jet to enter service with the Chinese.

Misconception – Meteor or E.1/44 Variant?

One of the biggest controversies that surrounds the CXP-1001 is the debate of whether it is a Gloster Meteor variant or E.1/44 variant. Most contemporary internet sources (such as the BAE Systems Website) states that the CXP-1001 is a Meteor variant, but does not cite any sources to substantiate their claims. As mentioned earlier, most of the British technology were kept secret to the Chinese and the British refused to supply a foreign air force with an aircraft comparable or superior to the ones fielded by the Royal Air Force. This adds on to the argument that the CXP-1001 was based on the E.1/44, as stated by many credible authors with a long history of published books on aircraft (ie. Tony Butler & Derek N. James). When the CXP-1001’s blueprints are examined, it is also quite obvious that the design resembles the E.1/44 more than it does the Meteor.

Design

The CXP-1001’s design was heavily influenced by the Gloster E.1/44, essentially being a redesigned and improved variant of it. The CXP-1001 was an all-metal stressed skin jet fighter powered by a single Rolls-Royce RB.41 Nene Mk.1 engine producing 5,000 lbs / 22.2 kN of thrust and armed with four 20x110mm Hispano Mk.V cannons. The cannons would have been mounted in pairs above and below the nose intake. Each cannon would have been fed with 180 rounds, making a total of 720 rounds. The CXP-1001 would also have been able to carry two 200 gal / 757 L Drop Tanks to extend their range. Due to a lack of information, the details of the CXP-1001’s design is quite unknown and may never be found.

Variants

  • CXP-102 – Initial design concept based on the Gloster E.1/44 with estimated higher performance. The CXP-102 was redesigned into the CXP-1001.
  • CXP-1001 – Improved design based on the CXP-102 / E.1/44 which featured parts from the Gloster Meteor. Armed with four 20x110mm Hispano Mk.V cannons and powered by a single Rolls-Royce RB.41 turbojet, the CXP-1001 would have been the first jet fighter to enter service with the Chinese if it were to see production.

Operators

  • Republic of China – The CXP-1001 was designed with the assistance of the Chinese, and would have been operated solely by the Republic of China Air Force in a military capacity.
  • United Kingdom – The Gloster Aircraft Company was the main designer of the CXP-1001, and would have operated it in a testing capacity before shipping the prototype to mainland China.

Gloster CXP-1001*

* – Data taken from British Secret Projects: Jet Fighters Since 1950 by Tony Butler and Gloster Aircraft since 1917 by Derek N. James

Wingspan 38 ft 0 in / 11.6 m
Length 41 ft 9 in / 12.8 m
Height 14 ft 10 in / 4.29 m
Wing Area 360 ft² / 33.5 m²
Thickness to Chord Ratio 0.011
Wings Sweepback 20 °
Engine 1x Rolls-Royce RB.41 Nene Mk.1 turbojet (5,000 lb / 22.2 kN of thrust)
Internal Fuel Load 470 gal / 1780 L
Empty Weight 8,960 lb / 4,060 kg
Normal Weight 13,900 lb / 6,305 kg
Maximum Overload Weight 18,700 lb / 5,700 kg
Climb Rate 6,000 ft/min / 1,830 m/min at Sea Level
Service Ceiling 40,000 ft / 12,200 m
Maximum Range 410 mi / 600 km – Standard

1,000 mi / 1,600 km – With Drop Tanks

Maximum Speed 600 mph / 965 kmh at 10,000 ft / 3,050 m
Crew 1x Pilot
Armament 4x 20x110mm Hispano Mk.V cannon (180 rpg)
External Load 2x 200 gal / 760 L Drop Tanks

Gallery

Illustrations by Haryo Panji https://www.deviantart.com/haryopanji

Artist conception of the CXP-1001 in a late 1950s ROCAF livery. (Illustration by Haryo Panji)
Artist conception of the CXP-1001 in a late 1940s ROCAF livery. (Illustration by Haryo Panji)

Sources

Focke Wulf Fw 187

Nazi flag Nazi Germany (1937)
Twin Engined Fighter – 9 Built

The Fw 187 Falke was a twin engine fighter that was built by Focke-Wulf in 1936, at a time when the newly-formed Luftwaffe did not consider such an airplane type necessary. Despite receiving significant negative feedback, several prototypes were built and three pre-production versions were also constructed. The three pre-production types saw limited service defending the Focke-Wulf factory in Bremen against Allied bombing in 1940. Aside from that, they saw no other combat.

History

The first Fw 187 V1 shortly after being completed.

The twin-engined fighter was a concept few countries pursued in the early days of flight. The type only started serious development in the years directly preceding the outbreak of the Second World War, with planes such as the American Lockheed P-38 Lightning entering service. Most officials across the globe agreed that two-engine fighter aircraft would be rendered unnecessary by cheaper and lighter single-engine designs. In the early 1930s, Germany had no plans to develop such an aircraft either.

However, an aeronautical engineer by the name of Kurt Tank showed an interest. Kurt Tank was the main aircraft designer of the Focke-Wulf company, who developed most of the company’s most famous aircraft. During WWII, he would go on to create the iconic Fw 190 and would later have an aircraft designation named after him, with the Ta 152 and Ta 154. He began work on the new twin-engine project, despite there being no current requirement for such an aircraft. Tank had his first chance to reveal his design at a weapons exhibition held at a Henschel plant in 1936. Tank showed off his innovative design, claiming the twin-engine layout would offer a great speed of 348 mph (560 km/h) if the aircraft mounted the newly developed Daimler Benz DB 600 engines. One of the attendants of the event was Adolf Hitler himself, who found the design particularly interesting.

The Fw 187 on jackstands. This photo was taken during testing of the double-wheeled landing gear.

But to the Technischen Amt (Technical Research Office), the design was unnecessary, as it was believed single-engine designs could perform just as well as the twin-engined concept. Another pre-war doctrine was that the current bombers would be fast enough to outrun the fighters of the enemy, and escort fighters wouldn’t be needed. Tank, not happy with this response, took his design to Oberst (Colonel) Wolfram von Richthofen, the head of the Development section of the Technischen Amt. Tank persuaded him that technological advances would eventually allow the construction of more powerful fighters that would be able to catch up with the bombers which would thus require an escort fighter. Convinced by his claim, Richthofen agreed that it would be better to have a countermeasure now rather than later. Richthofen’s term as chief was short, but in this time he authorized three prototypes of Tank’s twin-engine design. The design was officially given the name of Fw 187.

Work began on the Fw 187 soon after, but, to Tank’s dismay, the requests for the DB 600 engine were turned down. Instead, he had to work with Junkers Jumo 210 engines, as DB 600s were only allocated to projects which were viewed as being highly important. The design work was handed over to Oberingenieur (Chief Engineer) Rudi Blaser, who was the one of the most experienced members onboard Focke-Wulf. Blaser had previously headed the design of the failed Fw 159 monoplane fighter, but he was ready to continue work and move on from his failure. Blaser wanted to achieve only one thing with this design: maximum speed.

The Fw 187 V2 on a test flight.

The first prototype Fw 187 was completed in early 1937. The Fw 187 V1 (designated D-AANA) was first flown by test pilot Hans Sander. In the initial flights, the aircraft reached speeds of up to 326 mph (524 km/h). The Luftwaffe was surprised to learn that despite weighing twice as much as the Bf 109, the Fw 187 was still able to go 50 mph (80 km/h) faster. They accused the team of having faulty instruments. Blaser was determined to prove them wrong and had a Pitot tube (a device that measures air speed using the total air pressure) installed on the nose of the V1, which would accurately tell the performance. Sander once again flew and confirmed the aircraft indeed had attained such a speed. Further flight trials showed the aircraft had superb maneuverability, climbing and diving. These great characteristics led Kurt Tank to name the aircraft his “Falke” or Falcon. This name became official as well, and wasn’t just a nickname the creator gave to his creation.

In the summer of 1937, the airframe had an impressive wing loading of 30.72 Ibs/sq ft (147.7 kg/m2), something no other fighter could equal at that point. Further tests by Sander put the airframe to the extremes to try the limitations of the aircraft in diving. The rudder, during dives, was predicted to begin fluttering after 620 mph (1000 km/h), but Blaser was more cautious, and thought it would start at a lower speed. To counteract this, a balance weight was attached to the rudder. Blaser assured Sander that the aircraft would perform better in dives as long as he didn’t exceed 460 mph (740 km/h). With the new weight attached, Sander took off to begin trials. Hitting 455 mph (730 km/h), Sander noticed the tail had begun violently shaking. With the tail not responding, Sander had started to bail when he reported a loud noise came from the rear. Sander’s control over the aircraft had returned and all vibrations had ceased. Upon landing, it was found that the weight itself had been the culprit of the vibrations and the sound Sander heard was the weight breaking off the rudder.

An aft view of the V6. The surface cooling system is visible in this shot.

Several modifications were made to the V1 during testing. The frontal landing gear was switched out for a dual wheeled design at some point, but was found it offered no benefit over the single wheel and thus was reverted. The propellers were also changed from Junkers-Hamilton to VDM built ones. Weapons were eventually added as well, but these were just two 7.92mm MG 17s. The 2nd prototype arrived in the summer of 1937. Visually, the V2 was identical to the V1, but had a smaller tailwheel, modified control surfaces, and Jumo 210G engines with enhanced fixed radiators.

However, in 1936, there was a change of leadership in the Technischen Amt. The supportive Richthofen was replaced by Ernst Udet. Udet was a fighter pilot, and his experience reflected upon his decisions. He made sure no more biplane designs were being built and all designs were now of monoplane construction. He had a major focus on fighters, and believed them to be the future. The modern fighter had to be efficient, with speed and maneuverability being the utmost importance. And, from this viewpoint, he saw twin engine fighters as not being as capable as single engine fighters. With this mindset, the Luftwaffe now saw no real reason to continue developing the Fw 187 as a single seat interceptor, but it could be developed as a Zerstörer (“Destroyer” heavy fighter), the same role the Bf 110 occupied. This required a crew of more than one and much heavier armament. Tank was reluctant, and felt his design was still as capable as single engine designs were, but he knew continuing to go against the Technischen Amt would result in his aircraft being terminated, so he regretfully obliged.

The V3 was in the middle of construction and changes had to be made as a result of this. The V1 and V2 had already been produced, and any drastic changes would further affect development, so no attempt to convert the two initial planes into two-seaters ever occured. To accommodate a radioman, the cockpit had to be lengthened. This worried Blaser, who was concerned these changes would affect the size and overall performance of the aircraft. Thus, he tried making the changes that affected the aircraft’s performance as little as possible. The fuselage was increased lengthwise, the tailfin was shortened, and increased cockpit volume demanded the fuel tank be moved farther back. Engine nacelles were also shortened to allow installation of landing flaps for when the aircraft carried larger ordnance. The 7.92mms were now complemented with two 20mm MG FF cannons, although V3 never mounted any actual weapons, only mock-ups.

The Fw 187 had good luck up until this point, but this good fortune ran out shortly after the V3 was produced. A few weeks after it was finished in early 1938, the V3 was doing a test flight when one of its engines caught on fire. The aircraft was able to safely land and the fire was extinguished, but the airframe had taken some damage and needed repairs. Tragedy struck once again not too long after, on May 14th. The V1 was lost and its pilot, Bauer, was killed during a landing accident. These two events happening so close together made the already negatively viewed Falke seem not only an unnecessary weapon, but now an unreliable one as well. Two more prototypes were built late in 1938, the V4 (D-OSNP) and V5 (D-OTGN). These two were mostly identical to the V3, but had several slight modifications, such as a modified windshield. Judging by photos, one obvious trait V4 and V5 had over V3 is the lack of the radio mast mounted on the cockpit of the V3. V4 and V5 were sent to the Echlin Erprobungsstelle, a major aircraft development and testing airfield for the RLM (Reichsluftfahrtministerium, German Ministry of Aviation). The trials at this site yielded favorable evaluations of the aircraft and three pre-production examples were ordered.

One of the A-0s flying overhead.

While all of this was going on, Tank was finally able to acquire two DB 600A engines for his Falke. The plane that mounted these engines would be the V6. Before the V6 was built, Tank had shown interest in surface evaporation cooling, a drag reducing novelty which had been researched and developed by Heinkel and was soon to be worked on by Messerschmitt. With the V6 now under construction, Tank drew plans to apply the feature into the prototype to give it peak performance. V6 (CI+NY) first flew in early 1939 and showed how well the new engines and surface cooling made the aircraft perform. On takeoff, the V6 had 1,000 HP from each engine, a 43% boost over the previously used Jumo 210s. During one test flight, the V6 was flying 395 mph (635 km/h) in level flight.

The three pre-production examples previously mentioned were designated Fw 197A-0. These were were fully armed. The A-0s added armored glass to the windshield and carried two more MG 17s. The A-0 planes also returned to using the Jumo 210 engines. Due to the additional weight, the performance of the A-0s was a bit lower than the prototypes. However, the RLM continued to argue against the Falke, claiming that, because it had no defensive armament, the Fw wouldn’t be as effective as the Bf 110 in the same role (despite it being able to outperform the 110 performance-wise). The final decision related to the Falke was an idea to turn it into a night-fighter in 1943. Nothing ever came out of this proposal.

The Factory Defender

Although the Bf 110 seemingly took the Falke’s place, its story continued. As the Royal Air Force (RAF) began its attacks over mainland Germany in 1940, aircraft firms scrambled to defend their valuable factories. Several firms formed a “Industrie Schutzstaffel”, which was an aerial defence program which would have aircraft company’s factories and testing sites be defended by aircraft piloted by test pilots and to be managed by on-site personnel. Focke-Wulf was one such firm and, luckily for them, three fully operational Fw187A-0s were ready and waiting to be used in combat. These examples were sent to the Focke-Wulf factory at Bremen and were sent on numerous missions to defend the plant from Allied bombing. Allegedly, Dipl.-Ing (Engineer’s degree) Melhorn claimed several kills while flying one of these aircraft. After the stint in Bremen, the three were put back into armament and equipment testing. In the winter of 1940 to early 1941, the three were sent to a Jagdstaffel unit in Norway, where they were evaluated by pilots. One of the three was sent to Værløse, Denmark in the summer of 1942 and temporarily assigned to Luftschiess-Schule. It is likely the remaining 3 and prototypes were either scrapped or destroyed by Allied bombing, as no examples are known to have survived the war. Some sources claim the aircraft Melhorn flew was the V6 converted into a single seater and armed for combat, but no proof supports this.

The Fw 187 was no secret weapon. After the fighting in France died down, the Propaganda Ministry began producing film and photos of the Fw 187 in 1940-1941 to persuade the Allies into thinking the Falke was fully operational and replacing the Bf 110 as the Luftwaffe’s all new Zerstörer. In reality, the latter was taking over the role of the former. The campaign sort of worked, as the Fw 187 was now a part of the rogue’s gallery that the Allies expected to fight. Identification cards, models and even movies were made to train pilots in the event they should encounter the two engine terror in combat. One such film denotes that the Fw 187 is “a rare bird” and that they should comically “make it extinct”. This shows that the Allies didn’t completely fall for the propaganda that claimed it was being produced in mass quantity.

Design

The Fw 187 had a twin engine design. The airframe was of all light metal construction. To reduce drag, the airframe was actually narrower at its widest point than other fighters of the time. The wings were of metal construction and divided into three sections. The connected segments carried the fuel and the outer segments had the flaps installed. The first and second prototypes had a single seat cockpit. The cockpit was covered by a canopy that slid aft. The cockpit itself wasn’t built for comfort, as it was built for an average sized pilot. The cramped cockpit lacked the necessary space to mount certain instruments and had these mounted outside on the engine cowlings. V1 had tail sitting landing gear, with all three wheels being able to retract into the hull. V2 was similar to V1, but had modified control surfaces. Beginning after the first two, all examples of the Fw 187 had an extended greenhouse cockpit to accommodate the radioman. The cockpit now opened up in two sections, one to the front and one to the rear. The fuselage was lengthened to some degree as well. The extended cockpit required the fuel tank to be moved down the fuselage. The engine nacelles were shortened to allow landing flaps to be added. V3 also had a radio mast mounted on the rear part of the cockpit. V4 and V5 had this removed.

For engines, the majority of the Falke’s used the Jumo 210 engine. V1 mounted the 210Da, V2-V5 using the 210G, V6 using the powerful DB 600A engines and the A-0 reverting back to 210Gs. The aircraft performance stayed the same overall, with the V6 having peak performance speedwise.

For armament, V1 mounted two MG 17 machine guns. V3 had accommodations for two more MG FF cannons but only mockups were added. When the A-0s were rolled out, an additional two MG 17s were added to fill the Zerstorer role. The extra two had their ammunition mounted in front of the radioman’s seat.

Variants

  • Fw 187 V1 – First prototype. Mounted two Junkers Jumo 210Da engines. Originally mounted Junkers-Hamilton propellers but was changed to VDM airscrews. Originally had two wheeled forward landing gear which was switched to single during development. Fitted with two MG 17 machine guns.
  • Fw 187 V2 – Second prototype, had different rudders and a semi-retractable tail-wheel. Had fuel-injection Jumo 210G engines.
  • Fw 187 V3 – Third prototype. Two seat version, the cockpit was lengthened to accommodate the radioman. The engine nacelles were shortened some degree to allow new landing flaps.V-3 also mounted two MG 17 machine guns and two MG FF cannons.
  • Fw 187 V4/Fw 187 V5 – Fourth and fifth prototypes. Nearly identical to V-3, aside from several small modifications, such as having different windscreens.
  • Fw 187 V-6 – Sixth prototype. High speed version that mounted Daimler Benz DB 600A engines.
  • Fw 187A-0 – Pre-production version. Three were constructed. Armed with two MG FF cannons and four MG 17 machine guns. Frontal armored windshields were added. These three were tested and sent to various locations for trial and defensive purposes.

Operators

  • Nazi Germany – The sole operator was Nazi Germany, which reportedly used the Falke during the air defense of Bremen in 1940.

Focke Wulf Fw 187A-0 Specifications

Wingspan 50 ft 2 in / 15.3 m
Length 36 ft 6 in / 11.1 m
Height 12 ft 7 in / 3.8 m
Wing Area 327.2 ft² / 99.7 m²
Engine 2x 700 hp (522 kW) Junkers Jumo 210Ga 12-cylinder liquid cooled inline engines
Propeller 2x 3-blade VDM airscrews
Powerplant Ratings
Horsepower output Altitude
Take Off 700 hp Sea Level
Normal 730 hp 3,280 ft
Weights
Empty 8,150 lbs / 3,700 kg
Loaded 11,000 lbs / 5,000 kg
Climb Rate
Rate of Climb at Sea Level 3,450 ft / 1050 m per minute
Time to 6,560 ft / 1999.4 m 1.9 minutes
Time to 19,700 ft / 6000 m 5.8 minutes
Speed 329 mph / 530 km/h at 13,780 ft / 4,200 m

322 mph / 518 km/h at Sea Level

Range 560 mi / 900 km
Maximum Service Ceiling 32,810 ft / 10940 m
Crew 1 Pilot

1 Radio Operator

Armament
  • 2x 20mm MG FF cannons
  • 4x 7.92mm MG 17 machine guns

Gallery

llustrations by Ed Jackson www.artbyedo.com

Fw 187V2 – The second single-seat prototype with a large curved canopy
Fw 187V3 – Two seat cockpit and canopy design were established along with new engines and nacelles
Fw 187V4 – Curved windscreen was fitted, however this change would not last
Fw 187V5 – Two more MG-17 added below the canopy
Fw 187A-0 – The A series was the first and only production batch
The V5 on standby. A visual difference between the V3 and the V4/V5 is the absence of a radio mast mounted on the cockpit.
Side view of the V6.
A period 3-way illustration of the Fw 187 A-0
The Fw 187 V3 after it’s engine fire. Notice it’s greenhouse cockpit and the way it opens.
A cockpit view of one of the A-0s. Note the glass floor.
The V4 taking off. The V4 and V5 were slightly modified versions of the V3.
Three pre-production Fw 187 A-0s on standby.
An aft view of the V6. The surface cooling system is visible in this shot.

Sources

EF-18 Hornet in Spanish Service

Spanish flag Spain (1985)
Multirole Fighter Aircraft – 96 Built

The first European customer for the F/A-18 Hornet multirole fighter was the Spanish Air Force, the Ejercito del Aire Espanol (EdA). Spain did not join NATO until May of 1982, but even before that date the Spanish government had issued a requirement for a new fighter/attack aircraft that would replace its fleet of F-4C Phantoms, F-5 Freedom Fighters, and Mirages. In response to the announced requirement, the US government initially offered Spain an interim loan of 42 ex-USAF F-4E Phantoms, followed by the sale of 72 F-16s. However, the F-18 entered the competition in 1980, offering the benefit of a twin-engine safety margin.

History

In December of 1982, Spain announced that they had selected the Hornet and made plans to order 72 single-seaters (F/A-18A) and 12 two-seat (F/A-18B) versions. However, this proved more than the Spanish government could afford, and the order was reduced to only 60 A variants and 12 B variants on May 31, 1983. An option was put aside for 12 additional Hornets, but due to budgetary restrictions, they were not taken up.

As part of an offset agreement reached with Spain, Construcciones Aeronauticas SA (CASA) at Gefale is responsible for the maintenance of the EdA Hornets. CASA is also responsible for major overhauls of Canadian Hornets based in Europe, as well as the Hornets of the US 6th Fleet in the Mediterranean.

EF-18 on takeoff at exercise Anatolian Eagle, Turkey (USAF)

The Spanish Hornets are sometimes referred to as EF-18A and EF-18B, the “E” standing for “España” (Spain) rather than for “Electronic” as would normally be the case for an official Department of Defense designation. They have local EdA designations C.15 and CE.15 respectively. Serial numbers are C.15-13 through C.15-72 and CE.15-01 through CE.15-12 respectively.

The first EdA Hornet, EF-18B CE.15-01, was presented in a formal ceremony at St Louis on November 22, 1985, and made its first flight on December 4. The first few two-seaters were sent to Whiteman AFB in Missouri, where McDonnell Douglas personnel assisted in the training of the first few Spanish instructors. The first two-seater was flown to Spain on July 10, 1986. By early 1987, all 12 two-seaters had been delivered to Spain, after which the single-seaters were delivered. A total of 60 EF-18As and 12 EF-18Bs were delivered to Spain, the last planes being delivered in July of 1990.

The Hornet serves with Escuadron (Squadron) 151 and Escuadron 152 of Ala de Caza (Fighter Wing) 15 at Zaragoza-Valenzuela and with Escuadron 121 and Escuadron 122 of Ala de Caza 12 at Torrejon de Ardoz. Escuadron 151 was established first and declared combat-ready in September of 1988. In EdA service, the Hornet operates as an all-weather interceptor sixty percent of the time and as a night and day fighter-bomber for the remainder. In case of war, each of the four front-line squadrons is assigned a primary role. 121 is tasked with tactical air support for maritime operations, 151 and 122 are assigned the all-weather interception role, and 152 is assigned the suppression of enemy air defenses (SEAD) mission.

Spain has ordered 80 Texas Instruments AGM-88 HARM antiradiation missiles and 20 McDonnell Douglas AGM-84 Harpoon anti-shipping missiles. The Spanish Hornets carry the Sanders AN/ALQ-126B deception jammer and, on the last 36 aircraft, Northrop AN/ALQ-162(V) countermeasure systems. For air-to-ground work, EdA Hornets carry low-drag BR and Mk 80 series bombs, Rockeye II cluster bombs, BME-300 anti-airfield cluster bombs, BEAC fuel-air explosive bombs, GBU-10 and GBU-16 Paveway II laser bombs, AGM-65G Maverick air-to-surface missiles, and AGM-88 HARM antiradiation missiles. In the air-to-air missions, EdA Hornets carry a 20-mm M61A1 cannon, AIM-9L/M Sidewinders and AIM-7F/M Sparrows. The Sparrows were supplemented from late 1995 onward by AIM-120 AMRAAMs. Spanish Hornets can also carry AN/ALE-39 chaff/flare dispensers, ALR-167 radar homing and warning systems and ALQ-126B Jammers which have been supplanted in most of the aircraft by the more advanced ALQ-162. EdA Hornets can carry the AN/AAS-38 Nite Hawk FLIR/laser designator pod on the port fuselage stores station. Air refueling for the Spanish Hornets is provided by KC-130Hs from Grupo (Group) 31 and Boeing 707TTs from Grupo 45.

In 1993, plans were announced for the EdA’s fleet of EF-18A/B Hornets to be upgraded to F/A-18C/D standards. McDonnell Douglas reworked 46 of these planes, with the remainder being upgraded by CASA. Most of the changes involved computer improvements and new software, although some changes were required to the weapons delivery pylons. Following the rework, the planes were redesignated EF-18A+ and EF-18B+.

Worried about a “fighter gap” opening up early in the next century because of delays in the Eurofighter 2000 program, Spain searched for additional fighter aircraft, acquiring some additional Mirage F1s from Qatar and France. The USAF offered Spain 50 surplus F-16A/B Fighting Falcons and the US Navy offered about 30 F/A-18As. These F/A-18s had the advantage in the contest, since Spain already operated the Hornet, and in late 1995 the Spanish government approved the purchase of 24 US Navy surplus F/A-18A/Bs. This marked the first sale of US Navy surplus Hornets. There was a separate deal for new F404-GE-400 engines, which were being contracted directly from General Electric.

The US Navy surplus Hornets were intended to equip the 211 Escuadron of Grupo 21 based at Moron. Escuadron 211 had been operating the F/RF-5A fighter, but these planes had been phased out of front-line service and transferred to Ala 21, while the Moron-based unit was temporarily equipped with CASA C-101 Aviojets. The first six were delivered in late 1995. They bore EdA serials C.15-73 to C-15-78 (being ex-US Navy BuNos 161936, 162415, 162416, 162426, 162446, and 162471 respectively). The remainder would follow at a rate of six per year until 1998. After a period of service, they were retrofitted in Spain and later subjected to a mid-life update.

With the withdrawal of USAFE and Canadian squadrons from Europe, Spanish F-18s (and Mirage F1s) have been in demand for NATO exercises and are frequent visitors to air bases in Europe and the UK. In 1994, eight EF-18s participated in a Red Flag exercise at Nellis AFB in Nevada. Eight EF-18s participated in Deny Flight operations out of Aviano, Italy beginning in December of 1994. On May 25, they received their first taste of combat when they participated in an attack against a Serb ammunition depot near Pale (currently in Bosnia and Herzegovina).

The Hornet is extremely popular with its EdA crews and is reportedly a pure joy to fly, stable and yet highly maneuverable and with good acceleration. By 2002, only six Spanish Hornets had been lost in accidents. This is the best safety record of any EdA fighter that ever served, and as good, if not better, than that of any other F/A-18 operator.

Active Service

Spanish Hornet at a NATO Tiger Meet exercise (FloxPapa)

After the Bosnian War began in 1992, the UN Security Council passed a resolution prohibiting military flights in Bosnian Airspace. Despite this no-fly order, hundreds of violations were committed. As a result, enforcement of the UN no-fly zone over Bosnia and Herzegovina by NATO began in 1993 as Operation Deny Flight, which was successful in denying unauthorized airplane access over Bosnia, but was ineffective with regards to helicopters. However, Operation Deny Flight was extended beyond the enforcement of the no-fly-zone, with ground air strikes in support of UN forces being made in the operation. As a NATO member state, the Spanish Air Force was involved and flew missions jointly with the U.S. Air Force, with eight EF-18s, two KC-130s and one CASA 212 participating in 23,000 fighter sorties, 27,000 close air support missions, 21,000 training sorties and 29,000 SEAD and other types of sorties.

The next military operation of the Spanish Forces was Operation Deliberate Force, aimed at weakening the military power of the Bosnian Serb Army which had perpetrated the Srebrenica massacre in July 1995, in which 8300 Bosnians were murdered. The air campaign lasted for three weeks, with eight EF-18s and several other Spanish aircraft involved in operations flying over 3500 sorties.

Spanish Air Force EF-18 Hornets have also flown Ground Attack, SEAD, and combat air patrol (CAP) combat missions in Kosovo, under NATO command, in the Aviano detachment (Italy). They shared the base with Canadian and USMC F/A-18s. Over Yugoslavia, eight EF-18s, based at Aviano AB, participated in bombing raids in Operation Allied Force in 1999, a NATO military campaign directed against the Federal Republic of Yugoslavia as part of the Kosovo War. The operation was carried out without UN approval due to China and Russia vetoing it. The end of the campaign lead to the withdrawal of Yugoslav forces from Kosovo and end to the Kosovo War.

During the 2011 Libyan Civil War, a coalition of nations imposed a no-fly zone over the country in order to prevent Muammar Ghadaffi’s Lybian Armed Forces from using the air force to bomb the rebels, along with an arms embargo. Six Spanish Hornets, along with a few other Spanish planes, participated in enforcing the no-fly zone. Spain also allowed the use of its Rota, Morón and Torrejón bases by the coalition. The total costs for Spain over the 7-month operation ammounted to more than 50 million euros.

Variants

  • EF-18A – Single seat version, locally designated C.15
  • EF-18B – Two seat version, locally designated C.15E
  • EF-18A+ – Single seat version upgraded to F-18C standard
  • EF-18B+ – Two seat version upgraded to F-18D standard*Note: The “E” in “EF-18” stands for “España” rather than “Electronic [warfare]” as typically designated by the U.S. Department of Defense

EF-18A Specifications

Wingspan 40 ft 5 in / 13.5 m
Length 56 ft 0 in / 16.8 m
Height 15 ft 4 in / 4.6 m
Engine 2x General Electric F404-GE-402 turbofan engines
Maximum Takeoff Weight 51,900 lbs / 23,540 kg
Climb Rate 833 fps / 254 m/s
Maximum Speed Mach 1.7+
Range 1250 mi / 2,000 km
Maximum Service Ceiling 50,000 ft / 15,240 m
Crew 1 pilot
Armament
  • One M61A1/A2 Vulcan 20mm cannon
  • AIM 9 Sidewinder, AIM 7 Sparrow, AIM-120 AMRAAM
  • Harpoon, Harm, SLAM, SLAM-ER, Maverick missiles
  • Joint Stand-Off Weapon (JSOW)
  • Joint Direct Attack Munition (JDAM)
  • various general purpose bombs, mines and rockets

Gallery

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Two Hornets prepare for takeoff at exercise Anatolian Eagle, Turkey (USAF)
Armed EF-18, with laser guided GBU-10 Paveway II bombs and and AIM-9 Air to Air missiles (USAF)

Sources

 

Vultee XA-41

USA flag United States of America (1944)
Prototype Ground Attack Aircraft – 1 Built

XA-41 in flight

The Vultee XA-41 was a single-engine aircraft that began life as a dive bomber. Months later, its role was changed to a low-level attack aircraft. The XA-41 performed admirably in flight tests, but the United States Army Air Corps (USAAC) eventually decided that the fighter aircraft then in service were already performing well enough in the attack role. Despite its job being erased, the XA-41 continued development as a testbed, showing off the powerful XR-4360 engine it mounted and how much it could carry. The aircraft itself would have been deadly had it been produced in large numbers, as it boasted four 37mm cannons. As the war went on, the XA-41 was still being tested. Throughout the trials, the aircraft had extremely good performance, even being able to outturn a P-51, but its speed wasn’t quite enough for its role. At one point, it was given to the Navy for testing and eventually it would wind up at Pratt & Whitney (PR). At PR, it served as a testbed through the war and was eventually scrapped in 1950.

History

Cutaway Concept for the XA-41

The XA-41 began as part of a United States Army Air Corps (USAAC) requirement in October 1941 for a new single-seat attack aircraft. The Douglas A-20 Havoc (and soon to be produced North American A-36 Apache) was performing well at the time, but the USAAC wanted something new. The aircraft requested had to be able to reach at least 300mph (482.8kph) at sea level, have a service ceiling of at least 30,000ft (9,144m), and a range of 1,200 miles (1,932km). For the attack role, the aircraft was to have either 37mm, 20mm, or 50. cal guns mounted in the wings. Given this imposing armament, it is likely the aircraft would have attacked soft targets or even been used for tank-busting.

The USAAC commissioned Vultee Aircraft Corporation, Kaiser Fleetwings, and Curtiss to design a new aircraft for the role. Kaiser Fleetwings developed the XA-39, which would have mounted the R-2800-27 engine. Their aircraft didn’t progress beyond the mockup stage. Curtiss reused their naval XTBC-1 prototype for their part, renaming it the XA-40. This also didn’t go beyond the mockup stage. Vultee’s answer was the V-90, a ground attack aircraft mounting the fairly new and powerful R-4360 engine. Interestingly, the XA-41 started off as a dive bomber, despite it being commissioned as an attack aircraft. It isn’t often stated, but the Army had been interested in dive bombers since 1940, going as far as purchasing several Navy designs. The Army bought several SB2D-1 Helldivers in December of 1940 and renamed them the A-25 Shrike. They also had a troubled history with one of Vultee’s own aircraft, the A-35 Vengeance, which they tried numerous times, but to no avail. The XA-41 was most likely a chance for the Army to have a successful dive bomber or attack aircraft. The Army was satisfied with Vultee’s V-90 design and awarded a contract for two prototypes on November 10, 1942. Shortly after a mockup inspection, the Army interestingly switched the role from a dive bomber to a dedicated attack aircraft. The switch was rather abrupt and caused a delay in the development.

XA-41 Prototype

On April 30th, a new contract was signed which included a static mockup. Vultee continued construction on the project until the prototype was halfway completed, at which point the Army decided that the most current aircraft, the Republic P-47 Thunderbolt and North American P-51 Mustang, were already quite capable in the attack role. But this wouldn’t be the end of the XA-41. Maj.Gen Oliver P. Echols, Chief of the Material Division, opted not to cancel the program and instead complete it in order to show the true potential of a new attack aircraft with the new R-4360 engine. This decision went through on November 20th, with the prototype ¾ the way through completion. The 2nd prototype was cut at this point and only one would be built (Serial No. 43-35124/5).

On February 11th, 1944, the XA-41 flew for the first time from Vultee Field, California, with test pilot Frank Davis at the controls, and landed at March Field, California. Several flights after this were conducted at the nearby army base. The aircraft was flown by both Vultee and Army pilots, and both agreed it handled well. There were some problems here and there, which Vultee quickly fixed with some additions to the airframe. On June 25, the Army accepted the XA-41. On July 16th, on its 60th flight, the aircraft was ferried to Eglin Field, Florida. Testing proved the XA-41 was an exceptional aircraft, with many great features. The craft had an excellent turn rate, being able to outturn the P-51. For its size, it carried an impressive arsenal of weapons. But the Army wanted an attack aircraft that could also defend itself if the need would arise, and the 350mph (563.2 km/h) of the XA-41 wasn’t that impressive compared to other aircraft in service. The United States Navy became interested in the XA-41 at some point and the prototype was given to them for testing at Patuxent River, Maryland. The Navy wanted to see if the aircraft could be flown from aircraft carriers. After the Navy briefly tested it, the XA-41 was given to Pratt & Whitney (PR) on August 22, 1944. It was obvious at this point that the XA-41 would never see combat, but would remain in the US as a testbed aircraft. Serving with PR, it was used as a flying testbed for their R-4360 engine, as well as having a supercharger mounted. As testing continued, the aircraft was purchased by PR on October 9 and re-registered as NX6037N. There are few documents that reference the XA-41 post-war. The only thing mentioned is that the sole XA-41 was finally scrapped in 1950, having served for many years at PR.

Design

The XA-41 was a conventional single-engine aircraft. It had a slight gull wing and a tail sitter configuration. The landing gear in the wings would retract inboard and was placed widely to allow better landing performance. During development, the tail wheel had doors installed to completely cover it in-flight. The cockpit was placed far forward and raised to allow the pilot to see over the engine, giving him better visibility when attacking ground targets. The ventral tail had an extension that spanned most of the length of the aircraft. This was added during development. A spinner was also added at some point. The XA-41 mounted the PR XR-4360 Wasp Major engine, which was the main reason the Army and PR were so interested in the project.

For armament, the XA-41 had four M2 Browning .50 cal machine-guns mounted in the wings. For the attack role, it was meant to mount four more 37mm cannons (sources don’t mention what particular kind of gun) in the wings. All armament in the wings was placed outside of the propeller’s range. For bombing, the XA-41 had a bomb bay that could carry four 500Ibs bombs, a torpedo, additional fuel, or two 1,600Ibs weapons. In total, it had up to 6,500Ibs of ordnance. Documents mention that up to 1,100Ibs of additional bombs could be mounted to the wings. The aforementioned competing XA-39 only sported the four Brownings, two 37mms, as well as a predicted carrying capacity of six 500Ibs bombs.

Variants

  • XA-41 – [The sole prototype built, used as a testbed for the XR-4360 engine.]

Operators

  • United States of America – The United States Army Air Corps would have operated it had it entered production. After serving as a testbed for the Army, the Navy and Pratt & Whitney also did tests with the aircraft.

XA-41 Specifications

Wingspan 54 ft / 16.4 m
Length 48 ft 7 in / 14.8 m
Height 14 ft 5 in / 4.4 m
Wing Area 540 ft² / 164.5 m²
Engine 1x 3,000 hp ( 2240 kW ) XR-4360-9
Propeller 1x 4-bladed Hamilton Standard propeller
Weights
Empty 13,400 lb / 6078.1 kg
Gross 18,800 lb / 8527.5 kg
Maximum 23,359 lb / 10595.4 kg
Climb Rate
Rate of Climb at Sea Level 2,326 ft / 708.9m per minute
Maximum Speed 353 mph / 568 kmh at 15,000 ft / 4572 m
Cruising Speed 270 mph / 434.5 kmh
Range 800 mi / 1287.4 km
Maximum Service Ceiling 27,000 ft / 8229.6 m
Crew 1 pilot
Armament
  • 4 Browning M2 machine guns (400rpg)
  • 4 37mm cannons (30rpg)
  • Up to 6,500 Ibs of weapons

Gallery

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Vultee-XA-41 Original Prototype Colors
Vultee XA-41 with possible service markings (artist interpretation)
XA-41 at Patuxent River
XA-41 on the runway
XA-41 in a slight climb
XA-41 parked on the ramp

Sources

 

Douglas XTB2D-1 Skypirate

usa flag USA (1945)
Prototype Torpedo Bomber – 2 Built

XTB2D-1 on the Runway
First prototype of the Skypirate on the runway.

The Douglas XTB2D-1 “Skypirate” was a large, single-engine torpedo bomber built for use on the Midway class carriers during World War 2. At the time, it was the largest aircraft to be used aboard a carrier, dwarfing even two-engine designs. Unfortunately for the Skypirate, engine troubles, little support from the US Navy (USN), and numerous setbacks with the construction of Midway-class carriers nearly doomed it from the start. By the time it was airworthy, it was trying to fill an obsolete role which other aircraft, such as the TBF/TBM Avenger, already filled adequately. Work continued after the war, with several attempts to revive the program but it proved to be too costly and the Skypirate program was finally cancelled in 1947, with the two prototypes being scrapped in 1948.

History

With engagements such as the Battle of the Coral Sea and the hunt for the Bismarck, the effectiveness of torpedo bombers, such as the TBF/TBM Avenger and Fairey Swordfish, was clear. With the announcement of the large Midway-class carriers, the possibility of a new torpedo-bomber/scout bomber came about. In February 1942, a competition was put forward by the Navy for this role. The Douglas Aircraft Company, based in Southern California, proposed the Skypirate. The single-engine Skypirate was picked from eight different designs, most of which were two-engined. The Bureau of Aeronautics (BuAer) wasn’t expecting a single engine design to be submitted, assuming the specified massive carrying capacity would require a two-engine design. The program was being headed by Ed Heinemann as lead designer and Bob Donovan as the chief engineer, who would be on the project until the end.

XTB2D-1 Frontal View
An impressive look at the massive Skypirate from the front.

In November of 1942, Douglas was given permission to begin production of two prototypes and a mockup of the XTB2D-1 (then called the Devastator II, before being changed to Skypirate). Delays in the development of the Midway class would continue to hamper the Skypirate throughout its life. The finished product was a formidable aircraft, capable of carrying four torpedoes from land or two torpedoes from a carrier, the former being four times the carrying capacity of the TBM Avenger. In March and May of 1943, the mockup was inspected and an order for 23 production aircraft was put in. This was enough for a single squadron to operate from a Midway carrier. Problems began about this time, with the delivery of engines and propellers being delayed. By 1944, the Skypirate was still not airborne and it was obvious it wouldn’t be operational anytime soon. With earlier torpedo bombers performing adequately, a lack of support from the Navy, most of the Japanese fleet in shambles and continued delays with the Midway class (which would eventually sail after the war), the 23 production planes were cancelled. On February 18th, 1945, the first Skypirate was rolled out of the production facility, being completed on March 13th and finally going airborne on May 8th. Neither of the prototypes had any defensive armaments, but they were tested with torpedoes and drop tanks. Although no production was to ever start, the Skypirates would continue flying until the end of the war. During one such flight in June of 1945, a Skypirate was damaged mid-flight, but the craft was brought down safely. Engine problems were a frequent issue with the Skypirate and propeller problems would ground it in August of 1945, not flying again until after the war.

Skypirate Landing
Perhaps the most well known photo of the aircraft, the Skypirate prepares to land.

Postwar, the aircraft industry changed with the introduction of jet aircraft, thus eliminating the need for many prototypes being developed during the war. The Skypirate was no exception. With the torpedo bomber role now fading, the Douglas firm looked at other options to revive their Skypirate. Some ideas included using the Skypirate for an electronic warfare role or even as an anti-submarine aircraft (a role overtaken by another piston engine aircraft, the Grumman AF Guardian), but none of these propositions ever managed to become reality. As the Cold War was just beginning, the Skypirate program ended in 1947 and the 2 prototypes were scrapped in 1948.

Design

The Skypirate is most likely the largest single-engine aircraft to ever be designed for carrier operations. In comparison, the twin-engined B-25 Mitchell medium bomber measured around the same in length and width.

In flight
The 2nd prototype in flight, notice how the tail is shorter in comparison to the first prototype.

The initial Skypirate design had an internal bomb bay, which the prototypes dropped in favor of four external Mark 51 Mod 7 bomb hardpoints. These hardpoints could carry a range of weapons including 500Ib-2000Ib bombs, torpedoes, depth charges, mines or even incendiary bombs. The use of up to 4 Mk.13 Torpedoes (from land) were planned had it entered production. The Skypirate could alternatively carry up to 8,400Ibs of bombs. For offensive armament, the Skypirate had 4 M2 Browning machine guns in the wings. For defense, it had a Firestone model 250CH-3 remote turret behind the cockpit which carried 2 M2 Brownings and a turret in the back of the lower fuselage which carried a single M2 Browning. The lower turret was remotely fired through electronic control and powered hydraulically. Drawings indicate that Mark 2 Gun Containers could be added for extra forward firepower but none were ever attached during testing. 300 gallon drop tanks were also fitted during testing and could have been used had the craft been operational.

The Mockup
The sole mockup made alongside the 2 prototypes.

Along with such an impressive weapons payload, the Skypirate was full of advancements which would have improved its performance. To get such a large aircraft off the ground, the Skypirate was powered by a single Pratt & Whitney XR-4360-8, the largest radial engine ever built up to that time. The engine had a unique exhaust style that combined the exhausts in alternating rows to lower the effects of backpressure. Being a carrier-based aircraft, the Skypirate had folding wings as well as a catapult hook. The inclusion of a tricycle landing gear was also interesting, as it helped with bomb loading and carrier space. Most single engine aircraft of the time preferred using a tailwheel. The Skypirate had large flaps that extended the length of wingspan. The outer flaps served as ailerons while the midsection flaps were used as dive flaps. The dive flaps could also be lowered to help the aircraft cruise or assist in turning to help ease the stress off the aircraft when fully loaded. To assist with bombing or flight in general, a Type 3 Sperry vacuum-controlled, hydraulic autopilot was also to be added. A de-icing system was also added that pumped hot air over the wings and tail section.

The planned modifications of the prototypes are interesting to note. The 2nd prototype (Bu.36934) differed from the first, having a shorter tail of 8.6 ft, compared to the regular 10.5 ft tail of the original design. This was done most likely to conserve valuable space when inside a carrier. Along with these differences, plans to fit a jet engine in the fuselage of the 2nd prototype were made, but nothing ever came to fruition. The first prototype (Bu.36933) had a larger tail and was planned to be converted for the scout bomber role. These plans included adding cameras onboard. As with the jet engine designs, these also never came to be.

Variants

  • XTB2D-1 Bu.36933 – Prototype version, lacked any armament
  • XTB2D-1 Bu.36934 – The 2nd prototype. The tail was shortened to 8.6 ft. Also lacked any armament.
  • TB2D-1 – Proposed production version, 23 were ordered and planned production was to be 100 built every month. These versions were to be fitted with four .50 caliber machine guns in the wings, two in a Firestone power turret and one remotely controlled in the ventral hull. Eventually, the production versions were cancelled in favor of higher priority projects.

Operators

  • United States of America – Slated to be used aboard the Navy’s Midway-class carriers, with the end of the war and other setbacks, the XTB2D-1 was never used operationally.
XTB2D-1 Rollout
The design team poses with the first Skypirate on rollout day.

TB2D-1 Specifications

Wingspan 70 ft / 21.3 m
Length 46 ft / 14 m
Height 22 ft 6 in / 6.9 m
Wing Area 605 ft² / 184.4 m²
Engine 1x 3,000 hp ( 2240 kW ) XR-4360-8
Propeller 1x 8 bladed Hamilton Standard contra-rotating propeller
Fuel Capacity 501 US gal / 1896 L
Oil Capacity 28 US gal / 106 L
Empty Weight 18,405 lbs / 8350 kg
Gross Weight 28,545 lbs / 12950 kg
Maximum Weight 34,760 lbs / 15765 kg
Rate of Climb at Sea Level 1,390 ft / 425 m per minute
Time to 10,000 ft / 3048 m 8.2 minutes (Normal) 10.2 minutes (Military)
Time to 20,000 ft / 6096 m 22.3 minutes (Normal) 26.5 minutes (Military)
Maximum Speed 340 mph / 550 km/h at 15,600 ft / 4755 m
Cruising Speed 168 mph / 270 km/h

312 mph / 500 km/h (with torpedoes)

Range 1,250 mi / 2010 km (Torpedoes)

2,880 mi / 4635 km (Maximum)

Maximum Service Ceiling 24,500 ft / 7470 m
Crew 1 pilot

2 gunners

Armament 4 Browning M2 machine guns mounted in the wings (1600rds)

2 Browning M2 machine guns mounted in turret (1200 rds, incl remote 50.)

1 remote Browning M2 machine guns mounted in ventral hull

4 x Mk 13 Torpedoes (from land)

2 x Mk 13 Torpedoes (from carrier)

2 x 2,100 lbs Bombs

Total of 8,400 lbs payload capacity

2 x Mark 2 Gun Containers

Gallery

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Douglas XTB2D Skypirate Side View
Douglas TB2D Skypirate Side View – With the Defensive Gun Pod

 

XTB2D End
The last known photos of the Skypirates before being scrapped.
XTB2D Loaded
One of the prototypes with mounted Mk-13 torpedoes.
XTB2D Backside
A back view of one of the prototypes
XTB2D-1 on the Runway
First prototype of the Skypirate on the runway.
XTB2D-1 Frontal View
An impressive look at the massive Skypirate from the front.
Skypirate Landing
Perhaps the most well known photo of the aircraft, the Skypirate prepares to land.
In flight
The 2nd prototype in flight, notice how the tail is shorter in comparison to the first prototype.
The Mockup
The sole mockup made alongside the 2 prototypes.
XTB2D-1 Rollout
The design team poses with the first Skypirate on rollout day.

Sources

 

Rockwell B-1A Lancer

USA flag United States of America (1974)
Prototype Supersonic Heavy Bomber – 4 Built

B-1A 74-0159

The B-1A program arose out of a need for a long-range, supersonic, low-flying heavy bomber. The program’s initial development was pushed forward through an ever-shifting geopolitical landscape, as well as opposition and contention among the the top levels of the U.S. government. Even with advanced features such as variable sweep wings, and variable air intake and exhaust capability, it was derided as a ‘dinosaur’ in the age of ICBMs. The opposition and political infighting nearly ended the Lancer, before it was given a miraculous second chance.

History

B-1A 74-158 taxiing on ground. (U.S. Air Force photo)

The origin of the Rockwell B-1 can be traced back to 1961, when the Air Force began to consider alternatives to the North American B-70 Valkyrie, which had just been downgraded from production to test aircraft status. At that time, the long range strategic missile was assumed to be the weapon of the future, with manned long-range bombers being relegated to a secondary role. The B-70 had been designed to fly at extremely high altitudes and at Mach 3 speeds, and increasingly effective Soviet anti aircraft defenses had made such an aircraft rather vulnerable.

Nevertheless, the Air Force commissioned several studies to explore possible roles for manned bombers in future planning. If successful, these would replace the B-52. At this time, the ability to fly through enemy airspace at extremely low altitudes was was thought to be the key for survival in the face of sophisticated air defenses.

The first such study was known as the Subsonic Low Altitude Bomber (SLAB), which was completed in 1961. It envisaged a 500,000 pound fixed-wing aircraft with a total range of 11,000 nautical miles, with 4300 nm of these miles being flown at low altitudes. This was followed soon after by the Extended Range Strike Aircraft (ERSA), which had a weight of 600,000 pounds and featured a variable sweep wing. The ERSA was supposed to be able to carry a payload of 10,000 pounds and achieve a range of 8750 nautical miles, with 2500 of these miles being flown at altitudes as low as 500 feet. In August of 1963, a third study known as Low-Altitude Manned Penetrator(LAMP) was completed. It called for a 20,000 payload and a 6200 nautical mile range, 2000 miles being flown at low altitude. None of these projects ever got beyond the basic concept stage.

In October of 1963, the Air Force looked over these proposals and used the results as the foundation of a new bomber proposal, termed Advanced Manned Precision Strike System (AMPSS). In November of that year, 3 contractors were issued Requests for Proposals for the AMPSS. The companies were Boeing, General Dynamics, and North American. However, Secretary of Defense Robert McNamara kept a tight rein on funds, and expressed doubts about the assumptions behind AMPSS, so the RFPs only involved basic concept studies and did not focus on a specific aircraft. In addition, the contractors all agreed that some of the suggested USAF requirements either did not make much sense or else were prohibitively costly.

In mid-1964, the USAF had revised its requirements and retitled the project as Advanced Manned Strategic Aircraft (AMSA). The AMSA still envisaged an aircraft with the takeoff and low-altitude performance characteristics of the AMPSS, but in addition asked for a high-altitude supersonic performance capability. The projected gross weight for the aircraft was 375,000 pounds, and the range was to be 6300 nautical miles, 2000 of which would be flown at low altitude.

Secretary McNamara was never very excited about the AMSA, since he thought that strategic missiles could do a better job of “assured destruction” than manned bombers, and thought that the cost of the AMSA would probably be excessive. Nevertheless, there was a potential gain in avionics and propulsion technology that could be achieved if the project were to proceed, and McNamara released a small amount of funding for preliminary AMSA studies. The airframe for the AMSA would be worked on by Boeing, General Dynamics, and North American, whereas Curtiss-Wright, General Electric, and Pratt & Whitney would work on the engines. Both IBM and Hughes aircraft looked at potential avionics systems. These contractors issued their reports in late 1964. General Electric and Pratt & Whitney were given a contract to produce two demonstrator engines, but no airframe and avionics contracts were issued at that time.

74-0160 on display at Edwards AFB in 1980. (U.S. Air Force photo)

A bit of confusion entered the picture when the Defense Department selected the FB-111A as the replacement for the B-52C, B-52F, and B-58. The Air Force had not requested a bomber version of the controversial F-111, and was not all that enthusiastic about the choice. Nevertheless, a low-cost interim bomber did have some attractive features, and the Air Force went along with the choice of the FB-111A provided it did not interfere with AMSA development.

By 1968, an advanced development contract was issued to IBM and the Autonetics Division of North American Rockwell. On September 22, 1967, North American Aviation had merged with Rockwell Standard Corporation to create North American Rockwell. Earlier in that year, the Joint Chiefs of Staff had recommended the immediate development of the AMSA, but Secretary McNamara was still opposed, preferring instead to upgrade the existing FB-111 and B-52 fleet. McNamara vetoed the proposal.

When Richard Nixon became President in January of 1969, his Secretary of Defense Melvin Laird reviewed Defense Department needs and announced in March of 1969 that the planned acquisition of 253 FB-111s would be reduced to only 76, since the FB-111 lacked the range and payload required for strategic operations, and recommended that the AMSA design studies be accelerated.

The AMSA was officially assigned the designation B-1A in April of 1969. This was the first entry in the new bomber designation series, first created in 1962.

New Requests For Proposals were issued in November of 1969. IBM and Autonetics were selected for the avionics work on December 19. The selection of airframe and engine contractors was delayed by budget cuts in FY 1970 and 1971. On December 8, 1969 North American Rockwell and General Electric were announced as the winners of the respective airframe and engine contracts for the B-1A.

The original program called for 2 test airframes, 5 flyable aircraft, and 40 engines. This was cut in 1971 to one ground test aircraft and 3 flight test articles (74-0158/0160). First flight was set for April of 1974. A fourth prototype (76-1074) was ordered in the FY 1976 budget. This fourth plane was to be built to production standards. At one time, some 240 B-1As were to be built, with initial operational capability set for 1979.

Design

B-1A Orthogonal Projection. Note the difference between the wings at maximum and minimum sweep. (U.S. Air Force photo)

The fuselage of the B-1A was fairly slim, and seated a crew of four in the nose. There was a large swept vertical tail, with a set of all-flying slab tailplanes mounted fairly high on the vertical tail. The aircraft’s fuselage blended smoothly into the wing to enhance lift and reduce drag. In addition, the fuselage was designed to reduce the aircraft’s radar cross section in order to minimize the probability of detection by enemy defenses.

In order to achieve the required high-speed performance and still be able to have a good low-speed takeoff and landing capability, a variable-sweep wing was used. This made it possible for the aircraft to use short runways that would be inaccessible to the B-52. The outer wing panels were attached to a wing carry-through attachment box which faired smoothly into a slim, narrow fuselage. Each outer wing had full-span slats and slotted flaps, but used no ailerons. Lateral control was provided by a set of spoilers on the wing upper surface, acting in conjunction with differential operation of the slab tailplanes.

The engines were four afterburning General Electric F101-100 turbofans. The engines were installed in pairs inside large nacelles underneath the wing roots,, and close to the aircraft’s center of gravity to improve stability while flying at high speed through highly-turbulent low-altitude air. The nacelles were far enough apart so that the main landing gear members could be installed in the wing roots between them with enough clearance to retract inwards. In order to achieve the required Mach 2 performance at high altitudes, the air intake inlets were variable. In addition, the exhaust nozzles were fully variable.

Initially, it had been expected that a Mach 1.2 performance could be achieved at low altitude, which required that titanium rather than aluminum be used in critical areas in the fuselage and wing structure. However, this low altitude performance requirement was lowered to only Mach 0.85, enabling a greater percentage of aluminum to be used, lowering the overall cost. Titanium was used primarily for the wing carry-through box, the inner ends of the outer wings incorporating the pivots, and for some areas around the engines and rear fuselage.

Eight integral fuel tanks were planned, one in each outer wing panel, and the rest in the fuselage. About 150,000 pounds of fuel could be carried. There were three 15-foot weapons bays in the lower fuselage, two ahead and one behind the wing carry-through box. Each bay could carry up to 25,000 pounds of conventional or nuclear weapons. The total weapons load was almost twice what a B-52 could carry. All of the offensive weapons were to be carried internally, with no provision for externally-mounted pylons. A key weapon was to be the AGM-69A SRAM (Short-Range Attack Missile), 8 of which could be carried on a rotary launcher in each of the weapons bays.

No defensive armament was planned, the B-1A relying on its low-altitude performance and its suite of electronic countermeasures gear to avoid interception.

An extensive suite of electronics was planned, including a Litton LN-15 inertial navigation system, a Doppler radar altimeter, a Hughes forward-looking infrared, and a General Electric APQ-114 forward-looking radar and a Texas Instruments APQ-146 terrain-following radar.

The B-1A carried a crew of four–a pilot, copilot, offensive systems officer, and defensive systems officer. The crew escape system resembled that of the F-111 crew escape module. In an emergency, a capsule containing all four crewmembers would separate from the aircraft and be steered and stabilized by various fins and spoilers. A rocket motor would fire and lift the capsule up and away from the aircraft. Three parachutes would then open and would lower the capsule along with the crew safely to the surface. Once down, the capsule would serve as a survival shelter for the crew members.

Development

The B-1A mockup review occurred in late October of 1971. There were 297 requests for alterations.

The first B-1 flight aircraft (74-0158) rolled out from USAF Plant 42 at Palmdale, CA on October 26, 1974. It made its first flight on December 23, 1974, a short hop to Edwards AFB where the flight testing was to be carried out. The crew was Rockwell test pilot Charlie C. Bock,; Jr, Col. Emil Sturmthal, and Richard Abrams. The third aircraft (74-0160) was to be the avionics testbed and flew for the first time on March 26, 1976. The second aircraft (74-0159) was initially used for some static ground testing and did not make its first flight until June 14, 1976.

The B-1A test program went fairly smoothly. However, there were numerous modifications introduced throughout the program and some items of additional equipment were added. The avionics suite of the B-1A was perhaps the most complex yet used on an aircraft. The Initial Operational Test and Evaluation tests were successfully passed in September of 1976. The Phase 1 flight test program was completed on September 30, 1976. In December of 1976, the Air Force concluded that the B-1A was to go into production, with contracts placed for the first three aircraft and plans were made for an initial Block 2 production batch of 8 aircraft.

It seemed that the B-1A was well on its way to a full production run of 240 aircraft. However, the cost of the B-1A program began to escalate, and there were still some unresolved issues concerning the avionics suite. In 1970, the estimated per-unit price was $40 million, and by 1972, the cost had risen to $45.6 million. Although this sounds like small-change by today’s standards, this was considerably greater than the figure for any previous production aircraft. Moreover, by 1975, this number had climbed to $70 million.

Alarmed at these rising costs, the new presidential administration of Jimmy Carter (which had taken office on January 20, 1977) began to take a second look at the whole B-1A program. On June 30, 1977, President Carter announced that plans to produce the B-1A would be cancelled, and that the defense needs of the USA would be met by ICBMs, SLBMs, and a fleet of modernized B-52s armed with ALCMs. President Carter genuinely wanted to reduce the arms race, but he was unaware at the time of the secret projects that would ultimately lead to the F-117A stealth attack aircraft and the B-2 Spirit stealth bomber.

B-1A during the B-1B flight test program. (U.S. Air Force photo)

Despite the cancellation of the production program, the Carter administration allowed the flight testing of the B-1A to continue. Most of the effort involved the avionics, in particular the defensive systems. In addition, General Electric continued to work on improvements for the F101 engine, and most of the contractors kept their engineering teams intact. Perhaps most important, work continued in reducing the radar cross section of the aircraft. Less than a month after the cancellation, 74-0160 launched a SRAM on July 28, 1977 at an altitude of 6,000 feet over the White Sands missile range. This aircraft was later modified with an advanced electronic countermeasures system mounted in a dorsal spine, and Doppler beam sharpening was added to the forward-looking radar. 74-0158 had achieved Mach 2.0 in April of 1976, and after completing its stability and control tests was placed in storage in 1978. On October 5, 1978, 74-0159 achieved a speed of Mach 2.22, the highest speed achieved during the B-1A program.

74-0158 was retired from flying in April of 1981 after having flown 138 sorties, the largest number of flights of any of the prototypes. By this time, it had acquired a three-tone desert camouflage scheme. It was eventually dismantled and used as a weapons trainer at Lowry AFB.

74-0159 was later used as a flight test article in the B-1B program. It was modified by having B-1B flight control system features installed. It began flying on March 23, 1983. Unfortunately, it crashed on August 29, 1984 when the aircraft’s center of gravity got unbalanced during fuel transfer management procedures, causing it to lose control. The escape capsule deployed successfully, but the parachute risers did not deploy properly. The capsule hit the ground at a steep angle, so steep that the inflatable cushions could not shield the impact. Chief test pilot Doug Benefield was killed, and two other crew members were seriously injured.

74-0160 was later converted to a ground trainer under the designation GB-1A and is now on display at the Wings Over The Rockies Air and Space Museum (formerly Lowry AFB), near Denver, Colorado.

76-0174 had been ordered to serve as a pre-production B-1A aircraft and was configured with full avionics systems. When the B-1A program was cancelled, work on this aircraft was well under way. Unlike the first three B-1s, 76-0174 was equipped with four conventional ejector seats in place of the escape capsule. This change was made after tests had determined that the crew escape module was unstable if ejected at speeds above 347 knots. It flew on February 14, 1979 and carried out 70 sorties. This plane was later used as a test article in support of the B-1B program. It resumed flying on July 30, 1984. Externally, the main change was the removal of the long dorsal spine but many of the B-1B avionics systems were installed internally. It is now on display at the USAF Museum at Wright Patterson AFB in Ohio.

Variants

  • B-1A – The initial prototype run of four aircraft

Operators

  • U.S. Air Force – The sole operator of the B-1A was the USAF

 

B-1A Lancer

Wingspan
(at max sweep)
78 ft 2.5 in / 23.84 m
Wingspan
(at min sweep)
136 ft 8.5 in / 41.67 m
Length 143 ft 3.5 in / 43.8 m
Height 34 ft 0 in / 10.36 m
Wing Area 1,950 ft² / 181.2 m²
Engine 4x General Electric F101-GE-100 turbofans, 17,390 lbf dry, 30,000 lbf with afterburner
Fuel Capacity 29,755 US Gal / 11,2634 L
Loaded Weight 389,000 lb / 176,450 kg
Maximum Take Off Weight 395,000 lb / 179,170 kg
Maximum Speed Mach 2.2 / 1,688 mph / 2716.5 kmh at 50,000 ft / 15,240 m
Maximum Service Ceiling 62,000 ft / 18,900 m
Crew 1 pilot, 1 copilot, 1 offensive systems officer, 1 defensive systems officer

Gallery

Illustrations by Basilisk https://basilisk2.deviantart.com

B-1A 74-0158 seen in Anti-Flash White
B-1A 74-0160 seen in a SAC Low Level Livery
B-1A 76-0174 seen in camouflage paint scheme
B-1A 76-174 seen in camouflage during testing. (U.S. Air Force photo)
A right side ground view of a B-1A aircraft wearing dark green camo. (U.S. Air Force Photo)
B-1A 76-174 in flight with wings extended in the 25-degree sweep position. (U.S. Air Force photo)

Sources

Short Skyvan

UK flag United Kingdom (1963)
Utility Aircraft – 153 Built

An Olympic Airways Skyvan at Athens Hellenikon airport in 1973

The Short SC.7 Skyvan, nicknamed the “Flying Shoebox” and “The Shed”, is a British-built general-purpose transport.

It features an odd, boxcar-like fuselage which FlightGlobal listed as “one of the twelve strangest-looking aircraft ever built”. Air Vice Marshal Ron Dick describes it in Air & Space Magazine as “Uncompromisingly chunky and angular, its freight container body hangs from wings which could have been shaped in a sawmill, and its twin fins were mere upright planks tacked on as if in afterthought.”

Despite this, the Skyvan did have its merits as a robust light transport aircraft. Originating from the Miles Aerovan and the failed Miles HDM-106 Caravan, it first took to the air in 1963, remaining in service to this day with militaries and civilian operators alike.

History

In 1958, Short (at the time Short Brothers & Harland Ltd) was approached by F.G. Miles Ltd., an offshoot of the bankrupt Miles Aircraft, looking for help to produce the H.D.M. 106 Caravan. The H.D.M. 106 was a development of the H.D.M. 105, a Hurel-Dubois extended-wing Miles Aerovan. Short, trying to diversify their line consisting of seaplanes, evaluated this offer, and refused it, finding it too advanced.

Invicta Aviation Skyvan taxiing down runway

In June of 1959, Short formed a Light Aircraft Division. The first project of this newly formed department was a privately funded venture, a “general purpose transport with van-type loading”. Using data obtained from the failed Miles HDM.106 Caravan, they began the design of what is now known as the Short SC.7 Skyvan.

By August of 1960, Short had released further detail on the aircraft, and named it the “Skyvan”. Construction of the prototype began in 1960 at Queens Island, Belfast. Manufacturing was slow, as production was focused on the SC.5 Belfast heavy freighter. Initially, two aircraft were built, and the first made its maiden flight on January 17, 1963. As of the time of writing in September 2018, the Skyvan is still in service with many nations around the globe.

There are two extended versions of the Skyvan, the Short 330 and 360.

Design

The Skyvan is a high-winged, twin-engine, fixed tricycle landing gear utility aircraft with twin rudders and a box-like fuselage. The box fuselage allows for a large rear door for loading and unloading freight. This also gives it a good efficiency, as it is capable of carrying over 1 ½ tons of payload. Although not a true STOL aircraft, it can take off from a half mile (804.67 m) field or strip. Simplicity and ruggedness are the primary features of the Short SC.7 Skyvan. It can be used for many purposes, including short-haul freight, passenger transport, skydiving, and much more.

With the prototypes being powered by 390 hp Continental piston engines and Turboméca Astazou 2 turboprops, and the initial production run being powered by the Turboméca Astazou XII turboprops, the Skyvan needed an upgrade. The Skyvan 3 was re-engined with Garrett AiResearch TPE331 in order to improve airfield performance in hot and high-altitude conditions. This was done as the previous engines were shown to be inadequate for Ansett-MALs New Guinea routes, as they only delivered 630 shp of the promised 690 shp. Ansett-MAL was a primary factor for this decision, being a key customer, but the upgrade also provided vastly improved engine handling for both the pilot and the aircraft mechanic.

Apart from the re-engining, various other improvements were made to the Skyvan. The increased power required larger trim tabs and a new out-of-trim compensator in the elevator. Larger fuel tanks for the increased fuel consumption (and the fact that installed consumption provided 5% better) resulted in an increased range. The increased weight of the engine resulted in a reappraisal of the airframe, a simplified design, and surprisingly, a lower empty weight. The cockpit layout was also cleaned up and a central warning system was added. All these upgrades were very well received by Short’s pilots, engineers, and customers alike.

Operational Service

The Skyvan has had a long history, serving around the world with various militaries. Of particular interest is the Skyvan’s service with the Prefectura Naval Argentina, the Argentine Coast Guard.

The Argentine Coast Guard operated 5 Skyvans out of Port Stanley and Pebble Island, where two were lost. The Coast Guard utilized their STOL capabilities for communication and light transport between the mainland and the occupied Falkland Islands.

A raid was mounted by SAS’s D Squadron to destroy the ground attack Pucaras planes based in the Falklands. On the night of the 10th, men of the Squadron’s Boat Troop were put ashore to provide reconnaissance. On Friday the 14th, HMS Hermes, her escort HMS Broadsword, and HMS Glamorgan separated from the carrier battle group, approaching Pebble Island by night. As Glamorgan approached to provide fire support, the 48 men of the SAS task force took off in Sea Kings. They landed, moving by foot to the airstrip, and by morning, all the aircraft there were disabled or destroyed with explosive charges. In the meantime, Glamorgan provided fire support, and the SAS withdrew. A brief Argentine counter-attack stopped when the officer in charge was shot and, with two men slightly wounded, the SAS escaped. The raid was successful, resulting in the loss of six Pucaras, four T-34C Mentors, and a single Coast Guard Skyvan (serial number PA-50), and halted the use of the airstrip. The remains of the Skyvan are still visible to this day.

The other destroyed Skyvan, PA-54, crashed in Stanley, Falkland Islands (then Puerto Argentino) on June 5th, from a failure of the nose landing gear during the landing at the racecourse of Puerto Argentino. Afterwards, sometime between the 12th and 13th of June, it was destroyed by 105mm British artillery fire and was written off.

Variants

  • Skyvan 1 – 2 built. Skyvan prototype powered by a pair of Continental GTSIO-520 piston engines.
  • Skyvan 1A – Single re-engined Skyvan 1 powered by a pair of Turboméca Astazou 2 turboprops.
  • Skyvan 2 – Initial production run Skyvan powered by a pair of Turboméca Astazou XII turboprops. 8 built for British European Airways until 1968.
  • Skyvan 3 – Improved Skyvan powered by Garrett AiResearch TPE331 turboprops.
  • Skyvan 3A – Skyvan 3 with increased Maximum Take-Off Weight (MTOW).
  • Skyvan 3M – Military transport variant.
  • Skyvan 3M-200 – Skyvan 3M with increased MTOW of 15,000 lbs / 6800 kg.
  • Skyvan 3M-400 – Modernized militarized Skyvan. There are many subvariants of the 3M-400, but it is unclear how they differ.
  • Skyvan 3 C1 – 10 built. British Army designation.
  • Skyliner – Luxury passenger transport variant.
  • Seavan – Maritime patrol Skyvan.

Operators

  • Civilian – Commercial use of the Skyvan includes: Questor Surveys, Olympic Airways, Pink Aviation Services, NASA, Aeralpi, StoLine Systems, Wein Consolidated Airlines, Summit Air, Northern Consolidated Aviation, GB AirLink, Air Forum, Gulf Air, Nomad Air, British European Airways Scottish Division, Laboratory of Space Technology, Invicta Aviation, Skylift, Bravo Partners Inc., North Star Air Cargo, Forrester Stephen Aviation, Skydive DeLand, British Air Services, Bougair, Skyhawk, Ansett-MAL, and more. As well, some are privately operated.
  • Argentina – The Argentine Coast Guard purchased 5 Skyvan 3M-400-7s, which saw service in the Falklands War. Two were lost, with one being damaged by naval gunfire at Stanley, Falkland Islands on the night of May 3rd, 1982, and not repaired. The other was destroyed during the Pebble Island raid, by D Squadron SAS on the morning of May 15th.
  • United States of America – 2 copies of the Skyvan 3, serial numbers 90-00042 and N430NA.
  • Austria – 2 copies of the Skyvan 3-400-1, serial numbers 5H-TA and 5H-TB delivered to the Austrian Air Force.
  • Oman – 16 copies for the Royal Air Force of Oman. These include the Skyvan 3M-400-23, 3M-400-22, 3M-400-II, 3M-400-4, and 3M.
  • Ecuador – Two Skyvan 3M-400-6 produced for the Aviacion del Ejercito Ecuatoriano (Air Force of the Ecuadorian Army).
  • Indonesia – 4 copies of Skyvan 3M-400-5s sold to the Indonesian Air Force
  • Nepal – 7 copies purchased for the Nepalese Air Force, consisting of 3 SC.7 3-100s and 4 3M-400-9s.
  • Thailand – 4 copies for the Thai Army and Police. Variants include the 3M-400-II and the 3M-400-17.
  • Mexico – The Mexican Air Force purchased 6 copies made up of 4 Skyvan 3M-400-IIs and 2 Skyvan 3Ms.
  • Singapore – 6 copies made for the Singapore Air Force, half of which are Skyvan 3M-400-16s, and the other half being 3M-400-15s.
  • Yemen – The Yemen Air Force operated 2 copies of the Skyvan 3M.
  • Ghana – 6 copies for the Ghana Air Force of Skyvan 3M-400s
  • Japan – 2 copies of Skyvan 3M-400-IIs are operated by the Japanese government.
  • Mauritania – 2 Skyavan 3Ms made for the Mauritania Islamic Air Force.
  • Venezuela – The Venezuelan government operated 6 Skyvan 3Ms.
  • Saudi Arabia – Purchased 4 Skyvan 3Ms.
  • Lesotho – Purchased 2 Skyvan 3s for the Lesotho Defence Force – Air Squadron
  • Panama – Bought a single Skyvan 3M for the National Air and Naval Service of Panama.
  • Botswana – The Botswana Defense Force – Air Wing purchased 2 Skyvan 3s.
  • Ciskei – Purchased two Skyvans, serial numbers ZS-LFG and ZS-KMX, relegated to civil use.
  • Guyana – Purchased 4 Skyvan 3s.
  • Malawi – Malawi purchased a single Skyvan 3M, serial number 7Q-YAY.
  • Maldives – The Maldives National Defense Force purchased one Skyvan 3.
  • United Arab Emirates – 3 Skyvan 3s were purchased by the United Arab Emirates Air Force.

Short SC.7 Skyvan Specifications

Wingspan 64 ft 11 in / 19.79 m
Length 40 ft 1 in / 12.22 m
Height 15 ft 1 in / 4.6 m
Wing Area 373 ft² / 34.65 m²
Engine 2x 690 hp ( 514.53 kW ) Garrett AiResearch TPE331-201 fixed-shaft turboprops
Propeller 2x 3-blade Hartzell HC-B3TN-5 feathering and reversing propellers
Fuel Capacity 1109.13 L
Weights
Empty (Cargo Configuration) 7,100 lb / 3220.51 kg
Empty (Passenger Configuration) 7,420 lb / 3,365.66 kg
Maximum Ramp Weight 12,524 lb / 5,680.79 kg
Maximum Landing 12,500 lb / 5,669.9 kg
Gross 12,500 lb / 5,669.9 kg
Wing Loading (Gross Weight) 33.5 lb/ft2 / 163.56 kg/m2
Power Loading 8.2 lb/h.p / 4.99 kg/kW
Climb Rate
Maximum Rate of Climb (Two Engines)l 1,500 ft / 457.2 m per minute at 100 kt
Maximum Rate of Climb (One Engine) 400 ft / 121.92 m per minute at 100 kt
Maximum Speed 207.14 mph / 333.36 kmh
Maximum Service Ceiling 21,000 ft / 6,400.8 m (two engines)

9,000 ft / 2,743.2 m (one engine)

Crew 1 pilot

1 co-pilot (optional)

Gallery

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Short SC.7 Skyvan in service with NASA
Short SC.7 Skyvan in service with the Austrian Air Force
Short SC.7 Skyvan in service with Invicta of the UK
Short SC.7 Skyvan in service with Argentina

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Skyvan PA-50 before it met its demise. [source]
The remains of the PA-50 are still scattered and viewable today [source]
Crashed Skyvan (serial PA-54) from collapsed nose landing gear [source]

Skyvan PA-54 destroyed by British naval bombardment [source]
Invicta Aviation Skyvan taxiing down runway [source]
USAF parachute test jumper tests a prototype parachute over Edwards AFB, California [source]

 

Sources

VL Pyörremyrsky

Finnish flag Finland (1945)
Prototype Fighter – 1 Built

The VL Pyörremyrsky prototype parked on a ramp [Colorized by Michael J.]
The VL Pyörremyrsky (translates as Hurricane) was a prototype Finnish fighter plane designed to keep up with its contemporaries. It was to be domestically produced, using wood, but using the same engine as the Bf 109 G. Due to limitations brought about due to the war, only one prototype was produced and it wasn’t ready until the end of 1945.

Development and History

As Finland found itself still at war with the Soviet Union in 1942, with no end in sight, it turned to ways to bolster its military force. In order to become as self sufficient as possible, it was engaged in various projects for domestically designed and produced weapons systems. The VL Myrsky project was severely behind schedule and the air force realised that it would be outclassed by the newer Soviet aircraft by the time it reached production. With this in mind, it placed order number 2012/42 on 26th November 1942 for a new aircraft design, under the name Pyörremyrsky.

The State Aircraft Factory (Valtion Lentokonetehdas) was tasked with producing the new fighter and Captain of Engineering Torsti Verkkola was assigned chief designer of the team. The main premise was that the aircraft was to be made out of wood, as much as was possible, and that it was to be comparable with the German Messerschmitt Bf 109G. Verkkola used the Bf 109 as the base for his design, making modifications to allow it to be produced with local skills and materials. However, as the war dragged on, and the Finnish Air Force required more proven aircraft, as well as repairs to the planes already in service, the Pyörremyrsky found itself given a lower priority.

Profile of the Pyörremyrsky. Source: Warthunder forums

Upon the cessation of hostilities between Finland and the Soviet Union in September 1944, the Pyörremyrsky project had only a partially completed prototype and the Ministry of Defence (puolustusministeriö) cancelled the advance order of 40 aircraft, as well as the second prototype on the 29th September, but they did allow the first prototype to be completed. In Autumn 1945 the prototype, now christened PM-1 (which led to the nickname Puu-Mersu or Wooden Messerschmitt), was ready for pilot tests. On the 21st of November 1945, Luutnantti (Lieutenant) Esko Halme took off in PM-1 from Tampere-Härmälän airfield. The flight only lasted 25 minutes as part of the engines’ exhaust system came loose, forcing an emergency landing as Lt. Halme was unable to see through the exhaust blowing into his cockpit. Despite the incident, Halme reported good flying controls and characteristics. PM-1 would do 2 more test flights at Härmälän airfield before moving to Kuorevesi for Air Force testing. In total 31 test flights were performed, amounting to 27 hours of flight time. All 8 pilots reported the same, smooth and controlled flying characteristics, good speed and turning ability, however it was not quite up to the same performance of the Bf 109 G but close enough. The last flight of PM-1 was on the 22nd of July 1947, when Kapteeni (Captain) Osmo Kauppinen took off for a 20 minute general test flight. After this it was put into storage until it was officially removed from the Air Force’s rolls on the 1st April 1953. This was mainly due to the lack of ability to source new engine parts as part of the armistice Finland signed with the Allies forbade them from receiving military goods from Germany, as well as the decline of the piston aircraft as a fighter.

The Air Force didn’t want such a unique piece of Finnish aviation history to be scrapped however and ordered it to be preserved. It was sent to the State Aircraft Factory’s depot and was refurbished in the early 1970’s and sent to the Finnish Air Force Museum, where it is still on display.

The experiences learnt with the Pyörremyrsky were not totally in vain or wasted as the basic design was used in the development of the VL Vihuri fighter trainer.

Design

Access panels open revealing the engine. Source: Suomen Hävittäjät

Captain Verkkola used the Bf 109’s low-wing cantilever monoplane configuration as his base for the Pyörremyrsky. The Germans were also willing to supply the Daimler-Benz DB 605A-1 liquid cooled V12 engines and VDM 9-12087 three-bladed light-alloy propellers that were used on the Bf 109 series. It was also installed with a German produced Telefunken FuG 7a model of compact airborne receiver/transmitter.

The main body of the aircraft was built using the vast amounts of wood available to the Finns, with metal being used where absolutely necessary, like the cockpit and engine housing. While many believe the design is similar, if not copied from the Bf 109, there are many differences outside of just the materials used. The rear portion of the fuselage is of wooden monocoque design, with the horizontal stabilizers mounted at the near end, as opposed to the Bf 109’s which are mounted on the vertical stabilizer. The wings were of negative transverse V shape and covered in plywood panelling.

PM-1 at the Tampere trial airfield in the Summer of 1945. Source: Suomen Hävittäjät

Unlike the wing fuel tanks found in the Bf 109, the Pyörremyrsky had a single tank behind the cockpit, protected by a 10mm thick armoured plate. The landing gear was copied from the Bf 109 but the Finns made some changes to eliminate the narrow and problematic system that plagued the Germans. The tailwheel was also retractable, thus helping it with aerodynamics.

Due to wartime shortages, Finland was forced to rely on substandard replacement products. The use of Lukko glue was one of the main reasons for the failings in the VL Myrsky and so it has been suspected that the Pyörremyrsky would have suffered similar issues to its sister aircraft had it been pushed into service or flown for longer periods of time.

Armament was not fitted to the PM-1 but it was designed to be installed with a Motorkanone mounted 20 mm (.78 in) MG 151/20 cannon and two nose mounted synchronized 12.7 mm LKK-42 machine guns. It was also proposed that the wings would have provisions for two 100kg bombs each for fighter bomber duties, but it is not clear if the proposal was ever considered seriously.

Operators

  • Finland – The VL Pyörremyrsky was intended to be used by the Finnish Air Force.

VL Pyörremyrsky Statistics

Wingspan 34 ft 1 in / 10.38 m
Length 29 ft 11 in / 9.13 m
Height 12 ft 9 in / 3.89 m
Wing Area 204.5 ft² / 19 m²
Engine 1 × Daimler-Benz DB 605A-1 liquid cooled V12 engine (1,475 hp)
Empty Weight 5,774 lb / 2,619 kg
Wing Loading 35.7 lb sq ft/ 174kg/m2
Maximum Takeoff Weight 7,300 lb / 3,310 kg
Fuel Capacity 435 L
Climb Rate 16,404 ft / 5000 m in 4.30 minutes
Maximum Speed 324mph / 522 kmh at sea level

400 mph / 645 kmh at 6000 meters/19,685 feet

Cruising Speed 236mph / 380 kmh
Flight time 2.5 hours
Maximum Service Ceiling 36,900 ft / 11,250 m
Crew 1x Pilot
Armament 1x 20 mm (.78 in) MG 151/20 cannon (150 rpg)

2x 12.7 mm LKK-42 machine guns (300 rpg)

4x 220.5 lb /100 kg Bombs or

2x 39.62 Gal / 150 L Drop Tank

Gallery

VL Pyörremyrsky Sideart by Escodrion
PM-1 in the Finnish Air Force Museum, next to a BF-109G. Source: Wikimedia
Close up of the undercarriage. Notice how they are copies of the BF-109 but close inwards. Source: Wikimedia
The PM-1 cockpit. Taken at the Tampere trial airfield in the Summer of 1945. Source: Suomen Hävittäjät
Profile of the Pyörremyrsky. Source: Warthunder forums

Sources

Suomen Ilmavoimien Historia 14 Suomen Hävittäjät, Kalevi Keskinen, Vammalan Kirjapino Oy 1990, Suomen Ilmavoimien Historia 17 LeR2, Kalevi Keskinen, Edita OYJ 2001, www.ilmailumuseot.fi, Valtion Lentokonetehtaan historia – Osa 2: Tampereella ja sodissa 1933–1944. Jukka Raunio, 2007, Images: Side Profile Views by Escodrion – https://escodrion.deviantart.com, Colorized Images by Michael J.

 

PZL P.50 Jastrząb

Polish Flag Poland (1939)
Prototype Fighter – 2 Built

The PZL P.50 Jastrząb (Hawk) entered development in 1937 as a replacement for the outdated PZL P.11 and PZL P.24 fighters. Very little was known about the aircraft until relatively recently, with only a few photographs and documents about this aircraft surviving World War II. Most of what is known at the time of writing is based on accounts and sketches from PZL engineers years after the war and mostly based on memory, which is not the most reliable form of historiographic evidence. Ultimately, the project was cancelled in March of 1939 due to dissatisfaction with its underpowered radial engine, despite an attempt being made to fit an inline vee engine to the aircraft in the form of the PZL P.56 Kania (Kite).

History

In the latter half of 1936, plans to replace all of Poland’s PZL P.11 single-engine fighters with the twin-engined PZL P.39 heavy fighter were abandoned, and the need for a maneuverable single-engine interceptor was recognized. Briefly, the PZL P.24 was considered in order to fulfill this role, but as it did not offer much of an improvement over the P.11, it was ultimately decided that an entirely new design was needed.

Wsiewlod Jakimiuk, the head of PZL’s fighter team, submitted a proposal in autumn 1936 featuring “an advanced low-wing monoplane which offered improved all-around performance and great scope for future development” (Cynk, p. 259). The aircraft resembled the American Seversky/Republic fighter designs. One of the things that Jakimiuk focused on in the design of this aircraft was to allow upgrading to larger and more powerful engines to be a simple task to accomplish at any later time.

Ultimately, after a heavily-protracted design process plagued by numerous issues, the aircraft never saw combat and only 32 airframes had been built before Poland was invaded by Germany and the USSR in September 1939, but 30 of these were not completed.

Design

This image shows Count Ciano of Italy inspecting the P.50/I. Note the cowling’s radial engine cooling system.

In the fall of 1937, the design, now called the PZL P.50 Jastrząb and powered by a British 840-horsepower Bristol Mercury VIII radial engine, was approved and two prototypes were soon built. The first prototype, called the P.50/I, was designed to take engines up to 1,200-horsepower while the second prototype, the P.50/II, was designed for engines of up to 1,600-horsepower. Both versions were to be armed with four 7.7-millimeter machine-guns in the wings although, confusingly, the few images of the P.50/I show two of these guns in the forward fuselage instead. The P.50A production version of the P.50/I was envisioned to have a top speed of 310 miles per hour (500 kilometers per hour) at 14,100 feet (4,300 meters).

The Polish Aviation Command almost immediately ordered 300 aircraft and paid for the first 100 in advance, with the first 50 expected to be delivered by September 1939. In order to speed up development The Dowty Company of Britain was contracted to build the landing gear for the prototype, while PZL and the Czech Avia company would design the production aircraft’s landing gear. Dowty delivered the landing gear over four months late, and the P.50/I Jastrząb prototype, still utilizing the Mercury engine, did not even fly until February 1939.

During the P.50/I’s initial flight trials, it was discovered that the desired performance parameters were far out of reach. The top speed at full load was only 274 mph (442 kph). It also handled low-speed turns very poorly and had a tendency to wobble at top speed. Curiously, it was discovered that the engine was unable to produce full power under any circumstances. It was not until May that it was realized that the carburettor air intake was too small. After enlarging the intake and improving the tail and wing surfaces, the aircraft’s performance was improved. In August, the aircraft finally reached its desired speed but, by the time the war began in September, the aircraft was still a long way from being ready for service. The only known photos of the P.50/I come from a visit in February 1939 by the Italian Foreign Minister, Count Galeazzo Ciano.

Developed alongside the P.50/I was the P.50/II, which had been completed in the spring of 1939 and was still waiting for an engine by the time of the invasion in September. The P.50/II differed greatly from the P.50/I, so much so that it is believed to have received a new designation just before the war began. The canopy was an all-round-vision hood, somewhat similar to the Soviet Yak-1b. The P.50/II also included provision for additional fuel tanks and a 660-pound (300kg) bomb, and two 20mm cannons were added to the wings. The two machine-guns which were in the fuselage of the P.50/I were also moved to the wings. The powerplant was supposed to be the PZL Waran radial engine, capable of up to 1,400hp, with the intended top speed of the P.50/II being 350mph (560kph). However, development of the engine was far behind schedule and it was estimated that it would not be ready before the middle of 1940. In a desperate search for a suitable engine, several different options were considered. These included the 1,375hp Bristol Hercules and the 1,400hp Gnome-Rhone 14N, again both radial engines. In the end, the Hercules appears to have been chosen, and it was around this time that the P.50/II received its new designation.

This angle of the same visit by Count Ciano shows off the two machine-guns in the forward fuselage.

There was one more derivative of the P.50, beginning in late 1938. Political upheaval was ongoing in the Polish Air Force high command, and General Ludomil Rayski, who favored radial engines, was coming under heavy criticism and was nearing replacement by General Jozef Zajac, who favored vee engines. This replacement would eventually take place in March 1939. Jakimiuk, the designer of the P.50, anticipated this shift and proposed a Jastrząb adapted to take an inline engine. The aircraft was given the designation P.56 Kania (Kite) and was to be powered by the 1,200hp Hispano-Suiza 12Y, and later by the improved 1,600hp Hispano-Suiza 12Z. However, another PZL designer, Jerzy Dabrowski, submitted a competing design bearing the designation P.62, and this design was preferred over the P.56. The P.56 was ultimately cancelled in the summer of 1939.

When General Rayski was ousted from the command of the Polish Air Force in March 1939, the P.50/I was still having severe problems. His replacement, General Zajac, canceled all production of the P.50 almost immediately. 30 P.50A airframes had begun construction at the W.P.1 plant in Okecie and, after the P.50/I began to show improvement, construction was permitted to continue on these aircraft only. Because of the unsatisfactory results of the Mercury engine, plans were made to power the very first of these production aircraft with the 870hp Gnome-Rhone 14Kirs, and this aircraft was very close to being ready in September 1939. This was to be a sort of test aircraft for an improved version of the P.50A, the P.50B Jastrząb B. There were also plans to mount the 1,100hp Gnome-Rhone 14K or the 1,000hp Pratt & Whitney R-1830 Twin Wasp, although these never came to fruition.

“The Hawk Which Would Never Prey”

On September 5th, 1939, the PZL factory in Warsaw was evacuated. Test pilot Jerzy Widawski attempted to escape with the P.50/I prototype, but was accidentally shot down by Polish anti-aircraft guns. Five pre-production P.50A airframes and the P.50/II prototype, including the aircraft intended to be equipped with the 870hp engine mentioned earlier, were moved out of the Okecie plant on September 3rd. These were captured by the Germans and scrapped in 1940, bringing a final end to the P.50 Jastrząb project.

Variants

  • PZL P.50/I Jastrząb – Initial prototype of the PZL P.50 series. Powered by an 840hp Mercury VIII engine, the top speed was intended to be 310 mph, but it only ever reached 275 mph. Armament was four 7.7mm machine-guns, with two in the forward fuselage and two in the wings. One produced, first flew in February 1939.
  • PZL P.50A Jastrząb A – Planned production version of the PZL P.50/I. 300 were ordered, but only 30 built, all incomplete by the time of Polish capitulation. Fuselage was changed to a razorback rear, akin to the American P-47. It is unclear whether the fuselage machine-guns were moved to the wing, as documents imply they were but sketches of the aircraft still show them in the fuselage. Top speed had been improved to 310 mph (500kph).
  • PZL P.50B Jastrząb B – Planned development of the P.50A with a more powerful radial engine. One P.50A was planned to fit an 870hp Gnome-Rhone 14Kirs engine as a sort of testbed for the P.50B, but that is all that is known about this variant.
  • PZL P.50/II Jastrząb II – Second prototype developed alongside the P.50/I prototype as an all-around upgraded version. The canopy was changed. A 660 lbs (300 kg) bomb was added, along with two 20mm cannon to the wings. The engine was upgraded to the 1,400hp PZL Waran engine, giving a projected top speed of 350 mph (560 kph) . Only one was produced, without the engine, and never flew.
  • PZL P.56 Kania – Planned development of the P.50A Jastrząb A using either a 1,200hp Hispano-Suiza 12Y or 1,600hp Hispano-Suiza 12Z inline Vee engine. None produced.

 

Operators

  • Poland – 300 copies of the P.50A type were ordered, with only 30 incomplete airframes + 1 P.50/I prototype produced. Did not see service. A single P.50/II prototype also existed, but the type was never ordered.

PZL P.50A Jastrząb A Specifications

Wingspan 31 ft 9.875 in / 9.7 m
Length 25 ft 3.125 in / 7.7 m
Height 8 ft 10.25 in / 2.7 m
Wing Area 208.83 ft² / 19.4 m²
Engine One 840hp (648.8kW) Bristol Mercury VIII nine-cylinder radial engine
Empty Weight 3,748 lbs / 1,700 kg
Maximum Takeoff Weight 5,511 lbs / 2,500 kg
Maximum Speed 310.6 mph / 500 kmh
Range 466 mi / 750 km
Maximum Service Ceiling 14,107 ft / 4,300 m
Crew 1 pilot
Armament
  • Four 7.7mm KM Wz 36 machine-guns mounted in the wings OR two in the fuselage and two in the wings
  • Provision for an unknown weight of bombs, possibly 220.5lbs (100kg), to replace two wing machine-guns

Gallery

Side view of the P.50/I illustrated by Ed Jackson
Side view of the P.50 as it would have appeared in service by Escodrion
This blueprint of the P.50/I was drawn was based off of a PZL engineer’s sketch of the blueprints after the planes had been captured or destroyed.
A period illustration of the P.50
This photo shows one of the 30 incomplete P.50A’s, captured by the Germans after the invasion of Poland in 1939. They would later be scrapped.
A small image with the Count Ciano of Italy inspecting the P.50/I. Note the cowling’s radial engine cooling system.
This angle of the same visit by Count Ciano shows off the two machine-guns in the forward fuselage.
Italian Foreign Minister Count Galeazzo Ciano inspects the P.50/I prototype in Warsaw, February 1939.

 

 

 

 

 

 

 

 

Polish aircraft historian Zabytki Nieva discusses the PZL P.50. Audio is in Polish with English subtitles available.

 

Video made by the author specifically to accompany this article.

Sources

Cynk, J. (1971). Polish aircraft, 1893-1939. London: Putnam.(P.50/I images taken from the same source), Cynk, J. (2005). PZL-50 Jastrząb W Prawdziwej Postaci. Altair.com.pl. (P.50A images from this source), Green, W. & Swanborough, G. (1994). The Complete book of fighters : an illustrated encyclopedia of every fighter aircraft built and flown. New York: Smithmark.Images: Side Profile Views by Ed Jackson – Artbyedo.comSide Profile Views by Escodrion – https://escodrion.deviantart.com

Nakajima Ki-43 Hayabusa in Communist Chinese Service

PRC flag People’s Republic of China (1945-1952)
Fighter – 8+ Operated

An illustration depicting a Hayabusa in Communist service flying. (Encyclopedia of Chinese Aircraft: Volume 2)

Widely known as one of Japan’s most iconic aircraft of the Pacific War, the Nakajima Ki-43 Hayabusa’s service life was not limited to the Second World War. Shortly after the Japanese capitulation, Nationalist and Communist Chinese forces were able to capture stockpiles of firearms, tanks and planes left over by the fleeing Japanese forces. Among these were various models of the Nakajima Ki-43 Hayabusa. These were pressed into service with the Communist Chinese as an advanced combat trainer and fighter. One of the rather obscure chapters of the Hayabusa’s service life was that it was the first plane used by the Communist Chinese in aerial combat.

History

Developed in the late 1930s, the Nakajima Ki-43 Hayabusa (Type 1 Fighter) enjoyed a relatively successful service record in the Second Sino-Japanese War once introduced in 1941. The Japanese 59th and 64th Sentai (Squadrons) were the first two squadrons to receive the new Ki-43-I fighter. With barely any resistance by the Republic of China Air Force (ROCAF), the Ki-43-I helped reinforce Japanese aerial superiority over China, French Indochina, Malaya, and parts of India until the arrival of lend-lease Allied warplanes for China. Throughout the service of the Hayabusa, three major variants were issued to units: the Ki-43-I, Ki-43-II, and Ki-43-III. The Japanese also provided some of these variants to the Manchukuo Imperial Air Force in the Northeast region of China. With the end of the Second Sino-Japanese War, stockpiles of Japanese equipment was up for grabs between the Soviets, Nationalist Chinese, and the Communist Chinese. The Nationalist Chinese forces reoccupied Shanghai near the end of 1945 and captured warplanes formerly belonging to the Japanese. Among these were various models of the Hayabusa which were used to equip the 18th and 19th Squadrons of the ROCAF’s 6th Fighter Group. These Hayabusas were stationed at Shandong in preparation for the Chinese Civil War. Due to a lack of spare parts and adequate mechanics, the two squadrons were disbanded the following May.

The Communist Chinese forces were by no means idle during the immediate few postwar months. Countless guns were captured, with a considerable amount of tanks and planes as well. In October of 1945, the Communist Chinese forces captured their first five Hayabusas during the liberation of Shenyang during the Liaoshen Campaign from the Nationalists. These five captured Nationalist Hayabusas were Ki-43-II models that formerly belonged to the Japanese 4th Training Regiment. The exact model of the planes is unknown. (It is unknown if they are kō, otsu, hei, etc. variants). These five planes would be sent to the recently established Northeast Old Aviation School (东北老航校) after some refurbishing and repairs. In December of the same year, two of these planes were repaired and were planned to be ferried to the Northeast Old Aviation School. Two Japanese ferry pilots now loyal to the Communist Chinese took off from Fengjibao (奉集堡) to fly to Tonghua (通化), one of their destinations. The two Hayabusas and their pilots never made it to Tonghua however, and it is widely speculated that these Japanese pilots were unfamiliar with the geography and ended up getting lost. This is indeed a possibility but there are many other theories. It’s conceivable that the planes suffered from mechanical failure and crashed. Another possibility may be that the pilots were intercepted by ROCAF planes, but there is no proof of this.

Artwork Depicting a Ki-43 flying over Japanese trainers in the Northeast Aviation School. (Illustration by Chen Yingming / 陈应明)

The rest of the Hayabusas were eventually delivered to the Northeast Old Aviation School, where they were used as advanced trainers for fighter pilots. In April of 1948, men belonging to the Northeast Old Aviation school were able to capture an unspecified amount of Hayabusa fighters in the Chaoyang (朝阳镇) Town airport located in Jilin. This was followed by another unspecified batch of Hayabusas captured in Sunjia (孙家) Airport located near Harbin in the Heilongjiang province sometime in June of the same year. Four Hayabusas were recorded to have been repaired by the school from 1947 to 1948. Under the guidance of former Japanese and Manchukuo pilots, many of the Communist Chinese air cadets were soon able to graduate from flying in the two-seater Tachikawa Ki-55 trainer to flying solo in the Hayabusa.

In March of 1948, a number of experienced pilots and instructors were pulled from the school to form a “Combat Flying Wing” (战斗飞行大队). The 1st Squadron would use bombers and transport aircraft while 2nd Squadron would use fighters. Among these would be six Ki-43-II models. The intent of this formation was to combat Nationalist planes, but this wing never saw any combat action.

Considerations were made to use the Hayabusa in the Establishment of the People’s Republic of China parade on October 1st of 1949, but this did not happen. Despite what one may think, the Japanese planes were not withheld from the parade due to political and racial issues, but rather fear of them experiencing mechanical problems during the parade.

Communist Chinese service members standing in front of a captured Hayabusa. (Encyclopedia of Chinese Aircraft: Volume 2)

As such, these worn out Hayabusas were grounded. By November of 1949, there were only five examples of the Hayabusa that were still in use. These final five fighters were used by the 7th Aviation School as trainers and teaching aids. By 1952, all of the Hayabusas were finally retired from service. There are no surviving examples of the Communist Chinese Hayabusa, but there is one known photo of the Communist Hayabusa in service.

First Air-to Air Combat of the Communist Chinese Air Force

In the afternoon of October 15th 1947, four Nationalist Chinese P-51D Mustangs belonging to the Shenyang Beiling airfield took off under the leadership of Xu Jizhen (徐吉骧), the co-captain of the squadron. They were tasked with the mission of patrolling the airspace of Harbin (哈尔滨), Jiamusi (佳木斯) and the Sino-Soviet border. Upon crossing the mountains near Mishan (密山), the Mustangs squadron noticed a Tachikawa Ki-55 trainer with Communist Chinese markings belonging to the Northeast Old Aviation School preparing to land at the nearby Tangyuan (汤原) airport. This Ki-55 was piloted by Lu Liping (吕黎平) and an unnamed Japanese instructor. Xu Jizhen immediately dove for the trainer and began firing. The area immediately behind the instructor’s compartment was hit, which resulted in a fire. Watching the attack from the ground, Fang Hua (方华), a veteran Communist soldier, scrambled for a nearby parked Nakajima Ki-43-II Hayabusa and took off. Unfortunately for him, the Hayabusa was not loaded with ammunition so he was unable to engage the Mustangs. However, he was able to lead the Mustangs away from the airfield and evaded their shots until they ran out of ammo. This unfortunate skirmish was the first air-to-air combat experience the Communist Chinese had.

Debunking the Numbers Operated

According to many Western sources, the Communist Chinese Forces only operated five Hayabusas. This is however incorrect. The author believes the reason that these sources mention only five models captured was due to translation errors or simply by overlooking facts. The most likely cause of the misconception is likely due to two facts:

  1. By the end of the Liaoshen Campaign, the Communist Chinese forces had captured five models.
  2. By the time the PLAAF was officially established, there were five models still in service.

What these Western sources may have overlooked however, was the fact that two of the first five models captured crashed during a ferry flight in December of 1945. This leaves only three models operational.

However, a commonly overlooked fact is that the Northeast Old Aviation School was able to capture an unspecified amount of Hayabusas in the Chaoyang (朝阳镇) Town airport located in Jilin sometime in April of 1946. Another unspecified batch of Hayabusas were also captured in Sunjia (孙家) Airport located near Harbin in the Heilongjiang province in June. Due to the unspecified nature of the amount of Hayabusas captured in these two places, it only adds to the difficulty of determining how much Hayabusas were truly captured and operated. But on an inventory check done in April of 1948, a total of six Hayabusas were accounted for serving with the 2nd Squadron. According to this record, that should mean three or more Hayabusas were captured in those two airfields. That should make a total of eight or more Hayabusas when accounting for the two crashed ones. In conclusion, the author believes that a potential total of eight or more Hayabusas were captured, and operated by the Communist Chinese forces to some extent until the retirement of all models in 1952.

Gallery

Communist Chinese Ki-43-II in the colors of the Northeast Old Aviation School by Brendan Matsuyama

Sources

Gang, W., Ming, C. Y., & Wei, Z. (2012). 中国飞机全书 (Vol. 1). Beijing: 航空工业出版社., Gang, W., Ming, C. Y., & Wei, Z. (2009). 中国飞机全书 (Vol. 2). Beijing: 航空工业出版社., Allen, K. (n.d.). PEOPLE’S LIBERATION ARMY AIR FORCE ORGANIZATION., 网易军事. (2016, May 24). 老航校70周年:“鬼子飞行员”在中国当教官., Zhang, X. (2003). Red Wings over the Yalu: China, the Soviet Union, and the Air War in Korea. College Station: Texas A & M University Press., Side Profile Views by Brendan Matsuyama