World War 2 saw the airplane rise to even greater importance than in the first World War. Air superiority became a crucial component of battlefield operations and air forces were massively expanded during the conflict.The Allied and Axis sides of the war developed enormous war machines, capable of developing and rolling out unprecedented numbers of advanced new military equipment in rapid response to changing conditions on the battlefield, as well keeping up with the technological advances of adversaries.
High altitude bombing raids and night fighting were hallmarks of the War for Europe, whilst aircraft carrier battles pitched the American and Japanese fleets against one another. The technology of the day was pushed to it’s limit with the use of superchargers in aircraft engines, the introduction of radar, and the rapid development of the jet engine by the war’s end.
The period ended as the Nuclear Age and subsequent Cold War were ushered in by the tremendous and tragic blows to Japan’s wearied people.
The Focke-Wulf Fw 190 mit DB 609 was a 1942 design venture to provide the Luftwaffe with a successor to the Fw 190 and its troublesome BMW 801 radial engine. Intended, to mount the envisioned experimental 16-cylinder Daimler-Benz DB 609 engine to produce around 2,600 hp (later 3,400 hp), the new power plant would have required a drastic redesign to the forward section of the Fw 190 as well as parts of the fuselage. In the end, the Fw 190 mit DB 609 was canceled due to flaws with the design and Daimler-Benz’s cancellation of the DB 609 project. Similar to many of the other designs produced in 1942, the Fw 190 mit DB 609 remained a paper design only, although an airframe was provided for the intent of mounting and testing the engine. Obscure in nature and short-lived, much of the project’s specifications and estimated performance are unknown.
History
The Focke-Wulf Fw 190 Würger (Shrike) was one of Nazi Germany’s most iconic fighters of the Second World War. First introduced in August of 1941, the Fw 190 gave contemporary Allied fighters a run for their money and proved to be a relatively successful design. However, the air-cooled 14-cylinder BMW 801 radial engine which powered the Fw 190 proved to be troublesome at times. The BMW 801’s cooling system was inadequate, which caused overheating and production of fumes, which would leak into the cockpit and could suffocate the pilot. Despite the relatively successful introduction of the Fw 190, it was not known if the Reichsluftfahrtministerium (RLM / Ministry of Aviation) would make further orders for the aircraft. However, the spring of 1942 was a prosperous time for the Focke-Wulf firm and assured the Fw 190’s future. The RLM put in orders for large quantities of Fw 190, which in turn boosted the firm’s budget. As such, designers at the Bremen-based Focke-Wulf firm initiated a design venture to produce a successor for the Fw 190 by replacing the troublesome BMW 801 engine with more advanced engines being developed by BMW and Daimler-Benz.
As such, the Focke-Wulf firm produced several drawings in late 1942 which saw the Fw 190 mounting experimental engines. The designs are as follows:
Drawing Number
Project Title
10 10 05-201
Fw 190 mit BMW P. 8028
10 10 05-202
Fw 190 mit BMW 801 J
10 10 05-203
Fw 190 mit DB 609
10 13 141-02
Fw 190 mit DB 623 A
10 13 141-16
Fw 190 mit DB 614
11 19 05-502
Fw 190 mit BMW P. 8011
Unknown
Fw 190 mit DB 603
Unknown
Fw 190 Strahljäger
In order to provide a suitable testbed for these engines, Fw 190 V19 (Werknummer 0042, rebuilt from a Fw 190 A-1) was allocated for engine installation tests. Curiously enough, Fw 190 V19 would be later be redesigned for the “Falcon” wing design which saw a drastic redesign of the wing to a swept, bent design. Conversion to this wing type was meant to take place on February 16, 1944 but this would never occur. Nonetheless, Fw 190 V19 would maintain the regular wings for engine testing.
Although the Fw 190 mit DB 609 showed potential, there were several problems which plagued the design. For one, the rather heavy and bulky engine severely affected the aircraft’s center of gravity. As such, the engine’s radiators had to be moved down the fuselage behind the cockpit. The engine also would have put too much stress on the landing gears which could potentially result in a fatal crash if landing conditions were rough. On top of the airframe design issues, the intricate design of the engine also proved a problem for the Daimler-Benz designers, who would terminate the DB 609 (and its subprojects) in April 1943. As such, the Fw 190 mit 609 project would be dropped as well without the experimental engine ever being mounted on V19. Many of the other designs produced by Focke-Wulf in 1942 would also meet the same fate, for more or less similar reasons.
Due to the short-lived conceptual nature of the design, detailed specifications and estimated performance do not appear to have survived. As such, much of the aircraft’s intricate details and specifications are unknown. One could only hope that, in the near future, more details of the Fw 190 mit DB 609 and it’s contemporary designs will surface.
Design
The Focke-Wulf Fw 190 mit DB 609 was a 1942 project to produce a successor to the Fw 190 by replacing the troublesome BMW 801 engine with more promising experimental engines being developed at the time. As the name of the project suggests, this design would have seen the implementation of a Daimler-Benz DB 609 V16 engine. The Daimler-Benz DB 609 was a development of the company’s DB 603 engine. Unlike its predecessor, the DB 609 would have 16 cylinders in contrast to the former’s 12 cylinders. The DB 609’s output was estimated by Daimler-Benz designers to be approximately 2,600 to 2,660 hp, though it would later be upped to 3,400 hp. The benefits of this engine were the ability to function normally upright and inverted, but the bulky engine design required a drastic redesign of the engine cowl and parts of the fuselage. The cowl would have been extended to accommodate the DB 609 engine, the length of which would have measured at 115 in / 2,935 mm compared to the BMW 801’s 79 in / 2,006 mm length.
According to the official blueprints for the Fw 190 mit DB 609, the two large radiators intakes required for the engine’s supercharger were moved to the cockpit’s rear, on the side of the fuselage. This was done to pull the center of gravity back, as placing them in the front would make the aircraft too nose heavy. The placement of the supercharger radiators is similar to that of the American Republic P-47 Thunderbolt. It would appear that internet sources claim the radiator placement was nicknamed the Hamsterbacken (Hamster Cheeks), but it is unknown whether or not this was an official nickname.
Fw 190 V19 (Werknummer 0042), which was intended to mount and test the DB 609 engine, was rebuilt from a Fw 190 A-1, but it is unknown which variant precisely the hypothetical production variant would be based upon. Armament wise, the official project blueprints show two 7.92x57mm Mauser MG 17 machine guns mounted on top the engine cowl. What appears to be a 20x82mm Mauser MG 151/20 cannon would be installed in the engine hub and would fire out through the propellers. It is unknown what wing armament (if any) the Fw 190 mit DB 609 would have had.
Due to the rather short-lived and conceptual nature of the Fw 190 mit DB 609, not many of the plane’s specifications are unknown. Performance estimations do not appear to be available, nor are aircraft dimensions.
Operators
Nazi Germany – The Focke-Wulf Fw 190 mit DB 609 was intended to be a successor to the Fw 190. However, development was dropped due to various problems with the design and engine.
Gallery
Credits
Primary Sources
Fw 190 mit DB 609 (Drawing. No. 10 10 05-203). (1942). Bremen: Focke-Wulf Flugzeugbau AG.
Nazi Germany (1942)
Amphibious Multipurpose Transport – 1 Incomplete Mockup Built
The Arado Ar 233 was an amphibious passenger transport seaplane designed in 1942, a time when it seemed Germany would soon complete its conquest of Europe and conclude the Second World War. Intended for civilian use after the war, the development of the Ar 233 was cancelled due to the deteriorating war situation for Germany in 1944. As the project was deemed low priority, much of the Ar 233’s advanced design work was done in the German Military Administration in France by the Société Industrielle Pour l’Aéronautique (SIPA) aircraft firm located within the Northern German administrative zone. The Ar 233 never materialized, but an incomplete mockup was constructed along with a 1:10 scale model. The incomplete mockup, along with blueprints and notes, were captured by the Free French Forces shortly after the Liberation of France. However, the Ar 233 was not further developed by the French, unlike quite a few of the German aircraft projects undertaken and captured in France. Relatively unknown and often overlooked, the Ar 233 is an interesting obscure project to provide an alternate-history post-war Germany with a suitable transport plane.
History
The first couple years of the Second World War appeared to have been going firmly in favor of Germany. Most of Western Europe had been conquered by then, and the Wehrmacht was making steady progress in its advance eastwards to conquer the Soviet Union. Despite recently declaring war on the United States, a distant economic powerhouse, Germany still seemed confident in its path to triumph. This feeling was prominent amongst the Germans throughout the initial years of the war. As such, some aircraft firms began to make preparations for post-war German civil aviation early in 1940, in accordance with a request made by the Reichsluftfahrtministerium (RLM / Ministry of Aviation). A few examples of aircraft designed for future German civil use are the Focke-Wulf Fw 206 and Blohm & Voss BV 144. The Arado firm was not exempt from partaking in civil aircraft design and responded with a two engine float plane design.
Designed as a passenger transport, the project began around August within the Arado firm bearing the designation “E 430”. Two variants were originally envisioned, a Bramo 323 R2 powered seaplane model capable of transporting ten passengers and a smaller Argus Ar 204 powered amphibian floatplane (capable of operating from land and water) able to transport eight passengers. According to the RLM, the project officially began in October 1942, but this was likely when it was submitted or approved to the RLM. Work on the project most certainly began in August due to the amount of preliminary steps required. This is further backed up by interviews with former French aircraft designers. As the German mainland’s industry was mostly reserved for military production, the industry of occupied France (German Military Administration in France) seemed like an acceptable place to offload this low priority project. As such, the Arado firm made arrangements for the German-controlled French Société Industrielle Pour l’Aéronautique (SIPA) aircraft firm to assist in the design and production of the E 430. The SIPA firm was founded by Émile Dewoitine in 1938 after his previous firm Constructions Aéronautiques Émile Dewoitine was nationalized. It would appear that, between October and December of 1942, the E 430 project gained the designation Ar 233.
In addition to the update in nomenclature, the smaller As 204 powered E 430 “Amphibium” was cancelled in favor of the ten passenger seaplane. However, the amphibious characteristic of the former was integrated into the Ar 233. Soon after, the French SIPA firm began work on producing a full-scale mockup. The SIPA factory in Île de la Jatte, Neuilly-Sur-Seine, West of Paris, was responsible for the the mockup while the other office at 27/29 Rue Dupont (also in Neuilly-Sur-Seine) and the Dewoitine Design office in 11 Rue de Pillet-Will in Paris were responsible for other work. By Christmas Eve of 1942, it would appear that a large portion of the mockup was completed as the Arado firm released a brochure advertising the Ar 233 which featured images of the mockup. The brochure made mention of four projected Ar 233 variants which included the original passenger airliner, a flying ambulance, a private luxury touring aircraft, and a cargo transport. The French effort in the design work and mockup construction went unrecognized, as all French involvement in the project were omitted from the brochure. However, close examination of a few photos in the brochure shows some of the equipment labelled in German and French.
Further on, it would appear that a 1:10 scale model of the Ar 233 was constructed along with a set of propellers. They were tested separately until May 1943 apparently, when they were paired together and sent to the Nationaal Luchtvaart Laboratorium (NLL / National Aviation Laboratory) facility in Amsterdam, Occupied Netherlands. Other than this model, not much more work appeared to have been done on the Ar 233. This was likely due to the disaster at Stalingrad, when the German 6th Army suffered a catastrophic defeat, and Germany’s ensuing effort to focus on their military industry. Nonetheless, the project remained stagnant for the remainder of 1943 and was finally cancelled in 1944 in favor of military aircraft. When the Allied forces and Free French Forces liberated France, it seems that the mockup and quite a lot of notes and design prints were captured. It does not appear that the French furthered the Ar 233 project after the war unlike quite a lot of the other German projects conducted in France, such as the Heinkel He 274 bomber or Blohm & Voss BV 144 airliner.
In the end, the ill-fated Ar 233 did not progress beyond the mockup and wind tunnel testing stage, although the project was meant to be a capable amphibious seaplane which could operate in all weathers including the extremes in the North Pole and the Tropical regions. The aircraft also had the luxury of being operable from both land and sea. This also would allow the aircraft to operate in underdeveloped regions which did not have adequate airfields. It also would have made emergency landings safer as calm water surfaces would allow for less dangerous landings compared to rough land terrain.
Design
The Ar 233 was an amphibious seaplane intended to be powered by two 9-cylinder air-cooled Bramo 323 MA radial engines producing 968 hp each. Each engine would be driven by a three blade propeller which would be started electrically via an onboard generator. The generator would also power the onboard radio systems (FuG X P, FuG 101 and FuBl II F) and a fan to provide ventilation. The Ar 233’s crew consisted of a pilot and a radio operator, though a co-pilot could join the crew. The Ar 233 had four variants which would have the passenger capacity vary. For ease of transport, the Ar 233 was designed so that it could be taken apart and transported via the railroad system.
The pilot’s compartment consisted of three seats for a pilot, a co-pilot or passenger and a radio operator. An extra set of controls could be installed for a co-pilot in longer range flights or to train pilots. The cockpit could be accessed via a ladder that folded to the underside of the wing. The side windows in the cockpit could be opened by sliding them forward, while the forward windows could be dropped forward to the bow section. An emergency manual pump was located next to the co-pilot’s seat that could be used to remove water. Visibility from the cockpit appears to be inadequate due to the lack of downwards visibility. Rear visibility also seems to be lacking.
The fuselage of the Ar 233 was a ship-hull shaped in order to allow floating on water surfaces. The fuselage was divided into several sections which, in order from front to end, were the nose wheel compartment, forward baggage compartment, pilot’s cockpit, landing gear hatch, passenger compartment, rear baggage compartment and a washroom fitted with a toilet. Lighting in the passenger compartment was provided by ceiling lights which were powered by a generator. Two air ventilation fans were also provided, with one above the entrance and the other in the land gear shaft. The left side of the fuselage had a door which allowed passengers to enter. The entrance door opened both upwards and downwards, with the latter being able to act as a platform. An emergency exit was provided on both sides, as the middle window in the fuselage could open. The tail of the Ar 233 was designed so that it curved upwards in order to protect the control surfaces by preventing unnecessary contact with the water.
In the passenger airliner configuration, the aircraft could carry eight passengers and two crew members. The seats provided in the passenger compartment were fitted with armrests, side tables, seatbelts, lamps and small luggage nets. The luxury touring configuration only allowed four seats (including the pilot). It would also have had two extra 400 L fuel tanks near the wing edge to extend the range. The cargo transport configuration would carry no passengers and had all seats in the passenger compartment removed for cargo. Any cargo would be loaded through hatches on the fuselage side and would have equipment to secure cargo in flight. In the ambulance configuration, beds could be fitted in the passenger compartment for the wounded.
There would be two wheeled landing gears which would be extendable from the side of the hull for land-based operations. Each one of these wheel measured at 39.96 x 14.96 in / 1,015 x 380 mm. These landing gears, when retracted, remained above the waterline and were hydraulically operated. The nose wheel (width measured at 33.74 x 12.79 in / 875 x 325 mm) sat at the front of the aircraft and could retract into a watertight compartment that could expel excess water with compressed air. If needed, a crewmember could climb above the nose compartment and lift the lid on top to perform maintenance. It was also provided with a locking mechanism. Additionally, the nose wheel’s suspension strength allowed it to perform takeoff and landings at altitudes up to 4,900 ft / 1,500 m.
The “V” shaped gull wings that sat on top of the fuselage provided a suitable platform for the engines and propellers, as it allowed them to be mounted at a safe distance from the water. Just behind the engine cowls were a set of hydraulically extended floats for assistance with landing on water. The fuel tanks for the engines were located in the wing leading edge in three “densely riveted” containers. These fuel tanks would be refilled by climbing on top of the cockpit via an access ladder. In addition, hydraulically operated flaps were provided to aid the Ar 233 in landing. These flaps were designed to yield in rough water conditions to reduce damage.
In terms of excess equipment, the Ar 233 could carry a fog horn, rubber dinghy, boat hook, towing gear, ropes, detachable sun canopy, emergency food and water, emergency tools, both ground and sea anchors and various other materials.
Variants
E 430 (Bramo 323 R2) – Original design concept which saw a dedicated seaplane powered by two Bramo 323 R2 radial engines and capable of transporting ten people. This design was further developed by incorporating the amphibious characteristic of the E 430 “Amphibium”. This design was later improved upon and bore the designation Ar 233.
E 430 Amphibium (Argus Ar 402) – Original design concept developed beside the E 430 which saw a scaled down variant powered by Argus Ar 402 engines and capable of carrying eight passengers. This variant could be operated from land and water due to it’s amphibious characteristics. This variant was cancelled but its amphibious design was carried onto the E 430.
Ar 233 (Commercial Airliner) – Commercial airliner design based on the original E 430 design which would be capable of carrying ten people. A pilot and radio operator were part of the crew which allowed for eight passengers. In addition, a co-pilot could be in the crew at the expense of a passenger. Two baggage compartments (located in the hull in front of the cockpit but behind the nose wheel and behind the passenger compartment) and a toilet compartment (located behind the rear baggage compartment) were provided for the passengers. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
Ar 233 (Luxury Touring Aircraft) – Luxury touring variant intended for sightseeing in remote areas. This variant featured four seats (including the pilot). This variant had the choice of carrying two extra fuel tanks at 400 L each in the outer wings. The envisioned range was 1,120 mi / 1,800 km. This variant also had the choice of implementing an additional set of controls for a co-pilot. It is not known if this variant would retain the two baggage compartments and toilet. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
Ar 233 (Cargo Transport) – Cargo transport variant which saw the removal of the passenger compartment equipment for cargo. The aircraft in this configuration appeared to been capable of carrying up to 2,200 lb / 1,000 kg of cargo. The cargo would be loaded from doors on the side of the fuselage with equipment provided to secure the cargo. The two baggage compartments and toilet were definitely removed for space. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
Ar 233 (Flying Ambulance) – Flying ambulance variant which envisioned the possibility of placing four beds in the passenger compartment either for the wounded or for the passengers. This variant was mentioned as the E 430 Flying Ambulance in the Ar 233 brochure, which shows the variant still maintained the original designation. It is not known if this variant would retain the two baggage compartments and toilet. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
Operators
Nazi Germany – The German Arado design firm was the original designer and intended to develop the Ar 233 for use with Lufthansa, the Luftwaffe and other organizations. The project was cancelled in 1944 after Allied forces liberated France.
German Military Administration in France – The SIPA firm under German control was responsible for partially designing and building the Ar 233. All three of SIPA’s facilities appeared to have been working on the project.
Free France – The Free French Forces captured the intact Ar 233 mockup as well as notes and drawings after the Liberation of France, but they did not continue development of the project and presumably scrapped the mockup.
Arado Ar 233 (Commercial Airliner)
Wingspan
77 ft 9.07 in / 23.70 m
Length
68 ft 5.65 in / 20.87 m
Height
21 ft 5.87 in / 6.55 m
Wing Area
807.29 ft² / 75.00 m²
Engine
2x 9-cylinder air-cooled Bramo 323 MA radial engine (986 hp / 735 kW)
Propeller
2x electrically started three-blade propeller
Propeller Diameter
11 ft 5.79 in / 3.50 m
Wheel Width
34.45 x 12.79 in / 875 x 325 mm – Nose Wheel
39.96 x 14.96 in / 1,015 x 380 mm – Fuselage Wheels
Surprisingly, the He 219 started its life as a reconnaissance aircraft. However, it was not deemed acceptable for this role and was heavily redesigned as a night-fighter aircraft. While proving to be one of the best German night-fighter designs of the war, only fewer than 300 would be built and its impact on the course of World War II was negligible.
An Unsuccessful Reconnaissance Role
During the early years of the war, the Luftwaffe (German Air Force) was in great need of an advanced and dedicated reconnaissance aircraft. Seeing an opportunity, Heinkel officials presented a design proposal to the RLM (ReichsluftfahrtMinisterium) at the end of April of 1940. This proposal consisted of blueprints of a new single-engine reconnaissance plane (named P.1055), based on the earlier He 119, which was estimated to be capable of a max speed of 466 mph (750 km/h). The RLM and Heinkel officials met in early October 1940 to discuss the viability of such a project. The RLM officials initially showed interest in the project, especially the bomber variant. But, as the demand for high-speed was great, the slower bomber and later destroyer variants were considered undesirable.
On 23rd November 1940, a fully completed wooden mock-up was presented to RLM officials, who were impressed with it and ordered that the airframe be built by mid-January 1941. This aircraft was to be powered by the new DB 613, which consisted of two side-by-side DB 603 engines. Due to problems with the production of this engine, the DB 610 was to be used instead. By 20th June 1941, two wooden mock-ups with both the DB 613 and DB 610 engine types were presented to the RLM. RLM officials were concerned that the change of engine would fail to meet the required criteria and expected production of the Arado Ar 240 to commence soon. For these reasons, the Heinkel P.1055 project was rejected.
Name
While under initial development, this Heinkel aircraft received the P.1055 designation. As it was largely inspired by the earlier He 119, the new aircraft received the designation He 219 in 1941. By the end of November 1943, Hitler himself made a proposal for a new name for the He 219, the ‘Uhu’ (Owl), by which it is generally known today.
Revival
In the hope of somehow reviving the He 219 project, Ernst Heinkel, the owner of the Heinkel company, had a meeting with General Obst. Udet (Head of the Office of Air Armament) in July 1941. After this meeting, Udet visited the Heinkel factory in order to inspect the He 219 wooden mock-up. Udet saw a potential for the usage of the aircraft in a night-fighter role. After his visit, Udet immediately contacted General Josef Kammhuber, who was responsible for commanding night-fighter defense of Germany. At that time, the Luftwaffe was ill-prepared and lacking adequate night-fighter designs to defend against the ever-increasing Allied night bombing raids. General Josef Kammhuber was a big advocate for new types of dedicated night-fighters that would replace the Me-110. After hearing about the He 219 project, Kammhuber immediately dispatched a group of pilots to inspect the new aircraft. While the He 219 was deemed to have potential, some modifications were needed, such as increasing the number of cannons and replacing the large DB 613 coupled engines with two wing-mounted DB 603G, making 1900 hp each.
Work on the modified He 219 began in mid-August 1941. In October, Luftwaffe officials visited Heinkel to inspect the development process and were satisfied with the progress. However, they asked for modifications such as a two-man cockpit, the addition of armor plates to protect vital components, the removal of the machine gun turret, the addition of air brakes, and other changes. At the end of 1941, two He 219 versions were completed. The first was designed as a two-seat night-fighter, equipped with two DB 603G engines and armed with six 20 mm MG 151/20 cannons, with the possibility of adding two more 13 mm MG 131 machine-guns to protect the rear. This model used a somewhat unusual (for German designs) tricycle landing gear that retracted into the engine nacelles. This design made space available for special radio equipment and ejection seats. The second version was designed as a reconnaissance plane with DB 614 engines and armament consisting only of two rear-mounted machine guns for self-defense.
Due to problems with the DB 603G engine’s availability, the weaker DB 603A giving out 1750 hp was to be used instead. The development of the He 219 was nearly stopped in its tracks by a heavy Allied bombing raid on the Heinkel factories located near Rostock in late April 1942. Many vital parts, drawings, and plans were destroyed. Luckily for the Germans, the hangars where the first functional Uhu prototypes were under construction were not hit. In the hopes of avoiding any more raids, the whole He 219 development program was moved to Schwechat Airbase near Vienna, Austria.
As the work and testing on the first He 219 V-1 were underway, in June 1942, the RLM officials informed Heinkel that the production of the plane was estimated to begin in 1943. The first 20 pre-production aircraft were to be built by April 1943, followed by a monthly production of 200 units. As it would later turn out, this was never achieved. By the end of August, Heinkel officials presented an estimated He 219 production report to the RLM. It was stated that, with the existing production capacities, a production of 12 prototypes and 173 units from March 1943 to September 1944 was possible, with maximum potential for 117 additional aircraft. This was far less than the monthly production of 200 aircraft per month originally demanded. The He 219 was to be produced in German-occupied Poland, at Budzun and Mielec, in the hopes of avoiding any future Allied bombing raids.
The First Prototype
By September 1942, the first He 219 V1 airframe was almost completed. There were delays with the delivery of the landing gear. At this stage, the He 219 had a twin tailfin design. Fearing that it was a weak point, Ernst asked for a second prototype to use a standard single tailfin. Future tests and calculations showed that the twin tailfin design did not pose any risk, so this feature was kept in the later production models.
The He 219 made its first test flight, piloted by the Gotthold Peter, on the 6th of November 1942 (or 15th depending on the source). The V1 prototype received the serial number W.Nr. 219 001 and, on the fuselage, VG+LW was painted. After the flight, which lasted 10 minutes, the pilot noted that the plane’s controls were good, but there were some issues such as inadequate radio equipment and problems with inoperable instruments, among others. On November 9th, there was an accident during a landing due to heavy rain and poor visibility. The pilot misjudged the distance to the airfield and broke the front landing gear as he hit the ground. The damage was repaired in the next few days and, through November, many more test flights were carried out. The testing would continue up to April 1943, during which time some 46 flights with the He 219 V1 were made. During this time, several pilots flew the Uhu, including Oberstleutnant Petersen, Bottcher Beauvais, Major Streib, and others.
On 10th January, the He 219 V2 prototype made its first test flight. In the following days, it was tested by the well known night-fighter pilot, Major Werner Streib. After testing the He 219, Major Werner Streib was more than pleased with its performance and wrote a report to Hermann Goering in which he urged for increased production of the Uhu. Further test results were not so promising, as there were several issues noted with the He 219, such as a lower top speed than originally claimed by the Heinkel, problems with strong landing gear vibrations and insufficient stability. For these reasons, the He 219 V1 prototype was sent back to Heinkel for more modifications. The fuselage construction was strengthened but also lengthened by nearly a meter. Other modifications were also made, such as modifying the engine nacelles, adding new propellers, installing a new twin rudder and adding an armament of four 30 mm MK 108 cannons.
Problems in Development and Production
In mid-February 1943, a decision was made to modify the V2 in the same manner as the V1 prototype. In addition, the construction of more prototypes was approved. Initially, 10 more prototypes were to be built and tested with different equipment and armament, such as remote-controlled guns and autopilot. The He 219 development was hindered by the lack of availability of DB 603A engines. V7 and V8, which were to be field-tested in May 1943, were equipped with these engines only after General Josef Kammhuber’s personal intervention. Other problems, like the lack of resources, adequate production facilities, and workforce, also affected the He 219’s development. The greatest threat to the He 219 project was probably Generalfeldmarschall Erhard Milch. He was of the opinion that quantity should be prioritized over quality. He urged increased production of the Ju 188, as he claimed it was much cheaper and faster to produce. To counter this, General Josef Kammhuber, the He 219’s main proponent, insisted that it should be flight tested against Ju 188. In late March 1943, a competition was held in Rechlin between several night-fighter aircraft: a Do 217, Ju 188 E-1 and the He 219 V1. Due to its much heavier weight, the Do 217 did not stand a chance. After the test flight, the results showed that the He 219 was faster by 25 to 40 km/h, had better handling characteristics and that its price was actually lower than that of the Ju 188. Despite these results, Generalfeldmarschall Erhard Milch was persistent in his attempts to stop the He 219 project, but its development continued. On 19th April 1943, the V3 prototype was damaged in a landing accident due to pilot error.
Design
The He 219 (A-0 first production aircraft) was designed as a twin-engine, all-metal, mid-wing monoplane. The He 219 fuselage was built using a monocoque design with a rectangular base with round corners. The wings were constructed using two spars, a main and a support. Flaps and ailerons were placed on the wing’s trailing edge.
The cockpit, with an excellent all-around view, was installed at the front of the fuselage. While the fuselage was held in place by using rivets, the cockpit was held in place with bolts. There was accommodation for two crew members, a pilot and a radar operator. The crew members were positioned back to back. While the forward position of the cockpit offered the advantage of good visibility, there was a risk of vulnerability to enemy fire. Another problem was that, in case of emergency, the pilot had first to shut down the engines, as there was a danger of hitting the propellers when exiting the aircraft. For this reason, the He 219 was to be provided with ejection seats for its crew.
The possibility of using ejection seats was being developed and tested by Junkers for some time. The Heinkel company also showed interest in its use. These were to be activated with compressed air or a small explosive charge. During a test flight of the unsuccessful He 280 jet fighter in January 1942, pilot Helmut Schenk was forced to use the ejection seat, which saved his life. After this accident, Heinkel spent time and resources on the production of large numbers of ejection seats, roughly 1,250. These were used on the He 162, Me 262 and He 219.
The engine nacelles were built to house two DB 603A engines. These were twelve-cylinder liquid-cooled 1,750 hp inline engines. They were provided with 3.4 m (11 ft) long three-bladed variable pitch propellers. Behind the engines, two small 20-liter fuel tanks were placed. The main fuel tanks were placed behind the cockpit and were separated with bulkhead ribs. In total, these three main tanks housed around 2,490 liters of fuel (1000, 990, and 500 liters respectively).
The He 219 had a tricycle type retractable landing gear which was somewhat unusual for German designs. The landing gear consisted of four 840 x 300 mm (33 x 11 in) wheels, placed in pairs on two struts, operated hydraulically. The front smaller landing gear consisted of a single 770 x 270 mm (30 x 10 in) wheel. Both the front and rear landing gear struts retracted towards the rear. The front wheel rotated 90° beneath the cockpit floor during retraction.
The basic He 219 A-0 armament consisted of two 20 mm MG 151/20 cannons, with 300 rounds per cannon, placed in the wing roots. If needed, a ventral tray could carry four additional cannons, typically with 100 rounds of ammunition per cannon. There were three different forward-mounted weapon configurations, using two MG 151/20 and four 30 mm MK 108, two MG 151/20 and four 30 mm MK 103, or just four MK 103. For acquiring targets, Revi 16/B reflector guns sights were installed. Later models were equipped with the Schräge Musik weapon system. All guns were fired by the pilot by using a two-pronged control column. The top button was for firing the guns from the ventral pod and the front button was for firing the wing-mounted weapons.
Being used in the role of a night-fighter, it was necessary to equip the He 219 with adequate radar technology. Initially, the radar used was the FuG 212 C1 and C2 in combination with FuG 220 sets. Later during the war, the use of the FuG 212 was abandoned.
First Frontline Service Evaluation with the 1./NJG 1
On 22nd May 1943, the V7 and V9 prototypes were allocated for evaluation to the I.NJG 1 (Nachtjagdgeschwader 1) unit stationed at Venlo, Netherlands. During one flight, the V9 was tested by firing all its guns, but due to problems with one engine, the pilot had to abort the flight and return to base. While stationed there, both were reequipped with the FuH 212 Lichtenstein BC radar.
During the first combat operational flight on June 11/12th 1943, pilot Major Werner Streib managed to shoot down five RAF aircraft, four Lancasters and one Halifax bomber, over a period of 75 minutes. Only due to lack of ammunition was he forced to return to base. On his return, the canopy cracked in many places due to airframe stress, which lowered the visibility. To complicate the situation further, a number of onboard instruments simply stopped working. During landing, there were additional problems with the landing gear and the pilot landed the aircraft on its belly, heavily damaging the plane. Luckily, both crew members survived without a scratch. V9 had to be written off after this accident. In July 1943, V2 was also lost in a diving flight accident. The pilot did not survive.
Further Development
Due to the demand for more planes made by General Josef Kammhuber, some 22 pre-production aircraft were to be built. These were designated as He 219 A-0. To add to the confusion, these were also marked as V13 to V34. They were used to test different equipment, engines, and weapon loads.
Note that, due to greatly different information presented by different authors, the following information was taken from M. J.Murawski’s book (2009), “Heinkel He 219 Uhu”.
The A-0 series was to be put into production under four different versions. The R1 would have a longer fuselage and an armament of two MG 151/20 and two MK 108. The R2 was similar to the R1, but with a strengthened undercarriage and armed with four MK 103. The R3 was armed with two MG 151/20 and four MK 108. Finally, the R6 was equipped with the Schräge Musik system and two MK 108 cannons.
The A-0 series was also used to test the installation of auxiliary BMW 003 turbojet engines. One A-0 equipped with this engine managed to achieve a maximum speed of 385 mph (620 km/h) at 19.700 ft (6000 m). This aircraft was almost lost due to an engine fire. Despite the attempt to produce as many He 219 A-0 as possible in the first half of 1944, only 82 were built. By the conclusion of A-0 series production, only around 100 were built. The A-0 was to be replaced by the A-1 version, also planned to be mass-produced. Alas, this was never achieved and the He 219 A-1 was never put into mass-production, with possibly only a few ever built.
The A-2 version was to be put into mass production as a dedicated night-fighter. It reused the A-1 airframe with modifications to the armor thickness to improve protection, adding flame dampers, and increasing operational range. The first version of the He 219 A-2/R1 was powered by two DB 603 A/B engines and armed with an MG 151/20 and two MK 103 and Schräge Musik. The Schräge Musik was a weapon system developed by the Germans that consisted of two MK 108, with 100 rounds of ammunition each, mounted at an angle of 65°. These were mounted on the He 219 fuselage behind the larger fuel tank. In theory, these angled cannons could engage enemy bombers above the aircraft without fear of return fire. During the use of Schräge Musik in combat operation, there was a possibility that the attacking He 219 would be damaged by the debris of destroyed or damaged enemy bombers. To solve this problem, Mauser developed a new movable gun carriage that could change the elevation of the cannons from 45° to 85°. In practice, however, the ground crews simply removed the Schräge Musik system from the He 219. The He 219A-2/R2 version had increasing fuel capacity by adding extra fuel tanks of 900 liters under the fuselage.
The A-3 was a fast bomber and A-4 was intended to fight the British Mosquito, but both versions were only paper projects.
Problems with the fuel systems on the A-2 lead to the development of the A-5 version powered by the same engines. This A-5/R1 version was armed with two MG 151/20, two MK 103 and two MK 108 in the Schräge Musik system. The A-5/R2 was equipped with the FuG 220 radar and armed with four MG 151/20 and the standard Schräge Musik system. The A-5/R3 version was powered by DB 603 E engines and had the same armament as the A-5/R1. The A-5/R4 had a modified cockpit with three crew members. For this reason, the fuselage was lengthened to 43 ft (16.3 m). The third crew member was added to operate the rear-mounted MG 131 machine gun. The engines used were DB 603 E with increased fuel capacity by the addition of two fuel tanks, each with 395 l, and was armed with four MG 151/20.
The He 219 A-6 was designed to fight the British Mosquito. In order to increase speed, it was stripped of its armor plates and the armament was reduced to four MG 151/20. The sources are not clear if any were actually built.
The final version developed was the He 219 A-7, which was powered by two DB603 G engines. Its first subvariant, the A-7/R1, was heavily armed with two wing root MK 108 and four additional cannons, two MG 151/20 and two MK 103, in the ventral tray. The A-7/R2 was the same as the R1 but with the addition of the Schräge Musik system. The R3 was proposed to be used as a basis for the never-built B-1 version. The R4 had its armament reduced to only four MG 151/20. The R5 was the third and last attempt to modify the He 219 to fight the Mosquito. It was to be powered by the Junkers Jumo 213E engine, equipped with methanol-water injection that boosted the horsepower by 1,320 hp. The last R6 was to be powered by two Jumo 222A engines and armed with two MG 151/20 and four MK 103.
Unrealized Projects
Besides the main production version, two additional variants were to be tested and eventually put into production, but little came of this. The B-1 was designed as a three-seater heavy fighter powered by Jumo 222 engines. In addition, it had a redesigned fuselage and a larger wingspan of 22 m (72 ft). The armament consisted of four MK 108 and two MG 151/20 cannons and one MG 131. The B-2 was a two-seater high-altitude fighter and for this purpose had to be equipped with a pressurized cockpit. Whether any of the B-series were ever built is hard to tell, as the sources are not clear on this matter.
The C-1 was planned to be a four-seat heavy fighter powered with Jumo 222E/F engines. The armament was similar to the B-1 but armed with three more MG 131 machineguns. The C-2 was planned as a fighter-bomber based on the C-1, but with only two cannons and four MG 131. It was meant to be armed with a bomb load of 1,500 kg (3,300 lb).
The He 319 was a proposed fast bomber version powered by DB 603 A engines, but none were ever built. The He 419 was a proposed high-altitude fighter that was to be built using a combination of many different components of previous variants.
In Combat
As already mentioned previously, the He 219’s first combat flight was very successful, with five enemy planes claimed shot down. As this He 219 was lost in an accident, Heinkel sent two additional planes as replacements, V10 and V12. Uhu pilots managed to achieve more kills in the following weeks. In late July 1943, Hauptmann Hans Frank shot down two British bombers , a Lancaster and a Wellington, followed by one more Lancaster in August. On the night of August 30th 1943, these two He 219 managed to shoot down several more British bombers, three Halifaxes, one Stirling, a Wellington, and a Lancaster. One He 219 lost an engine due to enemy fire, but the pilot managed to land back safely. In early September, the two He 219 again attacked a British bomber formation and managed to achieved one kill on a Lancaster. However, on this occasion, one He 219 (V10) was heavily damaged by enemy return fire. In late September, the second He 219 was lost when it collided with a Me 110 in mid-flight. None of the pilots nor their radio operators survived the collision.
In October, the I./NJG 1 unit had seven Uhus, with only two fully operational A-0 under the command of Hauptmann Manfred Meurer. On 19th October 1943, Meurer managed to achieve his first victory while flying the He 219, his 57th overall victory. The next day, one He 219 was lost with its crew due to bad weather. On the night of October 22nd, 1943, Meurer shot down another Allied bomber. Due to quality issues with cockpit equipment and poor heating, all surviving He 219 were to return back to Germany.
As replacements, seven new He 219 (A-0 series) were delivered to I./NJG 1 in December of 1943. On the night of January 21, 1944, Manfred shot down another bomber, but during an engagement with a second bomber, Meurer’s Uhu accidentally collided with the enemy aircraft, killing the crews of both aircraft. He was succeeded by Hauptmann Paul Förster, the oldest pilot in the Luftwaffe, at the age of 42.
During March and April of 1944, several more kills were scored by the He 219. Interestingly, on 12th April, the crew of one He 219 was forced to activate the ejection seats. Both the pilot and the radio operator survived. This is considered the world’s first successful use of ejection seats in combat operations. On the night of April 22nd, Staffelkapitän Modrow managed to shoot down three British Lancasters and possibly two additional Canadian Halifaxes. By the end of April, some 10 Allied bombers had been shot down by the He 219.
The He 219 would continued to bring down many enemy aircraft, but there were some issues . While having excellent handling and firepower, problems arose with the aircraft’s weight. When fully loaded, the He 219 could not fly any higher than 27,900 ft (8,500 m). Another issue was that the speed of 375 mph (605 km/h) could be achieved only without radio antennas. With antennas and flame dampers, the speed was reduced to 347 mph (560 km/h). While it was faster than the Me-110, it was not enough to fight the British Mosquito.
During May of 1944, the He 219 managed to shoot down over a dozen enemy bombers with few losses. In June, Uhu engagements with British Mosquitos began to intensify. On June 2nd, one Mosquito was shot down with the loss of one He 219. From June 6th to 15th, four Mosquitos were shot down without any losses. On the night of June 15th, He 219 pilots managed to shoot down 10 Allied aircraft for the loss of one of their own. By the end of May, I.NGJ 1 had 56 He 219 in total, divided into two groups (Gruppen), and a command unit (Stab). The Stab had 2, I. Gruppe had 33 and the II.Gruppe 21. Of the 56 aircraft, only 43 were fully operational.
On 4th August 1944, a bizarre accident occurred involving one of three He 219 that were to be sent against an Allied daylight bomber raid. During the flight, the pilot of one He 219 noticed that one of the ground crew was somehow caught on the fuselage, hanging in midair. To save this airman’s life, the pilot landed on a nearby airfield. This decision additionally saved the aircrew’s lives, as both remaining He 219 were shot down by the Allied fighter escorts. In August, He 219 pilots managed to achieve only one victory.
Due to extensive air raids on its airbase at Venlo, Netherlands, I./NJG 1 was repositioned to Münster, Germany in early September 1944. On 9th September, two He 219 were lost to American fighters during a training flight. Also during this month, an additional 28 new He 219 were accepted by the Luftwaffe. At the start of October, during a test flight, I./NJG 1 commander Major Paul Föster was killed in an accident. A few more Uhu were lost in accidents or to enemy fire, with only one achieved victory for October.
Some of the last successful missions by the He 219 were at the beginning of November 1944, when 7 Allied bombers were shot down. By the end of 1944, the He 219 managed to shoot down smaller numbers of Allied aircraft, but the losses due to enemy action or accidents began to rise.
In 1945, the He 219 was plagued with a lack of fuel availability, increasing numbers of Allied air raids, and increasing technical problems with the operational aircraft. On 10th January 1945, I./NJG 1 had 64 He 219, with 45 operational aircraft. The last air victory achieved by the He 219 happened on the 7th of March 1945, when pilot Werner Bakke shot down a British Lancaster bomber over the Netherlands. On March 21st, the airbase at Münster was heavily bombed by the Allies. The raid continued the following day. During these attacks, 7 He 219 were completely destroyed, with 13 more damaged. To avoid future raids, the unit was repositioned to the isle of Sylt in Northern Germany. Due to the general lack of fuel, the combat use of the He 219 was limited. On the 9th of April, the number of He 219 within I./NJG 1 was 51, with 44 fully operational. For I./NJG 1, the war finally ended on the 30th April, when the airbase was captured by the advancing British forces.
Only a few units besides I./NJG 1 were ever supplied with the He 219. Some of these were Nachtjagdgruppe 10, a training and experimental testing unit formed in February 1944, Nachtjagd-Ergänzungsgruppe formed in April 1944, ZG 26 ‘Norwegen’ and NJG 5 which had 34 He 219, with 32 operational.
After the War
At the end of the war and the German capitulation, the British ground forces managed to capture around 54 He 219. Most were scrapped, but five were sent back to Britain for further examination by the Royal Air Force, and three were given to the Americans. Soviet forces also managed to capture two in Czechoslovakia. These received the designation LB-79 and were mostly used for testing at the Prague Aviation Institute up to 1952, when they were finally scrapped.
Surviving He 219
Of the several captured aircraft, only one He 219 (American equipment designation FE 164) still exists and is located at the Steven F. Udvar-Hazy Center at the National Air and Space Museum. It is currently under restoration, with most parts assembled aside from the nose and propellers. In 2012 a wreckage of a He 219 was discovered off the coast of Denmark. It was initially given to the Aalborg Defence and Garrison Museum museum for preservation, but was sold to a museum whose owner remains anonymous.
The He 219 Production
There is no precise information on how many Uhus were actually built. Authors Ferenc A. and P. Dancey give a figure of 294 planes, of which 195 were allocated to the Luftwaffe. D. Nešić states that 288 were built. Authors J. Dressel and M. Griehl mention that, from 1943 to March 1945, 268 He 219 were built in total, with the production of 11 in 1943, 195 in 1944, and the last 62 in 1945. Author A. Lüdeke mentions that 284 were built.
The production orders for the He 219 ranged from 100 to 300 per month, but these were never reached and only small monthly production was ever possible. To avoid Allied bombing campaigns, the production was moved to several locations in Rostock, Germany, Vienna-Schwechat, Austria, and factories at Mielec, Poland.
Despite the resources and time invested in the He 219 project, it was under great pressure from its old opponent, Generalfeldmarschall Erhard Milch. Even as the Uhu was shown to have promising flight performance, Generalfeldmarschall Milch urged it to be canceled in favor of the new Ju 88 G. Ernst Heinkel did what he could to see his project continue, but it would all prove to be futile. In May 1944, Hermann Goering ordered a halt to He 219 production. This order was then revoked, mainly at the insistence Karl Sauer, who was responsible for night-fighter development at this stage of war. While the production of the He 219 would continue on, it would never be built in any large numbers during the war due to political tensions, lack of resources, and workforce shortages.
Variants
He 219 V1-V12 – First built prototypes
V13-V34 – Used to test various equipment and engines,
He 219 A-0 – Pre-production version, around 100 built.
R1 – Had larger fuselage and armament of two MG 151/20 and two MK 108
R2 – Had strengthened undercarriage
R3 – Armed with two MG 151/20 and four MK 108
R6 – Equipped with Schräge Musik
He 219 A-1 – Proposed for mass production, possibly only a few airframes built.
He 219 A-2 – First production night-fighter version,
R1 – Armed with two MG 151/20 and two MK 103 and the Schräge Musik system.
R2 – Same as R1 but with increased fuel capacity.
He 219 A-3 – Proposed fast-bomber version, none built.
He 219 A-4 – Proposed improved night-fighter version, none built.
He 219 A-5 – Mass production series
R1 – Was armed with two MG 151/20, two MK 103 and two MK 108 in the Schräge Musik system.
R2 – Armed with four MG 151/20 and FuG 220 radio equipment.
R3 – Powered by DB 603E engines.
R4 – Powered by DB 603E engines, with one more crew member added that operate the rear-mounted machine gun.
He 219 A-6 – Anti-Mosquito version, unknown if any were built.
He 219 A-7 – Final production version powered by the DB603 G engine and equipped with different weapon loads.
R-1 – Armed with two wing root MK 108 and four additional cannons (two MG 151/20 and two MK 103) in the ventral tray.
R-2 – Same as previous version with added Schräge Musik system.
R-3 – The MK 108 cannons in the wing root were replaced with MG 151/20.
R-4 – Armament reduced to only four MG 151/20.
R-5 – Powered by Junkers Jumo 213E engine.
R-6 – Powered by Jumo 222A engines, and armed with two MG 151/20 and four MK 103.
Proposed Versions
He 219 B
B-1– Proposed three-seater heavy fighter, possibly few built.
B-2 – Proposed high-altitude fighter.
He 219 C
C-1 – Proposed four-seat heavy fighter.
C-2 – Proposed fighter bomber.
He 319 – Proposed fast bomber version, none built,
He 419 – Proposed high-altitude fighter
Operators
Nazi Germany – Produced less than 300 aircraft, but only 195 were ever issued to the Luftwaffe.
USA –Used three aircraft for testing after the war, one survived to this day.
UK – Five aircraft were transported to the UK for testing after the war.
Soviet Union – Captured at least two He 219, these were given to Czechoslovakia and used for testing.
Conclusion
The He 219 proved to be one of the best German night-fighter designs of the war. Despite the small number of aircraft built, the pilots flying the He 219 managed to shoot down many Allied aircraft. While the He 219 is generally known today as a night-fighter that, if produced in greater numbers, could have stopped the Allied bombing raids, in truth this was not possible. During service, the He 219 proved to have some issues, of which the most serious was the inability to climb when fully loaded to an altitude higher than 27,900 ft (8,500 m) and a combat speed of 347 mph (560 km/h). In addition, it was built too late and in too small numbers to seriously threaten Allied bomber formations.
Specifications – Heinkel He 219A-7/R2
Wingspan
60 ft 8.3 in / 18.50 m
Length
50 ft 11 in / 15.5 m
Height
13 ft 5 in / 4.10 m
Wing Area
480 ft² / 44.50 m²
Engine
Two 1,900 hp Daimler-Benz DB 603G engines
Empty Weight
24,690 lb / 11.200 kg
Maximum Takeoff Weight
33,730 lb / 15,300 kg
Fuel Capacity
687 gallons / 2,600 liters
Maximum Speed
416 mph / 670 km/h
Cruising Speed
391 mph / 630 km/h
Range
1,240 mi / 2,000 km
Maximum Service Ceiling
40,025 ft / 12,200 m
Crew
One pilot and one navigator
Armament
Two 30 mm MK 103 and a twin 20 mm MG 151/20 Ventral Gun Pod
Two 30 mm MK 108 in the wing roots
Two 30 mm MK 108 in the Schräge Musik configuration
Nazi Germany (1942)
Jet Fighter Concept – None Built
The Fw 190 Strahljäger (Jet Fighter) was a conceptual turbojet fighter and the Focke-Wulf Flugzeugbau firm’s first attempt to design a jet-powered fighter. First mentioned in a report dated November 5, 1942, the Fw 190 Strahljager would have seen the BMW 801 radial engine replaced by a Focke-Wulf T.1 turbojet engine capable of producing 1,300 lb / 600 kg of thrust at most. Short-lived and canceled mere months after its conceptualization, the Fw 190 Strahljäger is quite mysterious in many aspects, such as how the engine would have performed while mounted. Unfortunately, due to the unique nature of the design, the Fw 190 Strahljäger has been the victim of falsification and malicious misinformation. One of the most popular claims on this aircraft was that it was built. This is almost assuredly false, as no primary sources support this claim. A photo does exist which purports to show a Fw 190 with the jet engine, but this photo is definitely a fake as there are too many discrepancies and questionable content, such as the plastic model looking landing gear. Nonetheless, the Fw 190 Strahljäger is quite an interesting design from 1942 that shows Focke-Wulf’s attempts to remedy the powerplant issues of their Fw 190.
History
When first fielded in August of 1941, the Focke-Wulf Fw 190 Würger (Shrike) made a positive impression with Luftwaffe pilots. Seemingly equal or superior to most contemporary Allied fighters, the Fw 190 gained a fearsome reputation among the Allied pilots, who at first did not even realize the Fw 190 was a new aircraft model. Despite the success of the Fw 190, there were several problems with the aircraft’s design. For one, the air-cooled 14-cylinder BMW 801 radial engine which powered the aircraft was prone to overheating due to inadequate cooling systems and, as a result, would produce fumes which would seep into the cockpit and suffocate the pilot. This issue was somewhat addressed in subsequent production variants, but the problem was never snuffed out. In an attempt to address this issue, the Bremen-based Focke-Wulf firm began to look into the possibility of changing the powerplant. However, it was not until late 1942 that the firm launched several design ventures for a new design. In the spring of 1942, the Focke-Wulf firm received a considerable amount of funds from production orders for the Fw 190 by the Reichsluftfahrtministerium (RLM / Ministry of Aviation). The goal of the design venture was to provide a successor to the Fw 190 by replacing the BMW 801 with more promising engines being developed at the time.
One of the designs which resulted from this venture was the Fw 190 Strahljäger (jet fighter), a curious design that first appeared in documents on November 5, 1942. This design explored the feasibility of replacing the BMW 801 with a Focke-Wulf designed turbojet engine. Even before 1942, the Focke-Wulf firm looked into the possibility of replacing the BWM 801 with a turbojet. Dr. Otto Pabst, a Focke-Wulf engineer, told British officials after the war that he attempted to design a jet engine which would be used for the Fw 200 Condor bomber before the Second World War started. The report which entails his interview states: “Dr. Pabst had also worked on a gas turbine engine to be constructed by Focke-Wulf, which consisted of a double entry radial compressor and a single stage axial flow turbine with a single annular burner chamber which was expected to produce 600 kg (1,300 lb) thrust at 11 km (7 mi) or 2 kg (4 lb) thrust at sea level.“ The 4 lb / 2kg thrust at sea level is likely an error by the document author, and the more realistic thrust would be 440 lb / 200 kg. The engine in question was the Focke-Wulf T.1, and this same engine was envisioned to power the Fw 190 Strahljäger.
Much of the Fw 190 Strahljäger’s developmental history is unknown due to poor documentation and the project’s short lifespan. It would appear that the Fw 190 Strahljäger was designed with the intent of making the turbojet nose easily adaptable to standard Fw 190 airframes. Surprisingly, estimated performance graphs on the Fw 190 Strahljäger exist and demonstrate improvement over the standard Fw 190 A variant. Despite this, however, the Fw 190 Strahljäger’s top speed was lower than the Heinkel firm’s He 280 jet fighter and the Messerschmitt firm’s Me 262 fighter. As such, the Reichsluftfahrtministerium decided that the project was not worth pursuing and priority was given to the other firm’s jet fighter programmes. As such, the Fw 190 Strahljäger project would come to an end either in very late 1942 or early 1943, after only two or three months of development time. The original intent to replace the BMW 801 with a turbojet failed, and the Fw 190 program would evolve to utilize improved and reliable conventional reciprocating engines and propellers.
Fact or Fiction? – Author’s Analysis
With the mysterious and unique nature of the Fw 190 Strahljäger design, several online publications from recent times have made several claims about the project, with the most important being that a Fw 190 was actually converted to test the turbojet. This claim is certainly false, as primary documentation and credible historians show that the project did not even make it past the drawing stage. Although the Focke-Wulf firm could have easily taken a factory fresh Fw 190 off of the production lines to test this, just because they could does not mean they did.
There does exist a photo which claims to be evidence that a Fw 190 Strahljäger was built, but there are several discrepancies which suggest that it is fake. For one, the landing gear seems rather plastic, and the shadows are questionable. The shadow of the main wing suggests it is evening or morning and the sun is off to the left, while the shadow from the tailplane is projected as if the sun is behind the plane. Furthermore, it appears that two Werfer-Granate 21 rocket launchers are hung beneath the wing. If a hypothetical aircraft was converted to test the engine, it would make no sense for it to retain the launchers especially when it takes little time to remove them. Lastly, it seems that the nose exhaust is at the wrong angle relative to the fuselage. In conclusion, this appears to be a photo of a model which has been bleached to give the black and white effect. FotoForensics (used to detect photoshopped images) does not appear to suggest that the photo was modified, but this could possibly be due to the image not being the original one.
Other than that, a curious nomenclature which has surfaced in recent times suggests the turbojet-powered Fw 190 would be called the Fw 190 TL (TurboLader Strahltriebwerk – Turbocharger Jet Engine). However, this claim is questionable as official documents only state the name was “Fw 190 Strahljäger”. This can possibly be chalked up to misinformation.
Design
The Fw 190 Strahljäger was a 1942 project to mate a Focke-Wulf designed turbojet engine with a standard Fw 190 A airframe. According to credible secondary sources and an interview with former Focke-Wulf engineer Otto Pabst, the engine which would power the Fw 190 Strahljäger “consisted of a double entry radial compressor and a single stage axial flow turbine with a single annular burner chamber which was expected to produce 600 kg (1,322 lb) thrust at 11 km (6.8 mi) or 2 kg (4 lb) thrust at sea level”. As mentioned earlier, the 4 lb / 2 kg thrust was likely an error and the actual engine would produce 440 lb / 200 kg of thrust at sea level. The engine was the Focke-Wulf T.1 turbojet. The exhaust of the turbojet would be passed through a ring-shaped outlet between the engine and the fuselage. The exhaust passed through the side and bottom, but not the cockpit on the top. The engine would be accompanied by 370 gal / 1,400 l fuel, which the engine uses at 309 gal / 1,170 l per hour. This would give the Fw 190 Strahljäger a total flight time of 1.2 hours or 72 minutes.
The Fw 190 Strahljäger’s armaments consisted of two 7.92x57mm Rheinmetall-Borsig MG 17 machine guns mounted on the engine cowl and two 20x82mm Mauser MG 151/20 cannons, one in each wing. It is unknown whether or not the aircraft would have been able to carry ordinance.
Official graphs of the Fw 190 Strahljäger’s estimated performance exist. Some fundamental specifications are listed in the Specifications Table below.
Operators
Nazi Germany – The Fw 190 Strahljäger was intended to replace the Fw 190’s troublesome BMW 801 engine, but the design did not go into production due to several factors.
Focke-Wulf Fw 190 Strahljäger*
* – Information taken from “Das Focke-Wulf Strahltriebwerk wird an die vorhandene Zelle Fw 190 angebout” published in 1942 by the Focke-Wulf Flugzeugbau AG and “Luftwaffe: Secret Jets of the Third Reich” published in 2015 by Dan Sharp
Wingspan
34 ft 5.78 in / 10.51 m
Wing Area
197 ft² / 18.3 m²
Engine
1x single stage axial flow turbine Focke-Wulf T.1 turbojet
Engine Ratings
4 lb / 2 kg at Sea Level*
1,300 lb / 600 kg at 7 mi / 11 km
* – Likely an error in the document, the more realistic thrust would be 440 lb / 200 kg
Designed as a stopgap to combat the ever-growing numbers of Royal Air Force bombers and de Havilland Mosquitos, the Focke-Wulf Ta 154 was a project plagued with problems, from the glue used for its wooden construction to the unreliable landing gear. After the construction of dozens of prototypes and variants the project was eventually canceled due to inadequate performance and the lack of skilled workers available able to handle the plane’s specialized wooden construction process.
Development
Until the large RAF (Royal Air Force) bomber offensive on Cologne (Köln), Essen, and Bremen in mid-1942, the Luftwaffe had focused on developing offensive aircraft. Shortly after these raids, Generalfeldmarschall (Field Marshal) Erhard Milch, the Minister of Air Armaments, held a development conference to spark ideas for possible uses of the Jumo 211 engine. Afterward, Milch made it clear that using “homogenous wood” was a viable option for producing light airplane airframes. The term ‘homogeneous’ refers to the fact that the construction material was all of the same type of plywood. Coincidentally, Milch was also very interested in the creation of a new light, high-speed night bomber.
In September of 1942, Focke-Wulf presented the concept of developing a plane equivalent to the De Havilland Mosquito to the Reichsluftfahrtministerium (RLM, the Nazi Ministry of Aviation). It was detailed as being a high-speed, dual-engined, and unarmed bomber. Focke-Wulf’s proposal would be constructed of 50% wood, 39% steel, and 11% fabric (it is not specified whether this was by weight or volume). The RLM immediately gave Focke-Wulf a high-priority contract. The design continued to be refined as a high-speed bomber until 16 October 1942, when Generalfeldmarschall Milch decided to voice the importance of the aircraft’s secondary role as a night fighter. At the time, Germany was in dire need of twin-engine fighters with a large operational range in order to combat the growing waves of Allied bombers, which carried out their missions day and night. In order to satisfy Milch’s requirements, the aircraft was now to be equipped with a FuG 212 search radar and a fixed armament of two MK 103 and two MG 151 cannons.
With the Ta 154 being constructed mostly of plywood and having promising performance estimates, the Technische Amt (Technical Research Office) was highly interested. They believed they had finally found a second generation night fighter that could adapt to the material shortages facing the Reich at that point and capable of replacing the aging Bf 110. Consequently, Erhard Milch focused his attention even more on the Ta 154’s night fighter capabilities and decided to stop pursuing high-speed bomber research. On 13 November 1942, the Technical Research Office continued their support for the project, then known as the “Ta 211” or the “Focke-Wulf Night Fighter,” and urged Focke-Wulf to continue developing the aircraft. Shortly after, the aircraft received the designation “Ta 154,” which it would keep for the duration of its existence.
On 8 January 1943, just days after Focke-Wulf was told to construct ten prototypes of the Ta 154, the “Ta 154 Startup Conference” took place. At the conference, it was made clear that while the project was promising, there were not enough skilled woodworkers to produce the aircraft. In addition, it was correctly theorized that the Jumo 211 wouldn’t produce enough horsepower at altitude to match the enemy’s aircraft development. The Technische Amt requested an armament of four MK 103 cannons, but in March of the same year, an analysis of the plane revealed that the nearly eight foot long cannons would not be able to fit. It was decided in June 1943 that production of the Ta 154 would be separated into three areas, Silesia, Thuringia, and the Warthe District, with the Warthe District being responsible for the most variants.
After only 9 months in the making, the first prototype took flight in early July 1943, flown by Hans Sander. It is often publicized that Kurt Tank, designer of the plane, piloted the Ta 154 on its maiden flight, but this is incorrect, as he was too important to risk in such a potentially dangerous test. Sander later described the plane as being easier to control than the Heinkel 219, which he had flown prior. However, performance was not up to par with the estimates Focke-Wulf started with. Problems continued when it was speculated that installing the FuG 212 radar, flame dampers, and drop tanks requested by the Technische Amt would slow the Ta 154 down to an estimated 360 mph (580 km/h) at altitude. Not only would it slow the aircraft significantly, but it would also lower the service ceiling from 34,100 ft (10,400 m) to 30,800 ft (9,400 m). Due to this, Focke-Wulf demanded the delivery of the more powerful Jumo 213 engines the aircraft desperately needed. Focke-Wulf was promptly declined and were told the engines would be ready in mid-1944.
On 29 October 1943, a very successful Luftwaffe pilot by the name of Thierfelder test flew the Ta 154. Although he praised the Ta 154, RLM’s head of planning, Oberst Diesing, criticized the plane just months later, stating that any ordinary pilot would not have the same positive experience. The Oberst’s critiques didn’t stop there, however, as he alleged that pieces of the aircraft fuselage fell off when firing the guns and airframe vibrations would discourage pilots from flying the aircraft.
During another conference on 17 March 1944, a date for the start of production could not be set due to the lack of trained workers experienced with handling the plane’s bonding materials and insufficient bonding resin. In addition, the delivery of the Jumo 213 engines was set back further, and it was decided to complete the first production model in the coming months. On 12 April 1944, flight captain Hans Sander, who test flew both the Fw 187 and Ta 154, presented a prototype to Hermann Göring. Göring already had a massive interest in the development of the Ta 154, and the demonstration only fortified his overinflated view of the plane. Soon afterward, the prototype construction program called for prototypes V1 through V9 to be fitted with new metal control surfaces. Unfortunately, the V3 had recently crashed, and the V4 was being repaired after it had crashed.
In mid-1944, trials at Langenhagen uncovered more problems, including the weakness of the landing gear and its hydraulics. Focke-Wulf released a report soon after detailing the total number of crashes so far. V1, V3, V4, V5, V8, and V9 had all crashed from 1943 to May 1944. The crash of the V8 had been caused by an engine fire, resulting in both the pilot and radio operator dying in the crash. Had the cockpit been made of metal, the crew would have survived. This motivated all those working on the Ta 154 to produce a metal fuselage or continue working on the C model, which possessed a metal nose and cockpit.
On May 29, 1944, RAF bombers bombed the factory in the Posen province, as well as destroying the glue manufacturing facility owned by the Goldschmitt Company (Tegofilm). There was also an attempt by Allied fighters to strafe the Langenhagen airfield where the Ta 154 was being tested. This was planned by the Allies to stop the planned production of the Ta 154, as it was believed that it could prove a worthy opponent to their air superiority. In the end this, along with shifting priorities, contributed to the termination of the Ta 154 program.
More problems continued to arise in late-1944, as the mounts for the MK 108 cannons could not handle the recoil of the large caliber gun. Consequently, any Ta 154’s that did see combat were only fitted with the remaining two MG 151/20 cannons and did not have a metal fuselage. Those aircraft were deployed in Northern Germany. Furthermore, finding a suitable source for resin was proving ever more difficult. More prototypes had been planned under the names V1a, V11, V14a, and V24, with the last two being planned for static testing of the C variant. During another meeting on May 24th between Kurt Tank, Milch, Galland, Heinkel, Vogt, Frydag, Saur, and Göring, Tank finally admitted that the project was stalled because of the lack of the necessary resin. Moreover, Göring was becoming disappointed in the engine’s performance affecting the entire aircraft and feared that upgrading to the Jumo 213 would still leave much to be desired. Göring continued to voice his concerns with the wooden underside of the aircraft which made belly landings impossible. Tank’s Ta 154 was now on the chopping block. On 6th July, 1944, GFM Milch notified Focke-Wulf that the Ta 154 and Ta 254 programs would be terminated immediately.
All the remaining aircraft were left to sit at airfields. This resulted in most being destroyed in air raids and strafing attacks by Allied planes. Of the few remaining Ta 154’s used by separate night-fighter groups, many were destroyed to prevent capture by Allied troops. Of the 50-100 complete aircraft and many incomplete airframes, the Allies found a single Ta 154 A-1 intact, formerly used by NJG 3 (Nachtjagdgeschwader 3 / Night Hunter Squadron 3) at Lechfeld. The Ta 154 was placed behind a stack of jet engines waiting to be scrapped. It is likely that any captured Ta 154’s were scrapped, as none survive today. There is, however, a replica of the forward sections of the V3 at the Luftfahrttechnisches Museum in Rechlin, placed there in 2006. Many replicas exist at the museum, including the Me 262 HG I, He 162, and Ju 388.
Variants
There were many different variants of the Ta 154 built or proposed despite its relatively short lifespan. The first prototype was completed in July 1943, with prototype numbers ranging from V1 to V23. V1 through V10 were the first batch of prototypes ordered by the RLM. V11 through V14 were static airframes meant for destructive tests, with the former three resembling A models, and V14 resembling the C variant. V15 was a prototype of the A-2 variant. The use of V16 through V21 is not clear, but V20 is thought to have been the prototype for the C-1 variant, which was never produced. V22 was particularly special because of its lengthened fuselage, and there exists a photo of its wreckage. V23 is less known, but both the V22 and V23 were test beds for the Jumo 213 A. There is close to no information detailing prototypes past V10. Only brief explanations of their purpose is available.
The A-0 model was the pre-production version, of which a total of about twenty-two were constructed. They were equipped with FuG 220 radar, but had their flame dampers removed. The A-1 was the first production variant, very similar to the A-0, of which six were built. The A-2 variant was almost identical to the A-1 in all aspects, and four were built. The A-4 variant featured the addition of upturned wing tips to aid in lateral stability. Only two A-4s are known to have been built.
After the first A model Moskitos were tested, the B model was drawn up. It was based on the A-4, but incorporated a bubble canopy and a metal nose section to protect the pilot in case of belly landings. In early December 1943, however, Technische Amt decided to abandon the Ta 154 B model, and instead focus on the production of the C model, which also had a bulbous canopy, but now had an extended fuselage. It was during this time that the D variant was also realized, but was soon renamed the Ta 254. It would be equipped with Jumo 213 engines, MW 50 injection, and larger wings. No B, C, or Ta 254 models were built.
Production
The process to build the Ta 154 was not expensive in regards to the amount or costs of the necessary materials, but was pricey in terms of the manpower required for its careful assembly. The fuselage of the Ta 154 alone took four hundred hours to complete. All kinds of jigs and presses were constructed to aid in the process of molding the wood to the correct shape. The key to making so many Ta 154s was having as many workers as possible, but the curing process for the glue resin that was used took up to a full day to cure, which meant lots of time was spent waiting rather than working. Unfortunately for Focke-Wulf, the amount of workers that were experienced in working with these materials were few and far between. This meant the quality of the planes came down to the craftsmanship of each individual worker. Compared to the quality of the RAF Mosquito, the Ta 154 was inferior. The German wood workers were not used to the pressures of wartime production that the British were accustomed to.
The Ta 154 was trialed in some unorthodox ways. To test the strength of the components, a mockup missing both engines and a large portion of its wings was built specifically to be dragged underwater by a towing unit. This was done in 1943 at Lake Alatsee in Füssen, Bavaria. The towing unit was an “FGZ”, a trio of pontoon boats with a large crane in the center of the three. The mockup was dragged underwater at speeds up to 8.45 m/s (16 knots, 30 km/h) to simulate the pressure of flying. There were a total of six of these tests, and on the sixth test, the damage to the mockup became extensive. The nose cone became deformed, each end of the cut-off wing sections were mangled, and the canopy was broken.
Role
The Ta 154, although originally intended to be a high-speed bomber, was fully realized as a night fighter. The purpose of a night fighter is to counter aircraft, specifically bombers in this case, at night or in low visibility conditions. Such an aircraft was highly valued by the Luftwaffe in their efforts to counter the nightly RAF bombing raids targeting German industrialized zones.
Operational Service
Very limited information is available on the actions of the Moskitos assigned to 3.NJGr 10 and NJG 3, however, on March 22, 1945, four Ta 154s were spotted at Stade Airfield. They were observed next to Ju 88 and He 219 night fighters, as well as one undergoing armament tests at a range on the base. Three of the four Ta 154s were covered in light-colored paint, while the last was in a spotted camouflage. To back up the evidence that several were in operational service, a document from Junkers on March 16, 1945, details several Ta 154s being assigned to III./NJG 3. The document proceeds to tell of the experience of the Ta 154s against De Havilland Mosquitos, a fight during which the British plane usually came out on top. Another document from the British, ATI 2nd TAF Report A 685, was made on May 10, 1945. This report detailed the discovery of a crashed Ta 154 in operation as a night fighter on May 6, 1945. The camouflage pattern was a light blue on the majority of the aircraft, with gray spots decorating the top half of the plane. The crew of the aircraft was nowhere to be found, and the aircraft was looted by locals. In addition, the horizontal stabilizer was completely metal, and an angled wing tip device was fitted to improve stability. This points to one of two A-4s produced.
Design
The Ta 154 “Moskito” was a twin-engined heavy fighter with shoulder-mounted wings, fuselage-mounted horizontal stabilizers, a tricycle landing gear arrangement, while being composed almost entirely out of wood. Perhaps the least noticeable characteristic of the Ta 154 that gave it major problems was its wings. They had no dihedral, which resulted in instability in turns. This problem was fixed in the A-4 variant that took advantage of upturned wingtips. The problem that affected the Ta 154 the most was failure of the front landing gear assembly. Because of the tricycle landing gear arrangement, the front gear had to be long enough to allow clearance for the propellers on the ground. The length of the front landing gear and the lack of thick supports meant failures happened often. The crew of the Ta 154 almost exclusively consisted of a single pilot and a radio operator. The Ta 154 was equipped with a multitude of different radio and radar instruments. This includes the FuG 212 or FuG 220 search radar, FuG 17 VHF Transceiver, PeilG VI direction-finding set, FuBL 2F, FuG 101 altimeter, FuG 25 IFF set, and FuG 28a transponder.
The Ta 154 was often equipped with flame dampers, which are fitted to the exhaust of the engines. The purpose of flame dampers is to dampen engine noise and decrease the visibility of flames exiting the exhaust. The Ta 154, with the exception of very few variants, was equipped with two Jumo 211 F/N/R engines. The variants that did not have those specific engines were provided with Jumo 213 A/E engines that marginally improved the Ta 154’s performance. The A-1 and A-2 variants were equipped with MW 50 injection, which was a combination of water and methanol that both increased boost pressure substantially and allowed the engine to suck in more air. This injection could result in up to hundreds more horsepower than the engine would normally run, but could only be used in short bursts. GM 1, a nitrous-oxide injection system, was also proposed for the A-2 variant. Concerning armament, the Ta 154 was armed with two 20 mm MG 151/20 and two 30 mm MK 108 cannons, although field modifications were made to individual planes. Some modifications included replacing the original armament with two or four MG 151/20’s, or, in rare cases, four MK 108 cannons. The typical ammo count for an armed Ta 154 was 300 rounds total for the MG 151s, and 200 round total for the MK 108 cannons. A bomb load of a single 500kg bomb was proposed for the A-2 variant, but it is unknown whether or not this was attempted. More than one Ta 154 is alleged to have been converted to A-2/U4s, which were equipped with Schräge Musik. Schräge Musik was the German name for upward firing guns that allowed an aircraft to fire on enemies without facing directly at them. This allowed night fighters like the Bf 110 and Do 217 J to catch enemy bombers unaware with gunfire from below them.
At the end of the Ta 154 program, a radical idea to rig up an Fw 190 on a superstructure above spare Ta 154s was realized. The interior of the Moskito would be filled with explosives, as well as replacing unneeded fuel tanks with more explosives. The Ta 154 fly unmanned, and the pilot of the Fw 190 would maneuver both planes on a course into an enemy bomber formation, where the pilot would detach from the Moskito fully laden with explosives. Once the Moskito reached the middle of the formation, it would be remotely detonated by the pilot of the Fw 190. Just like many variants of the Ta 154, this was also never completed.
Variants
Prototypes
Ta 154 V1 – First prototype, designated TE+FE, not fitted with armament or flame dampers and equipped with Jumo 211F engines powering three-bladed VS 11 propellers, later retrofitted with Jumo 211N engines. Its first flight took place on July 1, 1943, and it crashed during testing on 31 July 1943 due to landing gear legs collapsing upon landing.
Ta 154 V2 – Second prototype, designated TE+FF, fitted with flame dampers and FuG 212 C-1 radar but unarmed. Later retrofitted with Jumo 211N engines. Destroyed in an air raid on August 5, 1944.
Ta 154 V3 – Third prototype, designated TE+FG, identical to V2 except for a larger vertical stabilizer. Crashed on 28 February 1944 due to the nose wheel buckling and destroying the nose section. Later damaged beyond repair in an air raid in mid-1944.
Ta 154 V4 – Fourth prototype, designated TE+FH, first flight took place on 19 January 1944. Later retrofitted with a raised canopy and an MG 81 in the dorsal position behind the pilot. Crashed on 18 February 1944 due to landing gear experiencing an uncommanded retraction upon landing.
Ta 154 V5 – Fifth prototype, designated TE+FI, crashed on 7 April 1944 due to landing gear failure on landing.
Ta 154 V6 – Sixth prototype, designated TE+FJ. Possibly captured by Soviet troops at Rechlin.
Ta 154 V7 – Seventh prototype, designated TE+FK, painted in RLM 75/76 camouflage pattern, fate unknown.
Ta 154 V8 – Eighth prototype, designated TE+FL, first Ta 154 equipped with Jumo 213 engines and VS 111 propellers. Crashed on 6 May 1944 due to an engine fire, both crew members, Otto and Rettig, were killed on impact.
Ta 154 V9 – Ninth prototype, designated TE+FM, crashed on 18 April 1944 due to the right wingtip striking the ground, killing H. Meyer on the ground.
Ta 154 V10 – Tenth prototype, designated TE+FN, equipped with Jumo 213A engines, fate unknown.
Production Variants
Ta 154 A-0 – Pre-production variant fitted with FuG 220 Lichtenstein SN-2 radar and flame dampers removed.
Ta 154 A-1 – Production variant, fitted with Jumo 211F, N or R engines
Ta 154 A-1/R1 – equipped with GM 1 and an MG 81 in a new dorsal position.
Ta 154 A-2 – Fitted with two MG 151/20s and two MK 108 cannons, proposed to equip GM 1 NOS injection and one 500 kg bomb.
Ta 154 A-2/U4 – Night fighter variant, same armament as A-2, with the addition of two diagonally placed MK 108 cannons in the rear fuselage. (Schräge Musik)
Ta 154 A-4 – Fitted with two MG 151/20 (200 rpg) and two MK 108 (110 rpg) cannons and FuG 218 radar. The most interesting part of the A-4 was the addition of upturned wingtips.
Ta 154 B-1 – Proposed two-seat night fighter variant with a raised canopy, metal nose section, drop tanks, and Jumo 211N engines. Research discontinued in favor of the C variant with Jumo 213 engines.
Ta 154 C – Proposed variants to be fitted with Jumo 213A engines and incorporating a metal nose section as well as a raised canopy.
5 cm B.K. armed Ta 154 C – A concept of a Ta 154 C variant armed with a 5 cm B.K. 5 cannon conceived in early 1944. None were produced.
Ta 254 A – Proposed variant family with Jumo 213E engines, MW 50, four broad-blade VS 9 airscrew assembly and longer wings, enlarging the wing area to 452 ft2 (42 m2)
Ta 254 B-1 – Proposed two-person night fighter variant with metal nose section, powered by two DB 603L engines driving VDM propellers.
Ta 254 B-2 – Proposed three-person day fighter variant with metal nose section, powered by two Jumo 213F or G engines equipped with three-bladed VDM propellers.
Ta 254 B-3 – Proposed one-person all-weather fighter, powered by two DB 603L engines and to be fitted with MW 50 field modification.
Ta 154 Mistel – A proposed variant of an unmanned Ta 154 A-4/U3 filled with explosives with an Fw 190A attached above via a detachable superstructure. The 190 pilot would fly the two planes into an enemy bomber formation, detach the superstructure, and detonate the Ta 154’s explosives.
Operators
Nazi Germany – A-1 variants were used by the 3rd Staffel of the Nachtjagdgruppe 10 (3.NJGr 10) and Nachtjagdgeschwader 3 (NJG 3). It is not known whether they were lost in combat or achieved any air victories.
The combined American, British and Soviet Air Forces began to take over the skies above Europe in the later part of the war. Germans were desperate to find a way to fight the combined Allied bomber raids that were slowly destroying German industry which was necessary for continuation of the war. A cheap and easy to build jet fighter was believed to be the solution to the Allied bombing raids. From these aspirations the Volksjäger, “The People’s Fighter,” project was born.
Emergence of the Volksjäger Concept
The men responsible for the creation of the Volksjäger idea and concept were civil engineers Hauptdienstleiter Dipl-Ing Karlo Otto Saur, who was also a member of the Nazi party, and Generaloberst Alfred Keller.
Otto Saur was quick to realize that by 1944 the Luftwaffe was a shadow of its former glory. This was most obvious for the fighter force, which was engaged in a desperate struggle with a more numerous and better equipped enemy. Otto Saur’s conclusion was that a cheap and easy to build jet fighter could tip the balance of power in Germany’s favor again. He was quick to present his idea to Hermann Göring, Reichsluftfahrtminister, the Reich’s Minister of Aviation, who immediately supported it.
Generaloberst Alfred Keller, who was in charge of the flying, training and sports association (Nationalsozialistisches Fliegerkorps – NSFK) also supported the Volksjäger idea. The NSFK organization was also involved in offering several courses, The Flying Hitler Youth (Flieger Hitlerjugend) on how to build model aircraft and glider flying training for schoolboys. In support of Otto Saur’s proposal, Alfred Keller came with his own proposal to use these young boys, with ages between 15 to 17, as pilots for the mass produced Volksjäger. In Keller’s opinion, all that was needed was some short training with gliders which would be supplemented with more training on the Volksjäger.
Many in the Luftwaffe command opposed this project and the idea of using young boys as fighter pilots against the numerous and well-equipped and trained Allied air forces. The greatest advocate against this project was Generalleutnant Adolf Galland, being supported by Willy Messerschmitt, chief designer of the famous Messerschmitt company, and Kurt Tank, the most well-known designer at Focke-Wulf. The most important reason behind this opposition was the fact that, towards the end of the war, Germany was lacking fuel, materials, pilots, production capacity and many other elements. They argued that all available resources should be directed to the development and production of the already existing Me 262 jet fighter.
In the years prior to the collapse of the Luftwaffe, such a concept would most likely never have gained any support from Luftwaffe officials. However, by 1944, the Germans were in a desperate need for a wonder weapon to turn the tides. As Hermann Göring was no longer in Hitler’s good graces, he was desperate to find a way to appease Hitler. The best way to do this was to somehow find a miraculous solution to salvage the Luftwaffe, stop the incessant Allied bombardment of Germany, and provide much-needed support to the beleaguered Wehrmacht. Through these psychological lens, Otto Saur’s and Alfred Keller’s proposals looked like an ideal solution. Despite the great opposition, Hermann Göring kept insisting that the Volksjäger development should begin as soon as possible. The Volksjäger would later be supported by Adolf Hitler and Albert Speer (the Minister of Armaments and War Production).
First Steps
In the search for a new low-altitude fighter, Oberst Siegfried Knemeyer was named responsible for the Volksjäger’s initial requirements. He was in charge of the Technical Equipment Office for flight development of the Ministry of Aviation (Reichsluftfahrtministerium, RLM). Siegfried Knemeyer was an experienced military pilot and engineer who participated in the test flights of many different experimental aircraft designs. From 1943 onward, he was part of Hermann Göring’s cabinet from where he actively supported the development of the new Me 262.
While the Me 262 jet fighter was superior to piston powered Allied planes, it was far from perfect. The most significant problem with the Me 262 was the poor performance at low altitude, where it was an easy prey for Allied fighters. This is also where Allied fighters and close support aircraft were very active and often attacked German airfields, supply trains and ground troops. The already existing Me 109 and Fw 190 were becoming outdated and insufficient by late 1944 standards. In order to effectively counter enemy planes at low altitude, a new design was needed according to Siegfried Knemeyer, who noted (Source: Robert F. He 162 Volksäger Units):
“… It became absolutely essential to develop a high-speed, single-seater fighter that had asufficiently good performance which would enable it to take off when enemy aircraft were actually sighted. In addition, due to the bombing of our large airfields with long runways, these new fighters had to be able to take off in a very short distance and thus enable small landing grounds to be used. The mass production of such an aircraft had to be on such a scale as would enable the enemy to be engaged at any point and during the entire duration of their flight …… By limiting the endurance and the armament requirement for this new aircraft, the existing jet fighter (the Me 262) would have fulfilled the requirements. However, this aircraft had to be ruled out since it was not possible to produce the numbers that would have been required for combating these low-flying attacks and, in particular, because the provision of two power units per airframe was quite beyond the capacity of industry… “. Based on this, Siegfried Knemeyer gave a list of specifications which the new low-altitude fighter had to conform with:
This plane should be able to take off from runways less than 1970 ft (600 m) long.
It should be powered by a single jet engine, in order to lower the costs.
As the Jumo 004 engine could not be produced in sufficient numbers, another engine was needed. The new BMW 003 was recommended.
Maximum speed at sea level should be at least 465 mph (750 km/h).
The production process had to be as simple as possible without disturbing the production of the Me 262 and Ar 234.
The main building material should be wood. A larger number of furniture manufacturers and carpenters should be included in the production as they had the skill and experience in working with wood that would be needed.
Based on these requirements, the RLM placed an initial order for the new Volksjäger low-altitude jet fighter in July 1944. The first mockup needed to be ready by 1st October, 1944, and a fully operational prototype should have been ready by early December the same year. The main production was planned to begin in early 1945.
The Race for the Volksjäger
For some time, the Volksjäger seemed like it would remain only a paper proposal, as little progress was made until September 1944. On 7th September, a high priority teleprint message arrived at the Heinkel company. This message was sent by Dipl-ing Karl Frydag, Heinkel’s General Director at the Ministry, but also the leader of the Main Committee for Aircraft Construction and an acquaintance of Otto Saur. The high priority message was addressed to Prof. Ernst Heinkel and his main engineer team. This illicit message contained information including not-yet-published RLM tender requirements for the new Volksjäger jet fighter.
As the official tender request was to be issued by RLM in only a few days, Ernst Heinkel and his team moved quickly to use the small time advantage they had over other possible competitors. The first thing Ernst Heinkel did was to give instructions to reuse the P 1073 paper project that was intended for an RLM request from July. P 1073 was, according to the original plans, to be powered by two HeS 011 or Jumo 004C turbojet engines. One engine was to be mounted on top of the fuselage behind the cockpit and the second one below, right under the cockpit. The maximum speed using the HeS 011 engines was estimated to be around 630 mph (1010 km/h) at 19700 ft (6000 m). P 1073’s wing was swept back at 35° with a “V” shaped rear tailplane. The armament would include two 1.18 in (30 mm) MK 108 and two MG 151/20 0.78in (20 mm) cannons.
Later, due to the new specifications for the Volksjäger, P 1073 was modified to be powered by a single BMW 003 engine. Other changes, such as increasing the dimensions, a new straight wing design and adding new rear twin tail fins. The name was changed to P 1073-15. Further modifications were conducted at the Rostock-Marienehe plant. These included a high unswept wing design, the engine mounted above the fuselage, an armament of only two MG 151/20 0.78 in (20 mm) cannons, a tricycle undercarriage and a weight around 2.5 t. The maximum speed at ground level was 500 mph (810 km/h). It was possible to increase the offensive armament with bombs and 1.18 in/30 mm cannons. The name was again changed to P 1073-18.
By 9th (or 8th, depending on the source) September 1944, other German aircraft manufacturers received the RLM requirements for the new Volksjäger project. According to these, the Volksjäger fighter had to be able to take off in less than 1640 ft (500 m). It had to be powered by one BMW 003 jet engine and the total weight must not must not exceed 4410 lbs (2000 kg). The maximum speed at sea level had to be at least 460 mph (750 km/h). The flight endurance at full thrust had to be at least 30 min. The main armament had to consist of either two MK 108 (with 80 to 100 rounds per gun) or two MG 151/20 (with 200-250 rounds per gun) cannons.
The main construction material would be wood with a smaller amount of steel used. Protection for the pilot, fuel tanks and the main gun ammunition was to be provided. However, since great attention was dedicated to the short take off distance, the manufacturers were allowed to reduce the armor and ammunition load if needed. First proposals from all interested aircraft manufacturers were to be ready in only a few days, as a draconically unrealistic deadline was set for the 14th (or 20th depending on the source) September.
Besides Heinkel, which was “unofficially” familiar with the details of this tender a few days before its publication, others aircraft manufacturers participated and submitted their own proposal. The competitors included Arado (E 580), Blohm und Voss (P 211.02), Junkers (marked either as EF 123 or EF 124) and Focke-Wulf. Focke-Wulf actually presented two different proposals (Volksflitzer and Volksflugzeug). Others, like Fieseler and Siebel, lacked the manpower and production capacity to successfully participate in this tender. Messerschmitt did not participate in this competition as Willy Messerschmitt was against the Volksjäger concept from the beginning. He was a great opponent of this project, arguing that increasing the production rate of the Me 262 should have a greater priority and that the Volksjäger was a waste of time and materials which Germany was sorely lacking.
By the end of the competition period, all proposals were submitted to the RLM. After two days, a conference was held in Berlin with the representatives of all five companies, together with officials from the Luftwaffe and RLM. The Arado, Focke-Wulf and Junkers projects were immediately rejected. Even Heinkel’s original proposal came close to being rejected, as it would be complicated to build. It was judged that the best proposal was the Blohm und Voss P 221-02 project, as it was (at least on paper) easier to build and used a smaller quantity of duralumin. At this point, Heinkel representatives were trying to win the competition by arguing that, due to the cancelation of the He 177 and the He 219 programmes, they would have enough production capacity to manufacture the Volksjäger in great numbers. They also proposed to make the entire design far simpler for mass production.
In the following days, there were many difficult and exhausting discussions around the Heinkel and Blohm und Voss projects. There was a sharp debate between Heinkel Dipl-Ing. Francke and the RLM Generaldirektor Frydag which supported the Blohm und Voss project. These discussions caused some delays in making the final decision for the implementation of the Volksjäger project. At the same time, at the Heinkel factory at Schwechat near Vienna (EHAG – Ernst Heinkel AG), work began on calculations and drawings in preparation for the production of the first models of the Volksjäger, marked as the He 500.
The final discussion regarding the competition was held at Hitler residence in Rastenberg, in East Prussia. Hermann Göring enthusiastically and actively supported the He 500 without even considering the Blohm und Voss P 221-02 project. He also gained the support of Adolf Hitler and Albert Speer. Thus, in the end, the Heinkel project was chosen. This decision was also based on the experience that Heinkel had accumulated with the construction and development of jet technology (with the He 178 and He 280) but also due to the significant lobby that this company had.
Although Heinkel’s design won, there were requests for some alterations. For easier production and construction, the design of the tail, fuselage and the landing gear had to be simplified. As was originally planned, the first mockup was ready by 1st October 1944 and the first prototype was to be built by 10th December of the same year. The main production was to begin in January 1945 with 1000 planes per month, which would be increased to 2000 per month. These dates and numbers were, taking Germany’s economic and military situation into consideration, unrealistic and understandably never achieved.
According to Ernst Heinkel, the final designation for the new Volksjäger was meant to be He 500. However, the RLM officials, in the hope of somehow hiding its original purpose from Allied intelligence, gave it the designation “8-162”. In some sources, it is also called “Salamander”. This was actually a code name given for wooden component production companies. The He 162 is also sometimes called “Spatz” (Sparrow), but this name is, according to some sources, related to the He 162S training glider prototype.
Construction of the First Prototypes
The work on the final design was given to the engineers Siegfried Günter and Karl Schwärzler. A large design staff of some 370 men was at their disposal. The design work was carried out at the Heinkel workshop (at Schwechat Air Base) near Vienna. By 15th October, the first sketches and production tools were ready.
The Heinkel factory (in Vienna) was responsible for beginning the serial production of the He 162. In the hope of speeding up production, other factories were included along with many smaller companies. Each of these were to be responsible for producing certain parts and components of the He 162. When all necessary parts for the construction of the first prototype were built, they were to be transported to Vienna for the final assembly. Due to a lack of transport capability and insufficient quality of wooden parts (especially the wings), there were some delays.
Despite the fact that wood was easier to work with, there were huge issues with the quality of the delivered parts. Some of the problems encountered were that the production procedures were often not carried out according to regulations, the glue used was of poor quality, sometimes parts would not fit together. There were situations in which large numbers of wooden parts were returned to the suppliers simply because they could not be used. There were also problems with the first prototype’s engine as it was damaged during the transport and had to be repaired. All the necessary parts arrived by 24th November and the assembly of the first He 162 prototype could begin.
The He 162 V1 prototype (serial number Wk-Nr 200001) was ready for testing by 1st December, 1944. The first series of prototypes had the “V” (Versuchmuster) designation. Later, starting from V3 and V4, the designation was changed to “M” (Muster – model). If it is taken into account that, from the first drawing to the first operational prototype, no more than two months had passed, this was an impressive feat. The V1 prototype was to be tested at Heidfeld but, due to some stability problems with the undercarriage, only limited ground test trials were held.
These problems were addressed by 6th December, when the He 162 made its first test flight piloted by Heinkel’s main test pilot, Flugkapitän Dipl-ing Gotthold Peter. The flight lasted around 20 minutes at speeds of 186 mph (300 km/h). During this flight, probably due to the poor quality of production, one of the three landing gear doors simply broke free and the pilot was forced to land. Beside that, the whole flight was considered successful, there were no other problems and the engine performed excellently.
At the same time, three more prototypes (V2, M3 and M4) were under construction to be used for future tests. The second prototype was transported to Heidfeld (arrived 7th December). During the production of the first series of prototypes, a problem with the wing construction was noted. The main issue was the use of poor quality glue, but at that time this problem was largely ignored.
On 10th December, another flight was performed for the Luftwaffe military officials at Schwechat. Like in the previous flights, the pilot was Gotthold Peter. In the hope of impressing the gathered crowd, the pilot made a low pass (at 330 ft/100 m) at 456 mph (735 km/h). This flight was going well until the moment when a part of the wing and ailerons were torn off, which caused the pilot to lose control and crash to the ground. Despite having an onboard ejection seat, Peter failed to activate it (possibly due to high G-forces) and was killed in this accident.
The whole flight was captured on a film camera by one of the Luftwaffe officers. The film and the wreck were thoroughly examined by Heinkel engineers who immediately noticed a few things; the wing parts were joined by using low quality glue, the poor aerodynamics of the wing design and the instability of the prototype lateral axis led to the tear off of the wing parts. As a result of this accident, the wing design was strengthened and the maximum flight speed was restricted to only 310 mph (500 km/h). Also, the size of the horizontal stabilizer was increased, the main fuel tanks were reduced in size and the wings’ connection to the main fuselage was reinforced. This accident did not have any negative impact on the continued development on this project which proceeded without interruption.
After this accident, other pilots were reluctant to fly on the He 162. Due to this, Ernst Heinkel was forced to offer a sum of 80,000 Reichsmarks for any pilots who were willing to test fly the He 162. A pilot who agreed to fly was Dipl.-Ing. Carl Francke, who was the technical director of EHAG. He made the first test flight with V2 (serial number Wk-Nr 200002) on 22nd December, 1944. Later that day, a second pilot, Fliegerstabsingineur Paul Bader, made more test flights. Flight trials with the second prototype were carried out without much problems. The V2 prototype was used for testing different wing designs and different weapon installations (two 1.18 in/30 mm Mk 108 cannons). After this, V2 would be used mostly for ground examinations, conversions, equipment testing and for attempts to simplify the overall design in order to ease production.
The third prototype was ready by 20th December, when it was tested by Paul Bader at Heidfeld. While the flight went on without many problems, the pilot noted the poor front ground visibility and vibrations during takeoff and landing. In order to improve the He 162’s wing design, the experienced Dr Alexander Lippisch (who worked on the Me 163) was contacted and included in the project. His proposal for improving the He 162’s stability was to fit small “Ohren” (ears) to the wingtips. As these were later implemented on all produced He 162, they were generally known as the ‘Lippisch ears’.
The M3 and M4 prototypes were the first fighters to be equipped with these wingtips. These two models had strengthened and redesigned wing construction with thicker plywood covering, also to shift the centre of gravity, extra weight was added to the plane’s nose. These modifications improved the He 162’s overall performance and stability significantly. The M3 improved prototype was tested in late February 1945 when it managed to reach an incredible speed of 546 mph (880 km/h). The M4 prototype was ready by the end of 1944 but, due to some engine problems, the first flight was only possible at the beginning of 1945. The first flight tests were carried by Dipl-Ing Schuck on 16th January, 1945. As the M3 and M4 wing design and shape proved satisfactory, they were chosen to be used for the upcoming production of the first He 162A combat operational variant.
The M5 prototype was built but it was never used operationally nor did it ever fly. The M6 prototype, which was intended to be used as base for the He 162A-1 production model, made its first test flight on 23rd January, 1945. The M7 (the base for the He 162A-2) was used for vibration tests and trialing the braking parachute. The M8 was the first to be equipped with two MG 151/20 cannons (120 rounds of ammunition per gun). The M9 and M10 were intended as two seat trainer aircraft versions but none were built. The M11 and M12 were powered by the much stronger Jumo 004D Orkan turbojet engine. These were to be used as base for the He 162A-8. The M13 moniker was never assigned to any prototype due to the belief that this number was unlucky. The prototype models M14 to M17 were never built. The M18 and M19 were powered by the new BMW 003E-1 jet engine which was intended to be used for the He 162A-2 production model. The M20 was used for testing different and simpler undercarriage designs. The M21 and M22 were used for main weapon testing. The M23 and M24 were used for installation of new wing root filters and for handling flight tests.
These prototypes were extensively tested and examined in detail from 22nd January to 12th February. In this period, over 200 test flights were carried out. Not all test flights were successful and without accidents. On 24th February, M20 was damaged during landing due to undercarriage malfunction. The next day, while testing the M3, there was a malfunction that led the pilot losing control of the aircraft. He managed to get out but his parachute did not fully extend, leading to his demise. At the beginning of May, one more prototype was lost in an accident. In total, there were more than 30 prototypes built. It is interesting that, even before the testing of the prototypes was completed, preparations for production of the He 162 were already underway.
He 162 A-1 and A-2
Despite the original plans requiring the start of the production in early 1945, this was never achieved. Due to the chaos in Germany at that time, there were many delays with the arrival of the necessary parts. There were shortages of nose wheels, rudders, interior equipment, weapons parts, poor quality glue and many others. For example, at Rostock, there were more than 139 partly built fuselages which could not be completed due to a lack of parts. There was also a problem with the large number of wings and tails built that were defectuous and unusable. A generalized lack of fuel, transport vehicles and electricity, Allied bombing raids and the use of slave labour also negatively influenced the overall production. Around ten pre-series He 162A-0 (with different prototype numbers) were built and stationed at Schwechat to be used for more testing needed in order to eliminate more problems.
The production of the first series of operational aircraft was delayed and began only at the end of March 1945. The first production series were marked He 162 A-1 and A-2. There are few visual differences between these two models. The only major difference was the armament. The A-1 was equipped with two 1.18 in (30 mm) cannons and the A-2 with two 0.78 in (20 mm) cannons. As the production of 1.18 in (30 mm) cannons was halted due to Allied bombing and the Soviets capturing the production factories, the few remaining cannons were to be allocated to the Me 262. The production of the A-1 was stopped and the exact number of manufactured aircraft is unknown. Due the lack of 1.18 in (30 mm) cannons, the He 162 manufacturers were forced to use the lighter and weaker 0.78 in (20 mm) caliber weapons.
A number of serially produced A-2 aircraft were not used for troop trials, but were instead sent to test centres for future modifications and testing. A small number would eventually reach the German troops in April. While the production of the A-2 would go on until the war’s end, the total number of produced aircraft is unknown.
The He 162 Design
The He 162 was designed as a high-wing jet fighter with a simple fuselage with clean lines, tricycle retracting landing gear and built using mixed construction. The simple fuselage was built by using a cheap and light metal alloy (duralumin – a combination of aluminium and copper) with a plywood nose and (one-piece) wooden wings.
The fuselage was a semi-monocoque design covered with duralumin. The front part of the fuselage was egg-shaped and had good aerodynamic properties. The nose was made of plywood and was fixed to the fuselage by using bolts. The middle top part of the fuselage was flat and the engine was connected to it. The wood was also used for the undercarriage doors.
The wings were made out of wood and connected to the central fuselage by using four bolts. In order to ease production, the wings were built in one piece. The flaps and ailerons were built using a wood frame which was covered with plywood. The flaps were controlled by using a hydraulic system while the rods were controlled with wire. To help with the stability at the end of the wing, two wingtips (one on each side) were added. These were angled at 55° downwards and made of duralumin. The two-part rear tail was made of metal and was connected to the end cone of the fuselage. The tail rudders were controlled using wires and rods.
The He 162 used a tricycle landing gear design, with one wheel at the front and two more located in the centre of the fuselage. The landing gear was hydraulically lowered and raised. The dimensions of the front nose wheel were 500×145 mm and no brake system was provided for it. Interesting to note is that the front nose wheel, when retracting, partly reached into the lower part of the front cockpit. A small window was provided for the pilot so that he could see if it was fully operational. The two central landing wheels were larger, 600×200 mm. Both the front and the rear landing wheels retracted to the rear. To help with landings, hydro-pneumatic dampers were provided.
The plexi-glass cockpit was made of two parts, the front windshield and the rear hinging canopy which were screwed into the inner bar frame. In order to make the whole construction simple as possible the cockpit was not pressurized. For better ventilation on the left side a small round ventilation window was installed. The pilot cockpit was more or less a standard German design but much simpler. It provided the pilot with good all-around view of the surroundings, but there were some complaints by some pilots for poor front ground view.
The control panel was made of wood, on which the necessary instruments were placed. Only a few were provided for the pilot and these included the speed indicator, panel lights, turn and bank indicator, rate of climb, FK 38 magnetic compass, temperature indicator, AFN-2 display, oil and fuel pressure gauge, fuel level gauge, chronometer, ammunition counters and engine tachometer. The fighter controls were placed as standard in front of the pilot. On the pilot’s left-side, the fuel valve, flap controls, landing gear control, throttle lever and trimming control were located. On the opposite side was placed the radio system (FuG 25A). The pilot seat was of a simple design but equipped with Heinkel’s ejection system with a parachute. The He 162 was one of the first German aircraft to be equipped with an ejection seat as standard equipment. The cockpit was separated from the rest of the plane by a sloped metal plate. This plate was installed in order to provide the pilot some protection in case of emergency (like fuel tank fire etc.). Behind this plate were the oxygen supply tanks with a 3 l capacity.
The engine chosen for the He 162 A-2 was the BMW 003E-1/2 turbojet (in some sources the A version was used). The engine was fixed in a nacelle placed above the central fuselage. The engine consisted of a seven-stage axial compressor, injection nozzle, annular combustion chamber and one single-stage axial turbine equipped with sheet metal heat-resistant blades which were air-cooled. The exhaust nozzle was controlled by an adjustable needle which could be mechanically moved into four positions: Position A for idle, S for start, F for flying at altitudes lower than 26.200 ft (8.000 m) and M for flying at altitudes above 26.200 ft (8.000 m). The BMW 003E-1/2 turbojet could achieve maximum thrust of 1.800 lbs (800 kg).
When flying at a speed of 500 mph (800 km/h) at 36.100 ft (11.000 m), the maximum thrust would fall down to only 740 lbs/340 kg. To start the engine, a small Riedel piston engine (9.86 hp) was used. This engine could be started either by using an electric starter motor or manually with a ring-pull. The He 162 engine was 11 ft (3.6 m) long with a diameter of 2.3 ft (69 cm) and a weight of 1.375 lbs (624 kg). The estimated life cycle of the engine was only 50 hours. As the engine was positioned above the fuselage, in order to avoid any damage caused by exhaust gasses, a steel plate was placed under the jet nozzle. The position of the engine also means it was easier to mount and repair. It was also easier to replace it with a new one.
The fuel tank was positioned in the middle of the fuselage. In order to save weight and to ease the production, a rubber fuel tank was used. The main fuel tank had a capacity of 695 l and there were also two smaller 175 l tanks located in the wings. For takeoff, up to two smaller auxiliary Ri 502 rocket engines could be installed. They would be located in the lower rear part of the fuselage.
The He 162’s original weapon system consisted of two MK 108 cannons, but the most built version was equipped with weaker MG 151/20 cannons. The two cannons were placed in the lower front part of the fuselage. The main gun’s ammunition was stored behind the pilot, with 120 rounds for each gun. In order for the ground support crews to have access to the gun and ammunition, wooden door panels were provided. For the gunsight, the Revi 16G or 16B models were used. There was also a gyroscopic EZ 42 gunsight tested on one He 162, but this was never adopted for service.
Other Versions and Prototypes
Despite the improvements done to the main production versions, there were still room for enhancements and modifications of the He 162. Most efforts were devoted to the installation of stronger engines and various aerodynamic improvements in order to achieve the highest speed possible. There were also plans to make the He 162 much cheaper and easier to produce. Different armament loads were also tested or proposed. Most of these proposals remained on paper only, but some received limited testing.
The first in line of the intended improved He 162 was the A-3 version. This was meant to be armed with 1.18 in (30 mm) MK 103 or MK 108 cannons (depending on the source) located in a redesigned front nose, but it is unclear if any were ever built. Later, an identically armed version (A-6) with a redesigned and longer fuselage (30 ft/9.2 m) was proposed but, like the previous version, none were probably built.
In order to increase the He 162’s maximum speed, it was intended to install the Jumo 004D “Orkan” (2.866 lbs/1.050 kg of thrust) engine to replace the standard jet engine used. The new engines were to be transported to Schwechat and tested there on fully operational prototypes. The whole process was too slow, and only as late as March 1945 were the few prototypes almost finished, but due to the war’s end, none were ever fully completed or tested. This modification is known under the name He 162 A-8. The A-9 (in some sources marked as He 162E) was to be powered by one BMW 003R engine, supported by a second BMW 718 rocket engine for extra power. The engines were tested but they were never installed on any He 162. While Heinkel conceived up to 14 different proposals for the “A” version, beyond those mentioned above, almost nothing is known about the others.
Note that the following designations (B, C and D) were never found in any EHAG official documentation and are not known to have been used by the Germans. This article will use them for the sake of simplicity only. (Source: Miroslav B. and Bily B.)
Despite the fact that the He 162 was designed to be simple and easy to build, the engine was still relatively difficult to produce in great numbers. In hope to increase the number of engines being built, the Germans began testing the less demanding technology of pulse jet engines (used on the V-1 flying bomb). The first proposed pulse jet engine to be mounted on the He 162 (generally known as He 162B) was the Argus As 004 (with 1,102 lbs/500 kg of thrust). This was followed by a second proposal to mount two Argus As 014 (each with 739 lbs/335 kg of thrust) pulse jet engines. The single engine version is named, in some modern sources, as B-2 and the two engine version as B-1. None were ever built and tested, possibly because the pulse jet was considered inferior to jet engines.
There were many experiments with different wing designs and shapes in order to improve the flying performance and ease production. Two similar designs were based on all-metal swept wings. The first (today called the He 162C) had a back swept wing design with the second half of the wings bent down at a sharp angle. The second (often nowadays referred to as the He 162D) had an unusual forward swept wing design. Both of these models were to be powered by one Heinkel-Hirth 011A turbojet engine (2,866 lbs/1,300 kg of thrust). Both models also had different rear tail designs. The maximum estimated top speed with this engine was up to 620 mph (1000 km/h). There were also other proposed wing designs but, beside these two, none seem to have been tested. Only a few incomplete prototypes were built and they were captured by the advancing Allied forces by the end of the war.
In autumn of 1944, it was suggested to use the He 162 for the German “Mistel 5” weapon projects. This configuration would consisted on one unmanned Arado E 337a glide bomb that would be guided by an He 162 connected on top of it. As the Arado E 337a was never built, this project remain on paper only.
At the end of January, there was a proposal to modify a few He 162 to be used as “Behelfs-Aufklarer”, in essence improvised reconnaissance planes, but this was never implemented.
TheVolksjäger Training Versions
As the Volksjäger project got a green light for its implementation and orders of planned production in the thousands, a solution on how to train such large numbers of new pilots was needed. One proposal was to begin training with gliders (including a glider version of the He 162) and, after a short period of time, the pilot (usually from the Hitler Youth) would learn to fly on the training versions of the He 162. The glider version was named He 162 S “Spatz” (Sparrow). According to other sources (M.Balous and M.Bily), the “S” stands for Segelflugzeug (glider).
These gliders had to be designed and built to emulate the He 162’s takeoff and landing properties as much as possible. In order to stay in the air, the gliders were to be connected to a 1 km long cable which was attached to a 150 hp motorized winch. The gliders were to have two seats, one for the future pilot and one for the instructor. One prototype was flight tested in late March 1945 by Ing Hasse. Even the famous German woman test pilot Hanna Reitsch made at least one flight in it. The He 162 S was very similar to the original He 162, with some modifications like larger wings and fixed landing gears. The choice for using gliders as replacement for training planes was based on the general lack of fuel. Around ten of these gliders were ordered and, if testing showed good results, some 200 were meant to be built. But, due to the bad economical situation in Germany at the time, only a few were ever built at Schönhage (Hannover).
The second training aircraft was a fully powered two seat trainer version. There is no official military marking or name for this version, but today it is often known as the He 162 Doppelsitzer (two seater). This version was to be powered by a BMW 003E-1 or E-2 engine. It was to have a second seat for the instructor placed behind the main cockpit. In order to make more room in the unmodified He 162 fuselage, the gun, ammunition and oxygen tanks had to be removed. The production of this version was planned to begin by the end of 1944 and was to be built by DLH (Deutsche Lufthansa) at Oranienburg. Only one incomplete prototype may have ever been constructed.
To help the training of new pilots at the Luftwaffe test center (Rechlin), a simulator model was built. It had the exact same cockpit like an operational He 162 with all instruments. Its primary purpose was to be used for combat and fire simulator training.
Main Armament Proposal
As already stated, the 0.78 in (20 mm) cannons were, by 1944/45 war standards, simply inadequate and the lack of stronger 1.18 in (30 mm) cannons forced the Germans to search for different (somewhat unconventional) weapons for the He 162.
To increase the offensive armament, the 2.2 in (55 mm) R4M air-to-air rocket was proposed to be installed under the He 162’s wings. Another proposal was to arm the He 162 with the SG 118 Rohrblocktrommel weapon system which consisted of three 1.18 in (30 mm) barrels (connected in a circle), each armed with 7 rounds. The last proposal was to use the 3.14 in (8 cm) Panzerblitz missiles. There were planned to use the EZ 42 gyroscopic gun sight on the He 162, but the single prototype was destroyed in an Allied bombing raid. If any of these proposals were ever been implemented or allocated a version name is unknown but very unlikely.
Production
It was hoped by the Luftwaffe military officials that the He 162 would be built in great numbers. They counted on the fact that, by using cheap materials (mostly wood) and by employing many smaller subcontractors (woodworkers and furniture manufactures), the overall costs and time necessary for the production would be reduced.
Several factories were responsible for the production of the He 162 at Heinkel-Nord in Rostock-Marienehe, Heinkel-Sud, Hinterbühl (underground factory), Vienna-Schwechat (prototype production) and Mittelwerke (Nordhausen). In order to increase the production, Heinkel and Junkers made an agreement to use the vast Junkers production capacities. Junkers would be responsible for the production of the majority of the new He 162 planes at Bernburg. Also, a large number of smaller subcontractors were to be included, like EHAG Walldwerk or Pütnitz. The main engine suppliers were Spandau and Zühlsdorf. The armament was to be provided by Deutsche Waffen und Munitionsfabrik at Posnan. The wooden elements would be made at Erfurt, Orla and Stuttgart-Esslingen (these were also building components for the Me 163 and Ta 154). Some 750 man-hours were needed for the He 162, together with 300 man-hours for the engine production. Due to slow production, Hitler gave an order on 27th March, 1945 for the SS to take over the whole Volksjäger project. However, this had only limited (if any) effect on the speed of production.
As it was only built during the last month of the war, when confusion and chaos were ever-present in almost all spheres of political or military life in Nazi Germany, exact information about how many aircraft of this type were built is impossible to find. Depending on the sources, the total production was in the range of 116 to more than 200. According to different Authors: C. Chan (240), D. Mondey (116), F. Crosby (200), A. Ludeke (270), D. Nešić (120). According to the German General Staff Department 6 (Generalstab Abteilung 6), the total number of He 162 built was 116 aircraft. After the war, around many airfields, some 100 He 162 in different conditions were found. Additional 800 aircraft were found in different stages of factory assembly, which also complicates determining the exact number of produced He 162.
On 7th April, 1945 Hitler gave orders to stop any further development and production of the He 162 in favor of the Me 262 and Arado 234. It is hard to say for sure, but as the He 162 was produced until the end of the war, this order seems to never have been fully implemented.
Operational Service
The delivery of He 162 fighters to Luftwaffe front units was limited due to many reasons, including slow production, lack of fuel and spare parts and the Allied advance, but eventually, a few units equipped with this aircraft would be formed.
The first operational unit to be equipped with the new He 162 was Erprobungskommando 162 located at Rechlin-Roggenthin. In April, due to the rapid Allied advance, the unit had to reposition near Munich. This was actually a test unit and, for this purpose, a number of the most experienced German pilots (some of them having experience in flying jet aircraft) were allocated to this unit. Once these pilots had gained enough experience flying the He 162, they were to be used as base for forming the first operational unit, 1./JG 80. Immediately after the start of production, a large training process at the NSFK gliding school began. As there was only one He 162 S glider aircraft available, other simpler gliders (like the DFS SG 38 Schulgleiter) had to be used as a temporary solution. The training process did not go the way the Luftwaffe Officials hoped it would go. It was too slow and, when the first group of new pilots was tested on the Arado Ar 96B (trainer version), the results were disappointing. At this point, the plan to use Hitlerjugend members as He 162 pilots was discarded, which was somewhat expected. The experiment with the young and inexperienced pilots proves that only the most experienced pilots could successfully fly the He 162. Beside pilot training, at the same time, the training of ground support staff was carried out at Fliegertechische-Schule 6 in Neumarkt and Wiedenberg.
In order to form the first operational combat unit with the He 162, an already-experienced unit would be needed. For this purpose, Jagdgeschwader 1 “Oseau” (JG 1) was chosen. It was commanded by Oberst Herbert Ihlefeld and it was equipped mostly with Fw 190 aircraft. On 8th February, 1945, the first orders were given by General der Jagdflieger (General of Fighters) Oberst Gordon Gollob to the 2nd and 3rd Staffels (first Gruppe JG 1) commanders to prepare their pilots to be moved to the Parchim Airbase near Rostock. Once there, the first flight training with the new He 162 was to be carried out. In late February, a group of 10 pilots (from 2nd Staffel) was moved to Vienna for more training. For pilot training, two prototype aircraft were used, as the production of operational “A” variant was slow. Despite being experienced pilots, there were some accidents caused either by pilot errors or due to some mechanical faults. The He 162 M8 was lost due to engine failure on 12th March, but the pilot survived. Only two days later, one pilot was killed when he made a mistake during landing. As there were no other He 162 aircraft available, this group was forced to return to Parchim Airfield. In late March 1945, around 10 pilots of the I./JG 1 (first Gruppe) were moved to the Marienehe factory (near Rostock). They were supplied with a number of He 162 that where previously used by the mechanics and test pilots of this factory. Once the handover was completed, the group with the He 162 returned to its original base of operation.
The RLM’s next plan was to begin re-equipping II./JG 1 with the He 162 as soon as possible. The unit was moved to Rostock at the end of March 1945, where the training should have begun. Other units were expected to be formed (I and II./JG 400, III./JG 1, JG 27 and JG 77), but nothing came of this. In May 1945, a Volksstume Jagdeschwader (in essence, an improvised militia unit) was to be formed at the Sagan-Küpper airfield by using mostly volunteer pilots. However, Allied occupation of this airfield prevented the implementation of this proposal. The only unit beside JG 1 to be supplied (in limited numbers) with He 162 was I.EJG 2 (Ergänzungsjagdgeschwader, auxiliary fighter training unit), but these were probably never used operationally.
By the end of March, JG 1 was supplied with around 58 operational He 162A-2 aircraft with some 25 more on the way. At the same time, I./JG1 was moved to Ludwigslust, where it was supposed to be supplied with new He 162 aircraft. Due to the rapid Allied advance, the unit was moved in April to the Schleswig-Holstein region (Leck airfield), near the Danish border. This unit had orders to defend Berlin from Allied bombers coming from over the North Sea. The I./JG1 was to be ready for operational service by 20th April. The first combat loss happened on 19th April, when one He 162 was shot down after a take-off by an American P-47 Thunderbolt. By the end of April, II./JG 1 was moved quickly to the Leck airfield to join the first Gruppe.
The first operational combat mission of I./JG1 was to attack an RAF front airfield on 20th April. While on their way, the He 162’s were intercepted by a group of Hawker Tempests (3 Sqn. RAF). In this engagement, only one He 162 was shot down and the pilot managed to survive without any injuries. At the same time, one P-51 Mustang scout pilot (12th Tactical Reconnaissance Squadron) reported to have shot down one He 162, but this was never officially confirmed.
The He 162’s first allegedly air victory (and possibly the only one) was achieved by Lt. Rudolf Schmitt from I./JG 1, when he shot down a British fighter. However, this fighter was later claimed to have been shot down by German ground AA fire. While Lt. Rudolf Schmitt may not have made the first air victory, he did successfully manage to use the ejection seat in a combat zone. Due to the Allied advance, on 5th May, 1945, JG 1 received orders to stop any further action and to destroy all operational aircraft. For some reason, the order was later recalled. The Leck airfield would be captured by British forces on the 8th, which ended the He 162’s short operational combat story.
Precise information on the He 162’s combat or deployment is hard to find mostly due the chaotic state in Germany at that time. According to some authors, like Francus G., none were ever used in combat.
Japan’s military attache, in early 1945, was interested in acquiring the license production of the He 162. After a short negotiation, the Germans gave permission for license production. But there was a problem of how to transport or send the necessary documents and sketches from Germany to distant Japan. The only solution was to use radio by converting the sketches into numerical code. Unsurprisingly, this did not work well and only limited information was send before the end of the war in Europe. Due to this reason, Japan never received the complete He 162 sketches.
In Allied Hands
As the British forces captured Leck airfield, they acquired a number of fully operational He 162s. Some 11 planes were selected by the British Technical Intelligence Team to be transported to the UK. Once there, all were sent to the Farnborough airfield, which was the headquarters of the Royal Aircraft Establishment (RAE). The He 162 aircraft were thoroughly examined and divided into groups either for part analysis or for flight testing. On 9th November, 1945, while flying an He 162 (AM61) at the Exhibition of German Aircraft at Farnborough, the pilot Robert A.M. lost his life in an accident.
One of the tested He 162 (marked AM 59 by the British) would be donated to the Canadian Museum in Ottawa together with another one received later that year. Later, two were given to British museums, one to the Imperial War Museum and the second to the RAF Hendon Museum. One would be given to France, possibly either AM 63 or AM 66.
The British also supplied the American with some He 162 captured at the Leck airfield. The Americans also managed to capture some abandoned He 162s across Germany. Some would be tested at the Wright and Freeman Field research centre. One He 162 was even kept in good flight condition up to 1946. This aircraft is today privately owned by the Planes of Fame Museum in California.
The French received or captured (it is not known precisely) five He 162, of which two were airworthy. These two were tested, but one was damaged during landing and the second was lost in May 1948 with the loss of the pilot’s life. One He 162 is preserved and can be seen at the Paris Aviation Museum.
During their advance through Germany, the Soviets managed to capture about seven planes, two of which were airworthy. These would be tested and and analyzed in great details. As the Soviets lacked any advanced jet technology at that time, adopting German captured technology looked like a logical step. Most interesting for the Soviets were the Jumo 004 and the BMW 003 jet engines that would be, in later years, copied and produced in some numbers. There were also some consideration from the Soviet military to copy and produce some of the German jet aircraft, including the He 162. One He 162, with the fuselage marking 02, was tested by the Soviet Flight Research Institute (near Moscow). The second, marked 01, was tested at the Central Aero-hydrodynamics Institute. He 162 02 would be flight tested on several flights in 1946. The results of these tests were disappointing for the Soviets and a decision was made not to further consider them for service, and they did not have any influence on the later Soviet aviation development.
Conclusion
The idea for the He 162 was born out of a mix of desperation, chaos and hope for some miraculous wonder weapons that could turn the air war’s tide to the German side again. It was designed to be cheap and built in great numbers. The impressive fact is that it was designed and built in only a few months, but, on the other hand, it was built in too small numbers, the engines used were often of poor quality and there was a lack of trained pilots, which, along with other problems, meant that the He 162 did not have any major impact on the war itself or on post war jet aircraft development. In the end, it was not the ‘Wunderwaffe’ that the designers hoped for, but it was still impressive, at least because of the speed with which it was designed and built.
Variants
As only a small number of He 162 were built, there were very few operational versions. Beside the prototype series, only the “A” version was built in some numbers.
Prototypes
He 162 V– Prototype series
He 162 A-0– Around 10 pre-production aircraft built used for testing
Main production version
He 162A-1 – Version equipped with two MK 108 cannons, a few were possibly built
He 162A-2 – The main production variant armed with two MG 151/20 cannons
Training versions
He 162S – Two seat glider trainer version, a few built
He 162 Doppelsitzer – Two seat powered trainer version, only one incomplete aircraft built
Experimental prototypes based on “A” versions
He 162A-3 – Proposed version armed with two MK 103 or 108 cannons
He 162A-6 – Proposed version with redesigned and longer fuselage armed with two MK 108 cannons
He 162A-8 – Version equipped with the Jumo 004D jet engine, only a few incomplete prototypes built
He 162A-9 – The A-9 was to be powered by one BMW 003R engine and supported by a second BMW 718 rocket engine. None built
He 162A Mistel 5 – Paper project, a combination of an He 162 and one Arado E 337 glide bomb.
He 162 “Behelfs-Aufklarer” – Proposed version to be built in limited numbers as reconnaissance planes. It was never implemented and remained a proposal only.
Note that the B, C and D designations were not official and are used in this article only for the sake of simplicity.
He 162B – Proposed version equipped with a pulsejet engine (similar to the V-1 flying bomb engine)
He 162B-1 – two engine version
He 162B-2 – single engine version
He 162C – Version with back swept wing, powered by Heinkel-Hirth 011A turbojet engine
He 162D – Version with forward swept wing designs powered by the same Heinkel-Hirth 011A turbojet engine
Operators
Nazi Germany – A few hundred built, but only small numbers were allocated to front units and saw limited combat action.
United Kingdom – Captured a number of operational He 162, 11 would be transported and tested in the UK.
United States – Received a small number of He 162 from the British but also captured some in Germany.
France – Received or captured at least five He 162 aircraft.
USSR – Captured seven completed He 162 which were tested after the war.
Japan – Military officials tried to acquire the license for production of the He 162 but the war’s end prevented this.
Specifications (Heinkel He 162 A-2)
Wingspan
23 ft 7 in / 7.2 m
Length
29 ft 8 in / 9.05 m
Height
8 ft 6 in / 2.6 m
Wing Area
38 ft² / 11.6 m²
Engine
One BMW 003E-1 with 1,760 lbs/800 kg of thrust
Empty Weight
3,666 lbs / 1,663 kg
Maximum Takeoff Weight
5,324 lbs / 2,466 kg
Fuel Capacity
1,045 l
Maximum Speed at 6 km
560 mph / 840 km/h
Range
385 mi / 620 km
Maximum Service Ceiling
39,370 ft / 12,000 m
Climb speed
9.9 m/s
Crew
One pilot
Armament
Two 20 mm fixed forward firing cannons in the lower sides of the fuselage
The Boulton-Paul P.105 is a little known single-engine aircraft meant to fill a variety of carrier-based roles. To do so, the P.105 would utilize a unique and innovative design that involved having interchangeable fuselage and cockpit modules that would pertain to a certain mission, and could be changed quickly to fill a needed role aboard carriers or other airbases. The design was not picked up for unknown reasons but its story doesn’t end there. The design would develop further into the P.107, a land-based escort version of the P.105. The P.107 would have a rear-facing turret and a twin boom tail design to allow greater traverse of the gun. This design wouldn’t be adopted either and the program would conclude before the war’s end.
History
Late in the Second World War, the Royal Naval Air Arm began seeking out an aircraft design that would be able to fill both the fighter and bomber roles. Having one aircraft perform multiple roles would eliminate the specialization of carrier-borne aircraft needed to fill the fighter, dive bomber, and torpedo bomber roles. No official requirement was ever put out to build such an aircraft, but several companies had begun developing aircraft that would fit this role, which had become known as the “Strike Fighter”. Westland, Blackburn, Fairey and Boulton-Paul would all develop designs that correspond to the strike fighter role. Boulton-Paul’s aircraft design would be known as the P.105.
Boulton-Paul is a lesser-known aircraft company which only had a single major type of aircraft enter mass production during the Second World War: the Defiant. The Defiant reflected a lot of their aircraft designs, which were all somewhat unorthodox. . In the Defiant’s case, it was a fighter with a rear turret. Boulton-Paul were much more successful in developing turrets for use on other aircraft, such as the Handley-Page Halifax, Blackburn Roc (which they co-developed alongside Blackburn), Lockheed Hudson and the late war Avro Lincoln. Despite having only one combat aircraft enter production, Boulton-Paul had a very active development section, although most of their designs would stay on the drawing board, with a few being lucky enough to receive prototypes. The designs came from an engineer named J. D. North, who was the main aircraft designer for Boulton-Paul. Before work started on their Strike Fighter design, North had been working on their P.103 and P.104 designs for the Naval Air Arm. The P.103 was an ultra-fast fighter design that utilized a contra-rotating propeller and a Griffon 61 or Centaurus engine. The P.103 wasn’t picked up for production, but North would use many aspects of the P.103 in the P.105. The contra-rotating propeller would once again be used, while the engine would start as a Griffon 61 but shift over to a Centaurus engine later.
The P.105 was meant to be a small, high-performing aircraft that could easily be converted to fill other roles, even carrier duties. To do so, it would use a unique idea. To fill the variety of carrier-borne roles, the P.105 would have modular cockpit and bomb bay sections. The interchangable modules included a torpedo-bomber (P.105A), reconnaissance aircraft (P.105B), fighter (P.105C) and dive-bomber (No designation given). Each section would have minor differences between them that fit their respective roles. With this system, more P.105 airframes could be stored in hangars and carriers, while the additional modules would take up less space than other aircraft specified for specific roles, thus increasing the combat capacity of the carrier the P.105 would be stationed on. Boulton Paul expected the aircraft to be very high performance and the P.105C version would be an excellent penetration fighter. Before any specifications were estimated, it was decided to switch from a Griffon 61 engine to the Centaurus inline engine. The brochure on the details of the aircraft was submitted to the RNAA, but no order for production came about. Exactly why it wasn’t adopted is unknown. The reasoning may come from the module system, as it could have been novel in concept, but complex in reality. Another reason could be that current aircraft at the time were deemed to have been performing adequately and didn’t need such a replacement.
Although the P.105 wasn’t granted production, its story continues in the Boulton-Paul P.107. The P.107 is an intriguing design since very little information pertaining to its development history is available, but its design and specifications has been found. It can be assumed the P.107 began development during or shortly after the P.105 had been created. The P.107 wouldn’t be operated by the RNAA, but instead by the Royal Air Force as a long-range escort fighter. Major differences between the P.107 and P.105 include the lack of folding wings, the removal of the torpedo blister, the addition of a turret and the switch from a single rudder to a twin tail design to improve the firing angle of the turret. The P.107 could also be configured for different roles, but it is unknown if it used the same module system the P.105 used. The P.107 wasn’t selected for production either.
Design
The Boulton-Paul P.105 had a conventional fighter layout. In the front, it would utilize a contra-rotating propeller that had reversible pitch. Originally, the design would have mounted a Griffon 61 engine but was changed in favor of the Centaurus engine instead. The wings on the P.105 were inverted gull wings, much like those on the Vought F4U Corsair or Junkers Ju 87 Stuka. To conserve space in carriers, the wings would be able to fold. The fuselage had the most interesting aspect of the P.105 overall and that was its interchangeable cockpit and lower fuselage modules. Each variant of the P.105 would use different modules that would pertain to the intended role it served. The P.105A was a torpedo bomber and would use the torpedo blister present under the tail. The P.105B was a reconnaissance aircraft, and its cockpit would sit a pilot and observer. It would use a glass hull beneath the observer to assist in spotting. The P.105C was an escort fighter and would be a one-man aircraft. The last was a dive-bomber version, which only has very sparse details available. The dive bomber would carry two 1,000 lb (450 kg) bombs, most likely in an internal bomb bay module. The tail of the aircraft would be a conventional rudder and tailplane arrangement. The armament of the P.105 was a standard two to four 12.7mm machine-guns in the wings of the aircraft, with the only deviation being the P.105C, which would use four 20mm cannons instead.
The P.107 borrowed many aspects of the P.105 design, but changed some details to better fit its role. The engine and frontal section would stay the same, keeping the contra-rotating propellers and Centaurus engine. Reference materials refer to the aircraft as being able to convert from an escort fighter to either a fighter-bomber or photo reconnaissance aircraft. However, whether it was conventional conversion or via the module system the P.105 used is unknown, the latter being most likely. The wing design would stay the same, with the inverted gull wing style. Given its land-based nature, the wings no longer folded to conserve space and the torpedo blister under the tail was removed. Behind the pilot, a gunner would sit and remotely control two 12.7mm machine guns. The machine-guns would be housed within the aircraft, with only the ends of the barrel protruding out. To give the gunner a better firing arc, the single tailfin was switched to a double tailfin. The turret and twin tail design are the most obvious differences between the P.107 and P.105. The aircraft’s fuel would be stored in a main tank and two smaller drop tanks. Fuel amount was expected to give the aircraft a 3,000 mi (4,827 km) range, with up to 30 minutes of combat. The drop tanks could be switched for 2,000 Ib (900 Kg) of bombs. For offensive armament, the P.107 would use four 20m cannons mounted in the wings.
Variants
Boulton Paul P.105A– Torpedo bomber version of the P.105.
Boulton Paul P.105B– Reconnaissance version of the P.105. This version would have a glazed hull for the observer.
Boulton Paul P.105C– Fighter version of the P.105.
Boulton Paul P.105 Dive bomber– Dive bomber version of the P.105. No designation was given to this design.
Boulton Paul P.107– Land-based escort fighter derived from the P.105. The P.107 was near identical to the P.105 but had a twin boom tail to allow better vision and turn radius for a rear mounted turret. Photo reconnaissance and fighter bomber versions of the P.107 are also mentioned.
Operators
Great Britain – Had it been built, the P.105 would have been used by the Royal Fleet Air Arm. The P.107 would have been used by the RAF for escort duty had it been built.
The Yer-2ON was a VIP passenger transport aircraft designed in 1944 by Vladimir Grigoryevich Yermolayev and his Yermolayev OKB (design bureau). Based off of the firm’s preexisting Yer-2 bomber, the Yer-2ON was meant to fulfill the role of a government VIP transport aircraft which would carry government members to and from meetings in or out of the Soviet Union. Shortly after Vladimir Yermolayev died on December 31st of 1944 from a typhoid infection, the Yermolayev OKB firm was integrated into Pavel Sukhoi’s Sukhoi OKB firm where the project continued. Despite showing relatively promising performance, the Yer-2ON would eventually be cancelled due to the conclusion of the Second World War and the Sukhoi OKB’s need to concentrate resources on other projects. Thus, the three produced Yer-2ON would never be used for their intended purpose and were presumably scrapped some time post-war.
History
Diplomacy between the Allied countries during the Second World War was an essential step in defeating the Axis powers. With the increasing successes of the Allies during the war, meetings between representatives from the United States, Soviet Union and United Kingdom were held to discuss the future of Europe along with battle plans. In order to attend these meetings, the Soviet government became aware of the need for a long-range VIP passenger transport aircraft capable of carrying 10 to 12 people while maintaining comfort, reliability, cruising abilities at 13,000 ft to 16,400 ft (4,000 m to 5,000 m) and range of 2,500 mi to 3,100 mi (4,000 km to 5,000 km). After Joseph Stalin himself made a request for an aircraft meeting these requirements in January of 1944, a meeting was held between government and Soviet Air Force officials discussing the feasibility of converting existing bomber aircraft to meet this need. Not only would this save time, but also had the benefit of sharing the same airframe as aircraft already in production. In the end, the Yermolayev OKB’s liquid-cooled Charomskiy ACh-30B V-12 diesel engine powered Yer-2 bomber was chosen for conversion. Curiously enough, Yer-2 being used as a transport aircraft is quite ironic, as it reflects on Roberto L. Bartini’s 1937 Stal-7 transport aircraft, from which the Yer-2 bomber was originally developed from.
Shortly after the NKAP (People’s Commissariat for Aviation Industry) approved Order 351 on May 23, 1944, the head designer of the Yermolayev OKB firm, Vladimir Grigoryevich Yermolayev, began work on converting the Yer-2 into a VIP passenger transport aircraft. In his address to the NKAP on that day, he promised that a completed example would be converted by Factory No.39 and be ready for tests by November 15th. This new variant would be designated Yer-2ON (Osoboye Naznachenie – Special Purpose). With most of the groundwork already completed, Yermolayev was able to complete the conversion blueprints by August. An inspection was conducted on the Yer-2ON’s plans on August 28th and was approved for production. The difference between the Yer-2ON and the standard bomber variant was the removal of all armament and replacement of the bomb bay with a passenger compartment. The passenger compartment would have been able to hold 9 passengers, as well as a flight attendant. All relevant technical drawings were sent to Factory No.39 in the Irkutsk Oblast. A total of four Yer-2 bombers were ordered for conversion, but standard Yer-2 production would run into difficulties as the diesel powered Charomskiy ACh-30B engines manufactured at Factory No.500 were found to have defects and needed to be addressed. As such, the project was put on hold for a considerable amount of time.
On December 31st, Vladimir Grigoryevich Yermolayev passed away due to a typhoid infection. As a result, the Yermolayev OKB and its assets were integrated into Pavlov Sukhoi’s Sukhoi OKB firm. It would appear that N.V. Sinelnikov took over as head designer once the project was integrated into Sukhoi OKB. Once the issue with the engines was resolved, three Yer-2 bombers were set aside and were prepared to be converted into the Yer-2ON. Due to the relatively poor documentation of the Yer-2ON’s development, it is unknown when precisely the first Yer-2ON was completed, but most sources allege it was completed at the end of December. The manufacturer’s flight tests and maiden flight appeared to have taken place sometime in February of 1945. Through these tests it was revealed that the Yer-2ON was capable of covering a distance of 3,230 mi / 5,200 km while maintaining a flight ceiling of 19,700 ft / 6,000 m and a top speed of 270 mph / 435 kmh.
On April 16th, the first Yer-2ON made a record non-stop flight from the Irkutsk Aviation Plant’s airfield in Eastern Siberia to Moscow. This flight was accomplished by Heroes of the Soviet Union M. Alekseev and Korostylev over a flight time of 15 hours and 30 minutes and covered a distance of approximately 2,611 mi / 4,202 km. It would appear that a second flight would be conducted sometime near the end of April with the second converted aircraft once it was ready. The second flight had identical circumstances as the first flight (same pilots, destination, fuel load, etc). Interestingly enough, both flights concluded with enough fuel for four more hours of flight, attesting to the Yer-2’s long-range capabilities. A third Yer-2ON was converted at an unspecified time, but details of its tests (if it performed any at all) are unknown. Some internet sources claim that a fourth example was completed on May 10th of 1945, but this cannot be confirmed and disagrees with most publications.
Despite the Yer-2ON performing relatively well and passing the manufacturer’s flight tests, the aircraft was never used for its intended role of government VIP passenger transportation. This was likely the result of the project being deemed as low priority within the Sukhoi OKB firm. At the time, Sukhoi was invested in other more pressing projects which led to the Yer-2ON being eventually canceled. Joseph Stalin himself was reputed to have aviophobia (a fear of flying) and the Yer-2ON not entering service did not appear to have consequences for the Sukhoi OKB. Nonetheless, the Yer-2ON project was dropped some time post-war and the three manufactured prototypes were likely scrapped as a result.
Design
The Yermolayev Yer-2ON was a two engine VIP passenger transport aircraft based on the Yermolayev Yer-2 bomber aircraft, powered by two liquid-cooled Charomskiy ACh-30B V-12 diesel engines capable of producing 1,500 hp each. The Yer-2ON was identical to the standard Yer-2 bomber in most respects, though armaments and turrets were removed and the bomb bay was converted to a passenger compartment with seats for 9 passengers and 1 flight attendant. The crew would have consisted of a commander pilot, a co-pilot, a navigator, a radio operator, and a flight attendant. In the passenger compartment, the left side (aircraft facing forward) had 5 seats while the right side had 4. The flight attendant’s seat was located behind the last seat on the right side, and was retractable. A luggage compartment was also provided. Another notable feature was the addition of a toilet compartment, as the aircraft’s long-distance travel routes required such a feature. Several windows were installed on the side of the fuselage for the passengers.
Operators
Soviet Union – The Yer-2ON was intended to be used as a passenger transport aircraft for government VIPs traveling in and out of the country to attend meetings.
Yermolayev Yer-2ON*
* – Statistics taken from “OKB Sukhoi: A History of the Design Bureau and its Aircraft” by Dmitriy Komissarov, Sergey Komissarov, and Yefim Gordon
USSR (1936)
Experimental Light Bomber – One Prototype Built
Prior to the German invasion, the Soviet air industry was in the process of developing a series of new experimental ideas and concepts. While generally unknown around the world, some of these were interesting designs, such as the Bolkhovitinov “S” experimental twin-engine fast attack bomber. Due to the German advance and the need for immediately operational planes, the development of this model was terminated.
An Unusual Idea
The S-2M-103 was designed and developed by a Soviet aircraft engineer team led by Viktor Federovich Bolkhovitinov (Ви́ктор Фёдорович Болхови́тинов). Bolkhovitinov (February 1899 – 29 January 1970) was a Soviet professor at the Zhukovsky Air Force Academy in Moscow, and also an aircraft engineer. One of his best known designs was the four-engined Bolkhovitinov DB-A bomber that was intended to replace to aging TB-3 bomber.
During 1936, Bolkhovitinov and his team were looking for a solution for the lack of a high-speed light bomber in the Soviet Air Force. Their answer would be an unusual twin-engine aircraft with a peculiar wing configuration. Instead of a conventional wing placement, the wings were mounted very low on the fuselage, and the tail was a twin fin design.
When they began working on the first calculations and drawings, their greatest concern was how to reduce drag. Usual bomber designs with wing-mounted engines slowed down the plane due to excessive drag. Fighters, on the other hand, had much better aerodynamic properties as they were designed to achieve the highest possible speeds. Bolkhovitinov and his team decided that, for their purposes, they would reuse elements from other bombers (two engines, bomb-carrying capacities, defensive armament) and a one-part fuselage.
The problem was how to position the two engines in order to reduce the drag as much as possible. They quickly came up with the idea of putting them both on the same line (one behind the other) and in the same fighter-like fuselage. While this configuration would make the new plane longer, it could be designed with much better aerodynamic properties.
The development and design of the unusual twin-engine system began in 1936, while work on the aircraft design itself began the next year. By 1938, the design was completed and preparations for the construction of a fully operational prototype began in July that year. The prototype was completed in 1939 and flight tests were scheduled to begin in July 1939 (or in early 1940 according to some sources).
Designation
The aircraft’s original designation was simply “Bolkhovitinov S” or “Sparka/Cпаренный”, which means twin. Today it is generally known under the “S-2M-103” designation, where the “2” stands for twin-engine configuration and “M-103” is the name of the engine. There were other designations used for this plane, such as “BBS-1” (Ближний бомбардировщик скоростной, fast short-range bomber), “LB-S“ (легкий бомбардировщик спаренный, light twin-engined bomber) оr “BB“ (Болхови́тинов Бомбардировщик, Bolkhovitinov Bomber). As the plane is best known as the the S-2M-103, this article will use this designation.
Technical Characteristics
The S-2M-103 was designed as a low wing, all-metal construction, two-seater, two-engined fast attack bomber. The S-2M-103’s main fuselage had an elliptical cross-section. The fuselage consisted of four (bottom, top and left and right side) panels that were held in place by using four strong angled-section longerons. The S-2M-103’s structure was covered with a modern light alloy stressed-skin.
The wings were constructed using a structural box with flanged lightening holes (to save weight). The wings’ interior sheet ribs were covered on both sides (upper and lower) by metal skin and held in place by flush riveting.
The rear twin-finned tail was covered with duralumin skin. For better stability, the rudders were equipped with inset balanced hinges. For the tailplanes’ movement, an irreversible trimming motor was used. The elevator had trim tabs with a variable geared drive.
The S-2M-103 had a completely retractable landing gear that was operated electrically. The front wheels and the smaller rear tail wheel was able to retract backward 90 degrees. During the winter of 1940/41, the wheeled landing gear was replaced with fixed skis.
This aircraft had an unusual two tandem engine arrangement, placed in the same mounting in the fuselage. The rear-mounted engine’s shaft passed through the front engine’s cylinder blocks. Both engines were connected to the two propellers (with six blades in total) which, when powered, turned in opposite directions, which provided better stability during flight (at least in theory). The S-2M-103 was powered by two 960 hp (716 kW) Klimov M-103’s V-12 liquid cooled engines. This engine was based on the French Hispano-Suiza 12Y which was produced under license by the Soviet Union as the M-100.
The water radiators were placed under the fuselage and had controllable exit flaps. Two oil coolers were located on the ducts on both sides of the two engines. The fuel was stored in four fuel tanks that were placed in the wings (between the wing spars). Unfortunately, there is no information available about the capacity of these tanks.
The two crew members were positioned in an unusually large cockpit fully enclosed with a plexiglass canopy. The crew consisted of the pilot and the navigator. The navigator was also provided with a bombsight. The navigator’s position was covered with plexiglas on all sides, which provided him with an excellent all-around view, including under the plane. His additional role was to operate the rear-mounted machine gun.
The S-2M-103 lacked any forward-firing offensive armament. While it was planned to equip it with weapons mounted in the wings, this was never accomplished. For self-defense, one 0.3 in (7.62 mm) ShKAS machine gun was provided for the navigator/gunner. Due to its tail design, the rear machine gun had a wide firing arc. Later, it was planned to replace the single 7.62 mm rear gun with heavier twin 0.5 in (12.7 mm) UBT machine guns. There were also alleged plans to equip the S-2M-103 with a rear-mounted remotely controlled ShKAS machine gun. Whether this was ever implemented is unknown, as there no photographs or precise information are available. The bomb bay, which could carry 880 lb (400 kg) of bombs, was located under the pilot cockpit. The bomb bay opening doors were opened electrically.
Operational Tests
The S-2M-103, piloted by D.N. Kudrin, made its first test flight in late 1939. More tests were carried out by the Army from March to July 1940, the plane being piloted by D.N. Kudrin and A.I. Kabanov. During these flight tests, the S-2M-103 proved to be able to achieve a maximum speed of 354 mph (570 km/h) at 15,400 ft (4,700 m). The tests also proved that the concept of installing two engines in the same fuselage had some advantages over the wing-mounted configuration. The most obvious was the reduced drag, which lead to increased speed and improved flight performance.
There were also some problems with the design. Immediately noticeable were the poor take-off and landing performance during these tests trials. Due to its high weight of 12,460 lb (5,650 kg), the S-2M-103 needed a 3,430 ft (1,045 m) long airfield. More tests were carried out by removing any extra weight. With the weight being reduced by some 1,100 lb (500 kg), the S-2M-103 now only needed a 2,800 ft (860 m) long airfield. During landing at speeds of 103 mph (165 km/h) the aircraft needed a 2,130 ft (650 m) long airfield. Some problems with the twin propellers were also noted. The rear-mounted propeller drive shaft was damaged due to strong vibrations. Unfortunately, there are no records of cruising speed, climbing speed, or maximum service ceiling.
The Single-Engine Version
In the following months of 1940 and 1941, the S-2M-103 received a number of modifications in the hope of solving the issues observed during preliminary testing. The twin-engine configuration was replaced with a single M-105P engine with a power of 960 hp (or 1,050 hp depending on the source). The area where the second engine was previously located was filled in order to maintain the stability of the aircraft. Due to the removal the second engine, the second contra-rotating propeller was no longer needed. The new engine’s oil coolers were placed in the main radiator duct. The designers had a dilemma about what to do with the extra interior space left by the removal of the second engine, but this was never solved completely. With these modifications, the weight was reduced from 12,460 lb (5,650 kg) to 8,820 lb (4,000 kg).
The wing design was also changed to one done by Z.I. Iskovich by increasing its size and using a new aerofoil shape. The previous wing design had an area of 246.5 ft² (22.9 m²), while the new one had 252 ft² (23.4 m²). The last change was made to ease testing during winter, replacing the landing gear with fixed skis.
It appears that no official designation for this version existed but, using the same logic as for the two-engine version, it could be called S-M-105, but this is only speculation at best. According to some sources, the single-engined variant was marked as the S-1.
There were plans to improve the performance of the projected fighter version by mounting two M-107 engines. The new fighter was to be designated simply as the “I” or “I-1”. Due to the later cancellation of the S-2M-103 project, the I-1 was also abandoned.
The Fate of the S-2M-103 Project
More flight tests were carried out during the first half of 1941. While there is no precise information, the newly modified single-engined version of the S-2M-103 allegedly had poor performance. Despite the modifications, the new single-engined version managed to achieve a much lower top speed of 248 mph (400 km/h) at 14,440 ft (4,400 m). The poor performance, preparation for Pe-2 production at the factory where it was built, and the German Invasion of the Soviet Union led to the cancellation of the S-2M-103 project.
Operators
TheSoviet Union – A single prototype was tested in 1940/41, but was not adopted for production.
Variants
S-2M-103 – Twin engine fast bomber
S-2M-103 (possibly S-M-105) – Single-engine version
I-1 – Improved fighter version equipped with two M-107 engines, due to cancelation of the S-2M-103 none were built.
Conclusion
The concept of installing two engines in the same fuselage had some advantages over the wing mounted configuration. It reduced drag, which lead to increased speed and flight performance. The S-2M-103 proved this by achieving speeds of up to 350 mph (570 km/h). However, its design had issues that were never resolved. Given enough time, those might have been solved. Alas, in 1941, the German Invasion and the need to increase production of already existing aircraft stopped all unimportant projects.
Gordon, E. & Khazanov, D. (1998). Soviet combat aircraft of the Second World War. Leicester Osceola, WI: Midland Pub. North American trade distribution by Motorbooks International.
Yefim G. and Bill G (2000), Soviet X-Planes, Midland Publishing
Kingdom of Italy (1935)
Fighter Plane – 774 to 791 Built
During the thirties, Fiat Aviazione was one of the most advanced aircraft manufacturers in Europe. With the advent of new technology at the time, it was obvious that the next stage in the development of the aircraft industry, especially in military aviation, would be centered around all-metal monoplanes. Fiat’s Chief Designer, Ing. C. Rosatelli, had been designing mixed-construction biplanes and even an all-metal bomber. As the demand for a modern, all-metal fighter plane was high, Fiat officials made a decision to hire a young aircraft engineer named Giuseppe Gabrielli, who would later design the Freccia, the first operational Italian all-metal fighter.
Giuseppe Gabrielli’s Work
The history of the Fiat G.50 began in 1931, when Fiat formed a new Aircraft Technical Bureau – Department 2 (Ufficio Tecnico Aviazione – Divisione II). The main purpose of this bureau was designing and building brand new types of modern all-metal planes. The same year, a young Italian engineer, Giuseppe Gabrielli, was hired by Fiat Chairman Senator Angelli to work for the Technical Bureau. Giuseppe Gabrielli had gained some experience in aircraft design while working for Piaggio. When he moved to Fiat, he immediately began working on several non-military aircraft projects. All of his projects were marked by the capital letter ‘G’, his initial. First was the G.2, an all-metal, three-engined plane, then the G.8 biplane trainer, and later the twin-engine passenger plane G.18.
During the thirties, the Italian Ministry of Aviation (Ministero dell Aeronautica) was interested in adopting a new, all-metal monoplane fighter and ground attack aircraft for the Italian Air Force. Some specifications for their request were: to use one radial engine, armed with at least two 0.5 in (12.7 mm) heavy machine guns with at least 300 rounds of ammunition and one 0.7 in (20 mm) gun or 1.45 in (37 mm) gun, and provisions for bombs on the ground attacker. A request was sent out to all domestic aircraft manufacturers. There were several proposals in response, but only the G.50 and the Macchi C.200 would be chosen for production. The others were either rejected (Ro.51 and A.U.T. 18) or built in limited numbers, like the Caproni F.5.
In order to solve the problem of the lack of an adequate fighter design, Fiat officials even considered the acquisition of a license to produce the American Seversky SEV-3, but nothing came of this. In April of 1935, Giuseppe Gabrielli began working on a new low-wing, all-metal plane named G.50. According to his first plans and drawings, it was to be armed with two machine guns, powered by a 550 hp radial engine (with a diameter of 39 in/1 m), weigh around 3,395 lbs (1,540 kg), and equipped with a retractable landing gear. At the same time, Fiat was testing a new FIAT A 74 RC 38 14-cylinder radial piston engine, so it was logical that Giuseppe Gabrielli decided to use it for his work. The A 74, in principle, was a direct copy of the American Pratt & Whitney R-1830 Twin Wasp which powered a large number of US planes, including the Douglas C-47, Consolidated PBY Catalina, Douglas TBD Devastator and Grumman F4F Wildcat. The expected speed of the G.50 with this new engine was around 285 mph (460 km/h) at 11,500 ft (3,500 m).
On 28th September, 1935, Gabrielli submitted his project to the Ministry of Aviation. Military officials were impressed by the design, but ask for some modifications. These included a wingspan of 36 ft 1 in (11 m), a weight of 4,870 lbs (2,210 kg) and a maximum speed of 280 mph (452 km/h). The offensive armament was changed to two 0.5 in (12.7 mm) heavy machine guns located in the fuselage with an additional two 0.3 in (7.7 mm) machine guns placed in the wings. In addition, the G.50 was designed to carrying a bomb load of 220 lbs (100 kg) or, if needed, extra fuel tanks with 23.5 gal (90 l) capacity.
In January 1936, the Ministry of Aviation changed its original request, choosing instead to focus only on the fighter role. The Ministry of Aviation wanted to accelerate the development of the new fighter, and the proposed ground attack role was rejected. Because of this, the bomb load was deemed no longer necessary, and the main armament was reduced to only two 0.5 in (12.7 mm) machine guns with 150 rounds each. The most important requirement was that the new fighter should have the best possible flying performance.
Despite these changes, the Fiat officials decided to proceed with the G.50 project. As Fiat’s production capacities were overburdened, work on this new project was instead moved to the CMASA works at Marina di Pisa, part of Fiat since 1931. Giuseppe Gabrielli was finishing his last drawings and the list of needed materials and equipment in June 1936. In his final drawings, the armament was reduced to two heavy machine guns without the bomb load, and the plane would be powered by the new A 74 c/n engine.
The production of the first operational prototype was scheduled to begin in late summer of 1936. The prototype was finally ready at the beginning of 1937 and was transported to the city of Turin for further testing. This prototype, under registration number MM 334, made its first test flight on 26th February, 1937. The pilot was Giovanniego De Briganti, the CMASA test pilot. During initial testing, the pilot noted several faults and possible problems with the G.50. He especially pointed out the strong vibrations during flight and the aircraft’s tendency to spin.
On 22nd June, 1937, the G.50 prototype was moved to Marina di Pisa for more testing and modifications. After these modifications were completed, the prototype was sent to the Regia Aeronautica (Italian Air Force) experimental flight center near Rome. There, the G.50 prototype was tested by several army pilots. They noted that the controls were hard to work with at high speeds and a lack of climbing ability. Before the final order for mass production, Giuseppe Gabrielli was asked to solve these problems. For this reason, another prototype was made, designated MM 335.
The second prototype made its first flight on 20th October, 1937. After a series of successful flying tests, an accident occurred. On the 11th (or 8th, depending on the source) November, 1937, while flying the second prototype at high speed, the test pilot Briganti lost control of his aircraft and crashed to the ground. He did not survive the crash. His place was taken by the new chief test pilot, Enzio Guerra.
A combination of the accident and inferior performance that did not meet expectations, along with better overall performance of the Macchi C.200 threatened to shut down the G.50 project. But as the CMASA works were already in process of producing a series of 45 G.50’s, it was deemed a waste of resources to abandon or scrap the tooling equipment needed to produced the G.50 that had already been produced. A second reason for keeping the project running was the fact that it would take too much time for Fiat to prepare for the production of the Macchi C.200. The Air Ministry decided to go on with G.50 production, but insisted that the company correct the shortcomings of the plane by the time of production. Of the 45 ordered, the first 11 were used for many more trials. Two planes, MM 3357 and 335, the salvaged and rebuilt prototype, were sent to the experimental centre in Rome. Seven were stationed at the Pisa S.Giusto airfield and tested there. Two more ,MM 3570 and 3571, were tested by pilots Guerra, Rolandi and Cus. These trials were held in Turin and the main purpose was to investigate possible changes to the design of the G.50. The preliminary tests showed that the fully enclosed cockpit had to be changed before production, and a new design was necessary. This enclosed cockpit had several drawbacks which pilots often complained about. The closed cockpit was hard to open (especially in emergency situations), was made of poor quality plexiglass which was prone to cracking, offered poor visibility and sometimes exhaust fumes accumulated in the cockpit so the pilots were forced to fly with an open cockpit. After some testing and modifications, it was decided to used a partially enclosed cockpit. This solution was not perfect and was uncomfortable for pilots. Despite this, it was decided that all future planes would be built with an open cockpit only. More modification that were deemed necessary were the installation of a new start-up system, a better undercarriage locking system and adding a new oxygen mask for piloting at high altitude.
The G.50 was first showed to the public in October of 1937 at the International Aeronautical Show held in Milan. From 1937 to 1940, when the production was changed to the improved version, some 224 G.50 were built.
Technical Characteristics
The G.50 Freccia, Italian for Arrow, was a single-seat, low-wing, all-metal fighter plane. The main fuselage was made from four angular shaped longerons with 17 metal frames. The wing construction consisted of a center section which was made of a steel tube connected to the lower fuselage and two metal spars connected with ribs. The four flaps were hydraulically actuated and at certain speeds they would automatically retract to their closed position. The fuselage, wing, and tail were covered with duralumin sheets. The only fabric-covered parts were the movable control surfaces in the wings and the tail.
The engine was placed in a tubular shaped mount made of chrome-molybdenum steel that was connected to the fuselage by four bolts. The engine and the cockpit were separated by a fireproof screen in order to protect the pilot from any possible fire outbreak, either due to engine malfunction or damage. The plane was powered by the 840 hp (626 kW) Fiat A 74 RC 38, 14 cylinder radial piston engine. With this engine, the G.50 could reach a maximum speed of 293 mph (470 km/h), with an effective range of 276 mi (445 km) and a service ceiling of 35,000 ft (10,700 m). An all-metal three-blade propeller produced by Fiat was used. One of major disadvantages of using a radial type of engine was the massive drag due to its large cross-section. In order for ground repair crews to have easy access to the engine and the fuselage interior, several access doors were added. The maximum fuel capacity was 83.5 gal (316 l.) There were two fuel tanks located in the wings 11.9 gal each (45 l) and two more in the fuselage, one larger with 26.4 gal (100 l) and a smaller one with 18 gal (68 l) with an additional auxiliary tank 13.75 gal (52 l) also located in the fuselage.
The first G.50 series had an enclosed cockpit design but as this created many issues, it was later changed to an open cockpit. Despite its disadvantages, the enclosed cockpit had an excellent rear view. Many different open cockpit designs were tested before the final design was chosen. The later version with the open cockpit had two smalls door installed to help entering or exiting the plane. The seat was adjustable, so it could be adapted to the pilot’s needs.
In front of the pilot, the dashboard was divided into three sections. On the upper section were the navigation instruments, reflector sight, fuel indicators and engine instruments. The middle section had the ammunition counter, warning lights, the position of the landing gear, compass and oxygen control panel. The lower section had the engine starter, cowling controls and compressed-air system indicator. The radio in the pilot’s cabin was the ARC 1, but the quality of the batteries was poor. A fire extinguisher system was also provided. There was also the possibility of installing one OMI FM62 camera gun.
The G.50 was equipped, like most modern aircraft of the time, with inward retracting landing gear, but the rear tail wheel was fixed. In the G.50 bis version, the rear tail wheel was changed to a retractable type. The landing gear could, if necessary, be manually operated. At first, it was of a Messier type, but it was later replaced with a Magnaghi design. The retracting landing gear was hydraulically operated, and pneumatically during lowering. In case both systems did not work for any reason, it could be manually operated. For easier and more pleasant landing, hydraulic shock absorbers were provided for both telescoping legs.
The main armament consisted of two forward-firing 0.5 in (12.7mm) Breda-SAFAT heavy machine guns, with some 150 rounds of ammunition for each machine gun. The guns were placed behind the engine top and both were synchronised in order not to damage the propeller. It is interesting to note that this gun used oil lubricant for faster firing and thus a lubricant tank was added on top of the engine. Some G.50 planes were armed with bomb racks and used in North Africa.
Modifications and Prototypes
As the war progressed, the Italians realized that they were lacking planes to fulfill the different necessary roles such as fast ground attack or training. In order to save time, the most obvious solution was to try to modify existing models instead of developing new ones. The G.50 would be modified in several ways, some of which demanded major changes to the plane’s design, while others were just minor variations, like the added sand filter for the G.50 S.A.
Trainer G.50 B
As the G.50 was entering production and the first operational units were formed, a trainer was needed for new pilots. As most army pilots were accustomed to flying older biplanes, retraining them for flying the monoplanes was required. For this purpose, in late 1936 the Italian Air Ministry placed an order for Fiat to developed a two seat dual control plane based on the G.50. After the mock-up was built and inspected in March 1938, it was deemed sufficient for production. By April, an order for the first prototype was placed. But due to the constant changes to the design, the production of the first prototype was frequently delayed. It was not until June 1939 when the final design with an enclosed cockpit was chosen. The plane was named G.50 B. The capital ‘B’ stands for ‘bipost,’ the Italian word for two-seater. This version was recognizable by its long glazed canopy with the rear cockpit being open from the top. The first prototype, marked 3615, would be ready in late April 1940 when it was tested by Enzio Guerra.
After only a few test flights, it was deemed adequate and was put into production. The first ten were built in 1940, with the last one built in 1943. In total, some 108 (or 100, depending on the source) G.50 B trainers were built during the war. Production by years was: 10 in 1940, 82 in 1941, 11 in 1942 and 5 in 1943.
The G.50 B was, in essence, a modified single-seat version with a new cockpit and dual controls. The front part of the cockpit was fully enclosed in contrast with the rear which was open. The main armament was removed on the G.50 B. This version was very successful, as it was easy to build and offered almost the same flying performance as the single-seat version.
These were used mostly by the Regia Aeronautica Fighter Schools. Smaller numbers were operated as liaison planes or even in some front based fighter units. After the Italian capitulation, small numbers, possible 20 or more, were used by the National Republican Air Force. At least one was given to the Croatian puppet state in the Balkans. The last G.50 B were used by the Flying School in Lecce for a few years after the war, up to 1948.
The Improved G.50 bis
The final decision for the mass production of the G.50 fighter was not based on its performance, but instead on the fact that CMASA had already begun producing it. The performance of the G.50 was poor compared to the Macchi C.200. In order to justify the production, the Italian Air Force requested that Fiat to improve the G.50’s overall performance. The sought modifications were adding extra fuel tanks, increasing capacity from 83.5 gal (316 l) to around 108.3 gal (410 l), redesigning the rear fuselage and the vertical tail surfaces, better glazing of the cockpit to protect the pilot from air turbulence, the addition of armor plates behind the pilot seat, and the tailwheel to be made retractable. The original ARC 1 radio, with its poor quality batteries, was only changed in October 1941 with the R.B.30.
The new improved version was designated the G.50 bis. According to Italian original plans, the first planes should have been ready by late 1938, but this was never achieved. The whole process was slow and the first aircraft was tested on 13th (or 9th) of September 1940 at Turin. As the main engine was not changed, despite the other modifications, the general flying performance was almost the same. The only improvements were easier maintenance and increased operational range. As these tests were completed, an order for production was given. From 1940 to 1943, around 439 of these versions were built by CMASA and Fiat.
G.50 S.A Ground Attacker
A certain number of planes that were serving in North Africa were modified by adding sand filters and a bomb rack. The landing gear was also modified for easier landing.
G.50 A Ground Attacker
The G.50 A was designed to be used as a fighter-bomber on the “Aquila” aircraft-carrier which was under construction. For this modification, the G.50 B two seater version was reused. The main offensive armament was to be increased to four 0.5 in (12.7 mm) machine guns. The problem was that the wing design did not allow the installation of the new weapons directly in the wings. The solution was to increase a part of the central section of the wings in order to accommodate these guns. Additional bomb racks were also to be added. One prototype, serial number MM 8595, was built and tested in October 1942. The whole concept proved to be problematic and the project was abandoned. The prototype would be used up to 1943 in testing new wing designs. In some sources, this model is designated as G.50 A/N.
G.50 bis “Tuffo” Dive Bomber
This was a dive bomber version designed in 1941 and 42, possibly inspired by the famous German Ju-87 “Stuka.” A bomb load of up to 990 lbs (450 kg) was planned, with two 200 lbs (100 kg) bombs placed under the wings and one 550 lbs (250 kg) under the main fuselage. For this modification, the addition of dive brakes were necessary. There is no information about prototype construction, but there is a great chance that it was never made.
G.50 B Naval Observer
One plane (MM 6548) was rebuilt for a naval observation role in 1943. It had a larger tail, different wing sections, a camera and an arrestor hook for use on an aircraft carrier. It was also equipped with a B 30T transmitter, B.G.42 direction finder and a A.R.18 receiver. Only one was built, possibly because of the impending Italian capitulation.
G.50 O/R
This version was based on the G.50 bis and the only difference was the installation of a arrestor hook for aircraft carrier use. Around 16 planes were modified for this role and were in use by the 155th Group Autonomo, mostly for training, in 1943.
Other Projects
Beside these, there were some minor projects that were proposed, but the majority if not all of them were not implemented. On the base of the G.50 B some project were proposed like the: night fighter, land reconnaissance or even a floatplane fighter (G.50 Idro).
Prototypes based on the G.50
During the war, in order to improve the flying performance of the G.50, many new designs and weapon loads and engines were tested.
G.50 ter
This was a further development of the canceled G.52 project. The new project, designated the ‘G.50 ter,’ was to be equipped with the same 1000 hp (746 kW) Fiat A 76 engine as the G.52. Even before production of a prototype, the new engine was found to have a number of flaws. The first prototype powered by the new engine was ready by late July 1941. First flying tests were carried out at the Aeritalia airfield, with the plane being piloted by Agostini. During these flight tests, the engine proved to be mechanically unreliable and it could not reach expected performance. More test were held in November 1941, but in the end the project was canceled and only one plane was built.
G.50 V
In late 1939, the Italian Ministry of Aviation made a decision to begin negotiations with the German Daimler-Benz company for a production license of the newest liquid cooled DB 601A engine (1035 hp). It had a much lower frontal area and had much better aerodynamics than the larger Italian radial engines. The license was eventually obtained and Alfa Romeo was put in charge of the production of this engine, but it was never built in any great numbers.
In early 1940, the Italian Ministry of Aviation asked Fiat to build a modified version of the G.50 using this new engine. Two prototypes were to be built by CMASA, and these were marked as G.50 V (the ‘V’ stand for Veloce, which means fast). The first prototype, serial number MM 479, was built and tested in late August 1941 by the test pilot Ezio Guerra. Immediately, the new design proved to have some issues, such as an inefficient engine cooling system and the controls being difficult to operate. By the end of 1941, most these problems were solved and a new series of tests was scheduled.
In December 1941, more extensive flight tests were carried out by test pilot Valentino Cus in order to determine the precise flight performance, in particular the maximum speeds at various heights and the climbing rate. Maximum speed achieved was some 360 mph (580 km/h), and a maximum altitude of 16,400 ft (5,000 m) was reached in 5 minutes and 30 seconds. Mostly due to the introduction of the new FIAT G.55 and the lack of DB 601 engines, the G.50 V project abandoned.
G.51
In 1940, it was proposed to equip one G.50 with the new A 75 R engine. Nothing came of this project.
G.52
Information about this version differs significantly depending on the source.
According to Piero Vergnano, Fiat worked on improving the performance of the A 74 engine used on the G.50 for quite some time. This lead to the development of the new 1000 hp (746 kW) Fiat A 76 engine. In 1938, Fiat suggested the installation of this engine in the G.50 to the Air Ministry. At first, the request was accepted and an order for two prototypes was placed. By late 1939, the project was canceled due to the acquisition of new German DB 601A engines, and no prototypes were ever built. According to Gianni Cattaneo, the G.52 was in fact just a further development of the G.50 V. Due to the appearance of the new G.55 fighter, this project was abandoned.
G.53
This proposal was a combination of the G.50 B powered by the DB 601A engine. It was developed in 1941. It was intended to be used as a fast reconnaissance plane, but the Air Ministry never showed any interest in this proposal and nothing came of it.
First Operational Units
As CMASA began producing the first G.50 planes in late 1938, an experimental military fighter unit was formed for further testing and training. This unit was located at the Ciampino airfield near Rome. The unit was named Gruppo Sperimentale da Caccia (Experimental Fighter Unit/Group). Command of this new unit was given to Major Mario Bonzano, at that time a famous pilot ace from the Spanish Civil War (flying the CR.32 biplane). Pilot training on this new plane lasted until January 1939, when the Italian Air Force High Command decided to send a unit of 12 planes to Spain for real combat testing.
In Spain
A group of 12 new G.50 fighters arrived in January 1939 in Spain, having been transported by sea. This unit was based at Escalona Airport, some 43.5 mi (70 km) from the capital of Madrid. Starting in March, this unit carried out flight patrols and fighter cover missions for bombers at altitudes between 24,600 to 26,240 ft (7,500 to 8,000 m). By that time, the opposing air force had been almost destroyed and air to air combat was rare. The only combat action that was recorded happened when a lone Soviet-built I-16, possibly flown by a Canadian pilot by the name of Dickinson, was intercepted by a G.50. The Italian aircraft was damaged and the pilot was forced to land. None of the 12 G.50 that were sent were lost in combat during the Spanish Civil War. At the end of this war, 11 operational G.50 fighters were given to the new Spanish fascist regime. These planes were used by the 27 Gruppo Caza (Fighter Group). After 1943, they were sent to Spanish Morocco, to be used by the 2. Regimento Mixto (mixed regiment) together with several German supplied He-112B.
After his return to Italy, Major Bonzano made his report of the effectiveness of the G.50. According to him, the G.50 had good maneuverability, effective armament and was easy to operate at altitude. On the other hand, he pointed out that the visibility was poor and the landing gear construction was weak and prone to malfunctioning. His conclusion about the effectiveness of the main armament would prove to have a great negative impact for the G.50 in the future.
In Finnish Service
Because of the likelihood of a Soviet attack in 1939, the Finnish government and Army wanted to equip their forces with modern equipment and weapons. As a result, a Finnish military delegation visited Turin in 1939, where the new G.50 fighters were being tested. The delegation was impressed with the aircraft’s performance, so they placed an order for 35 brand new G.50. Most of the planes sold were of the first series produced by CMASA, with serial numbers 3599 to 3614. These were supplemented by planes from the second productions series (serial numbers 4722 to 4750).
A very interesting fact is the maximum speed achieved by Finnish pilot Tapani Harmaja. As he was testing the flying performance of the G.50 at an airfield near Latina, he managed to reach a speed of 515 mph (830 km/h). He achieved this by diving from a high altitude of 11,480 ft (3,500 m) down to 1,310 ft (400 m). This was the fastest speed reached by any aircraft in Italy at that time.
Due to the outbreak of the Second World War in Europe, the transportation of the purchased aircraft was slow and complicated. The planes were disassembled and then transported by train through Italy to the north of Germany and then by ship to Sweden, and from there to Finland. As they were transported in parts, the assembly was done at Gothenburg. When they were completed, the pilots were instructed to fly them to their new stations. The first 14 G.50’s were received in February 1940 and the last in June 1940. While flying en route to their designated airfields, two planes were lost in accidents in February 1940.
The G.50 arrived too late to have any large impact on the Winter War (30 Nov. 1939 to 13 Mar. 1940) but they saw some combat during this period. The first G.50 planes were equipped with the 26th Fighter Wing (Lentolaivue 26 or just simply LeLv or HLeLv) located at Haukkajarvi. They were used to replace the older Gloster Gladiators used by this unit. By 13 March, the Finnish pilots flying the G.50 claimed to have shot down 11 Soviet planes. There is some disagreement between the sources, authors Gianni C. and David M. states that this unit did not participate in the Winter War.
Until the German and Finnish attack on the Soviet Union in June 1941, known in Finland as The Continuation War, Finnish technicians and engineers tried to improve the performance of the G.50 fighters. Most Finnish G.50s were from the first series, equipped with the enclosed cockpit. This design was not popular with the Finnish pilots and was replaced with an open cockpit. The vertical stabilizer and rudders were replaced with improved ones. Also, the Finnish tested snow skis taken from Fokker D.XXI’s, for the G.50 allowing them to better land on on frozen airstrips.
At the start of the German invasion of the Soviet Union in 1941, Finland joined the war with a much larger air force than it had in the previous conflict. LeLv 26 was stationed at an airfield near Utti, and was charged with the protection of the area around Lake Ladoga where they saw most of the action they were involved in. The G.50 proved to be an effective fighter in the hands of Finnish pilots. On 25th June 1941, six Finnish G.50 fighters managed to shoot down 10 Soviet bombers with no losses. Later in August, pilots from LeLv 26 managed to shoot down nine Soviet fighters. The most famous Finnish pilot was Oiva Tuominen, who had a total of 23 (33 or 43 according to different sources) air victories, with around 15 while flying the G.50. For his service, he was awarded the Mannerheim Cross, the highest Finnish military medal at the time. By the war’s end, LeLv 26 had around 88 air victories with the loss of 11 G.50s. Only two were shot down by Soviet planes, one was lost to AA fire, and eight more were lost either to accidents or mechanical failures. The Finnish G.50s remained in use up to June 1944, when they were moved to the rear for second-line duties. By the end of the war, there were still some 22 (the exact numbers are not known) operational G.50 fighters and they were used up to 1947.
In Italian Service
According to the Italian military program codenamed “R” (Programme R), the Italian Air Force was to be heavily reinforced with many new units and more modern aircraft designs. With the existing G.50 fighter, it was planned to form and equip one Stormo (Stormo-regiment) and one Fighter Wing/Group (Gruppo).
The first unit to receive the new G.50s was 51° Stormo located at the Ciampino airport near Rome, in November 1939. This regiment consisted of the 20th Group, with 351st, 352nd and 353rd Squadrons, and the 21st Group, with 354th, 355th and 356th Squadrons. Almost all of the squadrons were equipped with the newer G.50 with the open cockpit, and only the 351st Squadron was equipped with the first series with the enclosed cockpits. To more effectively train both experienced and new pilots, military war game exercises were often held by the Italian Army. During one of these games the 51° Stormo would earn its military emblem, a black cat with a green mouse. During one exercises, a group of different fighter planes were tasked with intercepting a group of S.M.79 bombers, marked with the green mouse emblem. The older CR.32 biplane could not fulfill this task, but the new G.50 from the 352nd Squadron accomplished this without any problem. From that point on, the pilots from 51° Stormo began painting the emblem on their planes.
Quite soon, the order was given to form a second unit, 52° Stormo. It consisted of the 22nd Group (357th, 358th and 359th Squadrons) and the 24th Group (360th, 361st and 362nd Squadrons). The 24th Group was equipped with older FIAT CR.32 planes that were soon to be replaced with G.50’s. 52° Stormo operated from two airports, Pontendera and Sarzana. Both of these groups had around 100 brand new G.50s.
Western Front
By the time Italy entered the War in the West, there were some 118 G.50 planes on hand, with 97 operational, and some 21 were ready for delivery to designated units. In an attempt to profit from the fast Allied defeat in Western Europe, Italy declared war on France on the 10th of June 1940. Most G.50s saw some limited action, mostly covering SM.79 bombers during their attack on Corsica on 15th and 16th June. Subsequent attacks followed on 17th and 19th June. The center of operations then moved to the north, in the French Alps on 21st June. Due to a lack of proper training, the G.50 pilots had problems adapting to this type of aircraft, as most of them had flown only on the older biplanes. The G.50 proved to have good flying performance at low speeds, but was hard to control at high altitudes and higher speeds.
Battle for Britain
In order to support the German air raids on Great Britain, a special unit (Corpo Aereo Italiano C.A.I) was formed in late 1940 and was sent to Belgium. For this operation, the 20th Group, with 45-48 G.50’s, was selected under the command of Col. Bonzano. Despite the original planes being planned to reach their base of operations in Belgium by September 1940, this was delayed until October 1940. This delay occurred mostly due to bad weather. During the transfer from Italy to Belgium, two G.50’s were lost to accidents. The first combat actions were carried out in late October 1940, and were mostly bomber support missions. Similar missions were planned for 11th November against Great Yarmount, but they were canceled due to bad weather. From November 1940 to January 1941, the G.50 flew on many surveillance missions but there was no contact with enemy planes. By the end of January 1941, most Italian Air Force units returned home, with the exception of the 20th Group.
The C.A.I had great technical problems during this operation. The G.50 was designed for the Mediterranean rather than the cold climate of the North, and there were problems with freezing and defective instruments, unreliable batteries and fuel problems.
By April 1941, the remaining units were ordered to return to Italy. Missions conducted against Britain were unsuccessful and they did not go well for the Italian pilots, as they did not win any air victories. Italy had lost more than six aircraft with two dead pilots. This operation was a strategic failure for the Italian Air Force, mostly due to poor planning, adverse weather conditions and inefficiency of the planes used.
In the Balkans
Mussolini ordered an invasion of Greece in October 1940. For that purpose, fewer than 80 G.50 fighters based in Southern Italy (33) and occupied Albania (43) were used. Initially, because of the lack Greek air resistance, the G.50 were used as ground attack planes. But, after the arrival of the British forces in November, the first air battles started. Due to the fact that the Italian pilots had some experience during the Spanish Civil War, they managed to achieve some successes against the British. The G.50’s main opponent was the Gloster Gladiator, which had poorer flying performance in comparison. Later, however, more modern Hurricanes appeared, which were much more advanced than the G.50.
During the war in Greece, there were a number of engagements between the British and the Italian Air Forces. During one dogfight on 20th February 1941, some 10, possibly even 12, British planes were shot down in a single engagement by a group of 22 G.50s. The Italians only lost one plane. However, during the same day, British Hurricanes managed to shoot down four G.50s in a different engagement. On the 28th of February 1941, some 12 British planes were shot down at the loss of 27 Italian aircraft. In one unusual case, a collision took place between a G.50 and a Gladiator. Because of the heavy damage, the Gladiator crashed to the ground, while the pilot of the G.50, despite the damage received, managed to fly about 123 mi (200 km) back to his home base and safely land. Due to significant disagreements among sources, there is no accurate data on the losses of both sides. As the G.50 proved to be inferior to the Hurricane, they were gradually replaced with the more advanced Macchi C.200 planes.
During the attack on Yugoslavia, the so-called “April War” in April 1941, the G.50 were used in escort missions. There were very few air battles and, by 17th April, the war was over.
In the Mediterranean and North Africa
During the North African campaign, the first G.50s were stationed near Tripoli by the end of 1940 and early 1941. The first units to operate in Africa were the 151st, 152nd and 358th Squadrons with around 76 to 80 planes. Even before these units saw any action, there were great problems with the maintenance of these planes due to sand. Taking into account that North Africa is dominated by the Sahara desert, it is very strange that the Italian military leaders did not take into account the fact that the desert sand could affect the plane’s engine. Since a certain number of planes were taken out of action by this, the demand for special sand filters was high. There were also problems with the sand getting into the landing gear which caused issues. To solve these problems, the Air Ministry urged CMASA and Aeritalia to provide adequate sand filters and modify the landing gear. The G.50 planes modified in such a way were marked as G.50 A.S (A.S standing for Africa Sahariana).
The G.50 saw heavy fighting in North Africa. Depending on the combat situation, it was used in a standard fighter role, for ground attack, defence missions, or for bomber escort. As the war progressed, the G.50 was mostly used in a ground attack role by equipping them with a 220 lbs (100 kg) bomb load to increase its offensive armament. For this purpose, 50° Stormo was formed. 50° Stormo mostly operated around the Sidi Barrani sector, where it attained some success against the British P-40 and Hurricanes. The pilot Bovoli (from 50° Stormo) shot down six British Blenheim bombers in July 1941.
During 1941 and early 1942, despite reinforcements, G.50 losses were increasing. At the beginning of 1941 there were only 20 planes operational, but with reinforcements the number increased to 80 in October and then fell down to 35 in December 1941. Most planes were lost not in air combat but instead during enemy ground and air attacks on airfields, as well as accidents. For example, the 20th group suffered heavy losses when 18 G.50 were destroyed as British armored forces attacked the airfield at Martubi on 19th November 1941. By the end of 1941, the only unit operating the G.50 was the 12th Group stationed at Tripoli. By 1942, most G.50 fighters were either lost or replaced with more modern Macchi C.200 and C.202. The surviving G.50s were relocated to second line airfields in Sardinia (24th Group), Greece (151 Group) and in the Aegean (154th Group). By the time of the Axis defeat in Africa (1943), only the 358th Squadron was still using the G.50.
Despite having poorer flying performance than its main opponents, the P-40 and the Hurricane, the G.50 proved to be a formidable plane in the right hands. The G.50 also proved capable in its new role as a ground attack plane, in which it destroyed a large number of enemy planes on the ground.
The Last Stand
After late 1942, the remaining G.50 fighters that were stationed in Italy serving as trainers and for second line operations. After the defeat in Northern Africa, the Italian army was in disarray and the rapid Allied landing in Sicily in July of 1943 worsened the situation. Many surviving G.50s were used to equip the 158th and 159th Groups. These two groups suffered heavy losses attacking strong Allied positions in Sicily. In a period of only a few days, the two groups ceased to exist.
After Sicily, the Allies landed on the Italian mainland and, on 8th September 1943, Italy capitulated. By that time, there were only around 40 to 48 G.50 airplanes still in service, of which only 17 were operational. A small number of G.50 were used by the new National Republican Air Force (Aeronautica Nazionale Repubblicana/ANR) in Northern Italy until the end of WW2 as second line and training planes. A few were even used by the Italian Co-Belligerent Air Force (Aviazione Cobelligerante Italiana, or ACI) in the southern part of Italy, which had switched over to the Allied side.
In NDH Service
In the middle of 1942, in exchange for raw resources and materials, Italy delivered 10 G.50 (9 single seat and one two-seat trainer) airplanes to the NDH, the independent state of Croatia Air Force (reg. number 3501-3510). These were not newly produced planes, but instead G.50s that returned from the front and were repaired. The planes that were supplied were used alongside French-built MS.406 fighters supplied by the Germans. In 1944, six more airplanes were obtained from Italy, now under German control (reg. number 5686, 5965 and 06186, the rest are unknown) bringing the total number used to around 16 planes, possibly more as the exact numbers are not known. According to Tihomir T. and Darko Č. NDH forces acquired three G.50, after the withdrawal of Italian forces in 1943.
Their participation in the war was negligible and they saw little if any action. On 15th September 1944, only 7 were reported, with none fully operational for service. There were several cases of desertion among Croatian pilots while flying the G.50. On 2nd September 1944, pilot Andrija Arapović escaped to the island of Vis, under the control of the Yugoslav communist Partisans. A second pilot flying a G.50 fled to the Allies stationed in Italy.
Partisan forces put the captured G.50 to use during the war and it would remain in service up to 1946. An interesting fact about Andrija Arapović’s G.50 aircraft (reg. number 3505) is that it still exists today and can be seen in the Belgrade Military Aviation museum near the airport “Nikola Tesla” in Serbia. This is the only surviving example of a G.50 in the whole world, but it is in very bad condition and has been under restoration for years. By the end of the war, the Yugoslav Partisans had captured almost all of the surviving G.50s in Croatian service, but their use was limited due to a lack of spare parts.
G.50 production attempts in China
Italians were for some time trying to negotiate with Chinese authorities about opening an aviation production factory in China. After initial negotiations in June 1934, the Chinese signed a contract with the Aeronautico Italiano per la China (Aerocina). This company was owned by the Italian Government in conjunction with Caproni, Breda, Fiat and SIAI. According to this contract, the Italians were to build the SINAW (Sino-Italian National Aircraft Works) factory in Nanchang. With this agreement, the Italians were to provide tools and machines necessary for the factory to work. The head of the soon-to-be factory was the Italian Luigi Acampora and the Director was General Chu Lin. The production of the first operational aircraft was to begin from July 1937 on and all Italian personnel were to return to Italy after five years of cooperation.
The SINAW officially started production in November 1936 with six Savoia-Marchetti SM.81B bombers. Future plans included production of 30 Breda Ba.65s and 50 Fiat G.50s. The factory was slightly damaged during the Japanese bombing of Nanchang on the 20th October 1937. By November the Italian Government made a decision to discontinue any further cooperation and stopped all future deliveries of equipment and materials. This was done mostly due to Japanese military actions and the poor cooperation of the Chinese. By early December 1937, all Italian personnel returned home, and the deal with the Chinese was abandoned without a single G.50 being built.
Production and Variants
Besides the few prototype planes, a total of 791 (source Piero V.) G.50 and its variants were built during the war. Other authors give different numbers, according to Chris B. some 774 were produced and author Gianni C. quotes the figure of 778 planes. Author Duško N. give a figure of 788 planes.
The production of the G.50 fighter began in 1937 and ended in 1940, with a total 244 planes. The production totals by years were: two prototypes in 1937, 14 planes in 1938, 75 in 1939 and 153 in 1940. The improved G.50 bis was produced from 1940 to 1943 with a total of 439 planes built (421 according to some sources). 71 planes were built in 1940, some 253 in 1941, 113 in 1942 and the last 2 were built in 1943. If we compare these production numbers with other modern fighters of the time, the G.50 was built in relatively small numbers. The G.50 and its modifications and prototypes were produced by CMASA and Fiat during the war.
Conclusion
The Fiat G.50 was the first Italian all-metal fighter plane to enter operational service in significant numbers. In the early stages of the war, it proved to be an effective fighter, but as the war progressed, it became obvious that it was outdated in comparison with other modern fighters like the Hurricane. The G.50 was easy to control at lower speeds and had good maneuverability. The negative side was the lack of engine power and the overall design of the radial engine which affected the aerodynamics of the G.50. There were problems with cockpit visibility, but the most notorious issue was the lack of effective offensive armament, which consisted of only two heavy machine guns. Despite all this, with a good pilot the G.50 proved that it could be an effective fighter and it was responsible of downing of a significant number of Allied planes during the war.
G.50 prototype – Two prototypes built, the second was lost in an accident.
G.50 – Production aircraft.
G.50 bis – Improved version.
G.50 A.S – A number of G.50 planes that were used in North Africa were modified with sand filters and improved landing gear.
G.50 A – One plane was modified with an increased offensive armament of four 12.7 mm machine guns in October 1942. Only one was constructed and used up to 1943 for testing different wing designs.
G.50 B – Two-seat trainer version, around 100 to 108 built.
G.50 bis “Tuffo”– Dive bomber version, none built.
G.50 B naval observation – One G.50 was modified to be used by the Italian Navy in 1943.
G.50 O/R – Based on the G.50 bis, some 16 were built and used for training in 1943.
Prototypes:
G.50 ter – Equipped with a stronger 1000 hp (746 kW) FIAT A.76 engine, only one built.
G.51– In 1940, it was proposed to equip one G.50 with the new A 75 R.C.53 engine, none built.
G.52 – Proposed project, none built.
G.50 V– Equipped with a German Daimler-Benz DB 601 engine, one built.
G.53 – Proposed project based on the G.50 B and powered by the DB 601, none built.
Operators
Kingdom of Italy – Operated around 720 G.50 aircraft, starting from the Spanish Civil War until the Italian Armistice.
Croatia (NDH) – Used at least 16 G.50 aircraft during the war (supplied by the Italians and Germans).
Finland – Operated 35 G.50’s during the Winter War and the Continuation War.
FascistSpain – Used some aircraft given to them by the Italians at the end of the Spanish Civil War and after.
SFR Yugoslavia – Captured some G.50 fighters from NDH during the war. Their use was very limited.
National Republican Air Force (Aeronautica Nazionale Repubblicana/ANR) – Operated a small number of G.50s, mostly as trainers.
Co-Belligerent Air Force (Aviazione Cobelligerante Italiana, or ACI) – Operated limited numbers.
Nazi Germany – A few were captured and saw limited use with the Luftwaffe.
China – There were plans to produce 50 G.50 aircraft in China but nothing came of this.
G.50 Freccia Specifications
Wingspan
35 ft 11 in / 10.9 m
Length
26 ft 3 in / 8 m
Height
10 ft 7 in / 3.28 m
Wing Area
196.5 ft² / 18.25 m²
Engine
One 840 hp (626 kW) Fiat A.74 RC.38, 14 cylinder radial piston
Empty Weight
4,353 lbs / 1,975 kg
Maximum Takeoff Weight
5,324 lbs / 2,415 kg
Fuel Capacity
316 l
Maximum Speed
292 mph / 470 km/h
Range
267 mi / 445 km
Maximum Service Ceiling
35,100 ft (10,700 m)
Climb speed
Climb to 19,700 ft (6,000 m) in 7 minutes and 30 seconds