Nazi Germany (1938)
Multi-role Fighter – 12 ~ 18 Built
The Ar 240 was designed as a possible replacement of the Me 110. While initially it seemed to have great potential, problems with handling and mechanical breakdowns proved to be too much for this aircraft. As it would not be accepted for service, only a small number were actually built. While a few were used by the Luftwaffe, their operational usage was limited.
History of Arado
Werft Warnemünde, later known as Arado, was an aircraft manufacturer that was founded during the Great War, in 1917, as a subsidiary of Flugzeugbau Friedrichshafen. In 1921, this company was purchased by an engineer, Heinrich Lübbe, who was more interested in designing and building ships. In 1924, it was once again engaged in development of aircraft designs, mainly intended for foreign markets. For the position of chief designer, Walter Rethel, who previously had worked for Fokker was chosen.
Werft Warnemünde would be renamed in 1925 to Arado Handelsgesellschaft and renamed again in March 1933 to Arado Flugzeugwerke GmbH. At this time, Walter Blume was appointed as the new chief designer. During his supervision, several projects that were later used by the Luftwaffe were built, including the Ar 66 trainer and the Ar 65 and Ar 68 fighter aircraft.
At the start of the Second World War, Arado was mostly engaged in licenced aircraft production for the Luftwaffe. But work on its own aircraft designs was not discarded. The most important of these upcoming designs were the Ar 96 trainer, Ar 196 reconnaissance plane and the Ar 234, which would become the first operational jet bomber in the world. While these proved a huge contribution to the German war efforts, the Ar 240 design proved to be a failure.
Development of the Ar 240
During 1938, the German Ministry of Aviation (Reichsluftfahrtministerium, RLM) was interested in the development of a new multi-purpose twin engine aircraft that would replace the Me 110. Besides Messerschmitt, which began development of the Me-210, the Arado company would also be involved. In early April 1939 or 1938, depending on the source, the Arado company received a contract for the construction of three prototypes of the new multi-purpose plane initially called E-240. The development of this new aircraft was carried out by an Arado team of designers and engineers led by Walther Blume and by Dipl.-Ing. Wilhelm van Nes.
Interestly, possibly for reasons such as good connections with the Nazi Party or Arado’s good reputation as an aircraft manufacturer, even before the completion of the first prototype, an order for 10 additional prototypes was given by the RLM. While these would be built, a number of problems were identified which would prove to be the downfall of the aircraft.
Technical Characteristics
The Arado 240 was designed as a two seater, twin-engined, mid wing monoplane. The fuselage had a monocoque design and stressed-skin. The fuselage was oval-shaped, with the rear part being more round shaped. The rear tail of the Ar 240 consisted of two fins and rudders, but also had dive brakes installed.
The central parts of the wings were rectangular, while the outer part was trapezoidal in shape. The wings were constructed using a two-part spar structure. The Ar 240 used Fowler type flaps, which covered the entire trailing edge. What is interesting is that the Ar 240 flaps were integrated with the ailerons and that this configuration was previously tested on the Ar 198. Another innovation was the use of automatic leading edge slats, but this system was used only on the first few prototypes and abandoned later on. The wings also housed four fuel tanks on each side, which had a total fuel load of 2,300 liters (600 US gallons). The fuel tanks were built using a new self-sealing system that used thinner tank liners, which enabled the aircraft to have a much increased fuel load.
The cockpit was initially positioned directly over the place where the wing root. After the third prototype, the cockpit was moved forward. The cockpit used a back to back seat configuration, with the pilot positioned on the front seat and the radio operator, who was also acting as the rear gunner, being positioned in the rear seat. The Ar 240 cockpit was completely pressurized. The cockpit was directly connected to the fuselage, but was provided with a jettisonable canopy in case of emergency. The well designed glazed canopy provided the pilot and crewman with an excellent all-around view.
The Ar 240 used a conventional retractable landing gear which consisted of two front wheels and one smaller tail wheel. The two front wheels retracted outward into the engine nacelles, while the third wheel retracted into the rear tail fuselage section.
The Ar 240 was tested with a number of different engine types, as the designer had problems in finding an adequate one. The prototype series was powered by Daimler Benz DB 601A and DB 603 A. The later built A series would also be tested with a number of different engines, including the DB 601 A-1 and DB 603, BMW 801 TJ etc..
Different armaments were proposed for the AR 240, including a pair of remotely controlled defence turrets. The control of these turrets was hydraulic and they were equipped with periscope aiming sights. The bomb load would consist of around 1 to 1.8 tons, placed under the fuselage.
Development and Usage of the Ar 240 Prototype Series
Note: Due to differing information depending on the author, the following information was mostly taken from G. Lang. (1996), Arado Ar 240, A Schiffer Military History Book.
The first operational Ar 240 V1 prototype (markings DD+QL), powered by two 1,157 hp DB 601 engines, was completed in early 1940 and was flight tested on the 10th of May the same year. The next flight tests were made on 25th June and 17th July 1940. In May 1941, the engines were replaced with two DB 603 E. More tests were carried out until October 1941, when the prototype was removed from service for unknown reasons. According to M. Griehl, it was destroyed on the 18th April 1941. The test results of the Ar 240 V1 showed that this aircraft had huge problems with the controls and was difficult to fly, a trend which will be inherited on all Ar 240 planes.
The second prototype, V2, is somewhat shrouded in mystery, as the date of its first operational test flight is unknown. A possible date for the first test flight is 15th September 1940. While it is not clear, the V2 prototype probably received the DD+CE markings. Arado test pilots made several flight trials during September 1940. By the end of February 1941, the Ar 240 V2 prototype was relocated to Rechlin for future tests. By May 1941, the V2 prototype received new DB 603 engines. At the same time, it was also fitted with two 7.92 mm (0.311 in) MG 17 and two 20 mm (0.78 in) MG 151/20 cannons. In November 1941, this plane was modified to be used in dive bombing trials. An additional change was the installation of two DB 601 E engines. The final fate of the V2 prototype is not known precisely, but it was probably scrapped.
The Ar 240 V3 (KK+CD) prototype was first flight tested on 9th May 1941. In comparison to the earlier two prototypes, this model had the cockpit moved forward. The rear tail-positioned dive brakes were replaced with a cone and ventral fins. Numerous engines were tested on this aircraft, including two Jumo 203 and DB 601 E. In early 1942, a number of pressure cabin tests were conducted on the V3 prototype. This aircraft also served as a test bed for the new FA-9 remote controlled system developed in cooperation between Arado and the DVL (aviation research institute), but proved to be problematic. V3 would be used operationally as a reconnaissance aircraft over England. It was piloted by Oberst Siegfried Knemeyer, and while his plane was unarmed, thanks to its high speed, he managed to avoid any confrontation with British planes. The fate of this aircraft is not known, as (depending on the sources) it could have been lost in either April 1944 or May 1942.
The V4 prototype was to be tested as a dive-bomber variant. The first test flight was made on 19th June 1941. It was powered by two 1,750 hp DB 603 A engines. It was modified with added dive brakes and was capable of carrying up to eight 50 kg (110 lb) bombs under the fuselage. Its fuselage was also elongated to 13.05 m (42 ft 9 ¾ inches). Many detailed tests with the V4 were carried out in France and in the Mediterranean. The V4 prototype was lost in August 1941 in an air accident.
The V5 (GL+QA or T5+MH) prototype made its maiden flight test in September 1941. What is interesting is that it was not built by Arado but by AGO Flugzeugwerken from Oschersleben. It was powered by two 1,175 hp DB 601 E engines and was provided with a tail cone. It was armed with two wing root MG 17 machine guns and two same caliber MG 81 machine guns placed into two (one above and under the fuselage) FA-13 type remotely controlled turrets. In late March 1942, this aircraft was given to the Aufklärungsgruppe Oberbefehlshaber der Luftwaffe (reconnaissance unit/group belonging to the Commander in Chief of the Luftwaffe). It was then, possibly in late 1942, allocated to Versuchsstelle für Höhenflüge VfH (research station for high-altitude flight).
The V6 (GL+QA or T5+KH) prototype was also built by AGO, and while most parts were ready during November 1941, the aircraft was only completed in early 1942. It was flight tested in January 1942, but if this was its first test flight is not clear. It was given to the Luftwaffe in early March 1942 and moved to Oranienburg for future tests. It was similar in appearance and equipment with the previous V5 aircraft. While it was used mostly for testing, it saw front line service during the winter of 1942/43 around the Kharkov area. The plane is listed as destroyed but under which circumstances is not known.
The V7 (DM+ZU) prototype made its first test flight in October or December 1942. It was designed to be used as the basis for the Ar 240 B high-altitude reconnaissance aircraft. It was to be provided with a pressurized cockpit and a heating system. V7 was powered by two 1,475 hp DB 605 A engines, which were specially designed to use a methanol-water injection in order to increase the engine overall performance and output. Armament consisted of two wing mounted MG 17s and a rear mounted remotely-controlled turret armed with the MG 151/20, and two 50 kg (110 lb) bombs. Operational range was 1,900 km (1,180 mi) and it a was capable of climbing to 6 km (19,685 ft) in 10 minutes and 6 seconds.
The V8 prototype was a direct copy of the V7 and possibly made its first test flight in December 1942 or March 1943 depending on the sources. The final fate of this and the previous aircraft is not known.
The V9 (BO+RC) prototype was designed as a Zerstörer (heavy fighter) aircraft. It was to be used as a test base for the planned Ar 240 C version. The V9 had redesigned longer wings and fuselage. It was powered by two DB 603 A engines which were also equipped with a methanol-water injection system. The main armament consisted of four forward and two rear MG 151/20. While this version had a great priority and was even considered for acceptance for production. This was never achieved, mostly due to a lack of necessary equipment and parts. The final fate of this aircraft is not clear, as it was possibly never even fully completed, but some sources also mention that it was lost in a landing accident.
The V10 prototype was designed as a night fighter aircraft, powered by two Jumo 213 engines. The first test flight was made in September of 1943, while more tests would be carried out up to late 1944. Arado reused this aircraft for the new improved version called Ar 440.
The V11 prototype was tested as a heavy fighter-bomber and was to be used as the base of the Ar 240 F aircraft. Due to many delays, it was actually never fully completed. It had the heaviest armament, which included a mix of MG 151 and 30 mm (1.18 inch) MK 103 cannons forward mounted, rear mounted MG 151 and 13 mm (0.5 inch) MG 131 and a bomb load of 1,800 kg (3,970 lbs). V12 was a direct copy of V11 and, as these two aircraft were never completed, both were scrapped. V13 was to be used as a test base of the Ar 240 D equipped with two 2,020 hp DB 614 engines, but none were built.
V14 was probably never fully constructed. It was to be used as a base for the Ar 240 E project and powered by two DB 627 engines. V15 was to be used in a reconnaissance role and equipped with the FuG 202 Lichtenstein radar. The V15 prototype was probably never built.
There are two more Ar 240 aircraft only known by their serial numbers (240009 and 2400010). While the usage and fate of the first aircraft is generally unknown, the second was used by the Luftwaffe operationally in the Soviet Union during 1943. It was damaged during a landing in August the same year. Its final fate is unknown.
Development of the ‘A’ Version
After a series of prototypes were built, work on the first Ar 240 A version was also undertaken by Arado. Initially, the Ar 240 A aircraft were to be powered by two 1.750 hp DB 603 A-1 engines equipped with four blade metal propellers. Armament chosen for this version consisted of two MG 151/20 (with 300 rounds of ammunition for each gun) placed in the fuselage floor and two more MG 151/20 (with same ammunition load) placed in the wings roots. There was an option for increasing the fire power by adding two more MG 151/20. For rear defence, two defense turrets equipped with MG 131 machine guns could be placed under and above the fuselage. The bomb load could have different configurations, like: One 1,000 kg (2,220 lbs) or 1,800 kg (3,930 lbs) bomb, two 500 kg (1,100 lbs) bombs, eight 50 kg (110 lbs) bombs or even 288 smaller 2.5 kg (5 lbs) incendiary and fragmentation bombs. As the Ar 240 was never accepted for service, only few of the A version aircraft were ever built.
Ar 240 A-01 (GL+QA possible marking) made its first test flight on 28th June 1942. The test flights were carried out until September 1942, when this aircraft was to be given to the Luftwaffe. After a series of further flight and weapon tests conducted at Rechlin and Tarnewitz, the Ar 240 A-01 was to be allocated to the front. It was used around Kharkov in late 1942. On 16th February 1943, Ar 240 A-01 was lost during a flight due to mechanical failure. Both crew members lost their lives during the fall.
The second Ar 240, A-02 (GL+QB), was completed by September 1942. On 13th September, the first test flight was made. The aircraft was damaged in a landing accident in late January 1943. The final fate of this aircraft is not known.
Ar 240 A-03 (DI+CY) was initially powered by two DB 601 engines, but these were replaced with BMW 801 TJ. This aircraft had a change in the cockpit configuration, with the radio operator/observer facing forward. This aircraft was stationed at Rechlin, where it was tested from May to June 1943. During testing, Ar 240 A-03 showed to have better stability and handling during flight in contrast to previous built aircrafts. From June to late July, it was tested at Brandenburg. After these tests were completed, the aircraft was allocated for operational front use. It was given to the Aufklärungsgruppe 122, a reconnaissance unit stationed in Italy at that time. This aircraft had the same fate as most previous Ar 240, as it was heavily damaged in a crash. As the damage was extensive, it was never repaired.
Ar 240 A-04 (DI+CG) was initially equipped with two DB 601 E engines, but these would be later replaced with DB 603. It made its first flight test in late September 1942. Ar 240 A-04 was allocated to the Aufklärungsgruppe 122 as a replacement for the previous aircraft. Ironically, it suffered the same fate, but it was repaired and sent back to Arado.
Ar 240 A-05 was powered by two 1880 hp BMW 801 TJ engines equipped with a Rateau type turbo supercharger. It was possibly allocated to Aufklärungsgruppe 10 stationed in the Soviet Union.
Proposed Versions
During the Ar 240’s development, the Arado officials proposed several different variants of this aircraft, but as the whole project was not going well beside a few experimental attempts, nothing came from most of them.
Ar 240 B
This was a high-altitude reconnaissance aircraft version that was to be equipped with a pressurized cockpit and a heating system. Nothing came from this project.
Ar 240 C
On 10th March 1942, Arado officials proposed that the Ar 240 should be modified for the bomber role. For this reason, the wings were modified and its size increased. The tail design was also changed, with added tail dive brakes. As the attempt to increase the size of the internal fuel tanks proved a failure, external tanks were to be used instead. The armament consisted of two MG 151/20 and two rear mounted MG 81. It is not clear, but it is possible that at least one aircraft was built.
Ar 240 D
A proposed paper project version powered by two DB 614 engines.
Ar 240 E
A proposed version with reinforced fuselage, added bomb rack for two 500 kg (1,100 lbs) bombs and increased fuel load. Different engines were also proposed for this version, including DB 603 G, DB 627 or BMW 801 J.
Ar 240 F
A proposed heavy fighter/bomber version to be powered by two DB 603 G engines.
Ar 240 mit 7.5 cm Bordwaffen
During the war, Arado and Rheinmetall discussed the installation of a 7.5 cm gun in the Ar 240. In September 1944, it appears that one plane was actually equipped with this weapon, but was probably never operationally flight tested.
Ar 240 TL
In 1942, Dr. Ing. Walther Blume proposed a heavy fighter and night-fighter version of the Ar 240. This version was designated as Ar 240 TL, which stands for Turbinen-Luftstrahltriebwerk (turbojet). This plane was to be powered by two jet engines placed in the fuselage. It remained only a paper project.
Ar 440
With the cancellation of the Ar 240 project, Arado tried to improve the Ar 240’s overall performance by building a new version, named Ar 440. The Ar 240 V10 prototype served as a base for this modification. Beside this prototype, three more were built using already existing Ar 240 components. After some time in testing, the Ar 440 was officially rejected in October 1943 by the RLM.
Overall Performance and Cancellation of the Ar 240 Project
The Ar 240 possessed several advanced characteristics like a pressurized cockpit, remote-controlled defensive turrets, traveling flaps which provided this aircraft with good low-speed overall lift performance and fuel tanks with a new self-sealing system that used thinner tank liners. But, almost from the start of first flight testing, things turned from bad to worse for this aircraft. Almost from the start, the Ar 240 was plagued with extremely bad handling on all three axes. There were also huge problems with the controls during landing, with most aircraft being lost due to this. As the aircraft proved to be dangerous to fly, it was never adopted and the initial orders for production of 40 aircraft were never materialized.
Allied Examination After the War
Strangely, despite being a rare aircraft, the Allies managed to capture at least one Ar 240 during their advance in the West in 1944/45. This aircraft was tested by Allied pilot Captain Eric Brown. He was Chief test pilot of the Royal Aircraft Establishment at Farnborough. He was involved in a British project of taking over of German war research installations and interrogating technical personnel after the war. After the war, he managed to find the single surviving Ar 240 and, after a flight on it, made a report on its performance. The source for this account is Wings Of The Luftwaffe Flying The Captured German Aircraft of World War II by Eric Brown. This aircraft would be given by the Allies to the French and its fate is unknown.
In his report, he stated. “When the Ar 240 was wheeled out of the hangar, I was struck by its angular appearance. The wings, fuselage, and tail unit all seemed to be straight-edged, with very few curves to be seen. The engines looked very large, the airscrew spinners being level with the nose of the cockpit and well ahead of the wing leading edge, while the nacelles protruded well aft of the trailing edge. I had the feeling that, if this aeroplane was as fast as it was reputed to be, then brute engine force must be the answer … The cockpit layout was neat and the instruments were quite logically arranged, while the view was good all around except downwards on either side, where the engines interfered. Take-off was quite long, even with using 20 degrees of flap, and the initial climb rate was just over 600 m/min (2,000 ft/min). Longitudinal stability was poor, lateral stability neutral, and directional stability positive. The rate of climb fell off very little as I climbed to 6,096 m (20,000 ft), where I levelled out and settled into the cruise at what I calculated was a true airspeed of 580 km/h (360 mph). In the cruise, the aeroplane could not be flown hands-off because it diverged quickly both longitudinally and laterally, and would be tiring to fly for a long time. An autopilot was fitted, although not serviceable in my case, but I believe it would have been essential for instrument flying in bad weather. On opening up to full power, I estimated that after three minutes I was hitting an impressive true airspeed of 628 km/h (390 mph), but it was obvious that the Ar 240 was a poor weapons platform. The harmony of control was terrible, with heavy ailerons, light elevators. and moderately light rudders. ….
My assessment of the Arado Ar 240 is that it was an aircraft of outstanding performance for its class and era, but it could not capitalise on this because of inferior, and indeed dangerous, handling characteristics. According to German information, it had a service ceiling of 10,500 m (34,450 ft) and a maximum range of 1,186 miles, so it had great potential as a reconnaissance intruder, and indeed it is claimed that it made such sorties over Great Britain in 1941 and 1944. Be that as it may, there can be little doubt that the Ar 240 was a failure ..”
Production Numbers
While the Ar 240 production was initially to begin in 1941, due to many problems and delays, this was not possible. While there were attempts to start production, by the end of 1942, the RLM officially terminated the program.
How many aircraft were built depends on the source. According to author G. Lang, the problem with identification of the production numbers is complicated by the fact that some prototype aircraft were allegedly modified and used for the few A-series aircraft built. Another issue, according to Lang, is that the highest known serial number production was 240018 (starting from 240000), which suggests that at least 18 were built, but it is not completely clear. Authors Ferenc A. and P. Dancey mention that at least 15 were built by 1944. Eric Brown claims that 12 prototypes were built.
Main Production and Prototypes
Ar 240 V1-V14 – Prototypes series used to test different equipment, armament and engines.
Ar 240 A – Was to be main production version, but only few aircraft were actually built
Ar 240 B – High-altitude reconnaissance version, possibly few built.
Ar 240 C – A bomber version, unknown if any were built.
Ar 240 D – Proposed version powered by two DB 614 engines.
Ar 240 E – Proposed modified Ar 240 version.
Ar 240 F – Proposed heavy fighter/bomber version to be powered by two DB 603 G engines.
Ar 440 – An improved version of the Ar 240. Only a few were built. The project was cancelled in 1943.
Ar 240 mit 7.5 cm Bordwaffen – A proposed version armed with a 7.5 cm gun, possibly one built, but its fate is unknown.
Ar 240TL – A jet-powered paper project.
Operators
Germany – Operated small numbers of these aircraft, mostly for testing and reconnaissance operations.
France – Captured one, but the fate is not known.
Conclusion
While the Ar 240 was, on paper, an excellent design with many innovations and advanced technology, in reality it did not live up to expectations. The plane proved to be dangerous during flight and many were damaged during landing, with fatal outcomes. Because the Ar 240 proved to be difficult to control, the RLM simply decided to stop the project, as it was probably unwilling to waste more time and resources on it.
Arado Ar 240 A-0 Specifications
Wingspan
14.3 m (47 ft)
Length
12.8 m (42 ft)
Height
3.95 m (13 ft)
Wing Area
31 m² (333 ft²)
Engine
Two liquid cooled twelve-cylinder 1,750 hp DB 603 A-1
Empty Weight
6,350 kg (14.000 lbs)
Maximum Takeoff Weight
10,500 kg (23,150 lbs)
Fuel Capacity
2,300 liters (607.6 US gallons)
Maximum Speed at 6 km
670 km/h (415 mph)
Cruising Speed
600 km/h (370 mph)
Range
2,200 km (1,370 mi)
Maximum Service Ceiling
11,500 m (37,730 ft)
Climb speed
Climb to 6,000 m in 9.7 minutes
Crew
Two pilot and the rear radio operator/gunner
Armament
Four 2 0mm (0.78 inch) MG 151/20
Two 13 mm (0.5 inch) MG 131
One 1,000 kg (2,220 lbs) or one 1,800 kg (3,930 lbs) bomb
Or two 500 kg (1,000 lbs) bombs,
Or eight 50 kg (110 lbs) bombs,
Or 288 2.5 kg (5 lbs) incendiary and fragmentation bombs
Kingdom of Italy (1937)
Fighter Aircraft – 158 ~ 170 Built
The Re.2000 was one of many Italian pre-war fighter aircraft developments. Despite having overall decent flying performance, it was never adopted for Italian service. It did see export success, to Sweden and Hungary.
History
Officine Meccaniche Reggiane SA (Reggio Emilia in Northern Italy) was a WWI-era aircraft manufacturer. However, after the war, the Reggiane was not involved in any aircraft production or design work. Things started moving only during the thirties, when Reggiane became a subsidiary of the much larger Società de Agostini e Caproni and Società Caproni e Comitti aircraft manufacturer, which was led by well-known Engineer Gianni Caproni. Thanks to him, Reggiane was provided by Caproni with a larger and well qualified aircraft design department. Reggiane and Caproni were involved in several experimental pre-war designs, like the Ca.405 Procellaria and P.32bis, in addition to the licence production of the S.M.79 bomber.
In 1938, the development of the Re.2000 began at the request of the Italian Aviation Ministry (Ministero dell Aeronautica) under the codename “Programme R”, which aimed to upgrade the Italian Air Force (Regia Aeronautica) with new and modern designs. Special care was given to the development of new single wing fighter designs. At that time, several different fighter designs were in various states of development (like the Fiat G.50, Caproni-Vizzola F.5, Macchi C.200 etc.). The Reggiane officials wanted to participate in this, and ordered the design team to begin developing a fighter plane.
A team was formed, led by the Technical Director Antonio Alessio and Engineer Roberto Longhi, who immediately began work on the new design. Due to a lack of time to properly design the new fighter, a solution was proposed to simply buy a licence from the Americans, but this was rejected by chief Ing. Caproni. The new design was, surprisingly, soon finished. This was achieved by utilizing some elements of design of an American Seversky P-35 aircraft. The main reason why the Re.2000 was influenced by the American design was Roberto Longhi. He had spent some time working in the aviation industry in America before returning to Italy in 1936. While the two planes look very similar, there were some differences, like the cockpit, landing gear etc.
Technical Characteristics
The Re.2000 was designed as a low wing, mixed construction (mostly metal), single seat fighter plane. The fuselage consisted of a round frame covered with metal sheet held in place by using flush-riveting. The Re.2000 wings had a semi-elliptical design, with five spars covered with stressed skin. The central part of the wing held two integral fuel tanks. The front position had a capacity of 455 l (120 US gallons), while the smaller rear one could hold around 240 l (63 US gallons). The wings were equipped with fabric covered Frise type ailerons. The rear tail had a metal construction with the controls covered with fabric.
The landing gear system was unusual. When it retracted, it rotated 90° (a copy from the Curtiss model) before it entered the wheel bays. For better landing handling, the landing gear was provided with hydraulic shock absorbers and pneumatic brakes. The smaller rear wheel was also retractable and could be steered if needed.
The Re.2000 engine was the Piaggio P.XI R.C.40 14-cylinder air cooled radial engine, a licensed derivative of the French Gnome-Rhône Mistral Major 14K, providing 985 hp (840 hp depending on the source), equipped with a three blade variable pitch propeller made by Piaggio.
The cockpit canopy opened to the rear and the pilot had a good overall view of the surroundings. For pilot protection, a rear 8 mm (0.3 in) thick armor plate was placed behind the seat. The pilot was provided with an oxygen tank and a type B.30 radio. The Re.2000 had an option for installing wing gun-cameras, but this was rarely done.
The Re.2000 possessed weak offensive capabilities, as it was armed with only two Breda-Safat 12.7 mm (0.5 in) heavy machine guns. The machine guns were placed above the front fuselage and fired through the propeller arc. For each machine gun, 300 ammunition rounds were provided. The machine guns could, depending on the combat situation (lack of ammunition, for example), be fired together or individually. There were plans to add two more machine guns (unknown caliber) to the wings but nothing came of this.
The Re.2000 also had two small bomb bays placed in each central wing section. Each bomb bay had a payload of twenty two 2 kg (4.4 lb) anti-personnel or incendiary bombs. The bombs were electrically released individually or in larger groups.
Tense Start
The first operational Re.2000 prototype (serial number MM.408) was completed in early 1939. It made its first test flight on 24th March (or May, depending on the source) that year, piloted by Caproni test pilot Mario De Bernardi. During this flight, the Re.2000 was shown to have good flying speed and manoeuvrability. There were some modifications requested, like changes in the design of the exhaust and carburettor air intakes. The cockpit design was also requested to be changed from a round windshield to a framed model. These flight tests were followed by armament tests, which also were without any major problems. During this time, the Re.2000 was tested in mock dog-fights against the Italian Macchi C.200 and even a German Me-109E. In these mock fights, the Re.2000 proved to have better handling and maneuverability than its counterparts.
In August 1939, the prototype was moved to the Air Force Guidonia test site near Rome for further testing. The Re.2000 was flight tested by two pilots, Colonels Aldo Quarantotti and Angelo Tondi, who both gave positive remarks on its performance. Maximum speed achieved during these test flights was 515 km/h (320 mph).
Further tests done by the Aeronautical Construction of the Air Ministry, on the other hand, stressed the important structural problems that this plane had. The main issue was the position of the fuel tanks in the wings, which was dangerous for a fighter plane. There was another huge issue with fuel tank leaks due to loosening of the rivets. The low quality of the welding and a number of internal structural defects were also noted. Despite still being in a prototype stage, meaning that these defects could possibly have been addressed, the Re.2000 program was abandoned.
Despite the proposal of the Re.2000 main designers Alessio and Longhi to redesign the fuel tanks and improve the structure of their prototype, the decision for the cancellation of the project was not changed. The small serial production of 12 planes was rejected and the preparation of the tooling equipment for the production of the originally planned 188 aircraft was abandoned.
Strangely, for some unknown reason ,the Aviation Ministry gave permission for the construction of a second prototype (MM.454). Later, this prototype would serve as a base of the Re.2002 aircraft design.
Success Abroad
Despite not being adopted for service, the Aviation Ministry did actually include the Re.2000 for the export market, where it did see some success. Even though the Reggiane lost the order for the Re.2000 serial production, their management decided to go on with production as a private venture. The idea was that, if its own Air Force did not want to adopt it, maybe another country would. Many Nations in Europe would show interest in this design, which included Hungary, Yugoslavia, Spain, Switzerland, UK, Finland and Sweden. In the end, due to the war’s outbreak, only Hungary and Sweden would receive the Re.2000.
Negotiations with the UK
In late 1939, the UK sent a delegation led by Lord Hardwick and Wing Commander H. Thornton to Caproni. The British were interested in buying a number of aircraft designs (Ca.313 and Ca.311), including 300 Re.2000. The order was confirmed in January 1940. What is interesting is that, initially, the Germans did not try to prevent these negotiations. Later, in March, the Germans tried to enforce an embargo on the Italian sale of weapons to the UK. Caproni and Lord Wardwick tried to bypass this embargo by making a deal through a Caproni Portugese subsidiary. But, as Italy attacked the French in June 1940, the negotiations between Italy and the UK were stopped.
In Swedish Service, the “J 20”
Sweden negotiated with Reggiane to buy a group of 60 Re.2000 aircraft. After some initial negotiations, the deal was made on the 28th November 1940. The price of these 60 aircraft was 18.7 million Swedish Krona, but was instead paid in much needed chrome-nickel metal (of the same value) instead. The 60 Re.2000 were broken into parts and sent by train through Germany and then again re-assembled at Malmen. In Swedish service, the Re.2000 was known as the J 20. While it proved to have good flying performance, due to the harsh weather conditions, it was difficult to maintain properly. During the war, the J 20 were mostly used to patrol the Swedish skies and occasionally intercept German or Allied aircraft. Only one was lost, when it was shot down by a German Do 24 in April 1945. Due to a lack of spare parts, all were removed from service in 1946. One surviving J 20 can be seen in the Swedish Air Force Museum in Linköping.
In Hungarian service, the “Héja”
For some time, Hungary acquired aircraft and aviation equipment from Italy (like the CR.32 and CR.42, for example). By the end of 1939, Hungary asked for 70 new Re.2000 in addition to the licence rights for domestic production. Once the deal was completed, the production of the Re.2000 was given to well known manufacturer MAVAG, but the start of the production process was slow. On the other hand, the 70 Italian-produced Re.2000 arrived by the end of 1941. The first Hungarian-produced Héja (Hawk, as the Re.2000 was known in Hungary) was only built and tested in 1942. By the time production stopped, in 1944 around 185-203 aircraft of this type were built.
During their Hungarian service, the Héja’s engine was deemed insufficient, and so a new, 14-cylinder WMK-14B 1085 hp engine was used. The heavy machine guns were also replaced with Hungarian Gebauer ones of the same caliber.
The Héja were used on the Easter front with some success, managing to achieve a number of air victories. As a shipment of more advanced Me-109G arrived in Hungary from Germany in late 1943, the Héja was mostly relegated to training. But, due to the rapid Soviet advance in 1944, many were put back into frontline service in the vain hope of stopping the enemy.
Negotiation with Yugoslavia
In early 1940, the Kingdom of Yugoslavia sent an Air Force delegation led by Colonel Pavlović to negotiate an order for 50 Re.2000 aircraft. After a brief demonstration, the delegation was impressed with its performance. In March, a new delegation led by Colonel Rubčića, with two test pilots, was sent to personally test the Re.2000’s performance. In July, Yugoslavia requested a delivery of six Re.2000 aircraft without armament. Due to the outbreak of the war, none were ever delivered to Yugoslavia.
A New Chance in Italian service
The Re.2000 would see some limited service in the Italian Air Force and Navy. Due to an urgent need for modern aircraft, the Italians simply reused 28 aircraft (the numbers are different depending on the source used) which were originally intended for Hungary (20) and Sweden (8). An additional 28 aircraft were built to replace the ones requisitioned, and supplied to the respective buyers.
Shipboard Version
When Italy declared War on the Western Allies, their navy had only a small number of 44 Ro.43 and few Ro.44 floatplanes available. Thus, the Italian Navy finally showed interest in the Re.2000 as a replacement for the older models. For this reason, a Re.2000 was to be modified with catapult mounting points, so that it could be launched by ship catapults. These were piloted not by navy pilots, but instead by the Air Force. Two Re.2000 that were modified for this purpose and were lost in accidents. The first (MM.471), piloted by Cap. Giovanni Fabbri, was lost during the flight to Taranto and the second (MM.485) was damaged during transport.
The first catapult tests were carried out in late 1941 near Perugia, by Giulio Reiner. More intensive tests were carried out in early 1942 on the Italian battleships Roma and Vittorio Veneto. These tests were considered a great success and an order was placed for 10 Re.2000 to be modified for this role.
These Re.2000 saw some modifications, like the removal of the covering behind the sliding canopy in hope of improving rear visibility, a modified windshield was added, new radio and modifications to the fuselage so that it could be launched from ship catapults.
When the testing was completed, the Re.2000 were given to the 1° Squadriglia FF.NN (Forze Navali – Naval force). Two each were given to the battleships Roma, Vittorio Veneto and Littorio. Due to the rapid development of the War in the Medeterain, the Italian navy was no longer able to effectively battle the Allied navy. These Re.2000 were never used operationally on any Italian ships in its intended role. By the time of the Italian surrender (September 1943), these battleships tried to escape to the Allied side but were attacked by the German bombers, and only one Re.2000 (from the Vittorio Veneto) survived the engagement.
Depending on the source, this version was powered by a stronger 1025 hp P.XIbis engine. The Re.2000 design for the shipboard is marked as Series II. In addition, some authors (like Maurizio D.T.) name this version as Re.2000Bis.
The Re.2000 G.A. Long Range Version
The flow of supplies to the Italian colony of Ethiopia with much needed modern weapons and equipment was constantly harassed by the British navy and aviation. One of the problems for the Italians was the lack of proper fighter cover. They attempted to send S.M.82 transport planes carrying parts for CR.42 biplanes. While these attempts did see some success, a proper solution was needed. The best Italian fighter at that time was the Macchi C.200, but it lacked the needed operational range to reach this front. Someone in the Italian Air Force proposed to modify some already produced models with increased fuel load. The Italian Navy (Regia Marina) also showed interest in this project, as they were desperate to replace the aging Ro.43 and Ro.44 aircraft (carried by larger shipps for various missions). For this proposal, the Re.2000 was chosen, despite not being adopted for service.
The prototype of the Re.2000 design for longer operational range was named “G.A” (Grande Autonomia, long range). The Re.2000 G.A had an increased fuel load to 1490 l, which increased the operational range from 840 km (520 miles) to 1.300 km (807 miles). This aircraft was tested by the famous Italian Ace Col. Adriano Mantelli. The flight proved to be successful and without any problems. Despite these results, the loss of Ethiopia to the Allies in May 1941 stopped the long range fighter project.
The modified Re.2000 aircraft were allocated to the 23° Gruppo Autonomo (independent group) in the spring of 1941. The 23° Gruppo Autonomo consisted of the 70° ,74° and 75° Squadriglia. This unit was stationed at Sicily under the leadership of Major Tito Falconi. As this unit had only a small number of Re.2000, it was reinforced with older CR.42.
To better test the Re.2000 G.A. version’s performance, a special experimental section (Sezione Sperimentale), a part of the 23° Gruppo Autonomo, was formed. This Section was led by Capt. Pietro Calistri. For some time, this unit had a nonoperational status, as the Re.2000 had engine problems and could not be used. As the engine problems were solved, the Re.2000 were mainly used for patrolling the Italian coast, but in a few cases even for bombing British military installations on Malta. The Re.2000 were moved to support the 377° Squadriglia in July (or August depending on the source). At that time, the 377° Squadriglia had around 13 (or up to 17) Re.2000. This unit was stationed at the Trapani Milo airfield in Sicily. From that point, this unit was mostly used for patrol and escort missions in the Mediterranean sea.
The 23° Gruppo Autonomo was, for a very short time, even used in North Africa, but without any Re.2000. In early 1942, the unit was engaged in naval escort and reconnaissance operations, but no enemy fighters were encountered. From March 1942, this unit, under the command of Capt. Marcolini, operated from Palermo in Sicily. Its objective was to protect Palermo from any possible enemy bombing attacks and to scout for enemy ships and aircraft. During one such mission, one British Blenheim bomber was shot down, which may be the only Re.2000 air victory in Italian service.
The 377° Squadriglia was engaged in supporting the Italian attacks on British convoy ships near Malta in June 1942. During this action, no victory was achieved and no losses were recorded. After more than 320 operational missions, the Re.2000 were replaced with Macchi C.200 aircraft in September 1942. The remaining Re.2000s were in such poor repair condition that it was decided to return them to the Reggiane factory. After some were repaired, they were then moved to Treviso to be used as training aircraft, but no flights were ever made. After the Italian surrender, the Germans took over these aircraft, but they were likely scrapped, as there is no record of their use by the Germans.
Future Developments
During the war, the Re.2000 would see some improvement attempts by using a new engine and improving the overall design. There were several such projects, including the Re.2001, Re.2002, Re.2003, Re.2004 and Re.2005.
Re.2001
In the hope of improving the Re.2000’s overall flight performance, in 1939 and 1940, one plane was equipped with a German Daimler Benz DB 601 engine. While it improved the performance, Alfa Romeo was unable to produce large numbers of this engine and, for this reason, only 252 were built. They were used in different roles: fighter, ground attack, shipboard and torpedo attack plane.
Re.2002
The Re.2002 was a fighter-bomber version which incorporated design elements from the Re.2000 and Re.2001. It received two additional light machine guns, bomb racks under the fuselage and under the wings. It was powered by a 1175 hp Piaggio P.XIX R.C.45 engine. Small numbers were produced for the Italians by 1943. The German captured the Reggiane factory and produced additional aircraft.
Re.2003
One Re.2000 was used as a base for the experimental two-seat Re.2003 version. After some testing and an initial order for 200 planes, it was not adopted for service.
Production
Despite being canceled for mass production, Reggiane decided on its own initiative to produce a series of 158 to 170 (depending on the source) aircraft for export sales. Most of these would be sold to Hungary and Sweden. Small numbers (less than 30, including the prototypes) did eventually enter limited service with the Italian navy.
Re.2000 Prototype – two prototypes built
I Series – Main production version
II Series- Shipborne fighter/scout version
III Series – Long range version
Prototypes and modifications
Re.2001 – Improved version powered with German Daimler Benz DB 601 engine, 252 were built.
Re.2002 – Powered with 1175 hp Piaggio P.XIX R.C.45 engine, 225 were built.
Re.2003 – Experimental two-seater, one prototype built.
Operators
Italy – Operated less than 40 aircraft
Hungary – Bought 70 aircraft and a licence production for the Re.2000 under the ‘Héja’ name. Total domestic production was 185-192 aircraft
Sweden – Bought 60 aircraft in 1940.
UK – Negotiated buying 300 aircraft, but the war prevented this from happening.
Other countries like Yugoslavia, Finland, Spain and Switzerland showed interest in buying a number Re.2000, but nothing came from this.
Surviving Re.2000
Two Re.2000 wrecks were recovered from the bottom of Mediterranean. One shipboard Re.2000 (MM.8287) wreckage was found by the Italian company Micoperi. It was lost in a reconnaissance flight during April 1943. What is interesting is that this plane was modified as an experimental two seater according to author Maurizio D. T. The wreckage was, after a proper desalination process, transported to the Museum of the Italian Air Force at Vigna Di Valle. This plane is currently under restoration. Another Re.2000 (MM.8281) was also recovered in late April 2012.
Conclusion
The Re.2000 had good flying performance but it did have a number of issues. The greatest one was the engine, which demanded a lot of maintenance. There were many problems with the engine overheating. While the larger forward mounted engine did provide the pilot with additional protection from enemy fire, it also affected the pilot’s front view, which was limited. The two heavy machine guns proved to be insufficient and problematic. The biggest issue was the poor quality of the fuel tanks, a problem that was never solved successfully, which was the main reason why it was never adopted for service.
Re.2000 Specifications
Wingspans
36 ft 1 in / 11 m
Length
26 ft 5 in / 8 m
Height
10 ft 4 in / 3.15 m
Wing Area
220 ft² / 20.4 m²
Engine
One Piaggio P.XI RC.40 985 hp
Empty Weight
5424 lbs / 2.460 kg
Maximum Takeoff Weight
7143 lbs / 3.240 kg
Fuel Capacity
675 l (180 US gallons)
Climb to 6 km (19,700 ft)
6 minutes 10 seconds
Maximum Speed
320 mph / 515 km/h
Cruising speed
280 mph / 450 km/h
Range
522 mile / 840 km
Maximum Service Ceiling
34.450 ft / 11,500 m
Crew
1 pilot
Armament
Two 0.5 in (12.7 mm) heavy machine guns
Bomb bay with twenty two 4.4 lb (2 kg) bombs.
Gallery
Illustrations by Pavel
Credits
Nešić, D. (2008). Naoružanje Drugog Svetsko Rata-Italija. Beograd.
Nazi Germany (1942)
Transport Floatplane – 1 Built
With the success of the previous Blohm & Voss Bv 222 flying boat, Dr. Ing. Richard Vogt, chief designer at Blohm & Voss, began working on an even larger improved design in the form of the Blohm & Voss Bv 238. As the Bv 238 development began in the late stages of the war, only one aircraft was ever completed and used only briefly.
Dr. Ing. Richard Vogt’s Work
In 1937, Lufthansa opened a tender for a long-range passenger flying boat transport that would be able to reach New York in 20 hours. Blohm & Voss eventually would go on to win this tender. The chosen aircraft was the Blohm & Voss Bv 222, designed by Dr. Ing. Richard Vogt.
During 1941, Dr. Ing. Richard Vogt began working on a new aircraft larger even than the already huge Blohm & Voss Bv 222. In July the same year, he presented to the RLM, the German ministry of aviation (Reichsluftfahrtministerium), the plans for the new Blohm & Voss Bv 238. This aircraft was, in essence, a modified and enlarged version of the Bv 222 powered by six Daimler-Benz DB 603 engines. Three aircraft powered with this engine were to be built, belonging to the A-series. Six more aircraft were to be powered by six BMW 801 engines and these would be designated as B-series.
To speed up the development and avoid wasting resources if the project proved to be unsuccessful, the RLM officials asked for a smaller scale flying model to be built first instead of a working prototype. This scale model plane was named FG 227 (or FGP 227, depending on the source) and was to be built and tested at Flugtechnische Fertigungsgemeinschaft GmbH located in Prague.
The FG 227 scale flying model
The construction of this scale model was undertaken by a group of Czech students under the direction of well-known glider pilot Dipl.Ing. Ludwig Karch. It was to be powered by six ILO Fl 2/400 engines pushing 21 hp each. As it was meant to be tested on the ground and not in water, the FG 227 was provided with landing gear which consisted of two wheels in the nose and two more wheels placed on each side of the fuselage.
When the FG 227 was completed, it was to be flight tested. From the start, there were issues with it, as it was unable to takeoff under its own power. After the unsuccessful start, it was disassembled and transported to Travemünde for future testing. During transport, French prisoners of war deliberately damaged one of the wings. Once the damage was repaired, it was flight tested. But during the flight, made in September 1944, all six engines stopped working, which caused an accident where the FG 227 was damaged. After yet another major repair, a few more flights were carried out. The FG 227’s overall performance was disappointing and it didn’t play any major role in the Bv 238 development.
The Bv 238
Construction of the first Bv 238 parts began in early 1942. The final assembly was not possible until January 1944. Due to a shortage of materials and the increasing assaults by the Allied Air Forces, the Bv 238 V1 first prototype could not be completed until March of 1945. The first flight test we conducted immediately after its completion. However, sources do not agree on the exact year when this happened. This is the timeline of development and construction according to author H. J. Nowarra.
Author M. Griehl states that the first flight test was made on the 11th of March 1944. Author C. R. G. Bain states, according to post war testimonies of Dr. Ing. Richard Vogt, that the first test flight was actually made in 1943. According to D. Nešić, the first flight was made in April 1944. The results of this test flight showed that the Bv 238 prototype had surprisingly excellent flying performance. For this reason, it was immediately put into operational service.
Throughout the Bv 238 development phase, it was often discussed precisely which role it could fulfill. While it was primarily designed as a transport plane, a new idea was proposed to act as a U-boat support aircraft. This would include carrying supplies, fuel, torpedos and men to the U-boats operating in the Atlantic. Of course, by the time the first prototype was near completion, the war was almost over, so this proposal was realistically not possible. Plans to use it as a long range bomber, carrying six 2,400 kg bombs, also never materialized.
Bv 238 V1 was meant to operate from Shaalsee, and for its service with the Luftwaffe, it received the RO+EZ designation. As the Allied bombing raids effectively destroyed the Blohm & Voss factory in Hamburg, orders came down to hide the Bv 238 from the Allied Air Force. The question was how to hide such a huge aircraft. The Germans did try to do so but the aircraft was eventually found by the Allies who managed to sink it. The circumstances are not clear to this day, as both Americans and the British pilots claimed the kill. According to the most well-known story, it was destroyed by a group of American P-51 Mustangs belonging to the 131st Fighter Group. The kill was made by the leading P-51 piloted by Lt. Urban Drew. According to the testimony of the Blohm & Voss workers, the British, in their advance discovered the hidden craft. Once spotted, the British sent attack aircraft to sink it. Its remains would finally be blown up during 1947 or 1948 to make the scrapping process easier. All the remaining Bv 238 that were under construction were also scrapped after the war.
Technical Characteristics
The Bv 238 was designed as a six-engined, high wing, flying transport floatplane. The Bv 238 fuselage was divided into two decks. On the upper deck, the crew and the inboard equipment were housed. The lower floor was designed as a storage area during transport flights. In theory, there was enough room for around 150 soldiers in the Bv 238. A huge front hatch door was provided for easy access to the fuselage interior.
The wings were constructed using large tubular main spars. The wings were used to provide additional room for spare fuel and oil tanks. The wings were provided with flaps running along the trailing edge. The large size of the wing construction allowed passageways for the crew to be installed, in order to have easy access to the engines. Unlike the Bv 222, which had a pair of outboard stabilizing floats mounted on each side, the Bv 238 had only two. The Bv 238 was powered by six Daimler DB 603G engines.
For self defense, the Bv 238 was to be provided with two HD 151 twin-gun turrets with 20 mm (0.78 in) MG 151 cannons, two HL 131 V turrets with four 13 mm (0.51 in) MG 131 machine-guns and two additional MG 131s mounted in the fuselage sides. Despite the plans to arm the V1 prototype, this was never done.
The crew number is mentioned as 11 or 12 depending on the source. The sources do not specify the role they performed. It can be assumed, based on what is known from Bv 222, that there were at least two pilots, two mechanics, a radio operator and machine gun operator.
Production
The production of the Bv 238 was carried out by Blohm & Voss factory at Hamburg. Only one completed prototype would be built during the war. There were also at least two to six more prototypes under construction (depending on the source), but due to the war ending, none were completed.
The small number under construction may be explained by the fact that, in the late stages of the war, the Luftwaffe was more in need of fighter planes than transports planes. In addition, there is a possibility that the Bv 238 project was actually canceled by the RLM officials.
Versions
Bv 238 A – Powered by Daimler-Benz DB 603 engines, only one built
Bv 238 B – Powered by six MW 801 engines, none built
Bv 250 – Land based version, none built
FG 227 – Scale test model of the Bv 238, used for testing
Land Based Version
There were plans to adapt the Bv 238 for land based operations by adding landing gear wheels. The project was designated Bv 250 but none were ever built. It was planned to provide this version with heavy defence armament consisting of twelve 20 mm (0.78 in) MG 151 cannons. The engine chosen for this model was the six Jumo 222. As this engine was never built in any large numbers, the DB 603 was meant to be used instead.
Escape Aircraft
There are some rumors that the Bv 238 was actually developed as an escape aircraft for high ranking Nazi officials. It was rumored that Martin Bormann had plans to use it to escape Germany in early 1945. Of course, due to Allied Air Force supremacy and the Bv 238’s large size, this may have not been a viable plan if ever attempted.
Conclusion
If it was put into production, the Bv 238 would have had the honor of being the largest flying boat that saw service during the war. While it only performed test flights and was never used operationally, it was nevertheless an astonishing engineering achievement.
The Fi 167 was developed out of a need for a dedicated torpedo-bomber to be operated on the first German aircraft carrier. While its overall performance proved to be satisfactory, due to the cancellation of the aircraft carrier project, only a small number were ever built. Unfortunately, information about the Fi 167 is not available or precise enough, with many disagreements between different authors.
Fieseler Flugzeugbau
In the early 1930’s, World War I fighter veteran Gerhard Fieseler (1896–1987) bought the Segelflugzeugbau Kassel Company, which mostly produced gliders, and renamed it to Fieseler Flugzeugbau. Gerhard Fieseler had gained experience in aircraft design while working as a flight instructor for the Raab-Katzenstein Aircraft Company in Kassel. In 1926, he managed to design his first aircraft, named Fieseler F1, which would be built by the Raab-Katzenstein company. By the end of twenties, Gerhard Fieseler designed another aircraft, the Raab-Katzenstein RK-26 Tigerschwalbe, of which 25 were built and sold to Swedish Air Force.
With his own company, he changed to focus on sports aircraft. In 1935, Gerhard Fieseler managed to obtain a licence for the production of military aircraft. While his best known design was the Fi 156 ‘Storch,’ he also designed the less known Fi 167 torpedo-bomber. The Fi 167 was built in small numbers and never managed to reach the fame of the Storch.
History of the Fi 167
As the German Navy began construction of its first aircraft carrier, the ‘Graf Zeppelin,’ in 1937, there was a need for a completely new torpedo bomber. For this reason, the German Ministry of Aviation (Reichsluftfahrtministerium) opened a tender for all German aircraft manufacturers who wished to participate to present their designs for such aircraft. The new aircraft was requested to have folding biplane wings, the best possible STOL (short take-off and landing) capabilities, and that the whole construction should have sufficient strength to successfully endure offensive combat operations at high speeds.
Only two manufacturers, Fieseler and Arado, presented their designs. For Fieseler it was the Fi 167 and for Arado the design was the Ar 195. In the summer of 1938, after a series of flight tests, the Fieseler Fi 167 was declared the better design. For this reason, another prototype was to be built for further testing.
The first prototype built, Fi 167 V1 (serial no. 2501), was powered by a DB 601 A/B engine. It was used mainly for testing and evaluation purposes. The second prototype (serial no. 2502) had some changes to the design, such as a modified undercarriage and was powered by the DB 601B. This engine would be used on later production versions. While most sources state that only two prototypes were built, some authors, like M. Griehl (X-Planes German Luftwaffe Prototypes 1930-1945), mention a third prototype being built. This third prototype, Fi 167 V3 (serial no. 2503), according to Griehl, was used to test the equipment used on this plane. While the sources do not give precise details about the fate of the Fi 167 prototypes, after May 1940, they were not present in the Luftwaffe inventory anymore. This may indicate that all three were scraped. After a number of tests with the Fi 167 were completed, series production of 80 aircraft was ordered.
Short lived operational service life
Despite having promising overall performance, the Fi 167 was directly connected with the Graf Zeppelin project. While the production of a small series was underway, the construction of the Graf Zeppelin aircraft carrier was stopped in 1940, so the same fate befell the Fi 167, as there was no longer a need for a carrier capable fighter. In 1942, there was a brief revival of the aircraft carrier concept, but by that time the Ju 87C was deemed better suited for this role. This decision was not without merit, as the Ju 87 was already in production and it would be much easier, quicker, and cheaper to simply modify it for the role of aircraft carrier torpedo bomber than to put the Fi 167 back into production.
As a small number of 12 Fi 167 A-0 were built, they were sent to Holland for evaluation and testing purposes in order not to waste the resources invested in them. These were used to form Erprobungstaffel 167 which operated in Holland from 1940 to 1942. In 1943, the Fi 167 were returned to Germany and Erprobungstaffel 167 was disbanded. Their use by the Germans from 1943 onward is not completely clear in the sources. While the majority were given to Germany’s allies in late 1944, the final fate of the remaining aircraft is not known, but they were probably either lost or scrapped.
Technical characteristics
The Fi 167 was an all-metal, single engine biplane designed as a torpedo bomber. The Fi 167’s fuselage was constructed by using thin but with high-strength steel tubes that were welded together and then covered with duralumin sheet metal.
In the glazed cockpit there was room for two crew members, the pilot and the observer/rear gunner. The cockpit was covered with plexiglass but was open to the rear in order to provide the rear gunner with a good arc of fire. The Fi 167 was powered by the Daimler-Benz DB 601B 12-cylinder inverted-V engine putting out 1,100 horsepower. The total fuel load was 1,300 liters.
The Fieseler Fi 167 had a biplane layout. The upper and lower wings were the same in size and had a rectangular shape with rounded edges. The wings were divided into three parts in order to make any necessary maintenance or disassembly easier. Being designed to be used on an aircraft carrier, the Fi 167’s wings could also be folded. In order to be adequately structurally stable, the upper and the lower wings were interconnected by ‘N’ shaped metal rods. There were four of these ‘N’ shaped metal rods in total. These were then held in place with steel cables. For better control during flight, both wings were provided with flaps.
The landing gear consisted of two independent fixed landing wheels which were provided with shock absorbers to ease the landing. The forward landing gear units were covered with duralumin coating to help reduce the aerodynamic drag. To the rear there was a smaller fixed landing wheel. The Fi 167 landing gear was designed to be easily discarded in the case of a forced landing on water. The idea was that it would enable the Fi 167 to float on the water surface and thus provide more time for the crew to successfully evacuate the aircraft.
The armament consisted of two machine guns, one forward mounted 7.92 mm MG 17 with 500 rounds of ammunition and a second MG 15 of the same caliber mounted in a rear, flexible mount with 600 rounds of ammunition. The Fi 167 could be additionally armed with up to 2,200 lbs (1,000 kg) of bombs or one torpedo. In some sources, it is mentioned that there were actually two forward mounted machine guns.
Production
The Fi 167 production run was quite limited, mostly due to cancellation of the Graf Zeppelin aircraft carrier. Besides the two or three prototypes, only a small series of Fi 167 (A-0) pre-production aircraft were made. How many were built varies depending on the source. Authors C. Chant (Pocket Guide: Aircraft Of The WWII) and D. Nešić (Naoružanje Drugog Svetskog Rata Nemačka) mention that, besides two prototypes, 12 pre-production aircraft were built. Authors F. A. Vajda and P. Dancey (German Aircraft Industry And Production 1933-1945) give a number of 15 aircraft produced. They also mention that a serial production of 80 Fi 176 was to be completed by June 1941 but, due to the cancelation of the project, this was never achieved. On different internet websites, the total number of Fi 167 built varies between 14 and 29.
Fi 167 V1 – Powered by the DB 601 A/B engine.
Fi 167 V2 – Had modified undercarriage and was powered by the DB 601B engine.
Fi 167 V3 – Possibly-built third prototype, but sources are not in agreement about its existence.
Fi 167A-0 – 12 aircraft built.
In Romanian hands?
It is commonly stated in many sources that the Fi 167 were sold to Romania in 1943. These were allegedly used to patrol the Black Sea. This is likely incorrect, as another German ally, the Independent State of Croatia ‘NDH,’ received nearly all Fi 167 produced. There is a possibility that the Fi 167 were given to Romanians and then returned back to Germany. But due to the lack of any valid documentation, this is only speculation at best.
In NDH service
A group of 11 (or 10 depending on the source) Fi 167 (serial no. 4801-4812) arrived in NDH during September 1944. These aircraft were given to the 1st Squadron stationed in Zagreb for the necessary pilot training. While during its service in the NDH, the Fi 167 was used in bombing combat operations, but was mostly used as a transport plane for food and ammunition. Due to having no problem carrying significant loads and its ability to take off or to land on short airfields, they were ideal for supplying many NDH garrisons besieged by Yugoslav Partisans.
Due to the overall difficult situation of the Axis forces on all fronts, the NDH Army and Air Force were plagued with frequent desertions, including a number of pilots. On 25th September 1944, while flying a Fi 167 (serial no. 4808), pilot Romeo Adum escaped to the Yugoslav Partisan held airfield at Topusko.
There is an interesting story about one Fi 167 piloted by Mate Jurković, as it is claimed he managed to avoid being shot down by five American P-51 Mustangs. This engagement happened on 10th October 1944 during a Fi 167 ammunition supply mission to Bosanska Gradiška. During this flight, the Fi 167 was attacked by a group of five Mustangs. Outgunned and outnumbered, the pilot could only hope to escape by using the Fi 167’s excellent maneuverability at lower altitudes. He eventually managed to escape his pursuers without taking any damage.
Due to a lack of spare parts, Allied air supremacy and Partisan advance, by April 1945 there were only four Fi 167 still present in the NDH Air Force. The condition of these planes is not known. Of these, at least three would be used after the war by the new JNA (Yugoslav People’s Army) army. During its operational use by the NDH Air Force, the Fi 167 was known as ‘The Great Fiesler’.
In Partisan hands
As mentioned earlier, the Partisans managed to acquire one Fi 167. It would be redeployed to the island of Vis and included in the group of NDH aircraft that had defected earlier (one FP 2, two Saiman 200s, one Bü 131, and one Fiat G. 50).
On the 17th of October 1944, while on a liaison mission from Vis to the village of Vrdovo, after delivering orders to the command of the Partisan 20th Division stationed there, the Fi 167 piloted by M. Lipovšćak and with General Ćetković as a passenger began taking to the sky. Unfortunately for them, a group of four P-51 Mustangs attacked the lone aircraft. The Fi 167 was hit in the engine and the tail and the wounded pilot was forced to land on a nearby open plateau. While the pilot was only wounded, General Ćetković was dead, being directly hit by machine gun fire. Circumstances of this accident are not clear even to this day. The P-51 pilots later claimed that, due to bad weather, they could not see the Partisan markings. By the later account of the Fi 167 pilot, he claimed that the visibility was such that the Partisan markings could have been easily seen.
In JNA service
At least three Fi 167 were put into use by the JNA (Yugoslav People’s Army) after the war. Due to the lack of spare parts, their use was probably limited. They would remain in use up to 1948, but unfortunately they were probably all scrapped, as none survive to this day.
Conclusion
Despite being considered an overall good design, the Fi 167 was never put into mass production. The main reason for this was the cancellation of the Graf Zeppelin aircraft carrier. Nevertheless, the Fi 167 did see some limited service within the Luftwaffe, mainly for testing, but also with the Croatia NDH, where its performance was deemed sufficient.
Operators
Nazi Germany – Used the small number of Fi 167, mostly for various experimental purposes.
Romania – Allegedly supplied with Fi 167 in 1943, but this is not confirmed.
Independent State of Croatia NDH – Operated 10 to 11 aircraft between September 1944 and April 1945.
SFR Yugoslavia – Operated a small number of Fi 167 during the war and up to 1949.
Specification: Fi 167
Wingspan
44 ft 3 in / 13.5 m
Length
37 ft 5 in / 11.4 m
Height
15 ft 9 in / 4.8 m
Wing Area
490 ft² / 45.5 m²
Engine
One 1100 hp (820 kW) Daimler-Benz DB 601B
Fuel load
1,300 l
Empty Weight
6170 lb / 2,800 kg
Maximum Takeoff Weight
10,690 lb / 4,860 kg
Maximum Speed
200 mph / 325 km/h
Cruising Speed
168 mph / 270 km/h
Range
800 mi / 1,300 km
Maximum Service Ceiling
26,900 ft / 8,200 m
Crew
One pilot and one observer/rear gunner
Armament
One 7.92 mm MG 17 forward-firing machine gun
One 7.92 mm MG 15 rear mounted machine gun
Bomb load of 1.000 kg (2.200 lbs)or 750 kg (1650 lbs) torpedo
Surprisingly, the He 219 started its life as a reconnaissance aircraft. However, it was not deemed acceptable for this role and was heavily redesigned as a night-fighter aircraft. While proving to be one of the best German night-fighter designs of the war, only fewer than 300 would be built and its impact on the course of World War II was negligible.
An Unsuccessful Reconnaissance Role
During the early years of the war, the Luftwaffe (German Air Force) was in great need of an advanced and dedicated reconnaissance aircraft. Seeing an opportunity, Heinkel officials presented a design proposal to the RLM (ReichsluftfahrtMinisterium) at the end of April of 1940. This proposal consisted of blueprints of a new single-engine reconnaissance plane (named P.1055), based on the earlier He 119, which was estimated to be capable of a max speed of 466 mph (750 km/h). The RLM and Heinkel officials met in early October 1940 to discuss the viability of such a project. The RLM officials initially showed interest in the project, especially the bomber variant. But, as the demand for high-speed was great, the slower bomber and later destroyer variants were considered undesirable.
On 23rd November 1940, a fully completed wooden mock-up was presented to RLM officials, who were impressed with it and ordered that the airframe be built by mid-January 1941. This aircraft was to be powered by the new DB 613, which consisted of two side-by-side DB 603 engines. Due to problems with the production of this engine, the DB 610 was to be used instead. By 20th June 1941, two wooden mock-ups with both the DB 613 and DB 610 engine types were presented to the RLM. RLM officials were concerned that the change of engine would fail to meet the required criteria and expected production of the Arado Ar 240 to commence soon. For these reasons, the Heinkel P.1055 project was rejected.
Name
While under initial development, this Heinkel aircraft received the P.1055 designation. As it was largely inspired by the earlier He 119, the new aircraft received the designation He 219 in 1941. By the end of November 1943, Hitler himself made a proposal for a new name for the He 219, the ‘Uhu’ (Owl), by which it is generally known today.
Revival
In the hope of somehow reviving the He 219 project, Ernst Heinkel, the owner of the Heinkel company, had a meeting with General Obst. Udet (Head of the Office of Air Armament) in July 1941. After this meeting, Udet visited the Heinkel factory in order to inspect the He 219 wooden mock-up. Udet saw a potential for the usage of the aircraft in a night-fighter role. After his visit, Udet immediately contacted General Josef Kammhuber, who was responsible for commanding night-fighter defense of Germany. At that time, the Luftwaffe was ill-prepared and lacking adequate night-fighter designs to defend against the ever-increasing Allied night bombing raids. General Josef Kammhuber was a big advocate for new types of dedicated night-fighters that would replace the Me-110. After hearing about the He 219 project, Kammhuber immediately dispatched a group of pilots to inspect the new aircraft. While the He 219 was deemed to have potential, some modifications were needed, such as increasing the number of cannons and replacing the large DB 613 coupled engines with two wing-mounted DB 603G, making 1900 hp each.
Work on the modified He 219 began in mid-August 1941. In October, Luftwaffe officials visited Heinkel to inspect the development process and were satisfied with the progress. However, they asked for modifications such as a two-man cockpit, the addition of armor plates to protect vital components, the removal of the machine gun turret, the addition of air brakes, and other changes. At the end of 1941, two He 219 versions were completed. The first was designed as a two-seat night-fighter, equipped with two DB 603G engines and armed with six 20 mm MG 151/20 cannons, with the possibility of adding two more 13 mm MG 131 machine-guns to protect the rear. This model used a somewhat unusual (for German designs) tricycle landing gear that retracted into the engine nacelles. This design made space available for special radio equipment and ejection seats. The second version was designed as a reconnaissance plane with DB 614 engines and armament consisting only of two rear-mounted machine guns for self-defense.
Due to problems with the DB 603G engine’s availability, the weaker DB 603A giving out 1750 hp was to be used instead. The development of the He 219 was nearly stopped in its tracks by a heavy Allied bombing raid on the Heinkel factories located near Rostock in late April 1942. Many vital parts, drawings, and plans were destroyed. Luckily for the Germans, the hangars where the first functional Uhu prototypes were under construction were not hit. In the hopes of avoiding any more raids, the whole He 219 development program was moved to Schwechat Airbase near Vienna, Austria.
As the work and testing on the first He 219 V-1 were underway, in June 1942, the RLM officials informed Heinkel that the production of the plane was estimated to begin in 1943. The first 20 pre-production aircraft were to be built by April 1943, followed by a monthly production of 200 units. As it would later turn out, this was never achieved. By the end of August, Heinkel officials presented an estimated He 219 production report to the RLM. It was stated that, with the existing production capacities, a production of 12 prototypes and 173 units from March 1943 to September 1944 was possible, with maximum potential for 117 additional aircraft. This was far less than the monthly production of 200 aircraft per month originally demanded. The He 219 was to be produced in German-occupied Poland, at Budzun and Mielec, in the hopes of avoiding any future Allied bombing raids.
The First Prototype
By September 1942, the first He 219 V1 airframe was almost completed. There were delays with the delivery of the landing gear. At this stage, the He 219 had a twin tailfin design. Fearing that it was a weak point, Ernst asked for a second prototype to use a standard single tailfin. Future tests and calculations showed that the twin tailfin design did not pose any risk, so this feature was kept in the later production models.
The He 219 made its first test flight, piloted by the Gotthold Peter, on the 6th of November 1942 (or 15th depending on the source). The V1 prototype received the serial number W.Nr. 219 001 and, on the fuselage, VG+LW was painted. After the flight, which lasted 10 minutes, the pilot noted that the plane’s controls were good, but there were some issues such as inadequate radio equipment and problems with inoperable instruments, among others. On November 9th, there was an accident during a landing due to heavy rain and poor visibility. The pilot misjudged the distance to the airfield and broke the front landing gear as he hit the ground. The damage was repaired in the next few days and, through November, many more test flights were carried out. The testing would continue up to April 1943, during which time some 46 flights with the He 219 V1 were made. During this time, several pilots flew the Uhu, including Oberstleutnant Petersen, Bottcher Beauvais, Major Streib, and others.
On 10th January, the He 219 V2 prototype made its first test flight. In the following days, it was tested by the well known night-fighter pilot, Major Werner Streib. After testing the He 219, Major Werner Streib was more than pleased with its performance and wrote a report to Hermann Goering in which he urged for increased production of the Uhu. Further test results were not so promising, as there were several issues noted with the He 219, such as a lower top speed than originally claimed by the Heinkel, problems with strong landing gear vibrations and insufficient stability. For these reasons, the He 219 V1 prototype was sent back to Heinkel for more modifications. The fuselage construction was strengthened but also lengthened by nearly a meter. Other modifications were also made, such as modifying the engine nacelles, adding new propellers, installing a new twin rudder and adding an armament of four 30 mm MK 108 cannons.
Problems in Development and Production
In mid-February 1943, a decision was made to modify the V2 in the same manner as the V1 prototype. In addition, the construction of more prototypes was approved. Initially, 10 more prototypes were to be built and tested with different equipment and armament, such as remote-controlled guns and autopilot. The He 219 development was hindered by the lack of availability of DB 603A engines. V7 and V8, which were to be field-tested in May 1943, were equipped with these engines only after General Josef Kammhuber’s personal intervention. Other problems, like the lack of resources, adequate production facilities, and workforce, also affected the He 219’s development. The greatest threat to the He 219 project was probably Generalfeldmarschall Erhard Milch. He was of the opinion that quantity should be prioritized over quality. He urged increased production of the Ju 188, as he claimed it was much cheaper and faster to produce. To counter this, General Josef Kammhuber, the He 219’s main proponent, insisted that it should be flight tested against Ju 188. In late March 1943, a competition was held in Rechlin between several night-fighter aircraft: a Do 217, Ju 188 E-1 and the He 219 V1. Due to its much heavier weight, the Do 217 did not stand a chance. After the test flight, the results showed that the He 219 was faster by 25 to 40 km/h, had better handling characteristics and that its price was actually lower than that of the Ju 188. Despite these results, Generalfeldmarschall Erhard Milch was persistent in his attempts to stop the He 219 project, but its development continued. On 19th April 1943, the V3 prototype was damaged in a landing accident due to pilot error.
Design
The He 219 (A-0 first production aircraft) was designed as a twin-engine, all-metal, mid-wing monoplane. The He 219 fuselage was built using a monocoque design with a rectangular base with round corners. The wings were constructed using two spars, a main and a support. Flaps and ailerons were placed on the wing’s trailing edge.
The cockpit, with an excellent all-around view, was installed at the front of the fuselage. While the fuselage was held in place by using rivets, the cockpit was held in place with bolts. There was accommodation for two crew members, a pilot and a radar operator. The crew members were positioned back to back. While the forward position of the cockpit offered the advantage of good visibility, there was a risk of vulnerability to enemy fire. Another problem was that, in case of emergency, the pilot had first to shut down the engines, as there was a danger of hitting the propellers when exiting the aircraft. For this reason, the He 219 was to be provided with ejection seats for its crew.
The possibility of using ejection seats was being developed and tested by Junkers for some time. The Heinkel company also showed interest in its use. These were to be activated with compressed air or a small explosive charge. During a test flight of the unsuccessful He 280 jet fighter in January 1942, pilot Helmut Schenk was forced to use the ejection seat, which saved his life. After this accident, Heinkel spent time and resources on the production of large numbers of ejection seats, roughly 1,250. These were used on the He 162, Me 262 and He 219.
The engine nacelles were built to house two DB 603A engines. These were twelve-cylinder liquid-cooled 1,750 hp inline engines. They were provided with 3.4 m (11 ft) long three-bladed variable pitch propellers. Behind the engines, two small 20-liter fuel tanks were placed. The main fuel tanks were placed behind the cockpit and were separated with bulkhead ribs. In total, these three main tanks housed around 2,490 liters of fuel (1000, 990, and 500 liters respectively).
The He 219 had a tricycle type retractable landing gear which was somewhat unusual for German designs. The landing gear consisted of four 840 x 300 mm (33 x 11 in) wheels, placed in pairs on two struts, operated hydraulically. The front smaller landing gear consisted of a single 770 x 270 mm (30 x 10 in) wheel. Both the front and rear landing gear struts retracted towards the rear. The front wheel rotated 90° beneath the cockpit floor during retraction.
The basic He 219 A-0 armament consisted of two 20 mm MG 151/20 cannons, with 300 rounds per cannon, placed in the wing roots. If needed, a ventral tray could carry four additional cannons, typically with 100 rounds of ammunition per cannon. There were three different forward-mounted weapon configurations, using two MG 151/20 and four 30 mm MK 108, two MG 151/20 and four 30 mm MK 103, or just four MK 103. For acquiring targets, Revi 16/B reflector guns sights were installed. Later models were equipped with the Schräge Musik weapon system. All guns were fired by the pilot by using a two-pronged control column. The top button was for firing the guns from the ventral pod and the front button was for firing the wing-mounted weapons.
Being used in the role of a night-fighter, it was necessary to equip the He 219 with adequate radar technology. Initially, the radar used was the FuG 212 C1 and C2 in combination with FuG 220 sets. Later during the war, the use of the FuG 212 was abandoned.
First Frontline Service Evaluation with the 1./NJG 1
On 22nd May 1943, the V7 and V9 prototypes were allocated for evaluation to the I.NJG 1 (Nachtjagdgeschwader 1) unit stationed at Venlo, Netherlands. During one flight, the V9 was tested by firing all its guns, but due to problems with one engine, the pilot had to abort the flight and return to base. While stationed there, both were reequipped with the FuH 212 Lichtenstein BC radar.
During the first combat operational flight on June 11/12th 1943, pilot Major Werner Streib managed to shoot down five RAF aircraft, four Lancasters and one Halifax bomber, over a period of 75 minutes. Only due to lack of ammunition was he forced to return to base. On his return, the canopy cracked in many places due to airframe stress, which lowered the visibility. To complicate the situation further, a number of onboard instruments simply stopped working. During landing, there were additional problems with the landing gear and the pilot landed the aircraft on its belly, heavily damaging the plane. Luckily, both crew members survived without a scratch. V9 had to be written off after this accident. In July 1943, V2 was also lost in a diving flight accident. The pilot did not survive.
Further Development
Due to the demand for more planes made by General Josef Kammhuber, some 22 pre-production aircraft were to be built. These were designated as He 219 A-0. To add to the confusion, these were also marked as V13 to V34. They were used to test different equipment, engines, and weapon loads.
Note that, due to greatly different information presented by different authors, the following information was taken from M. J.Murawski’s book (2009), “Heinkel He 219 Uhu”.
The A-0 series was to be put into production under four different versions. The R1 would have a longer fuselage and an armament of two MG 151/20 and two MK 108. The R2 was similar to the R1, but with a strengthened undercarriage and armed with four MK 103. The R3 was armed with two MG 151/20 and four MK 108. Finally, the R6 was equipped with the Schräge Musik system and two MK 108 cannons.
The A-0 series was also used to test the installation of auxiliary BMW 003 turbojet engines. One A-0 equipped with this engine managed to achieve a maximum speed of 385 mph (620 km/h) at 19.700 ft (6000 m). This aircraft was almost lost due to an engine fire. Despite the attempt to produce as many He 219 A-0 as possible in the first half of 1944, only 82 were built. By the conclusion of A-0 series production, only around 100 were built. The A-0 was to be replaced by the A-1 version, also planned to be mass-produced. Alas, this was never achieved and the He 219 A-1 was never put into mass-production, with possibly only a few ever built.
The A-2 version was to be put into mass production as a dedicated night-fighter. It reused the A-1 airframe with modifications to the armor thickness to improve protection, adding flame dampers, and increasing operational range. The first version of the He 219 A-2/R1 was powered by two DB 603 A/B engines and armed with an MG 151/20 and two MK 103 and Schräge Musik. The Schräge Musik was a weapon system developed by the Germans that consisted of two MK 108, with 100 rounds of ammunition each, mounted at an angle of 65°. These were mounted on the He 219 fuselage behind the larger fuel tank. In theory, these angled cannons could engage enemy bombers above the aircraft without fear of return fire. During the use of Schräge Musik in combat operation, there was a possibility that the attacking He 219 would be damaged by the debris of destroyed or damaged enemy bombers. To solve this problem, Mauser developed a new movable gun carriage that could change the elevation of the cannons from 45° to 85°. In practice, however, the ground crews simply removed the Schräge Musik system from the He 219. The He 219A-2/R2 version had increasing fuel capacity by adding extra fuel tanks of 900 liters under the fuselage.
The A-3 was a fast bomber and A-4 was intended to fight the British Mosquito, but both versions were only paper projects.
Problems with the fuel systems on the A-2 lead to the development of the A-5 version powered by the same engines. This A-5/R1 version was armed with two MG 151/20, two MK 103 and two MK 108 in the Schräge Musik system. The A-5/R2 was equipped with the FuG 220 radar and armed with four MG 151/20 and the standard Schräge Musik system. The A-5/R3 version was powered by DB 603 E engines and had the same armament as the A-5/R1. The A-5/R4 had a modified cockpit with three crew members. For this reason, the fuselage was lengthened to 43 ft (16.3 m). The third crew member was added to operate the rear-mounted MG 131 machine gun. The engines used were DB 603 E with increased fuel capacity by the addition of two fuel tanks, each with 395 l, and was armed with four MG 151/20.
The He 219 A-6 was designed to fight the British Mosquito. In order to increase speed, it was stripped of its armor plates and the armament was reduced to four MG 151/20. The sources are not clear if any were actually built.
The final version developed was the He 219 A-7, which was powered by two DB603 G engines. Its first subvariant, the A-7/R1, was heavily armed with two wing root MK 108 and four additional cannons, two MG 151/20 and two MK 103, in the ventral tray. The A-7/R2 was the same as the R1 but with the addition of the Schräge Musik system. The R3 was proposed to be used as a basis for the never-built B-1 version. The R4 had its armament reduced to only four MG 151/20. The R5 was the third and last attempt to modify the He 219 to fight the Mosquito. It was to be powered by the Junkers Jumo 213E engine, equipped with methanol-water injection that boosted the horsepower by 1,320 hp. The last R6 was to be powered by two Jumo 222A engines and armed with two MG 151/20 and four MK 103.
Unrealized Projects
Besides the main production version, two additional variants were to be tested and eventually put into production, but little came of this. The B-1 was designed as a three-seater heavy fighter powered by Jumo 222 engines. In addition, it had a redesigned fuselage and a larger wingspan of 22 m (72 ft). The armament consisted of four MK 108 and two MG 151/20 cannons and one MG 131. The B-2 was a two-seater high-altitude fighter and for this purpose had to be equipped with a pressurized cockpit. Whether any of the B-series were ever built is hard to tell, as the sources are not clear on this matter.
The C-1 was planned to be a four-seat heavy fighter powered with Jumo 222E/F engines. The armament was similar to the B-1 but armed with three more MG 131 machineguns. The C-2 was planned as a fighter-bomber based on the C-1, but with only two cannons and four MG 131. It was meant to be armed with a bomb load of 1,500 kg (3,300 lb).
The He 319 was a proposed fast bomber version powered by DB 603 A engines, but none were ever built. The He 419 was a proposed high-altitude fighter that was to be built using a combination of many different components of previous variants.
In Combat
As already mentioned previously, the He 219’s first combat flight was very successful, with five enemy planes claimed shot down. As this He 219 was lost in an accident, Heinkel sent two additional planes as replacements, V10 and V12. Uhu pilots managed to achieve more kills in the following weeks. In late July 1943, Hauptmann Hans Frank shot down two British bombers , a Lancaster and a Wellington, followed by one more Lancaster in August. On the night of August 30th 1943, these two He 219 managed to shoot down several more British bombers, three Halifaxes, one Stirling, a Wellington, and a Lancaster. One He 219 lost an engine due to enemy fire, but the pilot managed to land back safely. In early September, the two He 219 again attacked a British bomber formation and managed to achieved one kill on a Lancaster. However, on this occasion, one He 219 (V10) was heavily damaged by enemy return fire. In late September, the second He 219 was lost when it collided with a Me 110 in mid-flight. None of the pilots nor their radio operators survived the collision.
In October, the I./NJG 1 unit had seven Uhus, with only two fully operational A-0 under the command of Hauptmann Manfred Meurer. On 19th October 1943, Meurer managed to achieve his first victory while flying the He 219, his 57th overall victory. The next day, one He 219 was lost with its crew due to bad weather. On the night of October 22nd, 1943, Meurer shot down another Allied bomber. Due to quality issues with cockpit equipment and poor heating, all surviving He 219 were to return back to Germany.
As replacements, seven new He 219 (A-0 series) were delivered to I./NJG 1 in December of 1943. On the night of January 21, 1944, Manfred shot down another bomber, but during an engagement with a second bomber, Meurer’s Uhu accidentally collided with the enemy aircraft, killing the crews of both aircraft. He was succeeded by Hauptmann Paul Förster, the oldest pilot in the Luftwaffe, at the age of 42.
During March and April of 1944, several more kills were scored by the He 219. Interestingly, on 12th April, the crew of one He 219 was forced to activate the ejection seats. Both the pilot and the radio operator survived. This is considered the world’s first successful use of ejection seats in combat operations. On the night of April 22nd, Staffelkapitän Modrow managed to shoot down three British Lancasters and possibly two additional Canadian Halifaxes. By the end of April, some 10 Allied bombers had been shot down by the He 219.
The He 219 would continued to bring down many enemy aircraft, but there were some issues . While having excellent handling and firepower, problems arose with the aircraft’s weight. When fully loaded, the He 219 could not fly any higher than 27,900 ft (8,500 m). Another issue was that the speed of 375 mph (605 km/h) could be achieved only without radio antennas. With antennas and flame dampers, the speed was reduced to 347 mph (560 km/h). While it was faster than the Me-110, it was not enough to fight the British Mosquito.
During May of 1944, the He 219 managed to shoot down over a dozen enemy bombers with few losses. In June, Uhu engagements with British Mosquitos began to intensify. On June 2nd, one Mosquito was shot down with the loss of one He 219. From June 6th to 15th, four Mosquitos were shot down without any losses. On the night of June 15th, He 219 pilots managed to shoot down 10 Allied aircraft for the loss of one of their own. By the end of May, I.NGJ 1 had 56 He 219 in total, divided into two groups (Gruppen), and a command unit (Stab). The Stab had 2, I. Gruppe had 33 and the II.Gruppe 21. Of the 56 aircraft, only 43 were fully operational.
On 4th August 1944, a bizarre accident occurred involving one of three He 219 that were to be sent against an Allied daylight bomber raid. During the flight, the pilot of one He 219 noticed that one of the ground crew was somehow caught on the fuselage, hanging in midair. To save this airman’s life, the pilot landed on a nearby airfield. This decision additionally saved the aircrew’s lives, as both remaining He 219 were shot down by the Allied fighter escorts. In August, He 219 pilots managed to achieve only one victory.
Due to extensive air raids on its airbase at Venlo, Netherlands, I./NJG 1 was repositioned to Münster, Germany in early September 1944. On 9th September, two He 219 were lost to American fighters during a training flight. Also during this month, an additional 28 new He 219 were accepted by the Luftwaffe. At the start of October, during a test flight, I./NJG 1 commander Major Paul Föster was killed in an accident. A few more Uhu were lost in accidents or to enemy fire, with only one achieved victory for October.
Some of the last successful missions by the He 219 were at the beginning of November 1944, when 7 Allied bombers were shot down. By the end of 1944, the He 219 managed to shoot down smaller numbers of Allied aircraft, but the losses due to enemy action or accidents began to rise.
In 1945, the He 219 was plagued with a lack of fuel availability, increasing numbers of Allied air raids, and increasing technical problems with the operational aircraft. On 10th January 1945, I./NJG 1 had 64 He 219, with 45 operational aircraft. The last air victory achieved by the He 219 happened on the 7th of March 1945, when pilot Werner Bakke shot down a British Lancaster bomber over the Netherlands. On March 21st, the airbase at Münster was heavily bombed by the Allies. The raid continued the following day. During these attacks, 7 He 219 were completely destroyed, with 13 more damaged. To avoid future raids, the unit was repositioned to the isle of Sylt in Northern Germany. Due to the general lack of fuel, the combat use of the He 219 was limited. On the 9th of April, the number of He 219 within I./NJG 1 was 51, with 44 fully operational. For I./NJG 1, the war finally ended on the 30th April, when the airbase was captured by the advancing British forces.
Only a few units besides I./NJG 1 were ever supplied with the He 219. Some of these were Nachtjagdgruppe 10, a training and experimental testing unit formed in February 1944, Nachtjagd-Ergänzungsgruppe formed in April 1944, ZG 26 ‘Norwegen’ and NJG 5 which had 34 He 219, with 32 operational.
After the War
At the end of the war and the German capitulation, the British ground forces managed to capture around 54 He 219. Most were scrapped, but five were sent back to Britain for further examination by the Royal Air Force, and three were given to the Americans. Soviet forces also managed to capture two in Czechoslovakia. These received the designation LB-79 and were mostly used for testing at the Prague Aviation Institute up to 1952, when they were finally scrapped.
Surviving He 219
Of the several captured aircraft, only one He 219 (American equipment designation FE 164) still exists and is located at the Steven F. Udvar-Hazy Center at the National Air and Space Museum. It is currently under restoration, with most parts assembled aside from the nose and propellers. In 2012 a wreckage of a He 219 was discovered off the coast of Denmark. It was initially given to the Aalborg Defence and Garrison Museum museum for preservation, but was sold to a museum whose owner remains anonymous.
The He 219 Production
There is no precise information on how many Uhus were actually built. Authors Ferenc A. and P. Dancey give a figure of 294 planes, of which 195 were allocated to the Luftwaffe. D. Nešić states that 288 were built. Authors J. Dressel and M. Griehl mention that, from 1943 to March 1945, 268 He 219 were built in total, with the production of 11 in 1943, 195 in 1944, and the last 62 in 1945. Author A. Lüdeke mentions that 284 were built.
The production orders for the He 219 ranged from 100 to 300 per month, but these were never reached and only small monthly production was ever possible. To avoid Allied bombing campaigns, the production was moved to several locations in Rostock, Germany, Vienna-Schwechat, Austria, and factories at Mielec, Poland.
Despite the resources and time invested in the He 219 project, it was under great pressure from its old opponent, Generalfeldmarschall Erhard Milch. Even as the Uhu was shown to have promising flight performance, Generalfeldmarschall Milch urged it to be canceled in favor of the new Ju 88 G. Ernst Heinkel did what he could to see his project continue, but it would all prove to be futile. In May 1944, Hermann Goering ordered a halt to He 219 production. This order was then revoked, mainly at the insistence Karl Sauer, who was responsible for night-fighter development at this stage of war. While the production of the He 219 would continue on, it would never be built in any large numbers during the war due to political tensions, lack of resources, and workforce shortages.
Variants
He 219 V1-V12 – First built prototypes
V13-V34 – Used to test various equipment and engines,
He 219 A-0 – Pre-production version, around 100 built.
R1 – Had larger fuselage and armament of two MG 151/20 and two MK 108
R2 – Had strengthened undercarriage
R3 – Armed with two MG 151/20 and four MK 108
R6 – Equipped with Schräge Musik
He 219 A-1 – Proposed for mass production, possibly only a few airframes built.
He 219 A-2 – First production night-fighter version,
R1 – Armed with two MG 151/20 and two MK 103 and the Schräge Musik system.
R2 – Same as R1 but with increased fuel capacity.
He 219 A-3 – Proposed fast-bomber version, none built.
He 219 A-4 – Proposed improved night-fighter version, none built.
He 219 A-5 – Mass production series
R1 – Was armed with two MG 151/20, two MK 103 and two MK 108 in the Schräge Musik system.
R2 – Armed with four MG 151/20 and FuG 220 radio equipment.
R3 – Powered by DB 603E engines.
R4 – Powered by DB 603E engines, with one more crew member added that operate the rear-mounted machine gun.
He 219 A-6 – Anti-Mosquito version, unknown if any were built.
He 219 A-7 – Final production version powered by the DB603 G engine and equipped with different weapon loads.
R-1 – Armed with two wing root MK 108 and four additional cannons (two MG 151/20 and two MK 103) in the ventral tray.
R-2 – Same as previous version with added Schräge Musik system.
R-3 – The MK 108 cannons in the wing root were replaced with MG 151/20.
R-4 – Armament reduced to only four MG 151/20.
R-5 – Powered by Junkers Jumo 213E engine.
R-6 – Powered by Jumo 222A engines, and armed with two MG 151/20 and four MK 103.
Proposed Versions
He 219 B
B-1– Proposed three-seater heavy fighter, possibly few built.
B-2 – Proposed high-altitude fighter.
He 219 C
C-1 – Proposed four-seat heavy fighter.
C-2 – Proposed fighter bomber.
He 319 – Proposed fast bomber version, none built,
He 419 – Proposed high-altitude fighter
Operators
Nazi Germany – Produced less than 300 aircraft, but only 195 were ever issued to the Luftwaffe.
USA –Used three aircraft for testing after the war, one survived to this day.
UK – Five aircraft were transported to the UK for testing after the war.
Soviet Union – Captured at least two He 219, these were given to Czechoslovakia and used for testing.
Conclusion
The He 219 proved to be one of the best German night-fighter designs of the war. Despite the small number of aircraft built, the pilots flying the He 219 managed to shoot down many Allied aircraft. While the He 219 is generally known today as a night-fighter that, if produced in greater numbers, could have stopped the Allied bombing raids, in truth this was not possible. During service, the He 219 proved to have some issues, of which the most serious was the inability to climb when fully loaded to an altitude higher than 27,900 ft (8,500 m) and a combat speed of 347 mph (560 km/h). In addition, it was built too late and in too small numbers to seriously threaten Allied bomber formations.
Specifications – Heinkel He 219A-7/R2
Wingspan
60 ft 8.3 in / 18.50 m
Length
50 ft 11 in / 15.5 m
Height
13 ft 5 in / 4.10 m
Wing Area
480 ft² / 44.50 m²
Engine
Two 1,900 hp Daimler-Benz DB 603G engines
Empty Weight
24,690 lb / 11.200 kg
Maximum Takeoff Weight
33,730 lb / 15,300 kg
Fuel Capacity
687 gallons / 2,600 liters
Maximum Speed
416 mph / 670 km/h
Cruising Speed
391 mph / 630 km/h
Range
1,240 mi / 2,000 km
Maximum Service Ceiling
40,025 ft / 12,200 m
Crew
One pilot and one navigator
Armament
Two 30 mm MK 103 and a twin 20 mm MG 151/20 Ventral Gun Pod
Two 30 mm MK 108 in the wing roots
Two 30 mm MK 108 in the Schräge Musik configuration
The combined American, British and Soviet Air Forces began to take over the skies above Europe in the later part of the war. Germans were desperate to find a way to fight the combined Allied bomber raids that were slowly destroying German industry which was necessary for continuation of the war. A cheap and easy to build jet fighter was believed to be the solution to the Allied bombing raids. From these aspirations the Volksjäger, “The People’s Fighter,” project was born.
Emergence of the Volksjäger Concept
The men responsible for the creation of the Volksjäger idea and concept were civil engineers Hauptdienstleiter Dipl-Ing Karlo Otto Saur, who was also a member of the Nazi party, and Generaloberst Alfred Keller.
Otto Saur was quick to realize that by 1944 the Luftwaffe was a shadow of its former glory. This was most obvious for the fighter force, which was engaged in a desperate struggle with a more numerous and better equipped enemy. Otto Saur’s conclusion was that a cheap and easy to build jet fighter could tip the balance of power in Germany’s favor again. He was quick to present his idea to Hermann Göring, Reichsluftfahrtminister, the Reich’s Minister of Aviation, who immediately supported it.
Generaloberst Alfred Keller, who was in charge of the flying, training and sports association (Nationalsozialistisches Fliegerkorps – NSFK) also supported the Volksjäger idea. The NSFK organization was also involved in offering several courses, The Flying Hitler Youth (Flieger Hitlerjugend) on how to build model aircraft and glider flying training for schoolboys. In support of Otto Saur’s proposal, Alfred Keller came with his own proposal to use these young boys, with ages between 15 to 17, as pilots for the mass produced Volksjäger. In Keller’s opinion, all that was needed was some short training with gliders which would be supplemented with more training on the Volksjäger.
Many in the Luftwaffe command opposed this project and the idea of using young boys as fighter pilots against the numerous and well-equipped and trained Allied air forces. The greatest advocate against this project was Generalleutnant Adolf Galland, being supported by Willy Messerschmitt, chief designer of the famous Messerschmitt company, and Kurt Tank, the most well-known designer at Focke-Wulf. The most important reason behind this opposition was the fact that, towards the end of the war, Germany was lacking fuel, materials, pilots, production capacity and many other elements. They argued that all available resources should be directed to the development and production of the already existing Me 262 jet fighter.
In the years prior to the collapse of the Luftwaffe, such a concept would most likely never have gained any support from Luftwaffe officials. However, by 1944, the Germans were in a desperate need for a wonder weapon to turn the tides. As Hermann Göring was no longer in Hitler’s good graces, he was desperate to find a way to appease Hitler. The best way to do this was to somehow find a miraculous solution to salvage the Luftwaffe, stop the incessant Allied bombardment of Germany, and provide much-needed support to the beleaguered Wehrmacht. Through these psychological lens, Otto Saur’s and Alfred Keller’s proposals looked like an ideal solution. Despite the great opposition, Hermann Göring kept insisting that the Volksjäger development should begin as soon as possible. The Volksjäger would later be supported by Adolf Hitler and Albert Speer (the Minister of Armaments and War Production).
First Steps
In the search for a new low-altitude fighter, Oberst Siegfried Knemeyer was named responsible for the Volksjäger’s initial requirements. He was in charge of the Technical Equipment Office for flight development of the Ministry of Aviation (Reichsluftfahrtministerium, RLM). Siegfried Knemeyer was an experienced military pilot and engineer who participated in the test flights of many different experimental aircraft designs. From 1943 onward, he was part of Hermann Göring’s cabinet from where he actively supported the development of the new Me 262.
While the Me 262 jet fighter was superior to piston powered Allied planes, it was far from perfect. The most significant problem with the Me 262 was the poor performance at low altitude, where it was an easy prey for Allied fighters. This is also where Allied fighters and close support aircraft were very active and often attacked German airfields, supply trains and ground troops. The already existing Me 109 and Fw 190 were becoming outdated and insufficient by late 1944 standards. In order to effectively counter enemy planes at low altitude, a new design was needed according to Siegfried Knemeyer, who noted (Source: Robert F. He 162 Volksäger Units):
“… It became absolutely essential to develop a high-speed, single-seater fighter that had asufficiently good performance which would enable it to take off when enemy aircraft were actually sighted. In addition, due to the bombing of our large airfields with long runways, these new fighters had to be able to take off in a very short distance and thus enable small landing grounds to be used. The mass production of such an aircraft had to be on such a scale as would enable the enemy to be engaged at any point and during the entire duration of their flight …… By limiting the endurance and the armament requirement for this new aircraft, the existing jet fighter (the Me 262) would have fulfilled the requirements. However, this aircraft had to be ruled out since it was not possible to produce the numbers that would have been required for combating these low-flying attacks and, in particular, because the provision of two power units per airframe was quite beyond the capacity of industry… “. Based on this, Siegfried Knemeyer gave a list of specifications which the new low-altitude fighter had to conform with:
This plane should be able to take off from runways less than 1970 ft (600 m) long.
It should be powered by a single jet engine, in order to lower the costs.
As the Jumo 004 engine could not be produced in sufficient numbers, another engine was needed. The new BMW 003 was recommended.
Maximum speed at sea level should be at least 465 mph (750 km/h).
The production process had to be as simple as possible without disturbing the production of the Me 262 and Ar 234.
The main building material should be wood. A larger number of furniture manufacturers and carpenters should be included in the production as they had the skill and experience in working with wood that would be needed.
Based on these requirements, the RLM placed an initial order for the new Volksjäger low-altitude jet fighter in July 1944. The first mockup needed to be ready by 1st October, 1944, and a fully operational prototype should have been ready by early December the same year. The main production was planned to begin in early 1945.
The Race for the Volksjäger
For some time, the Volksjäger seemed like it would remain only a paper proposal, as little progress was made until September 1944. On 7th September, a high priority teleprint message arrived at the Heinkel company. This message was sent by Dipl-ing Karl Frydag, Heinkel’s General Director at the Ministry, but also the leader of the Main Committee for Aircraft Construction and an acquaintance of Otto Saur. The high priority message was addressed to Prof. Ernst Heinkel and his main engineer team. This illicit message contained information including not-yet-published RLM tender requirements for the new Volksjäger jet fighter.
As the official tender request was to be issued by RLM in only a few days, Ernst Heinkel and his team moved quickly to use the small time advantage they had over other possible competitors. The first thing Ernst Heinkel did was to give instructions to reuse the P 1073 paper project that was intended for an RLM request from July. P 1073 was, according to the original plans, to be powered by two HeS 011 or Jumo 004C turbojet engines. One engine was to be mounted on top of the fuselage behind the cockpit and the second one below, right under the cockpit. The maximum speed using the HeS 011 engines was estimated to be around 630 mph (1010 km/h) at 19700 ft (6000 m). P 1073’s wing was swept back at 35° with a “V” shaped rear tailplane. The armament would include two 1.18 in (30 mm) MK 108 and two MG 151/20 0.78in (20 mm) cannons.
Later, due to the new specifications for the Volksjäger, P 1073 was modified to be powered by a single BMW 003 engine. Other changes, such as increasing the dimensions, a new straight wing design and adding new rear twin tail fins. The name was changed to P 1073-15. Further modifications were conducted at the Rostock-Marienehe plant. These included a high unswept wing design, the engine mounted above the fuselage, an armament of only two MG 151/20 0.78 in (20 mm) cannons, a tricycle undercarriage and a weight around 2.5 t. The maximum speed at ground level was 500 mph (810 km/h). It was possible to increase the offensive armament with bombs and 1.18 in/30 mm cannons. The name was again changed to P 1073-18.
By 9th (or 8th, depending on the source) September 1944, other German aircraft manufacturers received the RLM requirements for the new Volksjäger project. According to these, the Volksjäger fighter had to be able to take off in less than 1640 ft (500 m). It had to be powered by one BMW 003 jet engine and the total weight must not must not exceed 4410 lbs (2000 kg). The maximum speed at sea level had to be at least 460 mph (750 km/h). The flight endurance at full thrust had to be at least 30 min. The main armament had to consist of either two MK 108 (with 80 to 100 rounds per gun) or two MG 151/20 (with 200-250 rounds per gun) cannons.
The main construction material would be wood with a smaller amount of steel used. Protection for the pilot, fuel tanks and the main gun ammunition was to be provided. However, since great attention was dedicated to the short take off distance, the manufacturers were allowed to reduce the armor and ammunition load if needed. First proposals from all interested aircraft manufacturers were to be ready in only a few days, as a draconically unrealistic deadline was set for the 14th (or 20th depending on the source) September.
Besides Heinkel, which was “unofficially” familiar with the details of this tender a few days before its publication, others aircraft manufacturers participated and submitted their own proposal. The competitors included Arado (E 580), Blohm und Voss (P 211.02), Junkers (marked either as EF 123 or EF 124) and Focke-Wulf. Focke-Wulf actually presented two different proposals (Volksflitzer and Volksflugzeug). Others, like Fieseler and Siebel, lacked the manpower and production capacity to successfully participate in this tender. Messerschmitt did not participate in this competition as Willy Messerschmitt was against the Volksjäger concept from the beginning. He was a great opponent of this project, arguing that increasing the production rate of the Me 262 should have a greater priority and that the Volksjäger was a waste of time and materials which Germany was sorely lacking.
By the end of the competition period, all proposals were submitted to the RLM. After two days, a conference was held in Berlin with the representatives of all five companies, together with officials from the Luftwaffe and RLM. The Arado, Focke-Wulf and Junkers projects were immediately rejected. Even Heinkel’s original proposal came close to being rejected, as it would be complicated to build. It was judged that the best proposal was the Blohm und Voss P 221-02 project, as it was (at least on paper) easier to build and used a smaller quantity of duralumin. At this point, Heinkel representatives were trying to win the competition by arguing that, due to the cancelation of the He 177 and the He 219 programmes, they would have enough production capacity to manufacture the Volksjäger in great numbers. They also proposed to make the entire design far simpler for mass production.
In the following days, there were many difficult and exhausting discussions around the Heinkel and Blohm und Voss projects. There was a sharp debate between Heinkel Dipl-Ing. Francke and the RLM Generaldirektor Frydag which supported the Blohm und Voss project. These discussions caused some delays in making the final decision for the implementation of the Volksjäger project. At the same time, at the Heinkel factory at Schwechat near Vienna (EHAG – Ernst Heinkel AG), work began on calculations and drawings in preparation for the production of the first models of the Volksjäger, marked as the He 500.
The final discussion regarding the competition was held at Hitler residence in Rastenberg, in East Prussia. Hermann Göring enthusiastically and actively supported the He 500 without even considering the Blohm und Voss P 221-02 project. He also gained the support of Adolf Hitler and Albert Speer. Thus, in the end, the Heinkel project was chosen. This decision was also based on the experience that Heinkel had accumulated with the construction and development of jet technology (with the He 178 and He 280) but also due to the significant lobby that this company had.
Although Heinkel’s design won, there were requests for some alterations. For easier production and construction, the design of the tail, fuselage and the landing gear had to be simplified. As was originally planned, the first mockup was ready by 1st October 1944 and the first prototype was to be built by 10th December of the same year. The main production was to begin in January 1945 with 1000 planes per month, which would be increased to 2000 per month. These dates and numbers were, taking Germany’s economic and military situation into consideration, unrealistic and understandably never achieved.
According to Ernst Heinkel, the final designation for the new Volksjäger was meant to be He 500. However, the RLM officials, in the hope of somehow hiding its original purpose from Allied intelligence, gave it the designation “8-162”. In some sources, it is also called “Salamander”. This was actually a code name given for wooden component production companies. The He 162 is also sometimes called “Spatz” (Sparrow), but this name is, according to some sources, related to the He 162S training glider prototype.
Construction of the First Prototypes
The work on the final design was given to the engineers Siegfried Günter and Karl Schwärzler. A large design staff of some 370 men was at their disposal. The design work was carried out at the Heinkel workshop (at Schwechat Air Base) near Vienna. By 15th October, the first sketches and production tools were ready.
The Heinkel factory (in Vienna) was responsible for beginning the serial production of the He 162. In the hope of speeding up production, other factories were included along with many smaller companies. Each of these were to be responsible for producing certain parts and components of the He 162. When all necessary parts for the construction of the first prototype were built, they were to be transported to Vienna for the final assembly. Due to a lack of transport capability and insufficient quality of wooden parts (especially the wings), there were some delays.
Despite the fact that wood was easier to work with, there were huge issues with the quality of the delivered parts. Some of the problems encountered were that the production procedures were often not carried out according to regulations, the glue used was of poor quality, sometimes parts would not fit together. There were situations in which large numbers of wooden parts were returned to the suppliers simply because they could not be used. There were also problems with the first prototype’s engine as it was damaged during the transport and had to be repaired. All the necessary parts arrived by 24th November and the assembly of the first He 162 prototype could begin.
The He 162 V1 prototype (serial number Wk-Nr 200001) was ready for testing by 1st December, 1944. The first series of prototypes had the “V” (Versuchmuster) designation. Later, starting from V3 and V4, the designation was changed to “M” (Muster – model). If it is taken into account that, from the first drawing to the first operational prototype, no more than two months had passed, this was an impressive feat. The V1 prototype was to be tested at Heidfeld but, due to some stability problems with the undercarriage, only limited ground test trials were held.
These problems were addressed by 6th December, when the He 162 made its first test flight piloted by Heinkel’s main test pilot, Flugkapitän Dipl-ing Gotthold Peter. The flight lasted around 20 minutes at speeds of 186 mph (300 km/h). During this flight, probably due to the poor quality of production, one of the three landing gear doors simply broke free and the pilot was forced to land. Beside that, the whole flight was considered successful, there were no other problems and the engine performed excellently.
At the same time, three more prototypes (V2, M3 and M4) were under construction to be used for future tests. The second prototype was transported to Heidfeld (arrived 7th December). During the production of the first series of prototypes, a problem with the wing construction was noted. The main issue was the use of poor quality glue, but at that time this problem was largely ignored.
On 10th December, another flight was performed for the Luftwaffe military officials at Schwechat. Like in the previous flights, the pilot was Gotthold Peter. In the hope of impressing the gathered crowd, the pilot made a low pass (at 330 ft/100 m) at 456 mph (735 km/h). This flight was going well until the moment when a part of the wing and ailerons were torn off, which caused the pilot to lose control and crash to the ground. Despite having an onboard ejection seat, Peter failed to activate it (possibly due to high G-forces) and was killed in this accident.
The whole flight was captured on a film camera by one of the Luftwaffe officers. The film and the wreck were thoroughly examined by Heinkel engineers who immediately noticed a few things; the wing parts were joined by using low quality glue, the poor aerodynamics of the wing design and the instability of the prototype lateral axis led to the tear off of the wing parts. As a result of this accident, the wing design was strengthened and the maximum flight speed was restricted to only 310 mph (500 km/h). Also, the size of the horizontal stabilizer was increased, the main fuel tanks were reduced in size and the wings’ connection to the main fuselage was reinforced. This accident did not have any negative impact on the continued development on this project which proceeded without interruption.
After this accident, other pilots were reluctant to fly on the He 162. Due to this, Ernst Heinkel was forced to offer a sum of 80,000 Reichsmarks for any pilots who were willing to test fly the He 162. A pilot who agreed to fly was Dipl.-Ing. Carl Francke, who was the technical director of EHAG. He made the first test flight with V2 (serial number Wk-Nr 200002) on 22nd December, 1944. Later that day, a second pilot, Fliegerstabsingineur Paul Bader, made more test flights. Flight trials with the second prototype were carried out without much problems. The V2 prototype was used for testing different wing designs and different weapon installations (two 1.18 in/30 mm Mk 108 cannons). After this, V2 would be used mostly for ground examinations, conversions, equipment testing and for attempts to simplify the overall design in order to ease production.
The third prototype was ready by 20th December, when it was tested by Paul Bader at Heidfeld. While the flight went on without many problems, the pilot noted the poor front ground visibility and vibrations during takeoff and landing. In order to improve the He 162’s wing design, the experienced Dr Alexander Lippisch (who worked on the Me 163) was contacted and included in the project. His proposal for improving the He 162’s stability was to fit small “Ohren” (ears) to the wingtips. As these were later implemented on all produced He 162, they were generally known as the ‘Lippisch ears’.
The M3 and M4 prototypes were the first fighters to be equipped with these wingtips. These two models had strengthened and redesigned wing construction with thicker plywood covering, also to shift the centre of gravity, extra weight was added to the plane’s nose. These modifications improved the He 162’s overall performance and stability significantly. The M3 improved prototype was tested in late February 1945 when it managed to reach an incredible speed of 546 mph (880 km/h). The M4 prototype was ready by the end of 1944 but, due to some engine problems, the first flight was only possible at the beginning of 1945. The first flight tests were carried by Dipl-Ing Schuck on 16th January, 1945. As the M3 and M4 wing design and shape proved satisfactory, they were chosen to be used for the upcoming production of the first He 162A combat operational variant.
The M5 prototype was built but it was never used operationally nor did it ever fly. The M6 prototype, which was intended to be used as base for the He 162A-1 production model, made its first test flight on 23rd January, 1945. The M7 (the base for the He 162A-2) was used for vibration tests and trialing the braking parachute. The M8 was the first to be equipped with two MG 151/20 cannons (120 rounds of ammunition per gun). The M9 and M10 were intended as two seat trainer aircraft versions but none were built. The M11 and M12 were powered by the much stronger Jumo 004D Orkan turbojet engine. These were to be used as base for the He 162A-8. The M13 moniker was never assigned to any prototype due to the belief that this number was unlucky. The prototype models M14 to M17 were never built. The M18 and M19 were powered by the new BMW 003E-1 jet engine which was intended to be used for the He 162A-2 production model. The M20 was used for testing different and simpler undercarriage designs. The M21 and M22 were used for main weapon testing. The M23 and M24 were used for installation of new wing root filters and for handling flight tests.
These prototypes were extensively tested and examined in detail from 22nd January to 12th February. In this period, over 200 test flights were carried out. Not all test flights were successful and without accidents. On 24th February, M20 was damaged during landing due to undercarriage malfunction. The next day, while testing the M3, there was a malfunction that led the pilot losing control of the aircraft. He managed to get out but his parachute did not fully extend, leading to his demise. At the beginning of May, one more prototype was lost in an accident. In total, there were more than 30 prototypes built. It is interesting that, even before the testing of the prototypes was completed, preparations for production of the He 162 were already underway.
He 162 A-1 and A-2
Despite the original plans requiring the start of the production in early 1945, this was never achieved. Due to the chaos in Germany at that time, there were many delays with the arrival of the necessary parts. There were shortages of nose wheels, rudders, interior equipment, weapons parts, poor quality glue and many others. For example, at Rostock, there were more than 139 partly built fuselages which could not be completed due to a lack of parts. There was also a problem with the large number of wings and tails built that were defectuous and unusable. A generalized lack of fuel, transport vehicles and electricity, Allied bombing raids and the use of slave labour also negatively influenced the overall production. Around ten pre-series He 162A-0 (with different prototype numbers) were built and stationed at Schwechat to be used for more testing needed in order to eliminate more problems.
The production of the first series of operational aircraft was delayed and began only at the end of March 1945. The first production series were marked He 162 A-1 and A-2. There are few visual differences between these two models. The only major difference was the armament. The A-1 was equipped with two 1.18 in (30 mm) cannons and the A-2 with two 0.78 in (20 mm) cannons. As the production of 1.18 in (30 mm) cannons was halted due to Allied bombing and the Soviets capturing the production factories, the few remaining cannons were to be allocated to the Me 262. The production of the A-1 was stopped and the exact number of manufactured aircraft is unknown. Due the lack of 1.18 in (30 mm) cannons, the He 162 manufacturers were forced to use the lighter and weaker 0.78 in (20 mm) caliber weapons.
A number of serially produced A-2 aircraft were not used for troop trials, but were instead sent to test centres for future modifications and testing. A small number would eventually reach the German troops in April. While the production of the A-2 would go on until the war’s end, the total number of produced aircraft is unknown.
The He 162 Design
The He 162 was designed as a high-wing jet fighter with a simple fuselage with clean lines, tricycle retracting landing gear and built using mixed construction. The simple fuselage was built by using a cheap and light metal alloy (duralumin – a combination of aluminium and copper) with a plywood nose and (one-piece) wooden wings.
The fuselage was a semi-monocoque design covered with duralumin. The front part of the fuselage was egg-shaped and had good aerodynamic properties. The nose was made of plywood and was fixed to the fuselage by using bolts. The middle top part of the fuselage was flat and the engine was connected to it. The wood was also used for the undercarriage doors.
The wings were made out of wood and connected to the central fuselage by using four bolts. In order to ease production, the wings were built in one piece. The flaps and ailerons were built using a wood frame which was covered with plywood. The flaps were controlled by using a hydraulic system while the rods were controlled with wire. To help with the stability at the end of the wing, two wingtips (one on each side) were added. These were angled at 55° downwards and made of duralumin. The two-part rear tail was made of metal and was connected to the end cone of the fuselage. The tail rudders were controlled using wires and rods.
The He 162 used a tricycle landing gear design, with one wheel at the front and two more located in the centre of the fuselage. The landing gear was hydraulically lowered and raised. The dimensions of the front nose wheel were 500×145 mm and no brake system was provided for it. Interesting to note is that the front nose wheel, when retracting, partly reached into the lower part of the front cockpit. A small window was provided for the pilot so that he could see if it was fully operational. The two central landing wheels were larger, 600×200 mm. Both the front and the rear landing wheels retracted to the rear. To help with landings, hydro-pneumatic dampers were provided.
The plexi-glass cockpit was made of two parts, the front windshield and the rear hinging canopy which were screwed into the inner bar frame. In order to make the whole construction simple as possible the cockpit was not pressurized. For better ventilation on the left side a small round ventilation window was installed. The pilot cockpit was more or less a standard German design but much simpler. It provided the pilot with good all-around view of the surroundings, but there were some complaints by some pilots for poor front ground view.
The control panel was made of wood, on which the necessary instruments were placed. Only a few were provided for the pilot and these included the speed indicator, panel lights, turn and bank indicator, rate of climb, FK 38 magnetic compass, temperature indicator, AFN-2 display, oil and fuel pressure gauge, fuel level gauge, chronometer, ammunition counters and engine tachometer. The fighter controls were placed as standard in front of the pilot. On the pilot’s left-side, the fuel valve, flap controls, landing gear control, throttle lever and trimming control were located. On the opposite side was placed the radio system (FuG 25A). The pilot seat was of a simple design but equipped with Heinkel’s ejection system with a parachute. The He 162 was one of the first German aircraft to be equipped with an ejection seat as standard equipment. The cockpit was separated from the rest of the plane by a sloped metal plate. This plate was installed in order to provide the pilot some protection in case of emergency (like fuel tank fire etc.). Behind this plate were the oxygen supply tanks with a 3 l capacity.
The engine chosen for the He 162 A-2 was the BMW 003E-1/2 turbojet (in some sources the A version was used). The engine was fixed in a nacelle placed above the central fuselage. The engine consisted of a seven-stage axial compressor, injection nozzle, annular combustion chamber and one single-stage axial turbine equipped with sheet metal heat-resistant blades which were air-cooled. The exhaust nozzle was controlled by an adjustable needle which could be mechanically moved into four positions: Position A for idle, S for start, F for flying at altitudes lower than 26.200 ft (8.000 m) and M for flying at altitudes above 26.200 ft (8.000 m). The BMW 003E-1/2 turbojet could achieve maximum thrust of 1.800 lbs (800 kg).
When flying at a speed of 500 mph (800 km/h) at 36.100 ft (11.000 m), the maximum thrust would fall down to only 740 lbs/340 kg. To start the engine, a small Riedel piston engine (9.86 hp) was used. This engine could be started either by using an electric starter motor or manually with a ring-pull. The He 162 engine was 11 ft (3.6 m) long with a diameter of 2.3 ft (69 cm) and a weight of 1.375 lbs (624 kg). The estimated life cycle of the engine was only 50 hours. As the engine was positioned above the fuselage, in order to avoid any damage caused by exhaust gasses, a steel plate was placed under the jet nozzle. The position of the engine also means it was easier to mount and repair. It was also easier to replace it with a new one.
The fuel tank was positioned in the middle of the fuselage. In order to save weight and to ease the production, a rubber fuel tank was used. The main fuel tank had a capacity of 695 l and there were also two smaller 175 l tanks located in the wings. For takeoff, up to two smaller auxiliary Ri 502 rocket engines could be installed. They would be located in the lower rear part of the fuselage.
The He 162’s original weapon system consisted of two MK 108 cannons, but the most built version was equipped with weaker MG 151/20 cannons. The two cannons were placed in the lower front part of the fuselage. The main gun’s ammunition was stored behind the pilot, with 120 rounds for each gun. In order for the ground support crews to have access to the gun and ammunition, wooden door panels were provided. For the gunsight, the Revi 16G or 16B models were used. There was also a gyroscopic EZ 42 gunsight tested on one He 162, but this was never adopted for service.
Other Versions and Prototypes
Despite the improvements done to the main production versions, there were still room for enhancements and modifications of the He 162. Most efforts were devoted to the installation of stronger engines and various aerodynamic improvements in order to achieve the highest speed possible. There were also plans to make the He 162 much cheaper and easier to produce. Different armament loads were also tested or proposed. Most of these proposals remained on paper only, but some received limited testing.
The first in line of the intended improved He 162 was the A-3 version. This was meant to be armed with 1.18 in (30 mm) MK 103 or MK 108 cannons (depending on the source) located in a redesigned front nose, but it is unclear if any were ever built. Later, an identically armed version (A-6) with a redesigned and longer fuselage (30 ft/9.2 m) was proposed but, like the previous version, none were probably built.
In order to increase the He 162’s maximum speed, it was intended to install the Jumo 004D “Orkan” (2.866 lbs/1.050 kg of thrust) engine to replace the standard jet engine used. The new engines were to be transported to Schwechat and tested there on fully operational prototypes. The whole process was too slow, and only as late as March 1945 were the few prototypes almost finished, but due to the war’s end, none were ever fully completed or tested. This modification is known under the name He 162 A-8. The A-9 (in some sources marked as He 162E) was to be powered by one BMW 003R engine, supported by a second BMW 718 rocket engine for extra power. The engines were tested but they were never installed on any He 162. While Heinkel conceived up to 14 different proposals for the “A” version, beyond those mentioned above, almost nothing is known about the others.
Note that the following designations (B, C and D) were never found in any EHAG official documentation and are not known to have been used by the Germans. This article will use them for the sake of simplicity only. (Source: Miroslav B. and Bily B.)
Despite the fact that the He 162 was designed to be simple and easy to build, the engine was still relatively difficult to produce in great numbers. In hope to increase the number of engines being built, the Germans began testing the less demanding technology of pulse jet engines (used on the V-1 flying bomb). The first proposed pulse jet engine to be mounted on the He 162 (generally known as He 162B) was the Argus As 004 (with 1,102 lbs/500 kg of thrust). This was followed by a second proposal to mount two Argus As 014 (each with 739 lbs/335 kg of thrust) pulse jet engines. The single engine version is named, in some modern sources, as B-2 and the two engine version as B-1. None were ever built and tested, possibly because the pulse jet was considered inferior to jet engines.
There were many experiments with different wing designs and shapes in order to improve the flying performance and ease production. Two similar designs were based on all-metal swept wings. The first (today called the He 162C) had a back swept wing design with the second half of the wings bent down at a sharp angle. The second (often nowadays referred to as the He 162D) had an unusual forward swept wing design. Both of these models were to be powered by one Heinkel-Hirth 011A turbojet engine (2,866 lbs/1,300 kg of thrust). Both models also had different rear tail designs. The maximum estimated top speed with this engine was up to 620 mph (1000 km/h). There were also other proposed wing designs but, beside these two, none seem to have been tested. Only a few incomplete prototypes were built and they were captured by the advancing Allied forces by the end of the war.
In autumn of 1944, it was suggested to use the He 162 for the German “Mistel 5” weapon projects. This configuration would consisted on one unmanned Arado E 337a glide bomb that would be guided by an He 162 connected on top of it. As the Arado E 337a was never built, this project remain on paper only.
At the end of January, there was a proposal to modify a few He 162 to be used as “Behelfs-Aufklarer”, in essence improvised reconnaissance planes, but this was never implemented.
TheVolksjäger Training Versions
As the Volksjäger project got a green light for its implementation and orders of planned production in the thousands, a solution on how to train such large numbers of new pilots was needed. One proposal was to begin training with gliders (including a glider version of the He 162) and, after a short period of time, the pilot (usually from the Hitler Youth) would learn to fly on the training versions of the He 162. The glider version was named He 162 S “Spatz” (Sparrow). According to other sources (M.Balous and M.Bily), the “S” stands for Segelflugzeug (glider).
These gliders had to be designed and built to emulate the He 162’s takeoff and landing properties as much as possible. In order to stay in the air, the gliders were to be connected to a 1 km long cable which was attached to a 150 hp motorized winch. The gliders were to have two seats, one for the future pilot and one for the instructor. One prototype was flight tested in late March 1945 by Ing Hasse. Even the famous German woman test pilot Hanna Reitsch made at least one flight in it. The He 162 S was very similar to the original He 162, with some modifications like larger wings and fixed landing gears. The choice for using gliders as replacement for training planes was based on the general lack of fuel. Around ten of these gliders were ordered and, if testing showed good results, some 200 were meant to be built. But, due to the bad economical situation in Germany at the time, only a few were ever built at Schönhage (Hannover).
The second training aircraft was a fully powered two seat trainer version. There is no official military marking or name for this version, but today it is often known as the He 162 Doppelsitzer (two seater). This version was to be powered by a BMW 003E-1 or E-2 engine. It was to have a second seat for the instructor placed behind the main cockpit. In order to make more room in the unmodified He 162 fuselage, the gun, ammunition and oxygen tanks had to be removed. The production of this version was planned to begin by the end of 1944 and was to be built by DLH (Deutsche Lufthansa) at Oranienburg. Only one incomplete prototype may have ever been constructed.
To help the training of new pilots at the Luftwaffe test center (Rechlin), a simulator model was built. It had the exact same cockpit like an operational He 162 with all instruments. Its primary purpose was to be used for combat and fire simulator training.
Main Armament Proposal
As already stated, the 0.78 in (20 mm) cannons were, by 1944/45 war standards, simply inadequate and the lack of stronger 1.18 in (30 mm) cannons forced the Germans to search for different (somewhat unconventional) weapons for the He 162.
To increase the offensive armament, the 2.2 in (55 mm) R4M air-to-air rocket was proposed to be installed under the He 162’s wings. Another proposal was to arm the He 162 with the SG 118 Rohrblocktrommel weapon system which consisted of three 1.18 in (30 mm) barrels (connected in a circle), each armed with 7 rounds. The last proposal was to use the 3.14 in (8 cm) Panzerblitz missiles. There were planned to use the EZ 42 gyroscopic gun sight on the He 162, but the single prototype was destroyed in an Allied bombing raid. If any of these proposals were ever been implemented or allocated a version name is unknown but very unlikely.
Production
It was hoped by the Luftwaffe military officials that the He 162 would be built in great numbers. They counted on the fact that, by using cheap materials (mostly wood) and by employing many smaller subcontractors (woodworkers and furniture manufactures), the overall costs and time necessary for the production would be reduced.
Several factories were responsible for the production of the He 162 at Heinkel-Nord in Rostock-Marienehe, Heinkel-Sud, Hinterbühl (underground factory), Vienna-Schwechat (prototype production) and Mittelwerke (Nordhausen). In order to increase the production, Heinkel and Junkers made an agreement to use the vast Junkers production capacities. Junkers would be responsible for the production of the majority of the new He 162 planes at Bernburg. Also, a large number of smaller subcontractors were to be included, like EHAG Walldwerk or Pütnitz. The main engine suppliers were Spandau and Zühlsdorf. The armament was to be provided by Deutsche Waffen und Munitionsfabrik at Posnan. The wooden elements would be made at Erfurt, Orla and Stuttgart-Esslingen (these were also building components for the Me 163 and Ta 154). Some 750 man-hours were needed for the He 162, together with 300 man-hours for the engine production. Due to slow production, Hitler gave an order on 27th March, 1945 for the SS to take over the whole Volksjäger project. However, this had only limited (if any) effect on the speed of production.
As it was only built during the last month of the war, when confusion and chaos were ever-present in almost all spheres of political or military life in Nazi Germany, exact information about how many aircraft of this type were built is impossible to find. Depending on the sources, the total production was in the range of 116 to more than 200. According to different Authors: C. Chan (240), D. Mondey (116), F. Crosby (200), A. Ludeke (270), D. Nešić (120). According to the German General Staff Department 6 (Generalstab Abteilung 6), the total number of He 162 built was 116 aircraft. After the war, around many airfields, some 100 He 162 in different conditions were found. Additional 800 aircraft were found in different stages of factory assembly, which also complicates determining the exact number of produced He 162.
On 7th April, 1945 Hitler gave orders to stop any further development and production of the He 162 in favor of the Me 262 and Arado 234. It is hard to say for sure, but as the He 162 was produced until the end of the war, this order seems to never have been fully implemented.
Operational Service
The delivery of He 162 fighters to Luftwaffe front units was limited due to many reasons, including slow production, lack of fuel and spare parts and the Allied advance, but eventually, a few units equipped with this aircraft would be formed.
The first operational unit to be equipped with the new He 162 was Erprobungskommando 162 located at Rechlin-Roggenthin. In April, due to the rapid Allied advance, the unit had to reposition near Munich. This was actually a test unit and, for this purpose, a number of the most experienced German pilots (some of them having experience in flying jet aircraft) were allocated to this unit. Once these pilots had gained enough experience flying the He 162, they were to be used as base for forming the first operational unit, 1./JG 80. Immediately after the start of production, a large training process at the NSFK gliding school began. As there was only one He 162 S glider aircraft available, other simpler gliders (like the DFS SG 38 Schulgleiter) had to be used as a temporary solution. The training process did not go the way the Luftwaffe Officials hoped it would go. It was too slow and, when the first group of new pilots was tested on the Arado Ar 96B (trainer version), the results were disappointing. At this point, the plan to use Hitlerjugend members as He 162 pilots was discarded, which was somewhat expected. The experiment with the young and inexperienced pilots proves that only the most experienced pilots could successfully fly the He 162. Beside pilot training, at the same time, the training of ground support staff was carried out at Fliegertechische-Schule 6 in Neumarkt and Wiedenberg.
In order to form the first operational combat unit with the He 162, an already-experienced unit would be needed. For this purpose, Jagdgeschwader 1 “Oseau” (JG 1) was chosen. It was commanded by Oberst Herbert Ihlefeld and it was equipped mostly with Fw 190 aircraft. On 8th February, 1945, the first orders were given by General der Jagdflieger (General of Fighters) Oberst Gordon Gollob to the 2nd and 3rd Staffels (first Gruppe JG 1) commanders to prepare their pilots to be moved to the Parchim Airbase near Rostock. Once there, the first flight training with the new He 162 was to be carried out. In late February, a group of 10 pilots (from 2nd Staffel) was moved to Vienna for more training. For pilot training, two prototype aircraft were used, as the production of operational “A” variant was slow. Despite being experienced pilots, there were some accidents caused either by pilot errors or due to some mechanical faults. The He 162 M8 was lost due to engine failure on 12th March, but the pilot survived. Only two days later, one pilot was killed when he made a mistake during landing. As there were no other He 162 aircraft available, this group was forced to return to Parchim Airfield. In late March 1945, around 10 pilots of the I./JG 1 (first Gruppe) were moved to the Marienehe factory (near Rostock). They were supplied with a number of He 162 that where previously used by the mechanics and test pilots of this factory. Once the handover was completed, the group with the He 162 returned to its original base of operation.
The RLM’s next plan was to begin re-equipping II./JG 1 with the He 162 as soon as possible. The unit was moved to Rostock at the end of March 1945, where the training should have begun. Other units were expected to be formed (I and II./JG 400, III./JG 1, JG 27 and JG 77), but nothing came of this. In May 1945, a Volksstume Jagdeschwader (in essence, an improvised militia unit) was to be formed at the Sagan-Küpper airfield by using mostly volunteer pilots. However, Allied occupation of this airfield prevented the implementation of this proposal. The only unit beside JG 1 to be supplied (in limited numbers) with He 162 was I.EJG 2 (Ergänzungsjagdgeschwader, auxiliary fighter training unit), but these were probably never used operationally.
By the end of March, JG 1 was supplied with around 58 operational He 162A-2 aircraft with some 25 more on the way. At the same time, I./JG1 was moved to Ludwigslust, where it was supposed to be supplied with new He 162 aircraft. Due to the rapid Allied advance, the unit was moved in April to the Schleswig-Holstein region (Leck airfield), near the Danish border. This unit had orders to defend Berlin from Allied bombers coming from over the North Sea. The I./JG1 was to be ready for operational service by 20th April. The first combat loss happened on 19th April, when one He 162 was shot down after a take-off by an American P-47 Thunderbolt. By the end of April, II./JG 1 was moved quickly to the Leck airfield to join the first Gruppe.
The first operational combat mission of I./JG1 was to attack an RAF front airfield on 20th April. While on their way, the He 162’s were intercepted by a group of Hawker Tempests (3 Sqn. RAF). In this engagement, only one He 162 was shot down and the pilot managed to survive without any injuries. At the same time, one P-51 Mustang scout pilot (12th Tactical Reconnaissance Squadron) reported to have shot down one He 162, but this was never officially confirmed.
The He 162’s first allegedly air victory (and possibly the only one) was achieved by Lt. Rudolf Schmitt from I./JG 1, when he shot down a British fighter. However, this fighter was later claimed to have been shot down by German ground AA fire. While Lt. Rudolf Schmitt may not have made the first air victory, he did successfully manage to use the ejection seat in a combat zone. Due to the Allied advance, on 5th May, 1945, JG 1 received orders to stop any further action and to destroy all operational aircraft. For some reason, the order was later recalled. The Leck airfield would be captured by British forces on the 8th, which ended the He 162’s short operational combat story.
Precise information on the He 162’s combat or deployment is hard to find mostly due the chaotic state in Germany at that time. According to some authors, like Francus G., none were ever used in combat.
Japan’s military attache, in early 1945, was interested in acquiring the license production of the He 162. After a short negotiation, the Germans gave permission for license production. But there was a problem of how to transport or send the necessary documents and sketches from Germany to distant Japan. The only solution was to use radio by converting the sketches into numerical code. Unsurprisingly, this did not work well and only limited information was send before the end of the war in Europe. Due to this reason, Japan never received the complete He 162 sketches.
In Allied Hands
As the British forces captured Leck airfield, they acquired a number of fully operational He 162s. Some 11 planes were selected by the British Technical Intelligence Team to be transported to the UK. Once there, all were sent to the Farnborough airfield, which was the headquarters of the Royal Aircraft Establishment (RAE). The He 162 aircraft were thoroughly examined and divided into groups either for part analysis or for flight testing. On 9th November, 1945, while flying an He 162 (AM61) at the Exhibition of German Aircraft at Farnborough, the pilot Robert A.M. lost his life in an accident.
One of the tested He 162 (marked AM 59 by the British) would be donated to the Canadian Museum in Ottawa together with another one received later that year. Later, two were given to British museums, one to the Imperial War Museum and the second to the RAF Hendon Museum. One would be given to France, possibly either AM 63 or AM 66.
The British also supplied the American with some He 162 captured at the Leck airfield. The Americans also managed to capture some abandoned He 162s across Germany. Some would be tested at the Wright and Freeman Field research centre. One He 162 was even kept in good flight condition up to 1946. This aircraft is today privately owned by the Planes of Fame Museum in California.
The French received or captured (it is not known precisely) five He 162, of which two were airworthy. These two were tested, but one was damaged during landing and the second was lost in May 1948 with the loss of the pilot’s life. One He 162 is preserved and can be seen at the Paris Aviation Museum.
During their advance through Germany, the Soviets managed to capture about seven planes, two of which were airworthy. These would be tested and and analyzed in great details. As the Soviets lacked any advanced jet technology at that time, adopting German captured technology looked like a logical step. Most interesting for the Soviets were the Jumo 004 and the BMW 003 jet engines that would be, in later years, copied and produced in some numbers. There were also some consideration from the Soviet military to copy and produce some of the German jet aircraft, including the He 162. One He 162, with the fuselage marking 02, was tested by the Soviet Flight Research Institute (near Moscow). The second, marked 01, was tested at the Central Aero-hydrodynamics Institute. He 162 02 would be flight tested on several flights in 1946. The results of these tests were disappointing for the Soviets and a decision was made not to further consider them for service, and they did not have any influence on the later Soviet aviation development.
Conclusion
The idea for the He 162 was born out of a mix of desperation, chaos and hope for some miraculous wonder weapons that could turn the air war’s tide to the German side again. It was designed to be cheap and built in great numbers. The impressive fact is that it was designed and built in only a few months, but, on the other hand, it was built in too small numbers, the engines used were often of poor quality and there was a lack of trained pilots, which, along with other problems, meant that the He 162 did not have any major impact on the war itself or on post war jet aircraft development. In the end, it was not the ‘Wunderwaffe’ that the designers hoped for, but it was still impressive, at least because of the speed with which it was designed and built.
Variants
As only a small number of He 162 were built, there were very few operational versions. Beside the prototype series, only the “A” version was built in some numbers.
Prototypes
He 162 V– Prototype series
He 162 A-0– Around 10 pre-production aircraft built used for testing
Main production version
He 162A-1 – Version equipped with two MK 108 cannons, a few were possibly built
He 162A-2 – The main production variant armed with two MG 151/20 cannons
Training versions
He 162S – Two seat glider trainer version, a few built
He 162 Doppelsitzer – Two seat powered trainer version, only one incomplete aircraft built
Experimental prototypes based on “A” versions
He 162A-3 – Proposed version armed with two MK 103 or 108 cannons
He 162A-6 – Proposed version with redesigned and longer fuselage armed with two MK 108 cannons
He 162A-8 – Version equipped with the Jumo 004D jet engine, only a few incomplete prototypes built
He 162A-9 – The A-9 was to be powered by one BMW 003R engine and supported by a second BMW 718 rocket engine. None built
He 162A Mistel 5 – Paper project, a combination of an He 162 and one Arado E 337 glide bomb.
He 162 “Behelfs-Aufklarer” – Proposed version to be built in limited numbers as reconnaissance planes. It was never implemented and remained a proposal only.
Note that the B, C and D designations were not official and are used in this article only for the sake of simplicity.
He 162B – Proposed version equipped with a pulsejet engine (similar to the V-1 flying bomb engine)
He 162B-1 – two engine version
He 162B-2 – single engine version
He 162C – Version with back swept wing, powered by Heinkel-Hirth 011A turbojet engine
He 162D – Version with forward swept wing designs powered by the same Heinkel-Hirth 011A turbojet engine
Operators
Nazi Germany – A few hundred built, but only small numbers were allocated to front units and saw limited combat action.
United Kingdom – Captured a number of operational He 162, 11 would be transported and tested in the UK.
United States – Received a small number of He 162 from the British but also captured some in Germany.
France – Received or captured at least five He 162 aircraft.
USSR – Captured seven completed He 162 which were tested after the war.
Japan – Military officials tried to acquire the license for production of the He 162 but the war’s end prevented this.
Specifications (Heinkel He 162 A-2)
Wingspan
23 ft 7 in / 7.2 m
Length
29 ft 8 in / 9.05 m
Height
8 ft 6 in / 2.6 m
Wing Area
38 ft² / 11.6 m²
Engine
One BMW 003E-1 with 1,760 lbs/800 kg of thrust
Empty Weight
3,666 lbs / 1,663 kg
Maximum Takeoff Weight
5,324 lbs / 2,466 kg
Fuel Capacity
1,045 l
Maximum Speed at 6 km
560 mph / 840 km/h
Range
385 mi / 620 km
Maximum Service Ceiling
39,370 ft / 12,000 m
Climb speed
9.9 m/s
Crew
One pilot
Armament
Two 20 mm fixed forward firing cannons in the lower sides of the fuselage
USSR (1936)
Experimental Light Bomber – One Prototype Built
Prior to the German invasion, the Soviet air industry was in the process of developing a series of new experimental ideas and concepts. While generally unknown around the world, some of these were interesting designs, such as the Bolkhovitinov “S” experimental twin-engine fast attack bomber. Due to the German advance and the need for immediately operational planes, the development of this model was terminated.
An Unusual Idea
The S-2M-103 was designed and developed by a Soviet aircraft engineer team led by Viktor Federovich Bolkhovitinov (Ви́ктор Фёдорович Болхови́тинов). Bolkhovitinov (February 1899 – 29 January 1970) was a Soviet professor at the Zhukovsky Air Force Academy in Moscow, and also an aircraft engineer. One of his best known designs was the four-engined Bolkhovitinov DB-A bomber that was intended to replace to aging TB-3 bomber.
During 1936, Bolkhovitinov and his team were looking for a solution for the lack of a high-speed light bomber in the Soviet Air Force. Their answer would be an unusual twin-engine aircraft with a peculiar wing configuration. Instead of a conventional wing placement, the wings were mounted very low on the fuselage, and the tail was a twin fin design.
When they began working on the first calculations and drawings, their greatest concern was how to reduce drag. Usual bomber designs with wing-mounted engines slowed down the plane due to excessive drag. Fighters, on the other hand, had much better aerodynamic properties as they were designed to achieve the highest possible speeds. Bolkhovitinov and his team decided that, for their purposes, they would reuse elements from other bombers (two engines, bomb-carrying capacities, defensive armament) and a one-part fuselage.
The problem was how to position the two engines in order to reduce the drag as much as possible. They quickly came up with the idea of putting them both on the same line (one behind the other) and in the same fighter-like fuselage. While this configuration would make the new plane longer, it could be designed with much better aerodynamic properties.
The development and design of the unusual twin-engine system began in 1936, while work on the aircraft design itself began the next year. By 1938, the design was completed and preparations for the construction of a fully operational prototype began in July that year. The prototype was completed in 1939 and flight tests were scheduled to begin in July 1939 (or in early 1940 according to some sources).
Designation
The aircraft’s original designation was simply “Bolkhovitinov S” or “Sparka/Cпаренный”, which means twin. Today it is generally known under the “S-2M-103” designation, where the “2” stands for twin-engine configuration and “M-103” is the name of the engine. There were other designations used for this plane, such as “BBS-1” (Ближний бомбардировщик скоростной, fast short-range bomber), “LB-S“ (легкий бомбардировщик спаренный, light twin-engined bomber) оr “BB“ (Болхови́тинов Бомбардировщик, Bolkhovitinov Bomber). As the plane is best known as the the S-2M-103, this article will use this designation.
Technical Characteristics
The S-2M-103 was designed as a low wing, all-metal construction, two-seater, two-engined fast attack bomber. The S-2M-103’s main fuselage had an elliptical cross-section. The fuselage consisted of four (bottom, top and left and right side) panels that were held in place by using four strong angled-section longerons. The S-2M-103’s structure was covered with a modern light alloy stressed-skin.
The wings were constructed using a structural box with flanged lightening holes (to save weight). The wings’ interior sheet ribs were covered on both sides (upper and lower) by metal skin and held in place by flush riveting.
The rear twin-finned tail was covered with duralumin skin. For better stability, the rudders were equipped with inset balanced hinges. For the tailplanes’ movement, an irreversible trimming motor was used. The elevator had trim tabs with a variable geared drive.
The S-2M-103 had a completely retractable landing gear that was operated electrically. The front wheels and the smaller rear tail wheel was able to retract backward 90 degrees. During the winter of 1940/41, the wheeled landing gear was replaced with fixed skis.
This aircraft had an unusual two tandem engine arrangement, placed in the same mounting in the fuselage. The rear-mounted engine’s shaft passed through the front engine’s cylinder blocks. Both engines were connected to the two propellers (with six blades in total) which, when powered, turned in opposite directions, which provided better stability during flight (at least in theory). The S-2M-103 was powered by two 960 hp (716 kW) Klimov M-103’s V-12 liquid cooled engines. This engine was based on the French Hispano-Suiza 12Y which was produced under license by the Soviet Union as the M-100.
The water radiators were placed under the fuselage and had controllable exit flaps. Two oil coolers were located on the ducts on both sides of the two engines. The fuel was stored in four fuel tanks that were placed in the wings (between the wing spars). Unfortunately, there is no information available about the capacity of these tanks.
The two crew members were positioned in an unusually large cockpit fully enclosed with a plexiglass canopy. The crew consisted of the pilot and the navigator. The navigator was also provided with a bombsight. The navigator’s position was covered with plexiglas on all sides, which provided him with an excellent all-around view, including under the plane. His additional role was to operate the rear-mounted machine gun.
The S-2M-103 lacked any forward-firing offensive armament. While it was planned to equip it with weapons mounted in the wings, this was never accomplished. For self-defense, one 0.3 in (7.62 mm) ShKAS machine gun was provided for the navigator/gunner. Due to its tail design, the rear machine gun had a wide firing arc. Later, it was planned to replace the single 7.62 mm rear gun with heavier twin 0.5 in (12.7 mm) UBT machine guns. There were also alleged plans to equip the S-2M-103 with a rear-mounted remotely controlled ShKAS machine gun. Whether this was ever implemented is unknown, as there no photographs or precise information are available. The bomb bay, which could carry 880 lb (400 kg) of bombs, was located under the pilot cockpit. The bomb bay opening doors were opened electrically.
Operational Tests
The S-2M-103, piloted by D.N. Kudrin, made its first test flight in late 1939. More tests were carried out by the Army from March to July 1940, the plane being piloted by D.N. Kudrin and A.I. Kabanov. During these flight tests, the S-2M-103 proved to be able to achieve a maximum speed of 354 mph (570 km/h) at 15,400 ft (4,700 m). The tests also proved that the concept of installing two engines in the same fuselage had some advantages over the wing-mounted configuration. The most obvious was the reduced drag, which lead to increased speed and improved flight performance.
There were also some problems with the design. Immediately noticeable were the poor take-off and landing performance during these tests trials. Due to its high weight of 12,460 lb (5,650 kg), the S-2M-103 needed a 3,430 ft (1,045 m) long airfield. More tests were carried out by removing any extra weight. With the weight being reduced by some 1,100 lb (500 kg), the S-2M-103 now only needed a 2,800 ft (860 m) long airfield. During landing at speeds of 103 mph (165 km/h) the aircraft needed a 2,130 ft (650 m) long airfield. Some problems with the twin propellers were also noted. The rear-mounted propeller drive shaft was damaged due to strong vibrations. Unfortunately, there are no records of cruising speed, climbing speed, or maximum service ceiling.
The Single-Engine Version
In the following months of 1940 and 1941, the S-2M-103 received a number of modifications in the hope of solving the issues observed during preliminary testing. The twin-engine configuration was replaced with a single M-105P engine with a power of 960 hp (or 1,050 hp depending on the source). The area where the second engine was previously located was filled in order to maintain the stability of the aircraft. Due to the removal the second engine, the second contra-rotating propeller was no longer needed. The new engine’s oil coolers were placed in the main radiator duct. The designers had a dilemma about what to do with the extra interior space left by the removal of the second engine, but this was never solved completely. With these modifications, the weight was reduced from 12,460 lb (5,650 kg) to 8,820 lb (4,000 kg).
The wing design was also changed to one done by Z.I. Iskovich by increasing its size and using a new aerofoil shape. The previous wing design had an area of 246.5 ft² (22.9 m²), while the new one had 252 ft² (23.4 m²). The last change was made to ease testing during winter, replacing the landing gear with fixed skis.
It appears that no official designation for this version existed but, using the same logic as for the two-engine version, it could be called S-M-105, but this is only speculation at best. According to some sources, the single-engined variant was marked as the S-1.
There were plans to improve the performance of the projected fighter version by mounting two M-107 engines. The new fighter was to be designated simply as the “I” or “I-1”. Due to the later cancellation of the S-2M-103 project, the I-1 was also abandoned.
The Fate of the S-2M-103 Project
More flight tests were carried out during the first half of 1941. While there is no precise information, the newly modified single-engined version of the S-2M-103 allegedly had poor performance. Despite the modifications, the new single-engined version managed to achieve a much lower top speed of 248 mph (400 km/h) at 14,440 ft (4,400 m). The poor performance, preparation for Pe-2 production at the factory where it was built, and the German Invasion of the Soviet Union led to the cancellation of the S-2M-103 project.
Operators
TheSoviet Union – A single prototype was tested in 1940/41, but was not adopted for production.
Variants
S-2M-103 – Twin engine fast bomber
S-2M-103 (possibly S-M-105) – Single-engine version
I-1 – Improved fighter version equipped with two M-107 engines, due to cancelation of the S-2M-103 none were built.
Conclusion
The concept of installing two engines in the same fuselage had some advantages over the wing mounted configuration. It reduced drag, which lead to increased speed and flight performance. The S-2M-103 proved this by achieving speeds of up to 350 mph (570 km/h). However, its design had issues that were never resolved. Given enough time, those might have been solved. Alas, in 1941, the German Invasion and the need to increase production of already existing aircraft stopped all unimportant projects.
Gordon, E. & Khazanov, D. (1998). Soviet combat aircraft of the Second World War. Leicester Osceola, WI: Midland Pub. North American trade distribution by Motorbooks International.
Yefim G. and Bill G (2000), Soviet X-Planes, Midland Publishing
Kingdom of Italy (1935)
Fighter Plane – 774 to 791 Built
During the thirties, Fiat Aviazione was one of the most advanced aircraft manufacturers in Europe. With the advent of new technology at the time, it was obvious that the next stage in the development of the aircraft industry, especially in military aviation, would be centered around all-metal monoplanes. Fiat’s Chief Designer, Ing. C. Rosatelli, had been designing mixed-construction biplanes and even an all-metal bomber. As the demand for a modern, all-metal fighter plane was high, Fiat officials made a decision to hire a young aircraft engineer named Giuseppe Gabrielli, who would later design the Freccia, the first operational Italian all-metal fighter.
Giuseppe Gabrielli’s Work
The history of the Fiat G.50 began in 1931, when Fiat formed a new Aircraft Technical Bureau – Department 2 (Ufficio Tecnico Aviazione – Divisione II). The main purpose of this bureau was designing and building brand new types of modern all-metal planes. The same year, a young Italian engineer, Giuseppe Gabrielli, was hired by Fiat Chairman Senator Angelli to work for the Technical Bureau. Giuseppe Gabrielli had gained some experience in aircraft design while working for Piaggio. When he moved to Fiat, he immediately began working on several non-military aircraft projects. All of his projects were marked by the capital letter ‘G’, his initial. First was the G.2, an all-metal, three-engined plane, then the G.8 biplane trainer, and later the twin-engine passenger plane G.18.
During the thirties, the Italian Ministry of Aviation (Ministero dell Aeronautica) was interested in adopting a new, all-metal monoplane fighter and ground attack aircraft for the Italian Air Force. Some specifications for their request were: to use one radial engine, armed with at least two 0.5 in (12.7 mm) heavy machine guns with at least 300 rounds of ammunition and one 0.7 in (20 mm) gun or 1.45 in (37 mm) gun, and provisions for bombs on the ground attacker. A request was sent out to all domestic aircraft manufacturers. There were several proposals in response, but only the G.50 and the Macchi C.200 would be chosen for production. The others were either rejected (Ro.51 and A.U.T. 18) or built in limited numbers, like the Caproni F.5.
In order to solve the problem of the lack of an adequate fighter design, Fiat officials even considered the acquisition of a license to produce the American Seversky SEV-3, but nothing came of this. In April of 1935, Giuseppe Gabrielli began working on a new low-wing, all-metal plane named G.50. According to his first plans and drawings, it was to be armed with two machine guns, powered by a 550 hp radial engine (with a diameter of 39 in/1 m), weigh around 3,395 lbs (1,540 kg), and equipped with a retractable landing gear. At the same time, Fiat was testing a new FIAT A 74 RC 38 14-cylinder radial piston engine, so it was logical that Giuseppe Gabrielli decided to use it for his work. The A 74, in principle, was a direct copy of the American Pratt & Whitney R-1830 Twin Wasp which powered a large number of US planes, including the Douglas C-47, Consolidated PBY Catalina, Douglas TBD Devastator and Grumman F4F Wildcat. The expected speed of the G.50 with this new engine was around 285 mph (460 km/h) at 11,500 ft (3,500 m).
On 28th September, 1935, Gabrielli submitted his project to the Ministry of Aviation. Military officials were impressed by the design, but ask for some modifications. These included a wingspan of 36 ft 1 in (11 m), a weight of 4,870 lbs (2,210 kg) and a maximum speed of 280 mph (452 km/h). The offensive armament was changed to two 0.5 in (12.7 mm) heavy machine guns located in the fuselage with an additional two 0.3 in (7.7 mm) machine guns placed in the wings. In addition, the G.50 was designed to carrying a bomb load of 220 lbs (100 kg) or, if needed, extra fuel tanks with 23.5 gal (90 l) capacity.
In January 1936, the Ministry of Aviation changed its original request, choosing instead to focus only on the fighter role. The Ministry of Aviation wanted to accelerate the development of the new fighter, and the proposed ground attack role was rejected. Because of this, the bomb load was deemed no longer necessary, and the main armament was reduced to only two 0.5 in (12.7 mm) machine guns with 150 rounds each. The most important requirement was that the new fighter should have the best possible flying performance.
Despite these changes, the Fiat officials decided to proceed with the G.50 project. As Fiat’s production capacities were overburdened, work on this new project was instead moved to the CMASA works at Marina di Pisa, part of Fiat since 1931. Giuseppe Gabrielli was finishing his last drawings and the list of needed materials and equipment in June 1936. In his final drawings, the armament was reduced to two heavy machine guns without the bomb load, and the plane would be powered by the new A 74 c/n engine.
The production of the first operational prototype was scheduled to begin in late summer of 1936. The prototype was finally ready at the beginning of 1937 and was transported to the city of Turin for further testing. This prototype, under registration number MM 334, made its first test flight on 26th February, 1937. The pilot was Giovanniego De Briganti, the CMASA test pilot. During initial testing, the pilot noted several faults and possible problems with the G.50. He especially pointed out the strong vibrations during flight and the aircraft’s tendency to spin.
On 22nd June, 1937, the G.50 prototype was moved to Marina di Pisa for more testing and modifications. After these modifications were completed, the prototype was sent to the Regia Aeronautica (Italian Air Force) experimental flight center near Rome. There, the G.50 prototype was tested by several army pilots. They noted that the controls were hard to work with at high speeds and a lack of climbing ability. Before the final order for mass production, Giuseppe Gabrielli was asked to solve these problems. For this reason, another prototype was made, designated MM 335.
The second prototype made its first flight on 20th October, 1937. After a series of successful flying tests, an accident occurred. On the 11th (or 8th, depending on the source) November, 1937, while flying the second prototype at high speed, the test pilot Briganti lost control of his aircraft and crashed to the ground. He did not survive the crash. His place was taken by the new chief test pilot, Enzio Guerra.
A combination of the accident and inferior performance that did not meet expectations, along with better overall performance of the Macchi C.200 threatened to shut down the G.50 project. But as the CMASA works were already in process of producing a series of 45 G.50’s, it was deemed a waste of resources to abandon or scrap the tooling equipment needed to produced the G.50 that had already been produced. A second reason for keeping the project running was the fact that it would take too much time for Fiat to prepare for the production of the Macchi C.200. The Air Ministry decided to go on with G.50 production, but insisted that the company correct the shortcomings of the plane by the time of production. Of the 45 ordered, the first 11 were used for many more trials. Two planes, MM 3357 and 335, the salvaged and rebuilt prototype, were sent to the experimental centre in Rome. Seven were stationed at the Pisa S.Giusto airfield and tested there. Two more ,MM 3570 and 3571, were tested by pilots Guerra, Rolandi and Cus. These trials were held in Turin and the main purpose was to investigate possible changes to the design of the G.50. The preliminary tests showed that the fully enclosed cockpit had to be changed before production, and a new design was necessary. This enclosed cockpit had several drawbacks which pilots often complained about. The closed cockpit was hard to open (especially in emergency situations), was made of poor quality plexiglass which was prone to cracking, offered poor visibility and sometimes exhaust fumes accumulated in the cockpit so the pilots were forced to fly with an open cockpit. After some testing and modifications, it was decided to used a partially enclosed cockpit. This solution was not perfect and was uncomfortable for pilots. Despite this, it was decided that all future planes would be built with an open cockpit only. More modification that were deemed necessary were the installation of a new start-up system, a better undercarriage locking system and adding a new oxygen mask for piloting at high altitude.
The G.50 was first showed to the public in October of 1937 at the International Aeronautical Show held in Milan. From 1937 to 1940, when the production was changed to the improved version, some 224 G.50 were built.
Technical Characteristics
The G.50 Freccia, Italian for Arrow, was a single-seat, low-wing, all-metal fighter plane. The main fuselage was made from four angular shaped longerons with 17 metal frames. The wing construction consisted of a center section which was made of a steel tube connected to the lower fuselage and two metal spars connected with ribs. The four flaps were hydraulically actuated and at certain speeds they would automatically retract to their closed position. The fuselage, wing, and tail were covered with duralumin sheets. The only fabric-covered parts were the movable control surfaces in the wings and the tail.
The engine was placed in a tubular shaped mount made of chrome-molybdenum steel that was connected to the fuselage by four bolts. The engine and the cockpit were separated by a fireproof screen in order to protect the pilot from any possible fire outbreak, either due to engine malfunction or damage. The plane was powered by the 840 hp (626 kW) Fiat A 74 RC 38, 14 cylinder radial piston engine. With this engine, the G.50 could reach a maximum speed of 293 mph (470 km/h), with an effective range of 276 mi (445 km) and a service ceiling of 35,000 ft (10,700 m). An all-metal three-blade propeller produced by Fiat was used. One of major disadvantages of using a radial type of engine was the massive drag due to its large cross-section. In order for ground repair crews to have easy access to the engine and the fuselage interior, several access doors were added. The maximum fuel capacity was 83.5 gal (316 l.) There were two fuel tanks located in the wings 11.9 gal each (45 l) and two more in the fuselage, one larger with 26.4 gal (100 l) and a smaller one with 18 gal (68 l) with an additional auxiliary tank 13.75 gal (52 l) also located in the fuselage.
The first G.50 series had an enclosed cockpit design but as this created many issues, it was later changed to an open cockpit. Despite its disadvantages, the enclosed cockpit had an excellent rear view. Many different open cockpit designs were tested before the final design was chosen. The later version with the open cockpit had two smalls door installed to help entering or exiting the plane. The seat was adjustable, so it could be adapted to the pilot’s needs.
In front of the pilot, the dashboard was divided into three sections. On the upper section were the navigation instruments, reflector sight, fuel indicators and engine instruments. The middle section had the ammunition counter, warning lights, the position of the landing gear, compass and oxygen control panel. The lower section had the engine starter, cowling controls and compressed-air system indicator. The radio in the pilot’s cabin was the ARC 1, but the quality of the batteries was poor. A fire extinguisher system was also provided. There was also the possibility of installing one OMI FM62 camera gun.
The G.50 was equipped, like most modern aircraft of the time, with inward retracting landing gear, but the rear tail wheel was fixed. In the G.50 bis version, the rear tail wheel was changed to a retractable type. The landing gear could, if necessary, be manually operated. At first, it was of a Messier type, but it was later replaced with a Magnaghi design. The retracting landing gear was hydraulically operated, and pneumatically during lowering. In case both systems did not work for any reason, it could be manually operated. For easier and more pleasant landing, hydraulic shock absorbers were provided for both telescoping legs.
The main armament consisted of two forward-firing 0.5 in (12.7mm) Breda-SAFAT heavy machine guns, with some 150 rounds of ammunition for each machine gun. The guns were placed behind the engine top and both were synchronised in order not to damage the propeller. It is interesting to note that this gun used oil lubricant for faster firing and thus a lubricant tank was added on top of the engine. Some G.50 planes were armed with bomb racks and used in North Africa.
Modifications and Prototypes
As the war progressed, the Italians realized that they were lacking planes to fulfill the different necessary roles such as fast ground attack or training. In order to save time, the most obvious solution was to try to modify existing models instead of developing new ones. The G.50 would be modified in several ways, some of which demanded major changes to the plane’s design, while others were just minor variations, like the added sand filter for the G.50 S.A.
Trainer G.50 B
As the G.50 was entering production and the first operational units were formed, a trainer was needed for new pilots. As most army pilots were accustomed to flying older biplanes, retraining them for flying the monoplanes was required. For this purpose, in late 1936 the Italian Air Ministry placed an order for Fiat to developed a two seat dual control plane based on the G.50. After the mock-up was built and inspected in March 1938, it was deemed sufficient for production. By April, an order for the first prototype was placed. But due to the constant changes to the design, the production of the first prototype was frequently delayed. It was not until June 1939 when the final design with an enclosed cockpit was chosen. The plane was named G.50 B. The capital ‘B’ stands for ‘bipost,’ the Italian word for two-seater. This version was recognizable by its long glazed canopy with the rear cockpit being open from the top. The first prototype, marked 3615, would be ready in late April 1940 when it was tested by Enzio Guerra.
After only a few test flights, it was deemed adequate and was put into production. The first ten were built in 1940, with the last one built in 1943. In total, some 108 (or 100, depending on the source) G.50 B trainers were built during the war. Production by years was: 10 in 1940, 82 in 1941, 11 in 1942 and 5 in 1943.
The G.50 B was, in essence, a modified single-seat version with a new cockpit and dual controls. The front part of the cockpit was fully enclosed in contrast with the rear which was open. The main armament was removed on the G.50 B. This version was very successful, as it was easy to build and offered almost the same flying performance as the single-seat version.
These were used mostly by the Regia Aeronautica Fighter Schools. Smaller numbers were operated as liaison planes or even in some front based fighter units. After the Italian capitulation, small numbers, possible 20 or more, were used by the National Republican Air Force. At least one was given to the Croatian puppet state in the Balkans. The last G.50 B were used by the Flying School in Lecce for a few years after the war, up to 1948.
The Improved G.50 bis
The final decision for the mass production of the G.50 fighter was not based on its performance, but instead on the fact that CMASA had already begun producing it. The performance of the G.50 was poor compared to the Macchi C.200. In order to justify the production, the Italian Air Force requested that Fiat to improve the G.50’s overall performance. The sought modifications were adding extra fuel tanks, increasing capacity from 83.5 gal (316 l) to around 108.3 gal (410 l), redesigning the rear fuselage and the vertical tail surfaces, better glazing of the cockpit to protect the pilot from air turbulence, the addition of armor plates behind the pilot seat, and the tailwheel to be made retractable. The original ARC 1 radio, with its poor quality batteries, was only changed in October 1941 with the R.B.30.
The new improved version was designated the G.50 bis. According to Italian original plans, the first planes should have been ready by late 1938, but this was never achieved. The whole process was slow and the first aircraft was tested on 13th (or 9th) of September 1940 at Turin. As the main engine was not changed, despite the other modifications, the general flying performance was almost the same. The only improvements were easier maintenance and increased operational range. As these tests were completed, an order for production was given. From 1940 to 1943, around 439 of these versions were built by CMASA and Fiat.
G.50 S.A Ground Attacker
A certain number of planes that were serving in North Africa were modified by adding sand filters and a bomb rack. The landing gear was also modified for easier landing.
G.50 A Ground Attacker
The G.50 A was designed to be used as a fighter-bomber on the “Aquila” aircraft-carrier which was under construction. For this modification, the G.50 B two seater version was reused. The main offensive armament was to be increased to four 0.5 in (12.7 mm) machine guns. The problem was that the wing design did not allow the installation of the new weapons directly in the wings. The solution was to increase a part of the central section of the wings in order to accommodate these guns. Additional bomb racks were also to be added. One prototype, serial number MM 8595, was built and tested in October 1942. The whole concept proved to be problematic and the project was abandoned. The prototype would be used up to 1943 in testing new wing designs. In some sources, this model is designated as G.50 A/N.
G.50 bis “Tuffo” Dive Bomber
This was a dive bomber version designed in 1941 and 42, possibly inspired by the famous German Ju-87 “Stuka.” A bomb load of up to 990 lbs (450 kg) was planned, with two 200 lbs (100 kg) bombs placed under the wings and one 550 lbs (250 kg) under the main fuselage. For this modification, the addition of dive brakes were necessary. There is no information about prototype construction, but there is a great chance that it was never made.
G.50 B Naval Observer
One plane (MM 6548) was rebuilt for a naval observation role in 1943. It had a larger tail, different wing sections, a camera and an arrestor hook for use on an aircraft carrier. It was also equipped with a B 30T transmitter, B.G.42 direction finder and a A.R.18 receiver. Only one was built, possibly because of the impending Italian capitulation.
G.50 O/R
This version was based on the G.50 bis and the only difference was the installation of a arrestor hook for aircraft carrier use. Around 16 planes were modified for this role and were in use by the 155th Group Autonomo, mostly for training, in 1943.
Other Projects
Beside these, there were some minor projects that were proposed, but the majority if not all of them were not implemented. On the base of the G.50 B some project were proposed like the: night fighter, land reconnaissance or even a floatplane fighter (G.50 Idro).
Prototypes based on the G.50
During the war, in order to improve the flying performance of the G.50, many new designs and weapon loads and engines were tested.
G.50 ter
This was a further development of the canceled G.52 project. The new project, designated the ‘G.50 ter,’ was to be equipped with the same 1000 hp (746 kW) Fiat A 76 engine as the G.52. Even before production of a prototype, the new engine was found to have a number of flaws. The first prototype powered by the new engine was ready by late July 1941. First flying tests were carried out at the Aeritalia airfield, with the plane being piloted by Agostini. During these flight tests, the engine proved to be mechanically unreliable and it could not reach expected performance. More test were held in November 1941, but in the end the project was canceled and only one plane was built.
G.50 V
In late 1939, the Italian Ministry of Aviation made a decision to begin negotiations with the German Daimler-Benz company for a production license of the newest liquid cooled DB 601A engine (1035 hp). It had a much lower frontal area and had much better aerodynamics than the larger Italian radial engines. The license was eventually obtained and Alfa Romeo was put in charge of the production of this engine, but it was never built in any great numbers.
In early 1940, the Italian Ministry of Aviation asked Fiat to build a modified version of the G.50 using this new engine. Two prototypes were to be built by CMASA, and these were marked as G.50 V (the ‘V’ stand for Veloce, which means fast). The first prototype, serial number MM 479, was built and tested in late August 1941 by the test pilot Ezio Guerra. Immediately, the new design proved to have some issues, such as an inefficient engine cooling system and the controls being difficult to operate. By the end of 1941, most these problems were solved and a new series of tests was scheduled.
In December 1941, more extensive flight tests were carried out by test pilot Valentino Cus in order to determine the precise flight performance, in particular the maximum speeds at various heights and the climbing rate. Maximum speed achieved was some 360 mph (580 km/h), and a maximum altitude of 16,400 ft (5,000 m) was reached in 5 minutes and 30 seconds. Mostly due to the introduction of the new FIAT G.55 and the lack of DB 601 engines, the G.50 V project abandoned.
G.51
In 1940, it was proposed to equip one G.50 with the new A 75 R engine. Nothing came of this project.
G.52
Information about this version differs significantly depending on the source.
According to Piero Vergnano, Fiat worked on improving the performance of the A 74 engine used on the G.50 for quite some time. This lead to the development of the new 1000 hp (746 kW) Fiat A 76 engine. In 1938, Fiat suggested the installation of this engine in the G.50 to the Air Ministry. At first, the request was accepted and an order for two prototypes was placed. By late 1939, the project was canceled due to the acquisition of new German DB 601A engines, and no prototypes were ever built. According to Gianni Cattaneo, the G.52 was in fact just a further development of the G.50 V. Due to the appearance of the new G.55 fighter, this project was abandoned.
G.53
This proposal was a combination of the G.50 B powered by the DB 601A engine. It was developed in 1941. It was intended to be used as a fast reconnaissance plane, but the Air Ministry never showed any interest in this proposal and nothing came of it.
First Operational Units
As CMASA began producing the first G.50 planes in late 1938, an experimental military fighter unit was formed for further testing and training. This unit was located at the Ciampino airfield near Rome. The unit was named Gruppo Sperimentale da Caccia (Experimental Fighter Unit/Group). Command of this new unit was given to Major Mario Bonzano, at that time a famous pilot ace from the Spanish Civil War (flying the CR.32 biplane). Pilot training on this new plane lasted until January 1939, when the Italian Air Force High Command decided to send a unit of 12 planes to Spain for real combat testing.
In Spain
A group of 12 new G.50 fighters arrived in January 1939 in Spain, having been transported by sea. This unit was based at Escalona Airport, some 43.5 mi (70 km) from the capital of Madrid. Starting in March, this unit carried out flight patrols and fighter cover missions for bombers at altitudes between 24,600 to 26,240 ft (7,500 to 8,000 m). By that time, the opposing air force had been almost destroyed and air to air combat was rare. The only combat action that was recorded happened when a lone Soviet-built I-16, possibly flown by a Canadian pilot by the name of Dickinson, was intercepted by a G.50. The Italian aircraft was damaged and the pilot was forced to land. None of the 12 G.50 that were sent were lost in combat during the Spanish Civil War. At the end of this war, 11 operational G.50 fighters were given to the new Spanish fascist regime. These planes were used by the 27 Gruppo Caza (Fighter Group). After 1943, they were sent to Spanish Morocco, to be used by the 2. Regimento Mixto (mixed regiment) together with several German supplied He-112B.
After his return to Italy, Major Bonzano made his report of the effectiveness of the G.50. According to him, the G.50 had good maneuverability, effective armament and was easy to operate at altitude. On the other hand, he pointed out that the visibility was poor and the landing gear construction was weak and prone to malfunctioning. His conclusion about the effectiveness of the main armament would prove to have a great negative impact for the G.50 in the future.
In Finnish Service
Because of the likelihood of a Soviet attack in 1939, the Finnish government and Army wanted to equip their forces with modern equipment and weapons. As a result, a Finnish military delegation visited Turin in 1939, where the new G.50 fighters were being tested. The delegation was impressed with the aircraft’s performance, so they placed an order for 35 brand new G.50. Most of the planes sold were of the first series produced by CMASA, with serial numbers 3599 to 3614. These were supplemented by planes from the second productions series (serial numbers 4722 to 4750).
A very interesting fact is the maximum speed achieved by Finnish pilot Tapani Harmaja. As he was testing the flying performance of the G.50 at an airfield near Latina, he managed to reach a speed of 515 mph (830 km/h). He achieved this by diving from a high altitude of 11,480 ft (3,500 m) down to 1,310 ft (400 m). This was the fastest speed reached by any aircraft in Italy at that time.
Due to the outbreak of the Second World War in Europe, the transportation of the purchased aircraft was slow and complicated. The planes were disassembled and then transported by train through Italy to the north of Germany and then by ship to Sweden, and from there to Finland. As they were transported in parts, the assembly was done at Gothenburg. When they were completed, the pilots were instructed to fly them to their new stations. The first 14 G.50’s were received in February 1940 and the last in June 1940. While flying en route to their designated airfields, two planes were lost in accidents in February 1940.
The G.50 arrived too late to have any large impact on the Winter War (30 Nov. 1939 to 13 Mar. 1940) but they saw some combat during this period. The first G.50 planes were equipped with the 26th Fighter Wing (Lentolaivue 26 or just simply LeLv or HLeLv) located at Haukkajarvi. They were used to replace the older Gloster Gladiators used by this unit. By 13 March, the Finnish pilots flying the G.50 claimed to have shot down 11 Soviet planes. There is some disagreement between the sources, authors Gianni C. and David M. states that this unit did not participate in the Winter War.
Until the German and Finnish attack on the Soviet Union in June 1941, known in Finland as The Continuation War, Finnish technicians and engineers tried to improve the performance of the G.50 fighters. Most Finnish G.50s were from the first series, equipped with the enclosed cockpit. This design was not popular with the Finnish pilots and was replaced with an open cockpit. The vertical stabilizer and rudders were replaced with improved ones. Also, the Finnish tested snow skis taken from Fokker D.XXI’s, for the G.50 allowing them to better land on on frozen airstrips.
At the start of the German invasion of the Soviet Union in 1941, Finland joined the war with a much larger air force than it had in the previous conflict. LeLv 26 was stationed at an airfield near Utti, and was charged with the protection of the area around Lake Ladoga where they saw most of the action they were involved in. The G.50 proved to be an effective fighter in the hands of Finnish pilots. On 25th June 1941, six Finnish G.50 fighters managed to shoot down 10 Soviet bombers with no losses. Later in August, pilots from LeLv 26 managed to shoot down nine Soviet fighters. The most famous Finnish pilot was Oiva Tuominen, who had a total of 23 (33 or 43 according to different sources) air victories, with around 15 while flying the G.50. For his service, he was awarded the Mannerheim Cross, the highest Finnish military medal at the time. By the war’s end, LeLv 26 had around 88 air victories with the loss of 11 G.50s. Only two were shot down by Soviet planes, one was lost to AA fire, and eight more were lost either to accidents or mechanical failures. The Finnish G.50s remained in use up to June 1944, when they were moved to the rear for second-line duties. By the end of the war, there were still some 22 (the exact numbers are not known) operational G.50 fighters and they were used up to 1947.
In Italian Service
According to the Italian military program codenamed “R” (Programme R), the Italian Air Force was to be heavily reinforced with many new units and more modern aircraft designs. With the existing G.50 fighter, it was planned to form and equip one Stormo (Stormo-regiment) and one Fighter Wing/Group (Gruppo).
The first unit to receive the new G.50s was 51° Stormo located at the Ciampino airport near Rome, in November 1939. This regiment consisted of the 20th Group, with 351st, 352nd and 353rd Squadrons, and the 21st Group, with 354th, 355th and 356th Squadrons. Almost all of the squadrons were equipped with the newer G.50 with the open cockpit, and only the 351st Squadron was equipped with the first series with the enclosed cockpits. To more effectively train both experienced and new pilots, military war game exercises were often held by the Italian Army. During one of these games the 51° Stormo would earn its military emblem, a black cat with a green mouse. During one exercises, a group of different fighter planes were tasked with intercepting a group of S.M.79 bombers, marked with the green mouse emblem. The older CR.32 biplane could not fulfill this task, but the new G.50 from the 352nd Squadron accomplished this without any problem. From that point on, the pilots from 51° Stormo began painting the emblem on their planes.
Quite soon, the order was given to form a second unit, 52° Stormo. It consisted of the 22nd Group (357th, 358th and 359th Squadrons) and the 24th Group (360th, 361st and 362nd Squadrons). The 24th Group was equipped with older FIAT CR.32 planes that were soon to be replaced with G.50’s. 52° Stormo operated from two airports, Pontendera and Sarzana. Both of these groups had around 100 brand new G.50s.
Western Front
By the time Italy entered the War in the West, there were some 118 G.50 planes on hand, with 97 operational, and some 21 were ready for delivery to designated units. In an attempt to profit from the fast Allied defeat in Western Europe, Italy declared war on France on the 10th of June 1940. Most G.50s saw some limited action, mostly covering SM.79 bombers during their attack on Corsica on 15th and 16th June. Subsequent attacks followed on 17th and 19th June. The center of operations then moved to the north, in the French Alps on 21st June. Due to a lack of proper training, the G.50 pilots had problems adapting to this type of aircraft, as most of them had flown only on the older biplanes. The G.50 proved to have good flying performance at low speeds, but was hard to control at high altitudes and higher speeds.
Battle for Britain
In order to support the German air raids on Great Britain, a special unit (Corpo Aereo Italiano C.A.I) was formed in late 1940 and was sent to Belgium. For this operation, the 20th Group, with 45-48 G.50’s, was selected under the command of Col. Bonzano. Despite the original planes being planned to reach their base of operations in Belgium by September 1940, this was delayed until October 1940. This delay occurred mostly due to bad weather. During the transfer from Italy to Belgium, two G.50’s were lost to accidents. The first combat actions were carried out in late October 1940, and were mostly bomber support missions. Similar missions were planned for 11th November against Great Yarmount, but they were canceled due to bad weather. From November 1940 to January 1941, the G.50 flew on many surveillance missions but there was no contact with enemy planes. By the end of January 1941, most Italian Air Force units returned home, with the exception of the 20th Group.
The C.A.I had great technical problems during this operation. The G.50 was designed for the Mediterranean rather than the cold climate of the North, and there were problems with freezing and defective instruments, unreliable batteries and fuel problems.
By April 1941, the remaining units were ordered to return to Italy. Missions conducted against Britain were unsuccessful and they did not go well for the Italian pilots, as they did not win any air victories. Italy had lost more than six aircraft with two dead pilots. This operation was a strategic failure for the Italian Air Force, mostly due to poor planning, adverse weather conditions and inefficiency of the planes used.
In the Balkans
Mussolini ordered an invasion of Greece in October 1940. For that purpose, fewer than 80 G.50 fighters based in Southern Italy (33) and occupied Albania (43) were used. Initially, because of the lack Greek air resistance, the G.50 were used as ground attack planes. But, after the arrival of the British forces in November, the first air battles started. Due to the fact that the Italian pilots had some experience during the Spanish Civil War, they managed to achieve some successes against the British. The G.50’s main opponent was the Gloster Gladiator, which had poorer flying performance in comparison. Later, however, more modern Hurricanes appeared, which were much more advanced than the G.50.
During the war in Greece, there were a number of engagements between the British and the Italian Air Forces. During one dogfight on 20th February 1941, some 10, possibly even 12, British planes were shot down in a single engagement by a group of 22 G.50s. The Italians only lost one plane. However, during the same day, British Hurricanes managed to shoot down four G.50s in a different engagement. On the 28th of February 1941, some 12 British planes were shot down at the loss of 27 Italian aircraft. In one unusual case, a collision took place between a G.50 and a Gladiator. Because of the heavy damage, the Gladiator crashed to the ground, while the pilot of the G.50, despite the damage received, managed to fly about 123 mi (200 km) back to his home base and safely land. Due to significant disagreements among sources, there is no accurate data on the losses of both sides. As the G.50 proved to be inferior to the Hurricane, they were gradually replaced with the more advanced Macchi C.200 planes.
During the attack on Yugoslavia, the so-called “April War” in April 1941, the G.50 were used in escort missions. There were very few air battles and, by 17th April, the war was over.
In the Mediterranean and North Africa
During the North African campaign, the first G.50s were stationed near Tripoli by the end of 1940 and early 1941. The first units to operate in Africa were the 151st, 152nd and 358th Squadrons with around 76 to 80 planes. Even before these units saw any action, there were great problems with the maintenance of these planes due to sand. Taking into account that North Africa is dominated by the Sahara desert, it is very strange that the Italian military leaders did not take into account the fact that the desert sand could affect the plane’s engine. Since a certain number of planes were taken out of action by this, the demand for special sand filters was high. There were also problems with the sand getting into the landing gear which caused issues. To solve these problems, the Air Ministry urged CMASA and Aeritalia to provide adequate sand filters and modify the landing gear. The G.50 planes modified in such a way were marked as G.50 A.S (A.S standing for Africa Sahariana).
The G.50 saw heavy fighting in North Africa. Depending on the combat situation, it was used in a standard fighter role, for ground attack, defence missions, or for bomber escort. As the war progressed, the G.50 was mostly used in a ground attack role by equipping them with a 220 lbs (100 kg) bomb load to increase its offensive armament. For this purpose, 50° Stormo was formed. 50° Stormo mostly operated around the Sidi Barrani sector, where it attained some success against the British P-40 and Hurricanes. The pilot Bovoli (from 50° Stormo) shot down six British Blenheim bombers in July 1941.
During 1941 and early 1942, despite reinforcements, G.50 losses were increasing. At the beginning of 1941 there were only 20 planes operational, but with reinforcements the number increased to 80 in October and then fell down to 35 in December 1941. Most planes were lost not in air combat but instead during enemy ground and air attacks on airfields, as well as accidents. For example, the 20th group suffered heavy losses when 18 G.50 were destroyed as British armored forces attacked the airfield at Martubi on 19th November 1941. By the end of 1941, the only unit operating the G.50 was the 12th Group stationed at Tripoli. By 1942, most G.50 fighters were either lost or replaced with more modern Macchi C.200 and C.202. The surviving G.50s were relocated to second line airfields in Sardinia (24th Group), Greece (151 Group) and in the Aegean (154th Group). By the time of the Axis defeat in Africa (1943), only the 358th Squadron was still using the G.50.
Despite having poorer flying performance than its main opponents, the P-40 and the Hurricane, the G.50 proved to be a formidable plane in the right hands. The G.50 also proved capable in its new role as a ground attack plane, in which it destroyed a large number of enemy planes on the ground.
The Last Stand
After late 1942, the remaining G.50 fighters that were stationed in Italy serving as trainers and for second line operations. After the defeat in Northern Africa, the Italian army was in disarray and the rapid Allied landing in Sicily in July of 1943 worsened the situation. Many surviving G.50s were used to equip the 158th and 159th Groups. These two groups suffered heavy losses attacking strong Allied positions in Sicily. In a period of only a few days, the two groups ceased to exist.
After Sicily, the Allies landed on the Italian mainland and, on 8th September 1943, Italy capitulated. By that time, there were only around 40 to 48 G.50 airplanes still in service, of which only 17 were operational. A small number of G.50 were used by the new National Republican Air Force (Aeronautica Nazionale Repubblicana/ANR) in Northern Italy until the end of WW2 as second line and training planes. A few were even used by the Italian Co-Belligerent Air Force (Aviazione Cobelligerante Italiana, or ACI) in the southern part of Italy, which had switched over to the Allied side.
In NDH Service
In the middle of 1942, in exchange for raw resources and materials, Italy delivered 10 G.50 (9 single seat and one two-seat trainer) airplanes to the NDH, the independent state of Croatia Air Force (reg. number 3501-3510). These were not newly produced planes, but instead G.50s that returned from the front and were repaired. The planes that were supplied were used alongside French-built MS.406 fighters supplied by the Germans. In 1944, six more airplanes were obtained from Italy, now under German control (reg. number 5686, 5965 and 06186, the rest are unknown) bringing the total number used to around 16 planes, possibly more as the exact numbers are not known. According to Tihomir T. and Darko Č. NDH forces acquired three G.50, after the withdrawal of Italian forces in 1943.
Their participation in the war was negligible and they saw little if any action. On 15th September 1944, only 7 were reported, with none fully operational for service. There were several cases of desertion among Croatian pilots while flying the G.50. On 2nd September 1944, pilot Andrija Arapović escaped to the island of Vis, under the control of the Yugoslav communist Partisans. A second pilot flying a G.50 fled to the Allies stationed in Italy.
Partisan forces put the captured G.50 to use during the war and it would remain in service up to 1946. An interesting fact about Andrija Arapović’s G.50 aircraft (reg. number 3505) is that it still exists today and can be seen in the Belgrade Military Aviation museum near the airport “Nikola Tesla” in Serbia. This is the only surviving example of a G.50 in the whole world, but it is in very bad condition and has been under restoration for years. By the end of the war, the Yugoslav Partisans had captured almost all of the surviving G.50s in Croatian service, but their use was limited due to a lack of spare parts.
G.50 production attempts in China
Italians were for some time trying to negotiate with Chinese authorities about opening an aviation production factory in China. After initial negotiations in June 1934, the Chinese signed a contract with the Aeronautico Italiano per la China (Aerocina). This company was owned by the Italian Government in conjunction with Caproni, Breda, Fiat and SIAI. According to this contract, the Italians were to build the SINAW (Sino-Italian National Aircraft Works) factory in Nanchang. With this agreement, the Italians were to provide tools and machines necessary for the factory to work. The head of the soon-to-be factory was the Italian Luigi Acampora and the Director was General Chu Lin. The production of the first operational aircraft was to begin from July 1937 on and all Italian personnel were to return to Italy after five years of cooperation.
The SINAW officially started production in November 1936 with six Savoia-Marchetti SM.81B bombers. Future plans included production of 30 Breda Ba.65s and 50 Fiat G.50s. The factory was slightly damaged during the Japanese bombing of Nanchang on the 20th October 1937. By November the Italian Government made a decision to discontinue any further cooperation and stopped all future deliveries of equipment and materials. This was done mostly due to Japanese military actions and the poor cooperation of the Chinese. By early December 1937, all Italian personnel returned home, and the deal with the Chinese was abandoned without a single G.50 being built.
Production and Variants
Besides the few prototype planes, a total of 791 (source Piero V.) G.50 and its variants were built during the war. Other authors give different numbers, according to Chris B. some 774 were produced and author Gianni C. quotes the figure of 778 planes. Author Duško N. give a figure of 788 planes.
The production of the G.50 fighter began in 1937 and ended in 1940, with a total 244 planes. The production totals by years were: two prototypes in 1937, 14 planes in 1938, 75 in 1939 and 153 in 1940. The improved G.50 bis was produced from 1940 to 1943 with a total of 439 planes built (421 according to some sources). 71 planes were built in 1940, some 253 in 1941, 113 in 1942 and the last 2 were built in 1943. If we compare these production numbers with other modern fighters of the time, the G.50 was built in relatively small numbers. The G.50 and its modifications and prototypes were produced by CMASA and Fiat during the war.
Conclusion
The Fiat G.50 was the first Italian all-metal fighter plane to enter operational service in significant numbers. In the early stages of the war, it proved to be an effective fighter, but as the war progressed, it became obvious that it was outdated in comparison with other modern fighters like the Hurricane. The G.50 was easy to control at lower speeds and had good maneuverability. The negative side was the lack of engine power and the overall design of the radial engine which affected the aerodynamics of the G.50. There were problems with cockpit visibility, but the most notorious issue was the lack of effective offensive armament, which consisted of only two heavy machine guns. Despite all this, with a good pilot the G.50 proved that it could be an effective fighter and it was responsible of downing of a significant number of Allied planes during the war.
G.50 prototype – Two prototypes built, the second was lost in an accident.
G.50 – Production aircraft.
G.50 bis – Improved version.
G.50 A.S – A number of G.50 planes that were used in North Africa were modified with sand filters and improved landing gear.
G.50 A – One plane was modified with an increased offensive armament of four 12.7 mm machine guns in October 1942. Only one was constructed and used up to 1943 for testing different wing designs.
G.50 B – Two-seat trainer version, around 100 to 108 built.
G.50 bis “Tuffo”– Dive bomber version, none built.
G.50 B naval observation – One G.50 was modified to be used by the Italian Navy in 1943.
G.50 O/R – Based on the G.50 bis, some 16 were built and used for training in 1943.
Prototypes:
G.50 ter – Equipped with a stronger 1000 hp (746 kW) FIAT A.76 engine, only one built.
G.51– In 1940, it was proposed to equip one G.50 with the new A 75 R.C.53 engine, none built.
G.52 – Proposed project, none built.
G.50 V– Equipped with a German Daimler-Benz DB 601 engine, one built.
G.53 – Proposed project based on the G.50 B and powered by the DB 601, none built.
Operators
Kingdom of Italy – Operated around 720 G.50 aircraft, starting from the Spanish Civil War until the Italian Armistice.
Croatia (NDH) – Used at least 16 G.50 aircraft during the war (supplied by the Italians and Germans).
Finland – Operated 35 G.50’s during the Winter War and the Continuation War.
FascistSpain – Used some aircraft given to them by the Italians at the end of the Spanish Civil War and after.
SFR Yugoslavia – Captured some G.50 fighters from NDH during the war. Their use was very limited.
National Republican Air Force (Aeronautica Nazionale Repubblicana/ANR) – Operated a small number of G.50s, mostly as trainers.
Co-Belligerent Air Force (Aviazione Cobelligerante Italiana, or ACI) – Operated limited numbers.
Nazi Germany – A few were captured and saw limited use with the Luftwaffe.
China – There were plans to produce 50 G.50 aircraft in China but nothing came of this.
G.50 Freccia Specifications
Wingspan
35 ft 11 in / 10.9 m
Length
26 ft 3 in / 8 m
Height
10 ft 7 in / 3.28 m
Wing Area
196.5 ft² / 18.25 m²
Engine
One 840 hp (626 kW) Fiat A.74 RC.38, 14 cylinder radial piston
Empty Weight
4,353 lbs / 1,975 kg
Maximum Takeoff Weight
5,324 lbs / 2,415 kg
Fuel Capacity
316 l
Maximum Speed
292 mph / 470 km/h
Range
267 mi / 445 km
Maximum Service Ceiling
35,100 ft (10,700 m)
Climb speed
Climb to 19,700 ft (6,000 m) in 7 minutes and 30 seconds
Nazi Germany (1942)
Experimental Aircraft – 1 Prototype Built
The Akaflieg Berlin B9 was a German experimental twin engine aircraft designed with the pilot placed in the prone position. It was designed to withstand extremely high g-forces. One prototype was built and tested by a glider production workshop in 1943 but it would not be adopted for mass production. The author would like to especially thank Carsten Karge from the Archiv Akaflieg Berlin for providing information on this generally unknown aircraft.
Why prone position?
During sharp up and down turns while flying an aircraft, strong g-forces appear that act on the pilot, potentially leading to loss of consciousness. Under normal flying conditions, the g-forces that appear are relatively harmless. The first effect of the g-force which the pilot notices is the difficulty of moving his body normally, as normal movements feel much heavier. Another effect of strong g-forces, which is much more dangerous, is the loss of oxygen flow to the brain. In some cases, the flow of oxygen and blood to the human brain can be greatly diminished, which can lead to the pilot losing consciousness momentarily. This effect lasts a short time, but it is enough for the pilot to lose control of the plane with a potentially fatal outcome.
While today, devices such as advanced anti-g suits help the pilot withstand strong g-forces, during the World War Two, other solutions had to be found. The Germans had noticed that, especially during sharp dive bombing actions, the pilots often lost consciousness. One way to tackle this was to put the pilot into a prone position, which in essence means to fly the plane while lying on the belly. In this position, the pilot has both his heart and his brain at the same level, which means that blood is no longer stopped from travelling to the brain during high-g maneuvers. Thus, this flying position allows the pilot to endure much greater g-forces than he would normally be able to if he would be in an ordinary sitting position. Other advantages of the prone position are the reduced aircraft size, smaller fuselage, less drag due to the smaller cockpit, and it would be easier for the pilot to operate the plane when conducting bomb sighting and ground attack, among other advantages.
During the war, the Germans would test several such aircraft designs, sush as the Henschel Hs 132 or B9, mostly for the ground attack role. Beside a few prototypes built, none were ever used operationally.
History
In order to test the idea of an aircraft with the pilot in the prone-position, the Aero-Technical Group (Flugtechnische Fachgruppe/FFG) of Stuttgart designed and later built the FS 17 all-wood test glider. It was especially designed to withstand forces up to 14 G. It made its first test flight on 21st March, 1938. In the spring of 1939, FFG Stuttgart made the first design drawings and calculations for a prone-piloted aircraft. This aircraft was to be powered by two Hirth HM 50 engines with an estimated speed of 250 mph (400 km/h).
FFG Stuttgart never completed this project as it was forced, for unknown but likely politicaly reasons, to hand over the project to Akaflieg (Akademische Fliegergruppe/Academic Aviator Group) Berlin. It is possible the order came from the German Experimental Department for Aerospace (Deutsche Versuchanstalt für Luftfahrt e.V. Berlin-Aldershof) DVL or even from the Ministry of Aviation (RLM – Reichsluftfahrtministerium), but precise information is lacking. Akaflieg Berlin, founded in 1920, was one of the oldest gliding clubs in Germany and it still exists today.
The RLM designation for this aircraft was “8-341” but Akaflieg used the simpler B9 designation. The technical characteristics that the new plane was supposed to have were a good field-of-view for the pilot in the prone position, a high degree of safety for the pilot, a high speed during diving, good general flying characteristics and being able to withstand forces of up to 25 G, or 22 G depending on the sources.
Akaflieg Berlin had a small number of engineers and workers and an adequately equipped workshop to complete the task given. For this purpose, a design team was formed with Theodor Goedicke, Leo Schmidt and Martin G. Winter, which was responsible for the creation of this new aircraft design. The first prototype was to be ready by August 1942 but this was never achieved, and the prototype was only completed in early 1943. It made its first test flight on the 10th April, 1943 at the Schönefeld airfield, near Berlin.
The Design
The B9 was a single-seat, low wing, mixed construction aircraft with the pilot in prone position. It consisted of a metal airframe, made of steel ribs, covered with wood and canvas. The main fuselage’s cross-section was trapezoidal shaped. As the B9 was specifically designed to withstand forces of up to 25 G, it had to have a strong fuselage.
The wings were made of wood covered with duralumin sheets. In order for the wooden wings to withstand the strong torsional forces which occur during high acceleration maneuvers, the spaces between the spars were heavily reinforced. The middle part of the wings viewed from above have a square shape and then narrow towards the wing tips. The wings were held in place by four bolts on each side. The rear tail design was a simple one, with standard rudder and elevators.
The B9 had a standard retractable landing gear copied from the Me-108, which consisted of two larger wheels and one smaller non-retractable wheel at the back. The landing gear was lowered and raised manually. The front wheels retracted into the engine nacelles, but they were not fully enclosed.
The B9 had a large 4.9 ft (1.5 m) long glazed cockpit with good all-around view. But, as the pilot was in a prone position, the above and the rear views were limited by the human body’s inability to turn the head in these directions. The glazed cockpit was made of two parts, the front windshield and the rear larger canopy that opened to the right side. The cockpit interior had to be especially designed for a pilot lying in the prone position. The usual flight controls were almost useless in this situation and, thus, certain changes were necessary. It was important to divide the controls on both sides of the cockpit, in order to avoid the pilot crossing hands, which could lead to complications in flight. On the right side were the controls for ailerons and elevation. The pilot would use his right hand to gain access to the harness and the canopy release mechanism. For controlling the rudders and brakes, the pilot would use his feet. Using his left hand, he would operate the remaining instruments, the throttles, flaps, ignition switches, emergency pump, fire warning, undercarriage control and others. Additional engine and flight instruments were located behind the pilot. These included, among others, the distance indicator, climb indicator, compass, oil and fuel pressure gauges and airspeed indicator. For the pilot to be able to see them, a small mirror was provided. There were also inclined and horizontal line markers on the inner windshield to help the pilot with orientation. For flying at high altitude, an oxygen supply system with a mask was provided to the pilot.
The aircraft was powered by two Hirt HM 500 air-cooled engines, with 105 hp each. The maximum speed was around 140 mph (225 km/h) but, according to some sources, it was as high as 155 mph (250 km/h). The four fuel tanks, with a total capacity of 25 gallons (95 l), were located between the spars on both engine sides. The B9’s effective operational range was 250 mi (400 km). Originally, the B9 was meant to be equipped with two variable-pitch propellers, but it was instead fitted with ordinary wooden fixed pitch propellers made by the Schäfer company.
As the B9 could be used as a ground attack aircraft, a bomb rack was meant to be installed, but it is not clear if this was ever implemented.
Operational Testing
The operational prototype was ready by the summer of 1943. The first test flights were carried out by Ing. L. Schmidt and Dipl.-lng. E. G. Friedrichs. On one flight, L. Schmidt had an accident, the details of which are not known, but the plane probably suffered only minor damage.
The B9 was meant to make a series of test flights in order to ascertain if the prone position design had any merit and to test the general flying and overall structural performance. If these proved to be successful, the B9 would serve as base for future development and be put into active service. The B9 aircraft received the ”D-ECAY” marking, which was painted on both sides of the fuselage.
The tests were carried out from July to October 1943, during which time around thirty pilots had the opportunity to fly it. The test flights were conducted without any major problems and only one accident was recorded. This accident was caused not by any mechanical problems, but by a pilot mistake during takeoff. The B9 was damaged, but it was repaired and put back into service in only a few weeks.
The pilots did not have many objections to flying in the new prone position. They described it as comfortable and that it was relatively easy to adapt to the new commands. There were some issues, like fatigue and tiredness of the neck and shoulder muscles because of the constant moving of the upper arms. There were also some complaints about the chin supporter, which was deemed as unpleasant during flight but it was essential during high g-force maneuvers. During these test flights, the control panel and the controls did receive some changes in design. The large and fully glazed cockpit provided the pilot with good front and below fields of view, while the rear and upward view was somewhat problematic due to the prone position.
These tests showed that this type of aircraft was well suited for bomber, ground attack, high speed reconnaissance and possibly even in a high-speed fighter role. But it was also noticed that, due to the somewhat restricted view, the use of low speed prone pilot aircraft without air support was not recommended. Despite being designed to withstand forces of up to 25 G, the maximum achieved was only 8.5 G. One of the reasons for this was the use of low rotational speed propellers.
For 1944 and 1945 unfortunately, there is no information about the B9’s operational use. The B9 was found abandoned at the Johannisthal airfield near Berlin after the war. In what condition it was by the time of capture is not known. What is unusual is that the B9 was captured by the Americans and not the Soviets (according to author Hans J.W.). What the Americans did with the plane is unknown to this day, but it was most likely scrapped.
Only one B9 plane prototype was ever built. By 1943 and 44, a large amount of resources were invested in the production of fighters for the defense of the Reich and there were neither the time nor the resources needed to develop and test such an aircraft.
The German Air Force was responsible for several great revolutions in the development of aviation during both World Wars. While the development of jet technology in the Second World War is probably the best known, during the First World War, one of the most important such evolutions was the development of the first all-metal planes. The man responsible for this was the famous Hugo Junkers. The corrugated metalwork first seen on the D.I would become a hallmark of later Junkers aircraft.
The first all-metal projects
Aviation technology before the First World War revolved around wood as the main building material. Wood was used as it was easy to process and was easily available in great quantities and simple carpenters could be put to work on airplane construction.
One of the first persons who ever experimented with the idea of building an all-metal plane was the well-known German aviation designer and inventor Hugo Junkers (1859-1935). While working as a professor of thermodynamics at the Technische Hochschule (Technical University) in Aachen in 1907, he met a colleague, Professor Hans J. Reissner. Professor Reissner was involved in experiments with many novel ideas, such as aerodynamics in aviation. This moment would have a big impact on Hugo Junkers, as he would develop a great interest in aviation.
Hugo Junkers’ initial efforts were focused on solving the problem of poor aerodynamics of already existing aircraft. In 1912, his preliminary research showed that planes had better aerodynamics properties if they were designed to have an airfoil structure. In essence, this means that the whole plane, wing, body, and control surfaces had to have curved surfaces specially designed to give the best possible ratio of lift to drag. In order to perform even more experiments in aerodynamics, Junkers financed the construction of a wind tunnel at the Frankenberg laboratory. In the following years he continued his research, and by 1914 he had performed around 4,000 different tests and built 400 test models.
In 1914, Junkers had the first indications that an all-metal monoplane with thick wings was a feasible idea. While metals, like iron, were available in large quantities, lighter metals, like duralumin, an aluminum alloy, were more desirable for this purpose. The negative aspect of duralumin was the fact that it was difficult to work with. The techniques and technology of the day were inadequate, and the process of forming duralumin was slow and crude. As this could delay his work for years, Hugo Junkers decided to use the iron plates as a replacement, as they were much easier to work with.
After having constructed one all-metal wing prototype with a 9.18 ft (2.8 m) wingspan, Hugo Junkers made a request on the 2nd of February, 1915 to the German War Ministry for funds so he could build an all-metal prototype plane. This request was rejected, but it did not discourage Junkers from continuing his research. His second request was accepted in July 1915. With these funds, Hugo Junkers was able to construct a working prototype by December 1915.
The base of the prototype was made of iron ribs which were covered with iron sheets which were only 0.1 to 0.2 mm thick, held in place by electric welding. A second layer of sheet metal was added to reinforce the whole construction. The first prototype, designated the Junkers J 1, was ready by the end of 1915. It was powered by a Mercedes D.II 125 hp engine. After some ground testing, the new plane was shipped to Döberitz, the main German aviation training and test site in December 1915. Once there, the first test flight took place on 18 January, 1916. This was the first flight of a plane with an all-metal frame. The Idflieg (Inspektion der Fliegertruppen – Inspectorate of Flying Troops) was impressed with this prototype and ordered six more all-metal planes for future testing as a fighter plane. The J 1 design was not without problems, as there were some issues with the wing connection to the fuselage. During one test landing, one of the wings separated entirely.
Hugo Junkers began working on a second improved prototype named J 2. The problem with the wing-fuselage connection was solved by changing the internal design. The wings were divided into a couple of parts. The main section was connected directly to the fuselage and the others were affixed by screws. In only a few months, the first Junkers J 2 was ready to be tested. The J 2 was powered by a single Mercedes D.II 120 hp engine which was later changed to a stronger Mercedes D.III 160 hp. It made its first flight on 11 June, 1916. However, unlike the first prototype, the flying performance of the Junkers J 2 was poor. The speed was good, but the plane was simply too heavy at 2,480 lbs (1,160 kg) and thus useless as a fighter. Some six were ordered and built for future testing but the Idflieg lost any interest in it. Despite being rejected for operational service, it was still deemed important for testing construction methods and acquiring additional research.
After Hugo Junkers and his team analysed the Junkers J 2, they concluded that the plane could be vastly improved if lighter materials were used. Their solution was to undertake a study of how to make duralumin easier to work with. In time, specialized tooling and machines were developed and designed in the hope of producing adequate duralumin parts that could be used for aircraft construction. Despite the use of the duralumin in Zeppelin construction, the Junkers team made many improvements to these processes.
Thanks to these developments with aluminum processing, Junkers tried to build a fully operational all-metal monoplane. This was a private venture marked as the Junkers J 3. It was short lived, as the Idflieg refused to finance its development and only a single incomplete airframe was built. The Idflieg was more interested in all-metal ground attack biplanes.
The improved J 7 prototype
Hugo Junkers and his team continued to develop their own all-metal plane project. The J 4 served as a prototype for the J.I biplane and J 5 was never completed. Next in line was the Junkers J 7 as a single seat fighter and the J 8 two-seat close ground-support version. The J 8 prototype would eventually lead to the J 10 and the CL I. As the the J 7 and J 8 were developed, tests done in the wind tunnels showed that the low wing design provided good performance. One extra benefit of this design was the fact that the low wing would provide some extra protection for the pilot during a harsh landing. However, the weakest point in the design was the fuselage. Hugo and his team had significant problems designing a structure that would be strong enough to support all the necessary equipment, engine, and fuel tanks while still being light enough to maintain fighter maneuverability. They eventually reached a achieved a design that met most of the requirements.
The Junkers J 7 was constructed by using steel bars to form the structures of the plane and these were then covered in duralumin sheets. This method was copied from the J 4, with the only difference was that parts of the surface of J 4 were covered with fabric, while J 7 was all-metal. The J 7, piloted by Feldwebel Arved Schmidt, made its first test flight on 17 September, 1917. As the tests continued, Schmidt was generally pleased with how the plane behaved. In his report he said that the plane “.. made a good impression and possessed no serious fouls but the unique rotating wingtip ailerons were somewhat overbalanced…”. The J 7, despite its large front mounted radiator to accommodate the Mercedes D III 160 hp engine, managed to reach a speed of 77 mph (124 km/h). Many further trial flights were conducted, and in early October 1917 Schmidt managed to reach an altitude of 16,400 ft (5,000 m) in 17 minutes. This was a great result especially considering that the J 7 had a weight of 1,572 lbs (713 kg) and with added military equipment, the same altitude could be reached within 24 minutes.
For the next series of test flights, the J 7’s wings were equipped with conventional ailerons. These trials were held in late October 1917. The pilots were Leutnant Gotthard Sachsenberg and Theo Osterkamp. This time, the J 7 was pitted against the Albatros D.III. The J 7 proved to be a better fighter but the problems with the ailerons persisted. Both pilots gave a “green light” for the J 7 to go into production.
On 20th October, 1917 Idflieg made a decision to establish a new cooperation between Hugo Junkers and Anthony Fokker. Junkers-Fokker Werke AG was thus founded. It was hoped that the lack of production capacity of Junkers’ team would be supplemented by Fokker’s. This meant that there were two companies working on the J 7 project, Junkers (Jco) and Junkers-Fokker (Jfa). Despite the Idflieg’s hopes for good cooperation, this was never achieved as both sides sought control of the project.
In December, new modified ailerons were tested and the large nose radiator was also changed. While flying the J 7, the pilot, Tonny Fokker, had an accident upon landing. The plane was damaged but quickly repaired in time for the inspection made by Hauptmann Schwarzenberger from the Idflieg. He gave positive reviews of this plane and suggested that it should be used in the First Fighter Competition held in Germany. For this purpose, it was equipped with a new Mercedes engine and received new aerodynamically-balanced ailerons.
This competition was held from January to February 1918. Many front line pilots flew the J 7, including the famous Red Baron. He had positive comments for the J 7, in his report the plane being rated as having better climb rate and speed than other fighters in field use. However, he also noted the presence of some oscillation in the wings during sharp turns.
In January, Fokker once again had an accident during landing, but the damage was minimal. The plane was damaged again during its flight to Dessaou for wing modifications, but was repaired and ready for further testing by early February. These accidents also proved that its construction was much more robust than that of ordinary wooden planes. In March 1918, the last tests took place, with Leutnant Krohn as the pilot. His report read “.. On take-off the aircraft accelerates quickly and leaves the ground in a short time. It reacts instantaneously to the control. After ten degrees of control-stick movement, which suffices for an 80-degree bank, the control becomes very heavy. In a spiral, the aircraft reacts quickly to the controls. On the whole, the aircraft is at least as manoeuvrable as the new Albatros D.III or D.VI when diving at 155 mph (250 km/h) airspeed without any vibration in the wings..”
The ailerons were modified for the last time, which solved all previously mentioned problems with the controls. The J 7 prototype plane was used by a Fligertruppe in late March 1918. The J 7 was also used in the Second Fighter Competition held in July 1918. Despite proving to be an adequate fighter, the J 7 would never be accepted for service.
The J 9 and the D.I
At the same time as the J 7 was developed, Junkers began work on an improved model named J 9. Two prototypes were built, simply marked as J 9/I and J 9/II, the first of which was ready by April 1918. The J 9 was similar in construction to the J 7, but it was better suited for possible mass-production. By March 1918, Idflieg was negotiating with Junkers about the possible production of six planes for more testing. Hugo Junkers was disappointed with this, as he expected the signing of a major production contract. He thought it was a waste of precious time and that the plane did not need further testing. By early May, he managed to convince military officials to put the J 9 into production. A contract was signed for the production of 100 all-metal planes, including other Junkers models CL.I and the J.I, with around 20 copies of the J 9, now officially designated as the D.I. The first group was to be built by late July, with 6 in June and 14 by July.
The D.I (J 9/I) prototype made its first flight on 12 May, 1918 (Some sources incorrectly state April), piloted by test pilot Leutnant Krohn. The D.I prototype was ready to participate in the Second Fighter Competition. For this, it was equipped with the Mercedes D. IIIaü engine. During this competition, the D.I prototype presented itself well. The second D.I prototype (J 9/II) was equipped with the Benz Bz. IIIbo V-8 195 hp engine. Due to problems with this engine, it was not used in this competition. During these tests, the J 9/I was equipped with two Spandau machine guns located above the engine compartment, with one on each side. At the end of the Second Fighter Competition, several front fighter pilots were asked to test these new models. As most pilots, such as Oberleutnant Goering, thought that biplanes were the future, they marked the D.I as a complete failure.
A second commission rejected the notion that it was a complete failure, referencing its demonstrated performance. One demerit marked by this commission was the lack of downward visibility from the cockpit. This was based on the German air fighting tactics which had been adopted due to Allied air superiority. This tactic involved attacking Allied planes using high speed dives from above, and thus downward vision was deemed critical. The D.I lacked this due the to the large low-placed wings, but it compensated with the metal construction that made it more resilient to low caliber rounds.
On the 21st August 1918, Idflieg place an order for 100 more Junkers all-metal planes, including the CL.I and the J.I, of which around 20 were D.I fighters. At the beginning of August 1918, three D.Is were ready for static machine gun testing. Three more were almost completed with five more to be constructed by early September 1918. For more firing tests, two were sent to Adlershof. Due to the installation of the offensive armament, some small modifications were needed.
Despite entering production, there were still some modification that were needed. The first D.I produced had a longer fuselage and larger wings. As it was tested, there were problems with vibrations of the fuselage and maneuverability. As this could endanger the entire production, a series of quick modifications were done to the remaining four, possibly five, produced aircraft. These were built with modified, shortened fuselages and smaller wingspans. In total, around nine operational fighters and two prototypes were ready by the war’s end.
Construction
The D.I was designed as a single seat, all-metal low-wing fighter plane. It consisted of a metal airframe of steel ribs covered with corrugated duralumin sheets. Duralumin is a trade name for one of the earliest types of aluminum alloy. The corrugated surface of the duralumin offered increased strength, rigidity, and projectile resistance without a significant weight penalty. This method of aircraft skin construction would later be used in larger Junkers bombers in World War II becoming an iconic hallmark of the company, going on to inspire the look of the Citroen H van of the late 1940s. Aluminum construction low wing monoplane designs in would later come into widespread adoption, becoming the standard by World War II. In this way, the C.I’s design was truly ahead of its time.
The airframe was designed by Hugo Junkers, but it said that even he was never completely satisfied with its design. It nevertheless did its job and was robust, durable, and easier to maintain and repair. It offered the pilot a greater chance of survival during a forced landing than a wooden airframe. The D.I’s metal airframe provide good protection from most weather conditions in comparison to standard wooden built planes. The D.I could be left out in the elements and exposed to strong rain and wind without fear of damaging the plane. Due to use of lighter metals, the D.I’s total weight was 1,835 lbs (843 kg).
The main engine chosen for this plane was the BMW III water-cooled 6-cylinder inline, supplying 185 hp (138 kW). With this engine, the maximum speed that could be achieved was 118 mph (185 km/h).
The pilot was located behind the engine and had a good visibility of the to the front, sides, above, and rear, but the downwards visibility was somewhat limited due to the plane’s large and low wings. The wing’s design was similar to previous prototypes, as it was divided into a few parts. The central part of the wings was directly connected to the fuselage and the remaining were connected by fasteners. Under the pilot there were two fuel tanks. The total fuel capacity is not precisely known.
The landing gear was fixed, like on all planes of the era. The landing wheels were mounted on an axle that was connected to the plane by triangular-shaped steel bars. The main armament consisted of two Spandau (7.92 mm) machine guns mounted above the engine compartment.
Production
Around 40 aircraft were ordered by Idflieg to be built by Junkers, 20 in May and a second group of 20 in August. Junkers completed around 27 planes before production was stopped in February of 1919.
The Junkers-Fokker joint company was also involved in the planned production of the D.I. The exact production details are not known. The Junkers-Fokker company was given an order to produce 20 more D.I, but it only produced 13. During the production run from June 1918 to February 1919, around 40 D.I fighters were built in total by both companies in addition with two prototypes..
What is interesting is the lesser known fact that Idflieg wanted to give a contract for the production of 50 D.I planes to Hansa-Brandenburg but, as the war ended in November 1918, this never took place.
In combat
The war ended before more could be produced, and thus only limited numbers were sent to the front. These were given to front line units, possibly in the Flanders sector in October 1918. Later, in early 1919, during the Entente advance after the Armistice, five D.I fighters were captured. Four were found at Hombeek in Belgium. Of these four, only one was in flying condition, two were badly damaged, and the condition of the fourth is unknown. One more was found(missing half of its parts at an airfield near Brussels. There is little information about their use in combat.
However, there is evidence that gives some indication of the D.I seeing some combat. On the plane captured at Hombeek in Belgium, there were markings behind the pilot’s cockpit that may have been kill markings, but this is at best just speculation. The aircraft captured near Brussels had machine gun bullet holes, but the origin of these is unknown.
At the war’s end, the US Air Service, after analyzing the collected data and field reports, made a report “.. no one was found who had ever seen one of these airplanes in flight …. Some of the RAF pilots, however were sure that it had been used in service..”
The Junkers D.I did see combat action after the war against Soviet Bolshevik forces in the Baltic countries. The D.I was used by Kampfgeschwader Sachsenberg (under the command of Leutnant Gotthard Sachsenberg), being mostly used in the air support role, covering the German Freikorps units that remained there after the war.
Leutnant Gotthard Sachsenberg was very impressed with the D.I’s overall performance. His report reads: ”.. The Junkers aircraft have proven themselves beyond all expectations. The weather resistance of the aircraft is so great that it was possible to allow the aircraft to stand for weeks on end in the open during snow, rain, and thaw of the March season. A tarpaulin cover over the propeller and the engine sufficed to provide protection. Since neither tents nor hangars were available, no other aircraft except the Junkers would have been able to serve in Russia at that time.. the advantage of the weather resistance, the exceptional speed and the invulnerability of the aircraft outweighed the small disadvantages. In crashes and emergency landings relatively little occurred …. the Junkers aircraft, with improvement, will without doubt, take first place as a combat type…”.
Today, only a single D.I has survived the War and can been seen at the Musée de l’Air et de l’Espace near Paris.
Junkers D.I Specifications:
Wingspan
28 ft 6 in / 9 m
Length
23 ft in / 7.25 m
Height
7 ft 4 in / 2..25 m
Wing Area
159 ft² / 14.8 m²
Engine
One BMW III water-cooled 6-cylinder, 138 kW (185 hp)