Tag Archives: WWII

Messerschmitt Bf 109A & B

Nazi flag Nazi Germany (1935)
Fighter Aircraft– 20 to 22 Bf 109A and 341 Bf 109B Built

When the Nazis came to power in Germany during the early 1930’s they sought to modernize their armed forces with more modern military equipment. The founding of a new air force, the Luftwaffe as it was known in Germany, was one of the main priorities of the new regime. Massive resources were channeled into the construction of a great number of airfields and other forms of infrastructure necessary for the air force. In addition, many new and thoroughly developed military aircraft designs were requested. Among these new designs was the Bf 109, which would go on to later become the most widely produced fighter aircraft in the world.

The Bf 109B (R. Jackson Messerschmitt Bf 109 A-D series)

Rise of the Luftwaffe

After the collapse of the German Empire following their defeat in the First World War, the Allies prohibited the development of many new military technologies, including aircraft. The Germans bypassed this prohibition by focusing on developing gliders which provided necessary initial work in aircraft development and crew training. Another solution was to develop civil aircraft that could be relatively quickly rebuilt and modified for military use. The efforts to hide these developments were finally discarded when the Nazis came to power in 1933.  One of the first steps that they undertook was to openly reject the terms of the Treaty of Versailles that prohibited the Germans to expand their army and develop new military technologies.

The founding of the Luftwaffe was seen as a huge military priority among Nazi officials. The Luftwaffe would then begin a massive reorganization and expansion project that would see it expand into a formidable fighting force. Much of the Luftwaffe’s attention and energy during this period was focused on developing a new fighter aircraft to replace the then obsolescent Ar 68 and He 51 biplanes. For this reason, in 1934 the Reichsluftfahrtministerium RLM (German Air Ministry) issued a competition for a new and modern fighter plane that could reach speeds of 400 km/h. For this competition, four companies were initially contacted including Arado, Focke-Wulf, and Heinkel. Besides them was a rather small and less-known manufacturer, Bayerische Flugzeugwerke BFW (Bavarian Aircraft Works,) which was under the leadership of Willy Messerschmitt. Despite lacking the experience of their contemporaries in military aviation designs, this small company despite its inexperience would go on to win the contract and build what would become Germany’s then-most modern combat aircraft

The man behind the design

Wilhelm Emil ‘Willy’ Messerschmitt was from his early years interested in aviation. When he was 13, he met Friedrich Harth who was an enthusiast and a pioneering glider designer. He would become a mentor and help Messerschmitt develop his passion for building gliders,  together designing and building several gliders. When the First World War broke out in 1914, Harth was drafted into the Army, and in 1917 Messerschmitt would follow. Fortunately for both of them, however, they were stationed at the same flight training school near Munich and were thus able to continue their work. Both of them survived the war and went back to doing what they both loved: designing and building gliders. As gliding was something that became highly popular in Germany after the war, Messerschmitt undertook further education by enrolling in Munich Technical College. With this knowledge, Messerschmitt managed to design and build his first glider in 1921, which he designated simply as S9. After gathering sufficient financial resources, Messerschmitt and Harth together opened a flying school in 1922. This did not last long, however, and the following year disagreements between Messerschmitt and Harth arose.

Messerschmitt then decided to work on his own and opened a small aviation company which he named Flugzeugbau Messerschmitt. His first proper aircraft design was the M17. It was a small all-wood, high-wing, sport aircraft powered by a British Bristol 29 hp engine. This aircraft was quite successful and even managed a 14-hour flight from Bamberg to Rome in 1926. The pilot was a World War One veteran Theodor Croneiss. A little-known fact, this was actually the first flight of such a small aircraft over the Alps ever attempted successfully. The M17 would later be lost in an accident when Messerschmitt himself was learning how to fly an aircraft. He crashed, losing the aircraft but surviving the hard landing, after which Messerschmitt spent some time in hospital. This did not greatly affect Messerschmitt’s new company as his next design M18 also proved to have good overall performance. Now in partnership with Croneiss, they managed to make a deal with Lufthansa, a German civil airline, to use the M18 for passenger transport.

The high wing, sport aircraft M17, was the first Messerschmitt aircraft design. (www.histaviation.com)

Messerschmitt’s company received a number of production orders for their M18 aircraft. However, Messerschmitt lacked the money, resources, and production capabilities to actually deliver these aircraft. At some point, he came in contact with the Bavarian government in hope of finding a solution to his problem. He got an answer, that the Bavarian government was willing to help with one condition, Messerschmitt would have to merge his own company with the Bayerische Flugzeugwerke BFW. This company itself was in the midst of a huge financial crisis but possessed a great number of skilled workers and equipment that could greatly help Messerschmitt in his future work. While both companies would be technically independent, Messerschmitt was to give first production rights for any of his new designs to BFW. BFW on the other hand would provide the necessary manpower and equipment. Messerschmitt agreed to this condition and was positioned as chief designer of both companies. Representation of the company was relocated from Bamberg to Ausburg.

In 1928 Messerschmitt focused his work on a civil design intended for transporting passengers. His next design was the 10-passenger transport aircraft designated M20. During a flight test, part of the wing fabric cover peeled away, and pilot Hans Hackman possibly in a panic decided to bail out at a height of 76 m. His parachute failed to open properly and he died. This led to the cancellation of production orders for the M20 by Lufthansa. Messerschmitt developed an improved second M20 prototype which was presented to, and tested by Lufthansa officials.  After an evaluation, the aircraft was deemed safe and a production order for 12 improved M20. However, tragedy would strike in two serious accidents involving the M20 aircraft, in which 10 people were killed. The first accident happened near Dresden in October 1930, where two pilots and six crew members were killed. The second occurred in April of the next year, with the death of both pilots. To make matters even worse, German Army officers were among the casualties. This affected Messerschmitt’s further work, who despite developing more aircraft designs failed to gain many production orders for them. While his own company did not suffer much, BFW was not so lucky and was forced into bankruptcy in 1931. In the next few years, Messerschmitt’s work was relatively stable as he saw some success selling his aircraft aboard. With better financing, he managed to acquire sufficient funds to reinstate BFW in May of 1933. The name was changed to BFW AG, a publicly-traded company. Unfortunately for Messerschmitt, a newly appointed Secretary of State for Air, Erhard Milch, opposed the idea of BFW operating under Messerschmitt. Erhard Milch’s hatred for Messerschmitt was personal, as the test pilot who flew on the doomed M20 prototype was his friend. He never forgave Messerschmitt who he deemed responsible for the accident. He forced  BFW AG to accept production orders for Heinkel aircraft designs. This was also partly done to provide adequate financial resources so that the company could operate successfully.

Despite this distrust by Nazi officials, Messerschmitt was contacted in the summer of 1933 by the RLM to design a sports aircraft to represent Germany on the Challenge de Tourisme Internationale. Seeing a new opportunity Messerschmitt took great care in fulfilling this order. His ultimate design would be the highly successful Bf 108 (initially designated M37.) This aircraft would be crucial in the later stages of Bf 109 development. With the success of the Bf 108, Messerschmitt managed to gain support from some top Luftwaffe officials. One of these was the newly appointed Hermann Goring who replaced Erhard Milch in the position of commander-in-chief of the Luftwaffe. While there were still some who wanted the Bf 108 to be canceled, with the support of Hermann Goring they could do little about it.

The highly successful Bf 108. (www.luftwaffephotos.com)

A new fighter

In March of 1933 RLM issued a document (designated L.A. 1432/33) that laid the foundations for the development of the future German fighter aircraft. In it a shortlist of general characteristics that this aircraft should meet was given. It was to be designed as a single-seat fighter that must be able to reach speeds of at least 400 km/h at a height of 6 km. In addition, that height had to be reached in no more than 17 minutes. The maximum service ceiling was set at 10 km. Armament was to consist of either two machine guns each supplied with 1,000 rounds of ammunition or one cannon with 100 rounds of ammunition.

In February 1934 this document was given to three aircraft manufacturers, with these being Arado Heinkel and BFW AG. The last to enter the competition was Focke-Wulf who received this document in September of 1934. While not completely clear as some sources suggest, Messerschmitt and the BFW AG were not initially contacted but were later included in this competition. Realizing this competition as a great opportunity, Messerschmitt gathered the best team he could find. Some of these included the former Arado fighter designer Walther Rethal, who became Messerschmitt’s deputy. Another prominent figure was Robert Lusser who took a great part in the Bf 108 development. He would also later play a great part in the future Bf 110 aircraft design.

According to RLM conditions, all interested companies were to provide a working prototype that was to be tested before a final decision was to be made. Arado and Focke-Wulf completed their prototypes, the Ar 80 and Fw 159, by the end of 1934. Heinkel and Messerschmitt’s prototypes took a bit longer to complete. Messerschmitt and his team set a simple but ambitious plan. Their aircraft would be simple, cheap, and possess lightweight overall construction. It was to be powered by the strongest engine they could get their hands on. Work on this new fighter began in March 1934, at this early stage, the project was designated as P.1034 (while sometimes in the sources it is also mentioned as Bf 109a). A simple airframe mock-up was completed shortly in May the same year, but the work on a more complex and detailed mock-up took some time. By January 1935 it was finally ready. The engine chosen for it was the Jumo 210A. As this engine was not yet available, the license-built 583 hp Rolls-Royce Kestrel engine was used temporarily instead. Ironically this engine was available thanks to the good business relationship between Heinkel and the British Rolls Royce motor company. Thanks to this cooperation the Germans managed to purchase a number of these engines.

The first prototype named Bf 109 V1 (registered as D-IABI) was flight tested by Hans Dietrich Knoetzsch at the end of May 1935. The first flight was successful as no problems were identified with the design. While later prototypes would be tested with a weapon installation, the V1 was not outfitted with any armament.

The Bf 109 V1 (registered as D-IABI). (www.asisbiz.com)

Messerschmitt designation

Before we continue, it is important to clarify the precise designation of this aircraft. Sometimes it is referred to as Me 109 (or as Me-109). While technically speaking this is not completely incorrect given that it was designed by Messerschmitt and his team. The Bf stands for Bayerische Flugzeugwerke, the company which constructed the aircraft. While the 109 has no specific meaning, it was just next in the line after the 108 design.

In 1938 this company would be renamed Messerschmitt AG and all future designs from this point on would receive the prefix ‘Me’. The older designs including the 108 and 109 would retain the Bf prefix during the war. It is worth pointing out that both the Bf and Me designation was used in Messerschmitt’s own archives. In German service prior to and during the war, it was not uncommon to see both designations being used. So using either of these two designations would be historically accurate, this article would use the Bf 109 designation for sake of simplicity but also due to the fact that in most sources this designation was used.

The Bf 109 trials

As no major issue was noted in its design, the Bf 109 V1 was to be transported to the test centers located at Rechlin and Travemunde starting in October 1935. Here, together with all competitor designs, they would be subjected to a series of evaluations and tests. The Ar 80 and Fw 159 proved inadequate almost from the start after many mechanical breakdowns and even crashes, which ultimately led to both being rejected. The He 112 and Bf 109 on the other hand proved to be more promising designs. The Bf 109 had a somewhat bumpy start as the Rechlin airfield was unfinished and had a rough runway. During a landing, one of the Bf 109’s landing gear collapsed. Despite what appeared at first glance to be catastrophic damage, turned out to be only minor.

The He 112 V1, was used for the trials held at Rechlin and Travemunde. (www.luftwaffephotos.com)
The Bf 109V1 was damaged during a failed landing. (R. Jackson Messerschmitt Bf 109 A-D series)

The second prototype was completed and tested by the end of 1935. The V2 (D-IILU or D-IUDE according to some sources) was powered by a domestically developed 680 hp Jumo 210A engine. It was moved to Travemunde for evaluation and testing in February 1936. The V2 was put into a series of test flights where it showed superb flying performance, in contrast to the other competitors. Unfortunately, during one test flight undertaken in April, part of the pilot’s canopy peeled away, forcing the pilot to make an emergency landing. A decision was made to not repair this prototype but instead to use its fuselage for ground testing and experimentation.

That same month that the V2 was damaged, the V3 (D-IQQY) was flight tested. This prototype served as the test aircraft for the installation of offensive armament. There is a disagreement between sources, as J. R. Beaman and J. L. Campbell mentioned that the armament was actually tested on the V2 aircraft. Regardless of which prototype was first armed, it possessed two 7.92 mm MG 17 machine guns. These were placed above the engine, close to the cockpit. The engine was once again changed, this time with the installation of the even more powerful 700 hp Jumo 210C. Another experimental feature was the installation of a FuG 7 radio unit. This necessitated adding a triple wire antenna, which was connected to the top of the fin, and the edges of the stabilizers to the cockpit. This aircraft would be extensively used for testing, and would later serve as the basis for the first production version. Later prototypes were used to test various additional equipment and weapon installations.  For example, prototypes V4 to V7 were used to test various different armament arrangements. The V5 was used to test the installation of an automatic reload and firing system, among other features.

The V3 in a flight. (en.topwar.ru)

During the initial evaluation flights carried out on both the Bf 109 and He 112, the latter was favored by many test pilots. Heinkel at that time was among the largest and most well-known German aviation manufacturers. It supplied the new Luftwaffe with a series of aircraft, and thus was well connected to RLM top officials. Further examination of the Bf 109 showed that the aircraft had several persistent issues. The most serious problems were the Bf 109’s tendency to widely swing to the left during landing and take-off. Another major issue was the design of landing gear, which was too narrow and generally weak. This in turn would often lead to crash landings. In retrospect, these two problems would never be fully resolved, but with sufficient training and experience, these problems could be overcome by the pilots. Other complaints included the limited visibility due to the canopy’s small design. The cockpit interior was also regarded as too cramped. The Bf 109 was also notorious for its high wing loading, which was pointed out by the test pilots.

Most of these complaints do not necessarily indicate a flawed design.  We must take into account that the test pilots were mostly experienced in older biplanes. This new single-wing fighter concept was completely strange to them. For example, the biplanes had a simple and open cockpit, so complaints regarding the Bf 109 cockpit design represented a refusal to adapt to newer technologies rather than a bad design.

During the series of test flights, the performance of the two competitors was quite similar, with some minor advantages between them. In the case of the Bf 109, it was slightly faster, while the He 112 had lower wing loading. In addition, the He 112 had a better-designed and safer landing gear assembly. As the He 112 had to be constantly modified in order to keep pace with the Bf 109, the RLM commission was getting somewhat frustrated. Despite Heinkel’s connections and experience in designing aircraft, the Bf 109 was simply more appealing to the RLM commission, given that it was simpler, faster, and could be put into production relatively quickly. At that time the Germans were informed by the Abwehr intelligence service that the British were developing and preparing for the production of the new Spitfire. RLM officials were simply not willing to risk taking a chance on an aircraft design that could not quickly be put into production. Thus the Bf 109 was seen as the better choice under the circumstances.

Technical characteristics

The Bf 109 was a low-wing, all-metal construction, single-seat fighter. In order to keep the production of this aircraft as simple as possible, Messerschmitt engineers decided to develop a monocoque fuselage that was divided into two halves. These halves would be placed together and connected using simple flush rivets, thus creating a simple base on which remaining components, like the engine, wings, and instruments would be installed.

The central part of the fuselage was designed to be especially robust and strong. Thanks to this, it offered the aircraft exceptional structural integrity. It also provided additional protection during emergency crash landings. The fuselage itself and the remainder of the aircraft were covered with standard duralumin skin.

Its wings also had an unusual overall design. In order to provide room for the retracting landing gear, Messerschmitt intentionally used only a single wing spar which was positioned quite to the rear of the wing. This spar had to be sufficiently strong to withstand the load forces that acted on the wings during flight. The wings were connected to the fuselage by four strong bolts. This design enables the wings to have a rather simple overall construction with the added benefit of being cheap to produce. During the Bf 109 later service life, the damaged wings could be simply replaced with others on hand. The wings were also very thin, which provided the aircraft with better overall control at lower speeds but also reduced drag which in turn increased the overall maximum speed. At the wing’s leading edge were slats that automatically opened to provide better handling during maneuvers at lower speeds. This had a secondary purpose to greatly help the pilot during landing. The tail unit of the Bf 109 was a conventional design and was also built using metal components. It consists of a fin with a rudder, and two vertical stabilizers each equipped with an elevator.

The cockpit was placed in the center of the fuselage. It was a fully enclosed compartment that was riveted to the fuselage. The Bf 109 cockpit itself was quite cramped. Most of the available space was allocated to the control stick. Left and right of the pilot were two smaller control panels with the main instrumental panel being placed in front of him. While the side control panels were a bit small, their overall design was more or less the standard arrangement used on other aircraft. The front instrumental panel contained various equipment such as the compass, and an artificial horizon indicator. Messerschmitt engineers also added an ammunition counter, which was somewhat unusual on German fighters. Another innovative feature was the installation of a FuG 7 radio unit. In front of the cockpit, a firewall was positioned to shield the pilot in case of an engine fire.

The overall framework for the canopy was fairly small, but despite this provided decent all-around visibility for the pilot. Its main drawback was limited forward visibility during take-off. The canopy opened outwards to the right. This was a major issue as it could not be open during the flight. To overcome this, it was designed to be relatively easily jettisoned. In case of emergency, the pilot would actuate a lever positioned in the rear. It was connected to two high-tension springs. When activated, the lever would release the two springs, which in turn released the canopy, which would then simply fly away due to airflow.

The Bf 109 canopy opens outwards to the right, this causes problems as it was unable to be open during the ground drive or in flight. (R. Jackson Messerschmitt Bf 109 A-D series)

When designing the Bf 109 great care was taken for it to have a simple design. This is especially true for the engine compartment. The engine was easily accessible by simply removing a series of panels. The engine was mounted on two long ‘Y’ shaped metal bars and held in place by two quick-release screws. The necessary electrical wires were connected to a junction box which was placed to the rear of the engine. All parts inside the engine compartment were easily accessible and thus could be replaced in a short period of time.  The Bf 109 “L” shaped fuel tank was located aft of the pilot’s seat and slightly underneath it. It too had easy access by simply removing a cover located inside the center of the wing. The total fuel capacity was 250 liters.

Once the Bf 109 was accepted for service, a small production run of the Bf 109B-0 was completed. It was powered by a 610 hp Jumo 210B, and served mainly to finalize the later production version. The Bf 109B-1 was powered by a 635 hp Jumo 210D engine and had a fixed-pitch two-blade wooden propeller. Later during the production, it would be replaced with a new all-metal two-bladed variable pitch propeller. This engine was equipped with a two-stage supercharger. The maximum speed achieved with this engine at the height of 3,350 meters (11,000 ft) was 450 km/h (280 mph). The engine oil cooler, which was initially placed close to the radiator assembly, would be repositioned under the right wing.

The Bf 109 had a simple engine housing that could be easily removed if the engine needed to be removed. (R. Cross, G. Scarborough, and H. J. Ebert (Messerschmitt Bf 109 Versions B-E)

The Bf 109 possessed quite an unusual landing gear arrangement. The landing gear was mainly connected to the lower center base of the fuselage, which meant that the majority of the weight of the aircraft would be centered at this point. The two landing gear struts retracted outward towards the wings. The negative side of this design was that the Bf 109, due to its rather narrow wheel track, could be quite difficult to control during taxiing. Messerschmitt engineers tried to resolve this issue by increasing the span of the two wheels. This actually complicated the matter as it necessitated that the two wheels be put at an angle. In turn, this created a weak point where the wheels were connected to the gear strut, which could easily break during a harsh landing.  This also caused problems with the Bf 109 tendency to swing to the side prior to take-off. When the pilot was making corrections to keep the aircraft headed straight, excessive force could be applied to the pivot point of the landing gear leg, which sometimes cracked.

The Bf 109 possessed a quite unusual landing gear that retracted outward towards the wings. (www.worldwarphotos.info)

The first series of the Bf 109 were only lightly armed, with two 7.92 mm electrically primed MG 17 machine guns. While this may seem like underpowered armament, we must not forget that in the period between the wars, mounting larger caliber guns in fighters was rare. Larger calibers at this time used were usually 12.7 mm. The two machine guns were placed in the upper fuselage, just forward of the cockpit. The port-side machine gun was slightly more forward than the starboard. This was done to provide more space for ammunition magazines. These were fully synchronized to be able to fire through the propellers without damaging them. In the early stages, the ammunition load consisted of 500 rounds for each machine gun, but this was later increased to 1,000 rounds.

The MG 17 was used as the main armament of the early Bf 109’s. (airpages.ru)

However, the double MG 17 layout was eventually deemed somewhat weak, so Messerschmitt was instructed to increase the offensive firepower. As Messerschmitt initially did not want to add any armament in the wings, another solution was needed. The installation of a third machine gun inside the centerline of the engine block was tested. While this would be initially adopted, this installation proved to be problematic mostly due to overheating and jamming problems. So this machine gun was often not installed and removed on those aircraft that had it. A possible installation of a 20 mm cannon in its place was also tested. This was the 20 mm MG FF cannon, which was in fact a license-built version of the Swiss Oerlikon cannon. While it was tested on a few prototypes, it too proved unusable due to excessive vibration. On the other hand, the installation of two non-synchronized machine guns in the wings proved to be more promising, and this was implemented and installed on the later Bf 109E.  For the reflector gunsight, a Revi C/12C type was used.

Main armament side view. (Bf 109B LDv.228-1 Document)
The left machine gun was slightly moved forward in order to avoid problems with ammunition supply. (Bf 109B LDv.228-1 Document)

The Bf 109A and B versions

The Bf 109 A version is somewhat of a mystery in the sources. Usually this version, besides a few mentions, is rarely described in the sources. According to Messerschmitt’s own documents, a small series of 20 to at least 22 aircraft of this version were built. It appears that in every aspect, it was the same as the later B version. The only major difference between these two versions was that the A was solely equipped with the two machine guns in the upper engine cowling.

This is probably why most sources barely mentioned the A version, likely lumping them in with the B version. To further complicate matters author D. Nesić mentioned that while version A was planned to enter production, it was abandoned due to its weak armament.

Once the Bf 109 was accepted for service, a small pre-production run of 10 Bf 109B-0 was completed. It was powered by a 610 hp Jumo 210B, and served mainly to finalize the later production version. The Bf 109B-1 was powered by a 635hp Jumo 210D engine. This engine was fitted with a fixed-pitch two-blade wooden propeller. It was armed with three machine guns, with two placed above the engine compartment, and the third fired through the centerline of the engine and propeller hub. During the production run of the B-1, some minor changes were introduced. The three-wire radio antennas were replaced with a single one. To provide better cooling of the machine guns, several vent ports were added. The Bf 109B-1 was then replaced with the Bf 109B-2. The 109B-2 was initially powered by a 640 hp Jumo 210E but was replaced with a stronger 670 hp Jumo 210G. The wooden propeller was upgraded to a new completely metal, variable-pitch, two-bladed propeller.

During early production, three-wire radio antennas were used. These would be replaced with a single one. (www.luftwaffephotos.com)

While at first glance, the infamous Bf 109 seems to be a well-documented aircraft, this is not quite the case. Namely, there are significant differences in the sources regarding the precise designation of the B series. For example sources like R. Jackson (Messerschmitt Bf 109 A-D series) and J. R. Smith and A. L. Kay (German Aircraft of the WW2) divided the B series into three sub-series: the B-0, B-1, and B-2.

On the other hand sources like  R. Cross, G. Scarborough and  H. J. Ebert (Messerschmitt Bf 109 Versions B-E) mentioned that in the Messerschmitt archives, no evidence for the existence of a B-2 series was found. In addition, while the Jumo 210G may have been tested on the Bf 109B series, there is also little evidence that it was actually installed in them. This is also supported by sources like Lynn R. (Messerschmitt Bf 109 Part-1: Prototype). This particular source indicated that all alleged modifications to the B-2 were actually implemented on the B-1 aircraft.

Early Bf 109 operational use

The Bf 109 was shown to the general public for the first time during the 1936 Olympic Games held in Germany. The following year several Bf 109’s (including the V10, V13, two B-1, and one B-2) participated in the international flying competition held in Zurich, Switzerland, easily winning several awards including fastest dive, climbing, and flew a circuit of the Alps, etc. The event was not without incident, as the Bf 109 V10 had an engine problem, and its pilot Ernst Udet, was forced to crash land it.

In Spain

When the Spanish Civil War broke out in 1936, Francisco Franco, who was the leader of the Nationalists, sent a plea to Adolf Hitler for German aid in providing military equipment including aircraft. At the early stages of the war, nearly all of Spain’s mostly outdated aircraft were in the hands of the Republicans. To make matters worse for Franco nearly all forces loyal to him were stationed in Africa. As the Republicans controlled the Spanish navy, Franco could not move his troops back to Spain safely. Franco was therefore forced to seek foreign aid. Hitler, seeing Spain as a potential ally, was keen on helping Franco and agreed to provide assistance. At the end of July 1936, some 86 aircrew personnel, together with 6 He 51 and 20 Ju 57 were secretly transported to Spain. This air unit would serve as the basis of the so-called German Condor Legion which operated in Spain during the war. The Ju 52 transport aircraft proved instrumental in transporting the Francoist forces to Spain. The operation was a success, but the enemy was quite busy with their own preparations.

On the other side, the Republicans were greatly supported by the Soviets, providing them with some 30 I-15 fighters in late 1936. Additionally, the Republicans operated a number of Soviet SB-2 bombers. The few He 51 fighters of the Condor Legion were outdated and outnumbered by the enemy air force, so a request was made to send additional and more modern aircraft. Seeing an opportunity to test the performance of the Bf 109 in real combat situations, it was agreed to send a few to Spain. One of the first Bf 109 V4 to be sent to Spain was unfortunately damaged in an accident. Several delays later on the 14th of December, the Bf 109 V3 arrived in Spain. These arriving aircraft were initially used for a few weeks for testing and training. Initial evaluation of these early aircraft proved to be more than satisfactory, and additional aircraft of this type was requested. Besides the V3 and V4, the V6 was also sent to Spain. The fate of the V5 is not clear; some sources mentioned (like R. Jackson) that it was also used in the Spanish Theater. Lynn R. (Messerschmitt Bf 109 Part-1: Prototype) on the other hand informs us that the V5 was used during 1937 for weapon trials and thus not sent to Spain.

In early 1937 the first of the Bf 109s began to arrive. It is unclear which exact version was first issued for service, these were either version A or B. Author  Lynn R. ( Messerschmitt Bf 109 Part-1: Prototype) mentioned that the first aircraft used were of the A version. He indicated that this was the case for several reasons, one of which was the use of only two machine guns. In addition, these were not equipped with the later-developed automatic cycling gun mechanism, which alleviated ammunition jam and misfeed issues.  In total, at least 16 aircraft of the early Bf 109 would be sent in this shipment. Sources like R. Jackson (Messerschmitt Bf 109 A-D series) mentioned that only the B version was used in Spain.

During the Spanish Civil war, initially only smaller quantities of Bf 109A and B were available for service. (me109.airwar1946.nl)

In March 1937, with the arrival of the first group of the new Bf 109, two fighter groups were formed. These were the I and II/Jagdgruppe J.88 under the command of Lieutenant Günther Lützow. Interestingly, these aircraft were initially to be given to JG 132 stationed at Döberitz-Elsgrund. Due to the urgent need to reinforce the Condor Legion, JG 132 pilots with the Bf 109 were transported to Spain instead. Besides markings, they also received numerical designations beginning with 6-1, 6-2, and so on. The precise method which was used to determine the numbering designation is not clear. For example, the V3, which arrived second, received the 6-2, and later 6-1 designation. The Bf 109 that served with the Condor Legion received a large black circle on the fuselage for identification. Two additional black circles with a large white “X” were painted on the wings. An additional black X was painted on the rear tail.

The Bf 109 that saw service during the Spanish Civil War could be easily distinguished by their unique markings. Those received a large black circle marking on the fuselage. Two additional black circles with a large white “X” were painted on the wings. An additional black X was painted on the rear tail. ( www.luftwaffephotos.com)

Initially, it was planned that the Germans would act as instructors for their Spanish allies. As the Spanish had problems piloting the newly supplied aircraft, many German instructors would themselves see extensive combat action during the war.

Lützow was also the one who achieved the first kill of the Bf 109B that was used in Spain. He managed to shoot down a Republican I-15 on the 6th of April 1937. Three more victories were achieved during that month. At the end of April, the II.J/88 provided protection for bombers that raided the small town of Guernica. Initially, the few Bf 109 that were available did not have much effect on the war efforts of the Nationalists. The Republicans had nearly 150 modern Soviet fighters and thus had a clear advantage. During the heavy fighting at Madrid in July 1937, the Bf 109 engaged the enemy I-16’s for the first time in the conflict.

In July of 1937, a Bf 109 from the II.J/88, managed to shoot down three SB-2 bombers, one Aero A.101 light bomber, and three I-16. But the J.88 also suffered its first casualty of the war, a Bf 109B which was piloted by Guido Honess was shot down by an I-16 on the 12th of July. On the 17th, another Bf 109 was shot down but the pilot Gotthard Handrick managed to survive. The next day, another Bf 109 was lost but the pilot was only lightly wounded.

In August 1937, the Nationalists launched an offensive toward Republican-held positions around Santander. The heavy fighting that lasted up to October saw extensive use of air forces on both sides. The Nationalists were reinforced with the I.J/88 under the command of Harro Harder. By late October this commander managed to bring down 7 enemy aircraft. At the end of 1937, an incident of note occurred where a Bf 109A piloted by Otto Polenz was forced to land on Republican-held territory. His aircraft was captured almost intact and shipped to the Soviet Union for examination. During the German Invasion of the Soviet Union in 1941, this particular aircraft would be recaptured.

The captured Bf 109A was shipped to the Soviet Union for examination. Ironically it would be recaptured by the Germans in 1941. (Lynn R. (1980) Messerschmitt Bf 109 Part-1: Prototype to ‘E’ Variants, SAM Publication)

On the 16th of December, the Republicans launched an offensive toward the city of Teruel. Given the severe winter, the J.88 was unable to provide air support and the city fell to the Republicans.  From late January and early February on, thanks to better weather, the German Bf 109s were once again active. On the 7th of February 1938, Wilhelm Balthasar managed to alone shoot down four SB-2 bombers alone during one flight. He too was forced to a harsh landing having received numerous hits by the bomber’s defensive fire, but Balthasar survived the landing.

By April 1938 the Nationalists realized that a direct attack on Madrid would be almost impossible without heavy casualties, and decided on another approach. They instead focused on the southern parts of Spain. The J.88 too was repositioned there and took on the enemy aircraft. Several Bf 109s were lost during this time, but most of these were either to mechanical breakdowns or pilot errors. For example, on one occasion two Bf 109s collided in midair on the 4th of April. While one pilot was killed, the second managed to escape by using a parachute. The following month saw extensive fighting on the ground and in the air. The Bf 109 pilots, thanks to their better machines and experience, achieved a series of victories over their opponents. On one occasion in late July 1938, three squadrons of Bf 109 took on a group of 40 I-15 and I-16. After a long engagement, the enemy lost six planes, while the Nationalists lost none. The Germans pilots were achieving so many victories that they had to invent excuses in order to not be sent back to Germany. According to official regulations, once a pilot had achieved 5 kills, he was to be replaced by another pilot. This regulation was clearly ignored as pilots like Werner Molders achieved some 14 victories. Other pilots were also very successful, Otto Bertram achieved four victories during August. While Werner Molders scored 8 victories through this period. During 1938, an additional 26 Bf 109B-1 with coded numbers, ranging from 6-19 to 6-45 arrived in Spain.

By early 1939, the Nationalists managed to gain almost complete air supremacy, thus air to air combat became a rare event.  The J.88 aircraft were from this point on mostly used for ground attack operations. The last J.88 air victory of the war was achieved on the 5th of March when an I-15 was shot down. Out of some 130 Bf 109s that saw service in Spain, between 20 to 40 aircraft were lost (depending on the source). Not all were lost in air combat, most were lost due to mechanical breakdowns, pilot errors, or hard landings.

While the Republicans would fly in loose formations with any proper tactics, the Germans would employ a so-called Schwarm (swarm) tactic. This basically consisted of using a group of four aircraft, which would fly in a reverse ‘V’ shaped formation, with some 200 meters separating each aircraft. When attacking, these would be divided into two groups of two aircraft. Which were intended to provide each other with cover in the event enemy fighters gave chase.

In German Service

While the Bf 109 was initially used for various tests and participated in sporting events, these aircraft were soon allocated to Luftwaffe units. The first such unit to receive the Bf 109 B-1 was the Jagdgeschwader (fighter squadron) JG 132 in February of 1937, being supplied with 25 aircraft. Due to some delays in production, the second unit equipped with the Bf 109, II./JG 234, was formed nearly nine months later. In early 1938, the production of the Bf 109 was greatly increased which provided a sufficient number of aircraft to equip additional units.

The early Bf 109s were prepared to see potential action during the political crisis regarding the German relationship with Austria and later Czechoslovakia. Even by the end of 1937, the pressure on Austrian politicians was great as the Germans wanted to install a more friendly government. All these political machinations ended in March 1938 when German troops entered Austria without any resistance.

The German request for territories belonging to Czechoslovakia was initially met with fierce resistance from the Western Allies, France, and the United Kingdom. These tensions could have easily cascaded into open war. This particularly caused huge concern in the RLM, as the German Air Force was not yet ready for a war. The situation was so desperate that even some He 112 were accepted for service. In the end, the Western Allies backed down, not willing to go to war, and allowed the Germans to take disputed Czechoslovakian territory.

As the new and improved models of the C and D versions began to be available, the Bf 109B were slowly being allocated to secondary roles, such as training. In this role, some would survive up to 1943. By the time of the invasion of Poland in September, the majority of Bf 109 in use were the D version, with ever-increasing numbers of the new E version. While some Bf 109B were still present in frontline units, their fighting days were over.

Production

For the upcoming Bf 109 production, initially BFW AG was responsible. As it lacked production capabilities given that it was already under contract (made earlier with RLM) to build several other aircraft types, another solution was needed. When BFW AG completed all previously ordered aircraft, it was to focus its production capabilities on the Bf 109.

To increase overall Bf 109 production, other manufacturers were also contracted. Some 175 were built at Erla Maschinenwerk from Leipzig, with 90 more by Fieseler, and only 76 aircraft by BFW. The production run of the Bf 109A lasted from December 1936 to February 1937.  In 1937 some 341 Bf 109B would be built.

Production Versions

  • Bf 109 V –  Prototypes series aircraft
  • Bf 109 A –  Proposed production version built in small numbers
  • Bf 109 B-0 – A small pre-production series
    • Bf 109 B-1 –  Production version
    • Bf 109 B-2 –  Slightly improved B-1 version incorporating a new propeller. Note that the existence of this particular version is disputed in sources.

Surviving Aircraft

Today only one Bf 109B-0 V-10 is known to have survived. Given its rather low production numbers, this is not surprising. It is in a private collection of the “Bayerische Flugzeug Historiker” Oberschleissheim in Munich, Germany.

Conclusion

Despite focusing mainly on civilian aircraft, Messerchmitt and his team of engineers managed to design a fighter that bested all the other well-established manufacturers for Luftwaffe’s new fighter program. The Bf 109 was inexpensive to build and possessed good overall flight capabilities. While a good design, there was plenty of room for improvement, mainly regarding its armament and engine, which would be greatly improved in subsequent iterations.

Me 109B-1 Specifications

Wingspans 9.9 m / 32  ft 4  in
Length 8.7 m / 28  ft 6 in
Height 2.45 m / 8 ft
Wing Area 16.4 m² /  174 ft²
Engine Jumo 210D
Empty Weight 1,580 kg / 3,483 lbs
Maximum Takeoff Weight 1,955 kg / 4,310 lbs
Maximum Speed 450 km/h / 280 mph
Cruising speed 350 km/h / 220 mph
Range 690 km / 430 miles
Maximum Service Ceiling 8,200 m
Crew 1 pilot
Armament
  • Initially three 7.92 mm MG 17 machine guns, later changed to four same type machine guns

Illustrations

Credits

  • Written by Marko P.
  • Edited by Stan L. Henry H.
  • Illustrations by Hansclaw

Source

  • D. Nesić  (2008)  Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
  • D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
  • R. Jackson (2015) Messerschmitt Bf 109 A-D series, Osprey Publishing
  • J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putham
  • R. Cross, G. Scarborough and  H. J. Ebert (1972) Messerschmitt Bf 109 Versions B-E Airfix Products LTD.
  • J. R. Beaman and J. L. Campbell (1980) Messerschmitt Bf 109 in action Part-1, Squadron publication
  • Lynn R. (1980) Messerschmitt Bf 109 Part-1: Prototype to ‘E’ Variants, SAM Publication
  • http://www.warbirdsresourcegroup.org/LRG/luftwaffe_messerschmitt_bf109.html

 

Boulton Paul P.75 Overstrand

United Kingdom (1933)

Medium Bomber – 28 Built

A flight of five No.101 Squadron Overstrands. (Boulton Paul Aircraft Since 1915)

The Boulton Paul P.75 Overstrand was a two-engined biplane that became the RAF’s mainstay bomber aircraft in the early to mid 1930s. The Overstrand was an improvement upon the earlier P.29 Sidestrand biplane bombers after the type recieved several criticisms regarding the frontal gunner position being exposed to the elements on such a high speed aircraft. To amend the complaints, Boulton Paul would design a modified version of the Sidestrand that would use a fully-enclosed powered turret, which would be revolutionary for the time. To test the design, three Sidestrands would be converted into Overstrands. The Overstrand would equip No.101 squadron and 25 newly built Overstrands would be constructed. Aside from mainline service, a number were experimentally modified by Boulton Paul, such as receiving different turret arrangements and more powerful engines. By the time of the Second World War, the aircraft had become obsolete, as new monoplane bombers entered production and replaced it. The type would continually fly in limited numbers for training and auxiliary purposes, but by 1941 would be considered obsolete and grounded.

Boulton & Paul and the Sidestrand

The Boulton & Paul P.29 Sidestrand was a modern and aerodynamic aircraft of the time. But while it was fast it had several glaring flaws, the biggest being the open front turret which exposed the gunner to high speed winds and cold air. (Boulton Paul Aircraft Since 1915)

In the mid 1920s, the Boulton & Aircraft company was beset by hard times. The company was surviving off of small orders for prototype aircraft and was in a rough financial state. The company had, up to this point, focused on creating twin-engine biplane bombers, starting with the Bourges in the First World War and going to their latest of the time, the P.25 Bugle. In late 1925, their savior would be their newest twin bomber design; the P.29 Sidestrand. It was an all-metal, twin-engine biplane bomber with extensive work done into designing its aerodynamic fuselage, creating an innovative and sleek-looking aircraft for the time. Production was soon ordered and 18 were built. This new bomber would populate the No.101 squadron, the only bomber squadron the RAF was operating at the time. Despite its success, a problem began to arise with the forward gunners of the aircraft. The Sidestrand, thanks to its aerodynamic design and powerful Bristol Jupiter engines, was able to achieve a top speed of 140 mph (225 km/h). While this speed made the twin engine bomber quite a fast aircraft for the time, this luxury was not so appreciated by the front gunners of the aircraft, who had no means of protection against the strong slipstream in their open cockpits. The strong winds made aiming the Lewis gun difficult, as it was blown around, and even reports of the propellers being hit by drum magazines thrown from the position were growing to be common. This was not to mention the extreme cold the gunner had to endure as well. Frozen fingers were another common complaint from Sidestrand gunners. While the Sidestrands began to take to the air (and torment their front gunners), Boulton & Paul set to procure more production orders of the type over the 18 that were built, but no further production was ordered, mostly due to the worldwide recession. In the early 1930s, many current fighters of the time were experiencing the same slipstream issues as the Sidestrand was. The Air Ministry put out an order on December 28th, 1932 to seek design reworks that would fix this now commonplace issue with the Sidestrand. While many of the other aircraft would seek simple means, the issue with the gunner position on the Sidestrand was more complex and would require more work put into redesigning the aircraft. Ultimately, Boulton & Paul would decide the answer was a completely covered turret. The company had been working on such a design with their P.70 aircraft concept.

The P.70 was a concept aircraft that was based off the P.64 mailplane and used components of the Sidestrand. While it was never built, it had an innovative enclosed nose turret that the Overstrand would use. (Boulton Paul Aircraft Since 1915)

The P.70 was a twin-engine biplane bomber design based on their earlier P.64 mailplane and incorporated aspects of the Sidestrand. In the nose of the P.70 was a fully enclosed, cylindrical turret that was fully powered via compressed air. The turret would have a single gun mounted that elevated and depressed down a vertical split in the design. It would also have 360 degrees of rotation as long as the gun was elevated 70 degrees to allow it to lift over the nose of the aircraft. Ultimately, the P.70 was not selected for the competition it took part in, but the innovative turret design was chosen to be used on the reworked Sidestrand. In addition to making the front gunner more comfortable, other additions were made for the rest of the crew. The rear gunner had a new windshield installed behind his back to protect him from the fast winds, and the pilot now sat in a fully enclosed cockpit. Even further, the aircraft would implement an onboard heating system, taking off excess heat from the engine intakes. Other planned changes to the design were the wings being swept at the outer edges to compensate for the weight of the front turret, and structurally integrity was also improved in the hull of the aircraft to allow for a bigger bomb load. With the improved design finalized, it was chosen that the first aircraft to test this new design, at this point called the Sidestrand V, would be created by modifying a Sidestrand III; J9186. The order for the creation of the prototype would be 29/33.

The mockup of the powered turret design. (Boulton Paul Aircraft)

Design

The Boulton Paul P.75 Overstrand was a twin-engined biplane bomber designed to improve the performance and crew comfort of the Boulton Paul P.29 Sidestrand. The airframe of the aircraft was of all-metal construction. The fuselage had a length of 46ft 11in (14.3 m). The wings of the aircraft were all-metal, 3-bay biplane wings. The wings themselves had an additional outer edge sweep to them, a design choice not found on the Sidestrand. This was to counter the increased weight of the nose due to the powered turret. The aircraft would have a wingspan of 71ft 11 in (29.2 m). Both the upper and lower wings would be built with ailerons. Mounted between the wings were two 580 hp Pegasus II.M.3 engines connected to two 4-bladed metal propellers. The engines were housed in nacelles that also carried a 17 gallon fuel tank, priming pumps, hand-stating magnetos and a gas starter. The very first Overstrand, which was converted from a Sidestrand, was equipped with 555 hp Pegasus I.M.3 engines. Covering the engine cowlings were 9-sided Townend rings. These assisted with improving the airflow of radial engines, reducing drag and increasing the overall speed of the aircraft. Connected to the engine nacelles on each side were the main connectors for the landing gear, which were each supported by struts. The Overstrand had large, rubber wheels that were bigger than those on the Sidestrand. The cockpit was located in front of where the wings connected to the main body. The cockpit itself was fully-enclosed with a sliding hood, a feature not present on the Sidestrand. The cockpit was glazed with anti-glare perspex. For the pilot, an autopilot was equipped, a feature also found in the Sidestrand. This was located directly behind the pilot’s seat. Behind the cockpit were two gunner positions near the middle of the airframe, one ventral and one dorsal. The dorsal firing position had a windshield installed to protect the gunner from the high speeds the aircraft would encounter. The ventral position would not have to deal with the rough winds due to the way it was positioned within the fuselage. The ventral gunner would also operate several pieces of equipment, including an F.8 camera, and a wireless set consisting of a T.1083 wireless transmitter, a R.1082 wireless receiver and a T.R.11 wireless transmitter/receiver. On the converted Sidestrands, they would continue to use the T.73 transmitter and R.74 receiver they came standard equipped with. Extra ammo magazines were availablefor all gunners. For crew communication, there was a telephone system installed that connected each of the crew members. For crew comfort, a heating system was equipped in the interior of the aircraft. Each crew member was able to appreciate the benefits of this system, no matter where they were located. Heat was siphoned from the Townend rings and engine cowlings through a series of ducts into the interior of the aircraft. Care was taken to make sure these ducts were clear of objects or debris when the system was activated, otherwise they would be forcefully ejected from the vents. At the tail end of the aircraft was a 9 inch by 5 inch tail-wheel, which replaced the landing skid of the Sidestrand. The vertical and horizontal stabilizers remained largely the same as how they were on the Sidestrand, but the rudder of the aircraft was lengthened. The Overstand also retained a rudder extension that was present on the Sidestrand. The horizontal stabilizers were supported by two struts on each side that connected to the fuselage.

A view of the prototype’s nose. On later models, the turret would be widened for increased crew comfort. (Boulton Paul Aircraft Since 1915)

The most innovative technical feature of the Overstrand was the powered turret at the nose of the aircraft. The turret design was created by H A Hughes, head of Armaments Section for Boulton & Paul. The design itself was originally part of the P.70 aircraft design, but with that project being canceled, the turret was reused on the Overstrand. The turret was cylindrical in shape, with the top and bottom being rounded. The majority of the turret was covered in Perspex to allow optimal viewing for the gunner, with the rest of the turret and frame being made of metal. The powered aspect of the turret came from pneumatic power from compressed air that was held in bottles. Each bottle was held at 200 Ib/sq and fed into the turret by an engine-powered air compressor at 40 Ib/sq. These bottles were rechargeable via the compressor and, at their full, could allow a total of 20 complete rotations of the turret before being exhausted. The turret itself was capable of 240 degrees of rotation with the gun pointing forward, and a complete 360 degrees if the gun was raised by 70 degrees. The turret was held on ball-bearings with brackets connected to the bottom and top longerons of the airframe. The top longerons in particular ended in a circular design that allowed rollers to rotate. The air was fed into the base of the turret, which was the main mechanism that rotated the turret. The armament of the turret was a single .303 Lewis machine gun, mounted to a mechanism that the gunner would use. The gun would protrude from a vertical slit at the front of the turret that allowed it to elevate. To protect this slit, a zip fastener canvas was put in place, but this was only found on the prototype Overstrand and was quickly replaced by a simple canvas strip held in place by clips. While the horizontal movement of the turret was done via pneumatic power, elevating the gun was manual. To assist the gunner in this regard, his seat and the gun mount remained balanced with one another and would raise and lower with the gun. Turning the turret was done via applying pressure to plungers on each side of the gun. To prevent the gunner from damaging the aircraft or turret, if rotated with the gun lowered more than 70 degrees to the rear, it would release the pressure from the plunger and stop the turret before the barrel could hit the body. The seat could also be adjusted manually by the gunner. For emergencies, the top dome of the turret could be removed to allow the gunner to exit. The top was held onto the turret via 3 pins, which were locked via pins with finger rings. Removing these three and pushing the top off allowed the gunner to escape. At the rear of the turret was a door that could be opened to enter the airframe of the aircraft. In addition to holding the gunner, the turret also served as the bombardier’s position. The bottom of the turret was heavily glazed to allow downwards visibility. Bomb controls were located to the left of the gun and were also duplicated in the cockpit for the pilot. The bomb sight could not be used in normal use and was stowed away. For bombing, the turret was locked forward into position and the gun moved so the bomb sight could be used.

Front and interior views of the powered turret. (Boulton Paul Aircraft Since 1915)

Aside from the frontal turret, there were two other gunner positions on the aircraft’s rear; one ventral and one dorsal. Both would use the same .303 Lewis gun as the main turret. Many improvements were done over the basic Sidestrand to allow the Overstrand to carry much more weight, including an enlarged bomb load of 1500 Ibs. Two 500 Ibs bombs could be carried internall,y with two additional 250 Ibs bombs on external racks on the fuselage, Additional racks could be installed at the front and rear of the fuselage, each carrying either 4 20 Ibs bombs or 2 20 Ibs bombs and two flares.

The Overstrand Takes Flight

A side view of the completed prototype J9186. This aircraft was converted from a Sidestrand III. (Boulton Paul Aircraft)

The modifications to Sidestrand J1896 would be completed around August of 1933. On its maiden flight, the aircraft would seemingly catch fire, as smoke poured from one of the inner wings. The craft would land immediately, the culprit being found to be caused by fresh varnish on the heating system ducts. Despite this incident happening on the first flight, testing continued on the aircraft. The early days of testing the aircraft yielded two incidents which could be considered quite humorous. After a test flight not long after the first, J1896 would have one of its wheels fall into a hole on the airfield, causing the aircraft to fall forward. One of the propellers would be destroyed and the nose turret would hit the ground. The current occupant of the turret was a member of the armaments section, someone who personally helped with the creation of the turret itself. When the turret dug into the ground, he began to panic and called out for help from the ground crew as he attempted to escape the turret. Due to his panicked state, he had forgotten how to operate the emergency pins that held the top of the turret on. The ground crew found his situation ironic, one of the men who had helped create the turret had forgotten how to operate it in his panicked state. He was in no danger whatsoever and the crew eventually helped the man out. Sometime later, the Air Ministry was intrigued in seeing the progress of the innovative powered turret system and thus sent an official to inspect it. The official was allowed to enter the cockpit to try out the new device. While trying the controls, he accidentally pushed on one of the plungers and began spinning. The gun itself had also been raised over 70 degrees, allowing a full 360 degrees of rotation. In a vain attempt to stop, the official leaned against the gun, and unknowingly onto the plunger; making the turret spin continuously against the intentions of the man. Humored by the situation, the design team that was showcasing the turret simply let him exhaust the air supply and finally let him out once the turret stopped spinning. The Overstrand would make its first debut to the public in late 1933, where it was part of the “Parade and Fly Past of Experimental Types” at the Hendon Air Display. On February 22nd, 1934, the prototype flew to be tested firsthand with the 101 squadron at Andover, who had been operating the Sidestrand up to this point. The main goal was to receive feedback on the changes to the Sidestrand’s design by its would-be operators, if the new additions were at all effective in increasing crew comfort. Aerial tests began and the crews liked the new design for a number of reasons, but they also had their criticisms. Being February, the heating system was very appreciated by the crews. Thanks to its Pegasus engines, the aircraft could attain a top speed of 153 mph (246.2 km/h) while still being as maneuverable as its predecessor. Despite all of this praise, pilots noted that the aircraft felt sluggish on the controls longitudinally and that the engines caused excessive vibrations. Gunners enjoyed not being subjected to harsh winds in the newly enclosed turret, but many felt it was currently too claustrophobic. With the necessary information received, the prototype would leave Andover and return on March 19th. Revisions began immediately to fix the criticisms of the design. A second Sidestrand was converted into this new design (J9770), and the new revisions were input into the modifications of this aircraft. The turret was widened to give the gunner’s more space. The zip-fastened canvas that protected the open slit of the turret was removed in favor of a simple canvas strip that was held on by strips. To accommodate the widened turret, the fuselage nose was widened to a slight degree. Changes were done to improve the autopilot, elevators, and fins to fix the vibration issues. The two-bladed propellers of the Sidestrand were replaced with four-bladed metal ones. Work was also done to make it easier to work on the engine’s compressors. The engines were replaced by the newer Pegasus II.M3 to increase performance and all would be equipped with this engine after this point. By this point in development, the aircraft design would receive a new official name, the Overstrand, named after a town near the city of Sidestrand, the namesake of its base design. Work began on converting two more Sidestrands (J9179 and J9185) into Overstrands not long after the second was completed. Further testing of the types revealed that the aircraft was still having issues with engine vibration. This would plague the converted Sidestrands but was noticeably more tame on the later production versions.

A side view of J9770. This was the 2nd converted Sidestrand and would evenutally be equipped with Pegasus IV engines. (https://www . destinationsjourney . com/)

While Boulton & Paul was in the midst of developing their new bomber, financial issues finally caught up to the company. With the failure to procure production contracts on several aircraft in the past and the Sidestrand itself not performing as well as had previously hoped, Boulton & Paul made the decision that of their four divisions of the company, the Aircraft Division had been the weakest. The Aircraft Division was completely sold off to a financial group, Electric and General Industries Trust Ltd, who would reformat the division into its own dedicated company that would be simply named Boulton Paul Ltd. Despite this drastic change happening with the development team, Boulton Paul would continue their work on the Overstrand starting on June 30th, 1934.

With the early success of the converted Sidestrands, the RAF put out an order (Specification 23/24) to Boulton Paul, which requisitioned the production of 19 newly-built Overstrands to begin replacing the Sidestrands in service.

In Service

A production Overstrand with a Sidestrand in the background. (Boulton Paul Aircraft Since 1915)

On January 24th, 1935, the very first Overstrand would enter service with the 101st Squadron. The squadron itself was already quite familiar with the design, thanks to the testing done the year before, as well as an Overstrand being flown by No.101 squadron members at the 1934 Hendon Air Display. Here, the Overstrand would participate in a mock dogfight against 3 Bristol Bulldog fighters (This display and the rest of the air show can be viewed at the Imperial War Museum’s website, found here.). The plan was to introduce the Overstrand slowly into the squadron, at first forming a third C flight and eventually replacing the Sidestrands in A and B flights. In late May, the Overstrands participated in a bombing demonstration to officials and students of the Imperial Defense College. The target was 200 yards by 300 yards and was meant to represent a bridge. All three bombing runs hit the target and impressed the students with their accuracy. Many however were not so impressed, as the demonstration did not represent accurate combat conditions the bombers would face in battle against a target that would no doubt be defended. Further showcasing of the new bomber continued as on July 6th, No.101 would fly to Mildenhall for the King’s Jubilee Air Review. While there, King George VI would personally inspect Overstrand J9185, and he was particularly interested in the powered turret.

With the necessary modifications made to the designs from actual criticisms of the prototype, the Overstrand and its many accommodations made the aircraft very well liked by the crews who flew them. The Overstrand was a comfortable aircraft to be in, but was also a well performing aircraft no less. At the start of its service, bomb aiming accuracy went up from only 15% accuracy to 85% thanks to the well thought out turret design which factored in bomb-aiming equipment. On top of bomb-aiming, the No.101 Squadron won the Sassoon Trophy of 1935 for photo-reconnaissance with a score of 89.5% accuracy. Gunner accuracy is also noted as having improved considerably thanks to the turret design.

Starting in September, newly produced Overstrands would begin entering service with the No.101 squadron. The first accident with an Overstrand occurred on September 9th, when J9185 crashed at the North Coates Range. Despite this accident, newly built Overstrands would continue to enter service through January of 1936. Before the year would close, an order for five more Overstrands (K8173-K8177) was placed, to serve as replacements in the event any were lost. This would bring aircraft production up to a total of 28 aircraft. While most of the Overstrands would be delivered to the No.101 squadron, K4552 would be sent to the Air Armament School at East-Church, where it would serve as a training aircraft for recruits to become familiar with the type and turret. 1936 was a largely uneventful year for the Sidestrand aside from 3 separate accidents. J9197 would lose an engine shortly after takeoff, K4556 would be forced down in a bog and K4562 would have its brakes seize up on landing.

The aftermath of the crash of K4556. (Boulton Paul Aircraft)

In January of 1937, the RAF began expanding its forces, and creating new squadrons. The No.144 Squadron was formed in support of No.101 and would borrow four Overstrands until new aircraft were made available. The Overstrands would serve for only a month until new Bristol Blenheim bombers could be supplied, after which the Overstrands were returned. Also in January, K4564 would crash while flying in thick fog from Midenhall to Bicester. Unfortunately, the aircraft would be destroyed and the crew was killed. Another aircraft would crash in June. A notice was put out to modify all Overstrands by reinforcing the nose to reduce vibration. Overstrands would once again appear at the Hendon Air Display, however, this would be the last year it was held. An Overstrand would perform a mid-air refuel with a Vickers Viriginia and yet again a mock dog fight would be held, this time an Overstrand would go against three Hawker Demon fighters.

The modified nose of K1785 with the de Buysson turret. (Boulton Paul Defiant: A Technical Guide)

In 1935, Boulton Paul purchased the rights to build the de Buysson electric turret from the Societe d’Applications des Machines Motrices (SAMM) in France. De Buysson was an engineer in the organization and had designed a four-gun electrically powered turret for use on aircraft. The French government was not interested in pursuing it, but de Buysson had caught wind of Boulton Paul’s work on turrets with the Overstrand. SAMM approached the company with their turret design and John North, lead aircraft designer at Boulton Paul, found their turret design superior and purchased the rights to its patent. In 1937, Overstrand K8175, one of the reserve aircraft, was experimentally modified with a de Buysson turret. The turret heavily increased the firepower of the Overstrand from a single Lewis gun to four Barne guns in the nose. Despite the increase in firepower, K8175 would be the only Overstrand to be equipped with this turret. The de Buysson turret would serve as the basis for the turret used in the developing P.82 turret fighter, which would be soon to be renamed the Defiant. Another Overstrand, K8176, would have its turret heavily modified to house a 20mm Hispano cannon. The nose of this aircraft had to be changed drastically to equip this weapon, and the turret was now built into the fuselage. The weapon itself was now on a mount that rotated and most of the glazing of the nose was removed, while what was necessary for bomb-aiming remained.

The modified nose of K1786 with its 20mm Hispano cannon. (Boulton Paul Aircraft Since 1915)

The P.80 Superstrand: A Bomber Behind the Times

Aside from the various modifications done to the Overstrand, there are two known variants that were proposed:

Early in development, Boulton Paul pitched an idea of a variant of an Overstrand that would be converted for coastal reconnaissance, designated P.77. While this idea was pitched, it was found to be largely unnecessary, as the Avro Anson could easily fill this role, and it was a modern monoplane design.

The P.80 Superstrand was meant to be the final evolution of the design, using Pegasus IV engines, retractable landing gear and a redesigned cockpit. While expected performance was much better than the Overstrand, the design was already outdated as it was being made, as newer and more advanced monoplane bombers were entering production, the need for further refining the type was made unnecessary. (Boulton Paul Aircraft Since 1915)

At some point during its service, the second Overstrand built (J9770) was re-equipped with much stronger Pegasus IV engines to increase performance of the aircraft. Plans were further done to modernize the design with retractable landing gear. The development continued with further refinements to the design, eventually becoming a new design entirely. The P.80 Superstrand was meant to be the final step in the bomber’s design, incorporating many modern aspects that were not found on the Overstrand. Aside from the previously mentioned Pegasus IV engines and retractable landing gear, the aircraft would also use variable-pitch propellers. The cockpit section was also redesigned, now connecting the pilot’s position with the rear dorsal gunner’s. The dorsal gunner position was also now fully enclosed. The front turret had many changes done to the design as well. Only the upper section of the turret would now be transparent, and it appears that the front section was now part of the fuselage, with accommodations in the nose for a bomb sight. It was expected these changes to the Overstrand would increase the top speed to 191 mph (307 km/h), give it a maximum ceiling of 27,500 ft and an increase bomb load. The Superstrand was never built, as the aircraft was obsolete even as it was being designed. While the Overstrand was performing well, aircraft development had continued and was now pushing towards more modern monoplane aircraft designs, the opposite of what the Superstrand was. Even Boulton Paul itself, by this point, was beginning to design monoplane bombers. The previous numeric design, the P.79, was a monoplane twin-engine bomber that, while never built, incorporated many elements found in the Overstrand but now adapted onto a more modern airframe. No further work was done on bringing the P.80 to reality.

End of the Line

Direct front view of an Overstrand. (Boulton Paul Aircraft Since 1915)

By 1938, the Overstrand was beginning to show its age. Modern bombers, like the Bristol Blenheim and even larger aircraft, such as the Vickers Wellington, had already, or were soon to enter production and replace the biplanes that remained in service. The Overstrand was no exception. On August 27th, No.101 squadron began gradually replacing their Overstrand bombers with Blenheims. By summer of next year, the Overstrand would be completely removed from frontline service. Despite this, the aircraft still continued to fly in various training schools and serve auxiliary roles. 5 Overstrands were sent to the No.2 Air Observer School in 1938 for training. K4552 would be sent to the No.1 Air Observer school in Lincolnshire, where it would continue its training mission until it was deemed non-airworthy and repurposed to a ground instructional frame. Despite not being in the air, the airframe was still the victim of accidents and, on April 28th, 1940, would be damaged and scrapped after a Gloster Gauntlet trainer overshot and hit it. The final nail in the coffin for most Overstrands came in July, when K1873 would break up mid air, killing the crew. After this incident, all Overstrands were ordered to remain in training as ground instructional air frames only.

K8175 parked in front of the aircraft hangar at the Boulton Paul factory at Wolverhampton. (Boulton Paul Aircraft Since 1915)

Despite this order, a handful of Overstrands would continue flying as part of rather unorthodox missions. K8176 would be sent to be used by the Special Duty Flight at Christchurch. Eventually, this aircraft would be sent to the Army Cooperation Development unit. K4559 would be operated by the Balloon Development Unit at Cardington. There, the aircraft would provide a slipstream for barrage balloons and would test the fatigue of the cables to the balloons. By 1941, the aircraft type was deemed obsolete and it is believed the previously mentioned aircraft were returned to Boulton Paul for turret development. Not long after, K1876 would be involved in an accident due to bad weather. While flying to Edinburgh, the aircraft would attempt to land at Blackpool but would undershoot the runway and crash. This is known to be the last time an Overstrand flew. It is interesting to note that K1876 had just been painted with camouflage, which would make it possibly the only Overstrand that was not in the standard bare metal finish aside from the prototype. It is unlikely any Overstrands saw any combat by happenstance during their short period of operation in the Second World War.

With the type obsolete, all remaining Overstrands were scrapped. While no surviving aircraft remain to this day, a reproduction of the nose section of Overstrand K4556 was built and currently resides in the Norfolk and Suffolk Aviation Museum, in the Boulton Paul Hangar.

 

Conclusion

The reproduction of the nose of an Overstrand at the Norfolk and Suffolk Aviation Musuem. (https://www . aviationmuseum . net/index . html)

Ultimately, the reason the Boulton Paul Overstrand existed was to improve the pre-existing Sidestrand’s nose gunner position and create a faster platform, which it would successfully accomplish with its reworks. The Overstrand served for only a few years before more advanced aircraft would replace it, but in that time it became a well respected aircraft that was liked by its crews for the various comforts incorporated into the design and which increased the performance.

The Overstrand was a very interesting aircraft, as it seems to be in an area between eras. On one hand, it represents the last of the biplane bombers that can trace their lineage back to the First World War for Britain and for Boulton & Paul. But on the other hand, it had features that were soon to become commonplace. The powered turret design was a game-changer not only for British aviation, but the company that built it as well. Boulton Paul, under H.A.Hughes, would become one of the most prolific turret designers for British aviation in the Second World War, not only designing turrets for use on other bombers, but also with their own upcoming turret fighter design, the Defiant.

Variants

 

  • Sidestrand Mk V -The name given to the design at the start of its development.
  • Prototype Overstrand (J9186) – The very first Overstrand was a converted Sidestrand. This had a smaller turret, two-bladed propellers and a narrower nose.
  • Converted Sidestrands (J9770, J9179, J9185)– The next three Overstrands built were modified from existing Sidestrands. However, these would be further improved over the prototype by having their turrets widened, four-bladed propellers installed and a wider nose to accommodate the bigger turret.
  • Boulton Paul P.75 Overstrand – Production version. 24 built in total.
  • Boulton Paul P.77 – Variant of the Overstrand redesigned for coastal reconnaissance. None were built.
  • Boulton Paul P.80 Superstrand – The final design of the “Strand” family, the P.80 Superstrand was drawn up in the mid 1930s as to further refine the Overtrand’s design with more modern components, including retractable landing gear, Pegasus IV engines, a reworked turret, lengthened cockpit and further streamlined airframe. Due to monoplane bombers now becoming mainstream, the P.80 was seen as obsolete and none of the type were built.

Modifications

  • Overstrand K8175 – Production Overstrand that was experimentally modified to test the du Boysson 4-gun turret.
  • Overstrand K8176 – Production Overstrand that was experimentally modified to house a 20 mm Hispano cannon in its nose turret via pedestal mount.
  • Overstrand J9770 – The second converted Sidestrand, this aircraft was later experimentally modified to house Pegasus IV engines. This was done as part of the development that would lead to the P.80 Superstrand.

Operators

 

  • United Kingdom – The Royal Air Force would operate the Boulton Paul Overstrand from 1935 to 1941 in various squadrons. Most of these would fly operationally with the 101 squadron from 1935 to 1938. The type would also briefly serve with 114 squadron for only a month, until it would be replaced by Blenheim bombers. During WWII, the remaining Overstrands would be relegated to training duties and other special tasks, such as working with barrage balloons.

Boulton Paul P.75 Overstrand Specifications

Wingspan 71 ft 11 in / 29.2 m
Length 46 ft 1 in / 14.3 m
Height 15 ft 9 in / 4.8 m
Wing Area 979.5 ft² / 91 m²
Engine 2x 580 hp ( 426 kW ) Pegasus II.M.3 9-cylinder radial engines
Propeller 2x 4-blade metal propellers
Weights
Empty 8004 lbs / 3630.6 kg
Loaded 11392 lbs / 5167.3 kg
Climb Rate
Time to 6500 ft / 1981 m 5 minutes 24 seconds
Maximum Speed 153 mph / 246.2 km/h at 6,500 ft / 1981 m
Range 545 mi / 877 km
Maximum Service Ceiling 21,300 ft / 6490 m
Crew Crew of 4

1x Pilot

3x Gunners (2 would also serve as the Bombardier and Radioman)

Armament
  • 1x .303 Lewis gun in powered nose turret
  • 1x .303 Lewis gun in dorsal gunner position
  • 1x .303 Lewis gun in ventral turret position
  • 1,500 Ib (680.4 kg) bomb load (2x 500 Ib and 2x 250Ib bombs)

Credits

  • Article written by Medicman11
  • Edited by  Henry H. and Stan L.
  • Ported by Henry H.
  • Illustrated by Esteban P.

Illustrations

 

Overstrand J9186: The first Overstrand built, converted from a Sidestrand
Overstrand K4546: A production Sidestrand that was operated by the No.101 Squadron in their C Flight.
Overstrand K1785: A later Overstrand that was experimentally modified with a quad-gun de Buysson turret for testing

Sources

Boulton Paul Aircraft. Chalford, 1996.

Brew, Alec. Boulton Paul Aircraft since 1915. Fonthill Media, 2020.

Mason, Francis K. The British Bomber since 1914. Naval Inst. Press, 1994.

Heinkel He 112 In Romanian Service

Kingdom of Romania (1935)

Fighter aircraft

Number operated: 31

Romanian operated He 112s. (http://www.luftwaffephotos.com)

During the 1930’s the Aeronautica Regală Română ARR (Romanian Royal Aeronautics or Airforce) was in great need of more modern aircraft design. Their fighter force was poorly equipped with obsolete aircraft such as the PZL P.11 and P.24, being of dated Polish origin. Thus the Romanians were in desperate need of better designs. Luckily for them, the Heinkel factory was more than willing to supply them with one of their failed competitors for the new German fighter, the He 112. The Romanians were impressed and placed an order for 30 such aircraft which would remain in use up to 1946.

A brief He 112 history

Prior to the Second World War, the Luftwaffe was in need of a new and modern fighter that was to replace the older biplane fighters that were in service, such as the Arado Ar 68 and Heinkel He 51. For this reason, in May 1934 the RLM issued a competition for a new and modern fighter plane. While four companies responded to this request, only the designs from Heinkel and Messerschmitt were deemed sufficient. The Heinkel He 112 was a good design that offered generally acceptable flight characteristics and possessed a good basis for further improvements. The Bf 109 on the other hand had slightly better overall flight performance and was much simpler and cheaper to build. Given the fact that the Germans were attempting to accelerate the production of the new fighter, this was seen as a huge advantage over the He 112. Ultimately it would not be accepted for service, and only 100 or so aircraft would be built. These would be mainly sold abroad, with those remaining in Germany used for various testing and evaluation purposes.

He 112 the unsuccessful competitor of the Bf 109. Source: (luftwaffephotos.com)

He 112 the unsuccessful competitor of the Bf 109. Source: http://www.luftwaffephotos.com/#fightermenu https://imgur.com/a/hl8lTvp

While the He 112 project was canceled by the RLM, to compensate for the huge investment in resources and time to it, Heinkel was permitted to export this aircraft. A number of countries such as Austria, Japan, Romania, and Finland showed interest, but only a few actually managed to procure this aircraft, and even then, only in limited numbers.

Technical Characteristics

The He 112 was an all-metal single-engine fighter. The monocoque fuselage consisted of a metal base covered by riveted stress metal sheets. The wing was slightly gulled, with the wingtips bending upward, and had the same construction as the fuselage with a combination of metal construction covered in stressed metal sheets.

During its development life, a great number of different types of engines were tested on the He 112. For the main production version, He 112 B-2, the 700 hp Jumo 210G liquid-cooled engine was used, and some were equipped with the 680 hp Jumo 210E engine. The He 112 had a fuel capacity of 101 liters in two wing-mounted tanks, with a third 115-liter tank placed under the pilot’s seat.

The landing gear was more or less standard in design. They consisted of two larger landing wheels that retracted into the wings and one semi-retractable tail wheel. The He 112 landing gear was wide enough to provide good ground handling and stability during take-off or landing.

The cockpit received a number of modifications. Initially, it was open with a simple windshield placed in front of the pilot. Later models had a sliding canopy that was either partially or fully glazed.

While the armament was changed during the He 112’s production, the last series was equipped with two 7.92 mm MG 17 machine guns and two 2 cm Oerlikon MG FF cannons. The ammunition load for each machine gun was 500 rounds, with 60 rounds each for the cannons. If needed, two bomb racks could be placed under the wings.

In Romanian Hands

While Heinkel was desperately trying to sell more of the He 112 fighters, a potential new customer arose in the Balkans. This was Romania, which during the 1930s was severely lacking in aircraft, and the strength of its Air Force was worryingly low in comparison to most European countries. Its main fighter at this time was the obsolete P.Z.L P.11 and P.24 fighters which were acquired from Poland. A smaller number of these were purchased, with the majority being built under license. In an attempt to find the solution to this urgent problem, Romanian King Carol II himself went to visit several potential aircraft manufacturers in Europe. The Germans in particular were quite keen to have a good relationship with Romania, mostly due to its rich oil fields. The Romanians were very interested in acquiring the new Bf 109 fighter, but as it was slowly entering production in Germany, it was not yet audible in sufficient numbers for export. As a temporary solution, the He 112E, an export model based on the B version, was proposed instead. One He 112 was acquired in 1938 and was extensively tested by both the Romanian Air Force pilots and by the engineers at Industria Aeronautică Română I.A.R. (Romanian Aeronautic Industry). While some issues, such as rather poor rudder response and handling during flight, were noted, due to the urgent need for a modern fighter and a lack of alternatives, the initial order for 24 was increased to 30 aircraft. These were the He 112V-1 and B-2 versions equipped with the Jumo 210E and G engines.

The B-series was in many aspects a complete redesign of the previous series. Including the introduction of a new tail unit, and modification of the fuselage, to name a few. (luftwaffephotos.com)

 

Prior to shipment, a group of Romanian pilots arrived in Germany to be sufficiently trained to operate this fighter. This transition to a new, low-wing aircraft, with a fully enclosed crew cockpit and retractable landing gear, was not easy for the Romanian pilots who needed time to adapt to the new design. Once the whole training process was completed the 30 aircraft were sent to Romania. They arrived during a period of late August to early October 1939. During their flight from Germany to Romania, one He 112 was lost in an accident, while a second was damaged but later repaired at I.A.R. The Romanians tested the newly arrived He 112 against the domestically developed I.A.R.80 fighter. The Romanian aircraft proved to be a better design overall, but the He 112, thanks to its good overall handling and firepower, were also deemed satisfactory.

The newly acquired He 112 prior to the flight to Romania in 1939. (D. Bernard )

The 5th Fighter Group

The Romans used the 29 He 112 to equip the Grupul 5 Vânătoare (5th Fighter group). This unit consisted of the Escadrila 10 and 11 (10th and 11th Squadrons), later in October 1939 renamed to Scadrila 51 and 52. The main purpose of this unit was to protect the capital from any potential aerial threat. In April 1940, Germany sent one replacement aircraft for the one lost in transit the previous year, so technically Romanian operated 31 He 112’s in total. In May 1940, the He 112 was first presented to the Romanian public during a military parade.

The Romanian-Hungarian War

In Summer the rising tension between Romania and Hungary over Transylvania reached a critical point. Transylvania was part of Hungary but was lost after the First World War when it was given to Romania. In 1940, the Hungarian Army began preparing for a possible war with Romania. As neither side was willing to enter a hastily prepared war, negotiations began to find a possible solution. But despite this, there were some minor skirmishes. Hungarian aircraft made several reconnaissance flights over Romania. The Romanians responded by repositioning 12 He 112’s to the border but these failed to achieve any success against the enemy reconnaissance operation. On the 27th of August, an He 112 managed to intercept a Hungarian Ca 135 severely damaging it and forcing it to land. Ultimately, at the end of August, Romania asked Germany to arbitrate the issue regarding the disputed territory. Hungary managed to get to the northern part of Transylvania. On the 12th September 1940, one He 112 was lost when during a training flight, the aircraft caught fire from the engine compartment, and the pilot lost control and crashed ground, losing his life in this accident.

In Combat

Following the start of the Second World War with the Soviets, on the 22nd of June 1941, the 24 available (the remaining aircraft were under repairs) He 112’s were repositioned to the Focșani-North airfield in mid-June 1941. Their main task was to attack a Soviet Airfield and other ground targets. While not particularly designed for this role, thanks to its strong armament and even a small bomb load, it had enough firepower to deal serious damage. But the pilots were not trained in this manner nor the aircraft was sufficiently protected, lacking armor to protect the pilot and self-sealing fuel tanks. Occasionally they provided support cover to Romanian bombers. The Romanian main fighter in service at that time was the I.A.R. 80, so the He 112 was to fulfill secondary combat roles.

The He 112 began their first combat actions of the war against the Soviets by flying in an escort mission for the Romanian Potez 63 bombers on the 22nd of June 1941. These were heading toward the Soviet airfields at Bolgrad and Bulgarica. The attack on Bolgrad was successful despite strong Soviet anti-aircraft fire. As the Romanian air group was approaching the Bulgarica airfield they were met with resistance of some 30 Soviet I-16 fighters. One He 112 piloted by Teodor Moscu attacked two I-16 that were in the process of taking off from the airfield. Moscu managed to shoot down one I-16 on his first run. While he was pulling off from his attack another I-16 attacked his He 112. Moscu managed to shoot down this aircraft too, but his He 112 was badly damaged and losing fuel. He managed to reach a Romanian airfield and land the damaged fighter. Teodor Moscu was officially credited with achieving the first air victory for the Romanians during the War with the Soviets.

The He 112 on their first combat mission protecting the Potez 63 bombers on the 22nd of June 1941. (D. Bernard)

On the 23rd, the He 112’s mostly performed ground attack operations against Soviet targets. The same day, some 12 He 112 attacked the Bolgrad airfield. The Soviets responded by sending 7 I-153 fighters. After a brief clash, the Soviet fighters managed to shoot down one He 112. On the 24th, two He 112 were damaged in an accident. On the 28th of June, an He 112 was lost when it was shot down by Soviet anti-aircraft fire. The same day another He 112 was lost when the pilot made a mistake during landing, ultimately leading to an explosion with the aircraft and the pilot being lost. One more was badly damaged when it caught fire after battling a Soviet fighter.

On the 2nd of July, two more fighters were lost again due to Sovie ground anti-air efforts. Three days later the He 112s once again attacked the Bulgarica airfield, attacking the Soviet aircraft with bombs, cannons, and machine gun fire. One I-153 that attempted to take off, but was intercepted and shot down. One He 112 was damaged in the process. Later that day, the He 112’s provided a bomber escort mission where they engaged a group of 12 Soviet fighters. In this engagement, the Romanian pilots managed to bring down 4 enemy fighters but lost one He 112 in the process.

On the 7th of July, two He 112’s attacked a column of Soviet cars near Comrat. The He 112s managed to destroy several of these cars. An interesting event occurred on the 12th of July. On that day, a He 112 was operated by Ioan Lascu while searching for targets in the area of Valea Hârtoapelor. The pilot quickly spotted an enemy armored column and proceed to attack it with bombs. After that, he went for another run and attacked them using the He 112 two cannons. This time the Soviets returned fire and the He 112 was hit by tank gunfire. The He 112 burst into flames and hit the ground, killing the pilot in the process.

In mid-july, the Soviets launched an attack in an attempt to destroy the Romanian Țiganca-Porumbiște bridgehead. Both the Romanians and the Soviets sent substantial air forces to this battle. Thanks to some 150 aircraft, the Romanians managed to repel the Soviet attack. The He 112 saw extensive action during this battle, losing one He 112 and another aircraft being damaged.

By the end of July, only 14 He 112 were reported operational while 8 were under repairs. With the arrival of the domestically built IAR 80 fighters, the He 112 was relocated to Romania in August 1941. These were temporarily allocated for defending the Romanian skies. With the great losses suffered by the 5th Fighter group, its 52nd Squadron was disbanded and its surviving aircraft relocated to the 51st. Out of necessity, the He 112 were in October, once again brought back to the front in the Odessa region, which finally fell to the Axis by mid-October. The He 112 equipped units were placed in this area carrying out either patrolling or reconnaissance missions above the Black Sea. Enemy aircraft were rarely encountered. Only one aircraft, an I-153, was shot down in the spring of 1942 in this area. This was actually the last kill achieved by the He 112 during war. Due to its inexperienced pilot, one He 112 was lost in this area.

In Late October the Romanians issued a war report where the He 112 performance was described. While the diving speed was excellent, the low horizontal and climbing speed was deemed quite poor. The fuel tanks and the pilot seat were not armored which led to unnecessary losses in men and material. The possibility to carry six 12 kg bombs was deemed satisfactory. The quality of ammunition used was poor as too often targets that were hit, did not receive any major damage.

Many He 112s were shot down due to their unprotected fuel tanks and unarmored pilot seat. (albumwar2)

Retirement from the frontline service

Combat around Odessa would be the last major engagement of the Romanian He 112. At the start of July 1942, the 5th Fighter Group was to be equipped with the I.A.R.80 fighters. By this time the remaining He 112 were mostly stored awaiting repairs. On the 19th of July during a Soviet night bombing raid over Bucharest, one He 112 took to the sky attempting to intercept the Soviet Bombers. This was the Romanian Air Force’s first use of fighters in a night raid attack. Even in this role the He 112 would be quickly replaced with the Me 110 twin-engine fighter.

In 1943 the surviving He 112 were placed under the Corpul 3 Aerian (3rd Corps) and acted as training aircraft on several different air bases. When the Romanin switched sides in August 1944, some 9 of the 19 available He 112 were still used as trainers where they awaited the end of the war. The last two surviving Romanian He 112 aircraft were finally scrapped in 1946.

After its retirement from front-line service the surviving He 112 were used as advanced training aircraft. (worldwarphotos)

 

This He 112 from the 52nd Squadron survived the war, but it and all remaining aircraft would be scrapped as they were at that point obviously obsolete and beyond repair. (worldwar2.ro)

In Soviet Aircraft Role

An interesting story related to He 112 in Romanian service was that they achieved some success in cinematography. Namly for the filming of the Italian-Romanian film ‘White Squadron’, where the He 112 were reused as Soviet fighters in September 1942. These were painted in simple gray color and received a large black star. It is unusual to use a black instead of a red star, but given that this was a black-and-white movie this was not a major issue.

A set of He 112s ready for a film appearance. (T.L. Morosanu and D. A. Melinte)

 

Conclusion

The He 112 provided the Romanian Air Force with a capable fighter until a proper replacement could be found. With its armament, it performed generally well in ground attack operations. Due to its inadequate protection, many were brought down quite easily by enemy return fire. Due to attrition, their service life would be severely limited to only a few months of the war before being brought back to Romania to perform a secondary but vital training role. .

He 112B-2 Specifications

Wingspans 29 ft 10 in / 9.1 m
Length 30 ft 2 in / 9.22 m
Height 12 ft 7 in / 3.82 m
Wing Area 180 ft² / 17 m²
Engine One 700 hp Jumo 210G liquid-cooled engine
Empty Weight 3,570 lbs / 1,620 kg
Maximum Take-off Weight 4,960 lbs / 2,250 kg
Climb Rate to 6 km In 10 minutes
Maximum Speed 317 mph / 510 km/h
Cruising speed 300 mph / 484 km/h
Range 715 miles / 1,150 km
Maximum Service Ceiling 31,170 ft / 9,500 m
Crew 1 pilot
Armament
  • Two 20 mm (1.8 in) cannons and two machine guns 7.92 mm (0.31 in) machine guns and 60 kg bombs

Credits

  • Article written by Marko P.
  • Edited by  Henry H. and Pavel. A
  • Ported by Henry H.
  • Illustration by Godzilla

Source:

  • Duško N. (2008) Naoružanje Drugog Svetsko Rata-Nemаčaka. Beograd
  • J. R. Smith and A. L. Kay (1990) German Aircraft of the Second World War, Putnam
  • D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
  • T.L. Morosanu and D. A. Melinte Romanian (2010) Fighter Colours 1941-1945 MMP Books
  • D. Bernard (1996) Heinkel He 112 in Action, Signal Publication
  • R.S. Hirsch, U, Feist and H. J. Nowarra (1967) Heinkel 100, 112, Aero Publisher
  • C. Chants (2007) Aircraft of World War II, Grange Books.

Illustrations

 

 

Rogožarski IK-3

Yugoslavia (1938)

Type: Fighter aircraft

Number built: 1 prototype plus 12 production aircraft

The most modern Yugoslavian domestically developed fighter IK-3. (http://www.airwar.ru/image/idop/fww2/ik3/)

The Kingdom of Yugoslavia, despite its rather undeveloped industry and infrastructure, still possessed several aircraft manufacturing companies. During the 1930s, these produced a series of aircraft that would be adopted for military use. These were mostly training aircraft but there were also several fighter designs that would see service with the Kingdom of Yugoslavian Royal Air Force (RYAF). Among them was the IK-3 fighter, created by the well-known Yugoslavian aircraft engineers Ljubomir Ilić, Kosta Sivčev, and Slobodan Zrnić.

History

During the 1930s, the RYAF was mainly equipped with old and obsolete biplane fighters. While this would be eventually solved by the introduction of more modern, foreign designs like the Bf 109 and the Hawker Hurricane, some Yugoslavian aircraft engineers wanted to develop domestic fighter designs. This motivated two aircraft engineers from Ikarus, Ljubomir Ilić and Kosta Sivčev, to start working on such a design. They were already involved in designing a new high-wing fighter named IK-2. This aircraft proved to be superior to older biplane fighters that were in RYAF service. But after a small production series of 12 aircraft, it became obvious that this aircraft would quickly become obsolete, in contrast to other nations’ low-wing fighters.

The IK-2 fighter aircraft. (http://www.vazduhoplovnetradicijesrbije.rs/index.php/istorija/565-ikarus-ik-2)

For this reason in 1933, Ljubomir Ilić and Kosta Sivčev began working on improved fighters on their own initiative. While initially, they tested various ideas, eventually both agreed that a low-wing design was the best option. While having experience in fighter design, these two quickly realized that this project would require more work than the two engineers could achieve on their own. So they asked another engineer Slobodan Zrnić to assist in their work. All three of them worked on this project under the veil of secrecy. Finally, in 1936 they had a finalized project which was presented to the RYAF officials. After some time spent considering this new proposal, the RYAF gave the green light for it at the end of March 1937. A deal was made for the construction of a single prototype for testing and evaluation. While the IK-2 was built by Ikarus, the construction of the new aircraft was given to Rogožarski instead. Given the experience this company had working with wooden airframes, the new fighter was to have a primarily wooden construction to reduce costs and speed up development time.

Name

This project would receive the IK-3 designation. At that time it was common practice that any newly developed aircraft was to be named based on the designer’s initials. In this case, I stood for Ilić and K for Koča, which was Kosta Sivčev’s nickname. The number 3 represents the third fighter project of these two engineers.

Construction of the Prototype

After one year of work, the first prototype was completed. In appearance and design, this was quite a modern aircraft. It was built using a mixed construction and was powered by a 925 hp V-12 Hispano-Suiza 12Y29 engine. It was flight tested for the first time on the 14th of April, 1938. An initial series of test flights were carried out near the capital of Belgrade at Zemun. The test pilot at this early stage was Captain Milan Bjelanović. These flight tests lasted up to the late summer of 1938. During this time, there were no major problems reported with its design, and the aircraft was given to the RYAF for future testing.

The IK-3 first prototype was tested in 1938. (http://www.airwar.ru/image/idop/fww2/ik3/)

A commission of several RYAF officials was elected for the planned army testing and it was agreed that the whole process should last 100 flight hours. For this, the aircraft was to be fully armed which included a centerline mounted 20mm cannon which fired through the propeller hub, and two 7.92 mm machine guns placed in the upper engine cowling.

Following the conclusion of the testing by the RYAF, a report was issued in which its performance was deemed sufficient. The armament was installed and functioned without any major issues, however, it was desirable to add two more machine guns in the wings. The aircraft offered good overall flying performance though its controls were noted to be somewhat problematic and some changes were requested. To resolve this it was asked to improve the design of the flaps, by increasing their deployed angle and size. The canopy was of rather poor quality and was reflective, forcing some test pilots to fly the aircraft with open canopies. The engine had overheating problems which required extensive work before finally being solved by adding an improved cooling system. During these trials, the maximum speed achieved was slightly over 520 km/h. While not bad, the RYAF commission wanted it to be increased to at least 540 km/h, which was not achieved on this aircraft. Overall, this aircraft was deemed worth developing further by the RYAF commission, which gave a recommendation for a small series of 12 aircraft to be produced.

The production of the IK-3

Following the production orders for the IK-3, an accident happened that threatened the realization of the project. On the 19th of January 1939, an accident occurred during a test flight, and test pilot Captain Milan Pokorni was killed, and the plane was lost. A commission was formed to examine what went wrong. After analyzing the wreckage it was determined that the IK-3 prototype’s structural design was not at fault, nor did the pilot make any mistakes. Prior to this accident another pilot Dragutin Rubčić, had a harsh landing, damaging the aircraft in the process. Why this was not properly examined before another take-off by Captain Milan Pokorni is unclear. In another account, during a dive, the canopy broke free which probably made the pilot enter a climb. This seemingly caused enough force to be put on the already damaged aircraft, resulting in structural failure.

While this accident did not lead to the cancellation of the whole project, it did cause huge delays in the delivery of new aircraft. The RYAF officials wanted the aircraft to be thoroughly examined and tested before any further production order was given. Finally, in November 1939, the project received a green light again.

The second prototype, which was also the first aircraft of the first production series, was completed in December 1939. This aircraft was examined in detail over the next few months. As no major issues with the prototype were found, the production of additional 5 aircraft was completed by the 17th of April 1940. The other six aircraft could not be completed as the IK-3’s propellers had to be imported. As there were delivery problems with the last six aircraft, instead of the hydraulically controlled Hispano-type propeller, they were equipped instead with Chauviere-type propellers. It used pneumatic commands which necessitated changes to the engine and its compartment. These were finally completed in July 1940. Once all were available these were allocated to the 51st Fighter Group in July 1940. These were divided into two six-aircraft strong squadrons (the 161st and 162nd) stationed at Zemun airfield near the capital Belgrade.

Members of the 51st Fighter Group in front of their IK_3 during the summer of 1940. (https://nasaborba.com/rogozarski-ik-3-ponos-srpskog-ratnog-vazduhoplovstva/)

Second series proposal

In march 1940, the Rogožarski company proposed to the RYAF another production run of 25 to 50 new IK-3 aircraft. It was to incorporate a number of improvements like self-sealing fuel tanks, a redesigned radiator, adding radio equipment, armor for the pilot seat, an aerodynamically improved engine cowling, and a new gunsight. The company proposed that these could be completed in a period of 9 months. To speed up the developing process, one IK-3 (serial number 7) was selected to be converted as the prototype of this new series. This aircraft was completed by the end of March 1941. It was flown in early April, managing to reach a speed some 15 to 20 km faster than the standard IK-3. Its further development was stopped due to the outbreak of the war.

The second IK-3 prototype was also the first aircraft of the small production series. (http://www.airwar.ru/image/idop/fww2/ik3/)

Further IK-3 modification proposals

Some accounts claim that the aircraft was tested with a DB 601 from one of the RYAF’s imported German fighters. According to eyewitness accounts, this model was fully completed and tested. If this was true, it was not confirmed by any historical documentation or photographic evidence. At the same time a Hurricane aircraft was tested with this engine (known as LVT-1). It is possible that an eyewitness simply confused these two.

Another proposed project was the IK-3/2 two-seater trainer. It was planned to add another position to the rear of the pilot, reduce the armament to two machine guns, and move the cooling radiator some 50 cm to the rear. As a number of modern Bf 108 aircraft were acquired, this project was dropped with no prototype ever constructed.

In service, prior to the war

The newly produced IK-3 entered service at the end of 1940 and was used primarily in training flights. They were especially used to test their performance against the Bf 109, which was also in service with the RYAF. The Bf 109 offered better horizontal and climbing speed. In comparison, the IK-3 possessed better horizontal maneuverability, possessing a smaller turning radius of 260 m, the Bf 109 on the other hand had a turning radius of 320 m. The IK-3 also had a somewhat more stable armament installation, providing better accuracy during firing. As the pilots who flew on the IK-3 were not entirely accustomed to flying on modern airplanes, harsh landings were quite common. This necessitated that many IK-3 were often in workshops awaiting repairs of their landing gear units.

The IK-3’s Achilles Heel was its landing gear unit which was of poor quality. This led to a quite common breakdown of the landing gear during landings. This aircraft was damaged in this way a day before the outbreak of the war. The Germans would capture it and later, in 1942, send it to be scrapped. (http://www.airwar.ru/image/idop/fww2/ik3/)

The sixth produced IK-3 would be lost in an accident that happened on the 3rd of September 1940. During a mock dogfight with a Potez 25, pilot Anton Ercigoj lost control of the fighter and fell into the Danube river. The pilot was killed on the spot and the aircraft could not be salvaged. While it was not clear how the accident happened, it was speculated that it did occur due to the pilot being too tired from previous flights.

In War

Just prior to the outbreak of the so-called April war, from the 6th to 17th April 1941, between the Kingdom of Yugoslavia and the Axis forces, only 6 IK-3 were combat-ready. The remaining 5 aircraft were awaiting repairs. Three were located at the Rogožanski workshop in Bežanijska Kosa, and two more at the Zemun Airfield. The war began with massive Luftwaffe bombing raids on vital military, communication, infrastructure, and civilian targets. The capital, Belgrade, was a primary target of strategic bombing and was majorly hit. The whole 6th Fighter Regiment, to which the 51st Fighter Group belonged, was tasked to defend Northern Serbia and parts of Croatia and Bosnia from any potential enemy attacks. The 51st Fighter Group reinforced the 102nd Fighter Squadron equipped with Bf 109 and was tasked with defending the Northern sector. Its primary defense point was the capital Belgrade.

The 51st Fighter Group was informed of a possible enemy attack almost an hour before it occurred. At 0645, the unit was informed of two approaching enemy aircraft formations. Five minutes later, all available IK-3s took to the sky to defend the capital. One aircraft, due to engine problems, had to abort the flight and went back to the base.

During the first engagement, some 5 to 6 enemy aircraft (at least one Ju 87) were shot down. One IK-3 was shot down and three more were damaged. Two of these were badly damaged and they were not used in combat after this point. The defenders were then left with only three operational IK-3 aircraft. Late that morning, another bombing raid was launched by the enemy. While only three IK-3 were available at this point, their attack was supported by the Bf 109s from the 51st Group. While the Yugoslavian fighters reported no losses, they managed to take down one Bf 109 and damaged two Ju 87. During the first day of combat, the Germans used nearly 500 bombers which dropped some 360 tonnes of bombs on Belgrade.

The following day, enemy activity came in the form of smaller formations that attacked specific targets. The Ik-3s once again saw action, managing to shoot down more enemy aircraft. While they received no losses, many aircraft were badly damaged by enemy return fire. For example, the IK-3 fighter piloted by Milisav Semiz received 56 hits. The engine itself received some 20 direct hits. While fully covered in engine oil the pilot managed to land safely at the Zamun airfield, the aircraft had to be written off. This unit was reinforced with one IK-3 of the second series. Due to heavy enemy activity, the unit was repositioned some 50 km away from Belgrade at Ruma. For the next few days due to bad weather, the IK-3 was not used. On the 11th of April, the Yugoslavian positions were discovered by a Me 110, which proceeded to attack the airfield. It failed to do any damage, but one IK-3 began a pursuit of it. Eventually, it managed to close in on it and shoot it down. Later that day, two IK-3s took to the sky and managed to shoot down two Ju 87s.

At 1700 hours, due to an enemy ground advance, it was decided to move the available units to Bosnia. The retreat was to commence on the 12th of April, but due to sudden enemy advances and poor weather, the evacuation could not be achieved. The unit commander and pilots agreed to burn down any surviving aircraft to prevent them from falling into enemy hands. This action basically marked the end of the IK-3 service with the RYAF.

Remains of the burn-down IK-3 at Ruma airbase. (N. Miklušev Maketar Plus)

In total both the 161st and 162nd squadrons reported some 15 air victories. These included two Ju 88, one Do 17, two Ju 87, two Bf 109, three Me 110, and one He 111. The remaining claims remain a mystery.

In German hands

The victorious Germans managed to capture a number of operational and damaged IK-3s fighters. Most were captured at Rogoarski repair workshops, with a few more at the Zemun airfield, all being abandoned. This included the IK-3 with serial numbers 2151 (which was actually the second prototype) 2152, 2153, 2157, 2158, 2160, and 2161. Most of these would be left exposed to the elements, near the capital Belgrade, until 1942 when they and many other captured aircraft were scrapped. At least one IK-3 was transported back to Germany. It is unlikely that it was used for testing, and some sources suggested but instead placed in the Berlin Aviation Museum. Its fate is unknown but likely lost when the museum was bombed by the Allies in 1944.

A captured IK-3 near the Capital of Belgrade after the April war. (http://www.airwar.ru/image/idop/fww2/ik3/)
Many captured Yugoslavian aircraft were gathered at the Zemun airfield. There at least three IK-3s could be seen together with some Hurricanes and Caproni aircraft. Most if not all of these would be left exposed to the elements and finally scrapped in 1942. (N. Miklušev Maketar Plus)

Technical characteristics

The IK-3 was a low-wing, mixed-construction single-seat fighter. Its fuselage consisted of welded chrome-molybdenum tubes supported with wooden stringers, and covered in duralumin skin. The rear part of the fuselage was covered in plywood and canvas. The wings were mostly made of wood with some metal links added for better structural stability. The IK-3 wings were covered with birch plywood which was in turn covered in bakelite. The ailerons were made of metal, but covered with canvas. While the trailing edge flaps were made of duralumin, assembly was made using the same materials as the wings.

The IK-3 was powered by a 925 hp, V-12 Hispano-Suiza 12Y29 liquid-cooled engine. It used a Hamilton-type constant-speed propeller. The cooling airflow was adjustable by changing the angle of the grills located on the radiator intakes.

The canopy initially was made by using concave-convex side panels. These proved to be problematic as they distorted the pilot’s vision and were replaced with simpler flat sides. The instrument controls panel and command were directly copied from French designs. The first prototype and the later first-moved aircraft of the second series were only equipped with radios.

The IK-3 was designed as a low-wing mix construction single-seat fighter. (http://www.airwar.ru/image/idop/fww2/ik3/)

The landing gear was of a conventional design consisting of two front legs which retracted outwards, with the tail wheel being fully retractable. To provide better landing, the front landing gear units had shock absorbers. The IK-3 landing gear was of rather poor quality and it often broke down during landing, and led to many aircraft being constantly under repair.

Initially, the armament consisted of one 2 cm HS 404 cannon placed behind the engine, and two 7.7 mm M.31 Darne machine guns, positioned above the engine. This was used on the prototype for firing testing. Later production models were rearmed with one 2 cm Oerlikon M.39 cannon supplied with 60 rounds of ammunition. The 7.7 mm machine guns were replaced with two 7.92 mm Browning machine guns. The ammunition load for each machine gun consisted of 500 rounds.

The IK_3 was fairly strongly armed with one 2 cm cannon and two machine guns. The cannon is actually firing through the propeller center, which is visible in this photograph. (https://nasaborba.com/rogozarski-ik-3-ponos-srpskog-ratnog-vazduhoplovstva/ )

Production

Despite its advanced design, only one prototype and 12 aircraft would be built. This took an extended period of time to be completed from December 1939 to July 1940. While proving to be one of the better domestically developed aircraft, the RYAF was reluctant to order more IK-3 fighters as it was heavily dependent on imported parts.

Production Versions

  • IK-3 Prototypes – Two prototypes were completed
  • IK-3 – Production version
  • IK-3 II Series – One aircraft converted to this version
  • IK-3 powered by a DB 601 engine – Allegedly one aircraft was modified this way, but the evidence is lacking
  • IK-3/2 Series – Proposal for a two-seater trainer, none ever completed

Conclusion

Despite being a very capable design, the IK-3 saw only limited production. This was mainly the case due to many of its parts having to be imported, something that could not be easily done in war-torn Europe. When used in combat, despite the limited number of operational aircraft, they performed well, with claims for 10 enemy aircraft at the loss of only one IK-3. Ultimately they could do little to turn the tide of the war, and most were either captured or destroyed by their own crews to avoid being captured.

IK-3 Specifications

Wingspans 10.3 m / 33 ft 4 in
Length 8 m / 26 ft 3 in
Height 3.5 m / 10 ft 9 in
Wing Area 16.5 m² / 178 ft²
Engine 925 hp V-12 Hispano-Suiza 12Y29 liquid-cooled engine
Empty Weight 2.070 kg / 4.560 lbs
Maximum Takeoff Weight 2.630 kg / 5.800 lbs
Maximum Speed 520 km/h / 325 mph
Cruising speed 400 km/h / 250 mph
Range 600 km / 370 miles
Maximum Service Ceiling 9,400 m
Fuel 330 Liters
Crew 1 pilot
Armament
  • One 2 cm cannon and two 7.92 mm machine guns

Gallery

IK-3 Prototype - 1940
IK-3 Prototype – 1940
IK-3 51.Grupa, 6.Lovacki Puk No.2158 Br.9 April 1941
IK-3 161.Eskadrilla, 51.Grupa No.218 April 1941
IK-3-161.Eskadrilla,-51.Grupa-No.10 - April 1941
IK-3 161.Eskadrilla, 51.Grupa No.2159 Br.10 – April 1941
Possible markings for captured IK-3 being tested by a German research unit

Credits

  • Article written by Marko P.
  • Edited by  Henry H. and Medicman11
  • Ported by Marko P.
  • Illustrations by Ed Jackson

Source:

  • N. Miklušev (2014) Maketar Plus, IMPS Srbija
  • Č. Janić i O. Petrović (2011) Kratka istorija vazduhoplovstva u Srbiji, Aero Komunikacije
  • D.Babac Elitni vidovi Jugoslovenske vojske u Aprilskom ratu.
  • Z. Rendulić (2014) Lovačka Avijacija 1914-1945, Teovid
  • B. Dimitrijević, M. Micevski and P. Miladinović (2016) Kraljevstvo Vayduhoplovstvo 1912-1945
  • N. Miklušev (2014) Maketar Plus, IMPS Srbija
  • N. Miklušev (2004) Avijacija Br.6
  • M. Hrelja, Rogožanski IK-3, Srpska Akademija Nauka I Umetnosti
  • http://www.vazduhoplovnetradicijesrbije.rs/index.php/istorija/563-rogozarski-ikz-ik3

 

 

Spitfire with DB 605A, “Messerspit”

Nazi flag Nazi Germany (1944)

Experimental Engine Testing Aircraft: 1 Converted Airframe

The enigmatic and misunderstood ‘Messerspit’ test aircraft lies at the center of a number of theories, its original purpose largely forgotten. (google.uk)

Introduction

Few aspects of the Second World War have been so misunderstood, misrepresented, and pushed into near mythology as the Luftwaffe’s test programs. Their discussion in less academic circles is dominated by rampant speculation from those who indulge in sensationalist historical stories. With respect to that, one might be surprised to find the bizarre photographs of a Spitfire Mk. VB with a Daimler Benz engine to be one of the few remaining genuine artifacts from an obscure Luftwaffe test program. With so little information publicly available, naturally, the odd plane’s origins, purpose, and performance have been drowned in a sea of speculation. However, while it is often erroneously claimed that the so-called ‘Messerspit’ was some bizarre attempt to combine the best aspects of the two planes, in reality, the aircraft was converted to settle a technical argument which had been raging in Luftwaffe research and development circles since 1942.

Engine Trouble

The history of fighter engine development is one of ceaseless improvement in power and weight which are largely achieved through improving methods of design, production, and the use of better materials. In the case of the Luftwaffe, it was not long until the chase for power was subsumed by the need to develop engines which could more reliably run on inferior materials. Following the end of the battle of Britain in the autumn of 1940, the Luftwaffe soon found itself short of several key materials necessary in building heat and corrosion resistant alloys, most notably nickel, tin, and, later, chromium and cobalt. Nearly all of these materials were available only in limited quantities across Europe, with tin, used in heavy duty piston bearings, being almost totally unavailable. This was further exacerbated by the transition to synthetic gasoline and lubricants, whose properties differed enough from their petroleum counterparts to cause trouble.

In order to cope with the restricted access to these materials, Sparrmetall economy alloys were introduced to ensure the aviation industry would have access to enough materials, albeit ones which would cause a slate of problems. The Bf 109E had nearly finished its production run before the transition to the new materials began and was soon being phased out by the new F model in late 1940, and there the trouble began. The new production DB 601N engines in these would make use of high octane C3 synthetic fuel. However, the engine was neither designed nor properly tested around this, and had instead been developed around the petroleum based C2. Beyond this, its nickel-poor, and thus corrosion prone exhaust valves, coupled with its more fragile piston and crank bearings, would soon create a web of issues that would take weeks to sort out.

A cut away of the troublesome DB 601N engine. (Flight Magazine)

The C3 fuel reacted chemically with the 109F’s rubber bag tank, and, if stored in the tank long enough, would ruin the anti-knock qualities of this fuel. When run on this degraded fuel, these engines soon suffered absolutely horrible mechanical problems, chief of which were violent vibrations which could thoroughly wreck them. The C3 fuel could also cling to the chamber walls after failing to thoroughly disperse through the fuel injectors, and then escape into the oil system. In most other aircraft, the fuel would simply boil away, but the Daimler Benz engine ran cooler than most, and thus the fuel would eventually dilute the oil until it failed to act effectively as a lubricant, resulting in increased wear or catastrophic engine failure in the worst cases.

Expecting the issue to be one of a mechanical nature, the fuel and bag were not seen as the obvious culprit. Rather, the engine mount, the air intake position, and the cooling system were suspect. This guess would be partially correct in the case of the intake. Eventually, they tracked the fuel degradation to the tank and adjusted the fuel injectors. The unreliable engine was then phased out for the DB 601E, which ran on the more common B4 fuel and was installed in the subsequent Bf 109F-3 and 4 models. Almost all Bf 109’s built after this point were run on this more common, lower performance fuel. Prior to this, the F series were restricted from running at emergency power and were at a considerable handicap in combat for much of 1941 and 42. Regardless of this impediment, many Luftwaffe fighter squadrons often found these their most successful years.

The Bf 109G initially provided no real advantage over its predecessor, and its unreliable engine would prove a particular liability in less than ideal settings, like this G-2 in Finland. (asisbiz)

Problems would resurface again when it came time to re-engine the 109 with the new DB 605A. Developed from the DB 601E, the new engine was to be a marked improvement, with its larger displacement, improved supercharger, and higher compression ratios promising a considerable increase in power. However, new material restrictions would sharply curtail the use of molybdenum, tungsten, and especially cobalt. Supplies of which practically dried up when Germany’s largest source in French North Africa had been lost after Operation Torch. Problems new and old emerged, the most egregious of which were exhaust valve failures, which were due to the low nickel content of the components, resulting in rapid corrosion and cracking. There were also lubrication failures, which were made worse after the switch was made from ball to sleeve bearings. The first Gustavs would enter service in early 1942, though they soon had their performance limited, off and on, to prevent engine failure rates from reaching unmanageable levels. As a result of these limitations, the Gustav was initially slower than the plane it was supposed to replace.

Problems were made even worse when the materials in the engines at Daimler Benz’s testing and development facilities did not match those on the production line, leading to considerable delays in destructive testing. It would eventually receive the improvements to allow it to use its emergency power setting, as exhaust valves were chrome plated and the oil scavenge system was improved, but it was clear that any major future increase in engine performance was only possible after a costly and extended development cycle. The DB 605A would finally be released from all restrictions in August of 1943, almost two years after the first Gustav left the factory.

The Blame Game

The DB 605’s flaws would be magnified in the light of a cascade of engine failures. The most publicized incident involved the loss of ace pilot Hans Marseille, who was lost in action after his engine caught fire and he died trying to escape his aircraft. (asisbiz)

Continued development of the Bf 109 was in a very precarious place, as performance improvements were expected without any major increases in engine power. These goals were largely unachievable for the time being, and thus most of those involved would try placing the fault with some other party when the unrealistic plans fell through. Willy Messerschmitt would place the blame with Daimler Benz, whose engines, he claimed, had cooling requirements that were too high, and thus required the use of larger, drag inducing radiators. In part, he was correct in that Daimler Benz’ engines ran cooler, though in doing so, he seems to have neglected issues with the plane’s radiators, which were supplied by other firms. The Bf 109 was fitted with radiators that operated under considerably lower pressures and temperatures than those used on Allied fighters, and were thus very robust, but less efficient. To his frustration, Messerschmitt was unable to increase the efficacy of the system without more efficient, high pressure radiators, which his suppliers were unable to provide.

In 1942, Messerschmitt began an increasingly adversarial correspondence with Fritz Nalinger of Daimler Benz on the state of his engines, and would request that he permit the engine to run at higher temperatures. In a letter sent in December of that year, he would draw a comparison between the ailing DB 605A and the powerful Merlin 61, then in service with the RAF. He placed particular emphasis on the higher operating temperatures and its use of radiators that were 55% smaller than those in service on the Bf 109. He would leave out that British aircraft designers were working with high pressure radiators which were far more efficient than those on his own aircraft.

At a conference with Göring at Carinhall in March of 1943, Messerschmitt would openly lay blame on Daimler Benz and Nalinger, largely reiterating the points from his correspondence. Nalinger would defend the firm by stating they had put their primary focus in designing the engine in reducing the frontal area and maintaining a high power to weight ratio, but he largely side stepped Messerschmitt’s Merlin 61 comparison by extolling the promise of the still in development DB 628. At the end of the meeting, it had become clear that both men would need to work against one another to defend their own reputations. By then, the Bf 109G had been flying for well over a year under strict engine power restrictions.

The Hybrid

To try and prove Messerschmitt wrong, Daimler Benz planned a simple and clear demonstration. They would install one of the firm’s engines in a Spitfire to show that the DB 605A did not require a large radiator to run. The Spitfire in question was EN830, a Mark Vb which had crash landed in the German occupied Jersey Islands in November of 1942. Its pilot, Lieutenant Bernard Scheidhauer, crash landed his plane after being struck by ground fire during a rhubarb raid over Northern France and a fuel leak prevented him from returning to Britain. After ditching his plane, Lieutenant Scheidhauer attempted to destroy the aircraft when it became clear that he was not on a British held channel island, however, there was insufficient fuel to burn the Spitfire. Scheidhauer was subsequently sent to Stalag Luft III, in Poland. He was among those murdered by the Gestapo after the legendary mass escape.

A standard Spitfire Mk Vb. (wikimedia)

The plane was subsequently taken in hand by the Luftwaffe, repaired, and used for trials at the Rechlin test center. It was later pulled from storage for Nallinger’s tests sometime in late 1943. The plane was re-engined with a DB 605A, though much of the rest of the aircraft was left as it was, save for the radio and armament, which were stripped out. All of the work was done at the Daimler Benz Untertürkheim factory in Stuttgart, after which it was delivered to the Luftwaffe for testing at the nearby airfield at Echterdingen. It was no simple effort to re-engine an aircraft, but it seemed to have been managed well. Testing began in the spring of 1944, with the report on the aircraft being finished May 10th.

The modified aircraft retained much of the same equipment, save for the weapons, which were removed. The avionics were likely all replaced with German alternatives. (Valengo)

The plane flew quite well and proved Nallinger right in that the DB 605A could work using a significantly smaller radiator area. It also made for an interesting comparison with the Bf 109’s radiators, as it was found that the high pressure model fitted to the Spitfire Mk V was 50% smaller but provided only 4% less cooling capacity. The tests also showed that the ‘Messerspit’ was about 25 km/h faster at lower altitudes than the original Spitfire Mk Vb thanks to its fluid coupling supercharger, which proved more efficient at low altitude. Between 4 and 6 km in altitude, the standard Mk V proved faster, before its single stage supercharger again proved less capable than the fluid coupling type on the DB 605A. The hybrid aircraft proved to be between 10 to 20 km/h slower than a Bf 109G-6 at all altitudes save for above 10.5 km, where the ‘Messerspit’ held a slightly higher speed and service ceiling. The experimental aircraft also out climbed the Bf 109 at all altitudes, however, this data is not particularly useful as the plane was unarmed and no ballast to account for its absence was installed.

Overall, the experiment produced mixed results, but proved Messerschmitt right. On one hand, the DB 605 ran effectively throughout the tests using radiators significantly smaller than were found on the Bf 109G. On the other, the type of high pressure radiator used on the Spitfire was not something that could be replicated, owing to numerous material and industrial limitations. In the end, it was Daimler Benz’s requirements that the DB 605 run cooler, and the inability of German radiator manufacturers to produce high temperature, high pressure models, that kept the Bf 109 from achieving greater performance. Following the end of the tests, the aircraft was placed in storage and was likely written off after an 8th Airforce bombing raid on the airfield at Etcherdingen on August 14, 1944.

The Ultimate Fighter?

Unfortunately, due to this unique aircraft’s strange appearance and obscurity, it has been at the center of a number of bizarre theories. Perhaps the most popular of these theories is that the Germans were trying to build a plane that blended the strengths of both the Spitfire and the Bf 109. Some go as far as to claim that the Germans had managed to build something superior to both. This first theory can immediately be written off. By early 1944, neither the Bf 109 nor the Spitfire were considered state of the art, or at the forefront of design in either country. They simply would not be considered an acceptable starting point for any new aircraft design.

However, beyond that, the ‘Messerspit’s’ performance was not particularly impressive for its day. In the official tests, it was compared to both an early Spitfire Mk Vb, which was thoroughly obsolete by the end of 1943, and a Bf 109G-6, which was mediocre by the standards of early 1944. Even then, it compared rather poorly with the G-6, possessing only a higher service ceiling while being considerably slower at almost all but the most extreme altitudes, where it held a slim advantage. To add to this, this low altitude performance gap with the Mk Vb only exists when its Merlin 45 engine is limited to +9 lbs of manifold pressure. When that engine was cleared to run at +16 lbs in November 1942, the Mk V exceeded the DB 605A powered ‘Messerspit’ at altitudes below 5.5 km in linear speed by a margin similar to the Bf 109G-6.

Spitfire Mk IX, Fw 190A-8, Bf 109G-6, P-51B (world war two photos, asisbiz, National Archives)
Aircraft (Manifold pressure) Top Speed at Sea level (km/h) Low blower/Speed (km/h) high blower/Speed (km/h) Maximum Output (hp)
Spitfire LF Mk IX Spring 1944 (18 lbs) 540 617 at 3.2km 655 at 6.7km 1720
Spitfire Mk VB Mid 1942 (9lbs) 460  N/A (single stage, single speed) 605  at 6.1km 1415
‘Messerspit’ Late Spring 1944 (1.42 ata) 488 N/A (variable speed SC) 610  at 6.5km 1454
Bf 109G-6 Mid 1943 (1.42 ata) 510 N/A (variable speed SC) 620 at 6.5km 1454
Bf 109G-6AS Early 1944 (1.42 ata) 506 N/A (variable speed SC) 653 at 8.3km 1415
Fw 190A-8 Early 1944 (1.42 ata)  558 578 at 1.5km 644 at 6.3km 1726
P-51B-15 w/ wing racks Early 1944 (67” Hg)  586  656 at 3.1km 685 at 7.2km 1720

*Values for the Spitfire Mk IX and Mustang indicate use with 100 Octane fuel and not high performance 150 octane, which became fairly common after mid-summer 1944 amongst the strategic fighter forces based in England. Likewise, Bf 109G-6 and Fw 190 performance does not reflect the use of MW50 or higher power clearances, respectively, as they were not in widespread use at the time of the tests. Unrelated, the P-51B-15 made for 627 km/h at 6.5 km with wing racks.

Compared to other contemporary frontline fighters of its day, its performance was far less impressive. The contemporary Spitfire Mk IX, with its Merlin 66 running at 18 lbs manifold pressure, outstripped the hybrid aircraft at all altitudes by a much wider margin than the Bf 109G-6. A further comparison with the Fw 190A-8 and P-51B-15 also demonstrates the continued extreme disparity in linear speed against more modern fighters. While the aircraft did demonstrate a very high climb rate, approximately 21 m/s at sea level (a Spitfire Mk IX made for 23 m/s), this can be explained by the lack of any weapons aboard. The Mk Vb was initially equipped with 2 Hispano 20 mm cannons and four .303 caliber Browning machine guns. The absence of these, and other pieces of equipment, reduced its weight by over 300 kg compared to the Mk Vb used in RAF and Luftwaffe performance trials. This resulting lightening of the aircraft, and the subsequent loss of drag with the removal of the protruding wing cannons, more than explains its high climb rate. The plane’s performance overall was very modest, and frankly did not compare well to any of its contemporaries. In the end, despite being a fusion of the Bf 109 and Spitfire, it compared rather poorly to either one.

Another theory presupposes that the plane was part of an effort to actually produce Spitfires for the Luftwaffe. The foundations for nearly all of these claims rest with an often misunderstood quote from the battle of Britain. When Reichsmarschall Herman Göring asked fighter group commander Adolf Galland if there was anything he needed, Galland responded “I should like an outfit of Spitfires for my squadron”. Galland would later clarify in his memoirs that he meant this rhetorically. In truth, he wanted a plane which could serve better as a bomber escort, something he felt the RAF’s Spitfires were better suited to, with their better visibility and low speed handling, than his own Bf 109’s, which he felt were more capable on offensive patrols. Beyond that, reverse engineering and then manufacturing an aircraft which was designed around the industrial standards and practices of another country was totally unfeasible. It also seems rather implausible that anyone would go to the trouble of building an airplane on the basis of an off hand remark made three years earlier.

Construction

A fore view of the experimental plane. (frankenplane)

The ‘Messerspit’ was built using the airframe of a later production Spitfire Mk Vb. The Mk V differed from earlier models in that it used a heavier engine mount to keep up with increases in output from new engines. It was otherwise much the same as the Mk I’s and II’s which preceded it. These planes were fairly innovative during the interwar period, being all-metal and using a semi-monocoque structure, though these features were soon made commonplace in the earliest days of the Second World War.

The fuselage contained the engine, behind which sat the fuel tank, the firewall, and then the cockpit. The tail boom was of a semi monocoque construction and contained the oxygen bottles, and radio. Aboard the ‘Messerspit’, the engine mount had to be reworked to accommodate a DB 605A, the fuel tank was likely changed to fit the new volume, and the instruments and most of the electronics were swapped for German versions. The radio appears to have been removed entirely. In all likelihood, Lt. Scheidhauer most likely smashed the instrument panel when he knew his plane was in enemy territory. Beyond that, they would have needed to convert the voltage to the German standard, and simply replacing all the equipment would have proven easier than modifying all of the existing components. There were also some instruments, like the DB 605’s RPM governor readout, that would not have had a British analogue.

The wings were elliptical with a large surface area, which granted the aircraft an excellent rate of climb and low wing loading. On the ‘Messerspit’, the inboard pair of 20 mm cannons and the outboard four .303 caliber Browning machine guns were removed and the ports were faired over. Most importantly, the radiator under the starboard wing was connected to the DB 605A engine’s oil and coolant lines. The wings were otherwise unchanged. Generally speaking, the better wheel brakes, greater visibility out the bubble canopy, and its wider wheel base would have likely made this a far more pleasant plane to fly than a Bf 109G.

A DB 605A mounted in a preserved Bf 109G-6 (wikimedia)

The engine was a Daimler Benz DB 605A, an inverted, 35.7 liter, V-12. The reason for it being inverted was to ensure the propeller shaft was as low as possible. This would enable a low mounted, centerline cannon to fire through its center without its recoil seriously jeopardizing the aircraft’s stability. They were able to achieve this using direct fuel injection, which was fairly common practice in German aviation by the start of the war, though rare elsewhere. The engine also possessed a high level of automation, which let the pilot manage the engine and most of its associated systems just through the throttle lever. These were essentially a series of linkages between components that adjusted one another as the pilot increased or decreased engine power. As such, it did not possess a true engine control unit, as was used in the BMW 801. Perhaps most impressively, the engine used a single stage, centrifugal supercharger which used a hydraulic coupling for variable transmission. The fluid coupling supercharger automatically adjusted itself barometrically, and was easily the most impressive feature of the engine, allowing it to smoothly adjust for boost as the plane climbed or descended. This allowed the aircraft to avoid the engine performance gaps between certain altitudes that were otherwise encountered with engine superchargers with multiple stages and fixed speed settings. These gaps were the result of running the supercharger at fixed, unnecessarily high speeds for a given altitude.

The engine used B4 87 octane aviation gasoline, as most of the C3 high performance stock was dedicated to squadrons flying Fw 190s. In comparison to the Merlin 45, which was originally in the Spitfire Mk.Vb, it produced 150 bhp more at sea level thanks to the fluid coupling supercharger, which saw lower pumping losses compared to the Merlin 45. The Merlin 45’s supercharger was geared to medium altitude use, and allowed the engine to outperform the DB 605A between approximately 4 and 6 km.

A DB605A mounted in a Bf 109G, cowling removed. (Norwegian air museum)

In spite of these innovative features, the engine’s output was fairly modest for its day. It produced up to 1475 PS, though this was only possible after several major modifications, such as replacing the exhaust valves for chrome plated sets and modifying the oil scavenge system by adding additional pumps and a centrifuge to improve flow and reduce foaming, respectively. Between 1942 and late 1943, the high power settings on almost all of these engines were disabled in order to keep failure rates manageable. The supercharger too would eventually lag behind its contemporaries, as despite its smoothness, its volume became a bottleneck. This was most apparent in comparison to the two-stage, intercooled models of the Rolls Royce Merlin engine. Some later models would mount an enlarged supercharger, taken from the larger DB 603, though the upgrade was not universal. Nearly all would be equipped with an anti-knock boost system in the form of MW50 in the weeks after the ‘Messerspit’s’ tests, which would boost output up to 1800 PS, though the corrosive mixture of methanol and water decreased the engine’s lifespan. Engines with the larger supercharger were designated DB 605AS, those with the boost system being DB 605M, and those with both were 605ASMs. These upgrades gave late war Bf 109’s a good degree of performance after nearly three years of mediocrity. Neither of these upgrades were present on the ‘Messerspit’.

The engine measured 101.1 × 71.9 × 174 cm, had a bore and stroke of 154 mm (6.1 in.) x 160 mm (6.3 in.), and weighed 745 kg (1,642 lb). The aircraft was equipped with the prop spinner from a Bf 109G, used the same supercharger scoop, and was likewise fitted with a two meter VDM propeller. The engine cowling of this aircraft seems to have been built for requirement.

Spitfire Mk V with DB 605A Specification
Engine  DB 605A
Engine Output 1475PS
Gross Weight 2740kg
Maximum speed at Sea Level 488 km/h
Maximum speed at Critical Altitude 610 km/h
Max climb rate at sea level 21 m/s
Max climb rate at FTH at ~6.5km 11 m/s
Crew Pilot
Wingspan 11.23 m
Wing Area 22.5 m^2

Conclusion

Another view of the experiment (Aviationhumor)

In the end, the ‘Messerspit’ was built to serve a single, fairly mundane purpose. It was never meant to set records, achieve any kind of technical breakthrough, or somehow be an unbeatable synthesis of two planes that had already seen their day in the sun. Above all, it was never meant to see combat nor produce a plane that would. Its only battlefield would be a corporate one.

Illustration

The Spitfire Mk V mit DB 605A, better known as the “Messerspit”.

 

Sources:

Primary:

Bf 109G-2 Flugzeug Handbuch (Stand Juni 1942).Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. November 1942.

Bf 109G-4 Flugzeug Handbuch (Stand August 1943). Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. September 1943.

Bf 109G-2 Flugzeug Handbuch (Stand August 1943). Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. October 1943.

Daimler-Benz DB 605 Inverted V-12 Engine. National Air and Space Museum Collection. Inventory number: A19670086000.

Flugzeug Flugleistungen Me 109G-Baureihen. Messerschmitt AG Augsburg. August 1943.

Flugleistungen Normaljager Fw 190A-8. Focke-Wulf Flugzeugbau G.m.b.H. Abt. Flugmechanik.L. October 1944.

Horizontalgeschwindigkeit über der Flughöhe: Normaljäger Fw 190A-8. Focke-Wulf Flugzeugbau G.m.b.H. November 1943.

Leistungen Me 109G mit DB 605 AS. Messerschmitt AG. Augsburg. 22, January 1944.

P-51B-15-NA 43-24777 (Packard Merlin V-1650-7) Performance Tests on P-38J, P-47D and P-51B Airplanes Tested with 44-1 Fuel. (GRADE 104/150). 15 May, 1944.

Spitfire V Steigleitungen. Daimler Benz. Versuch Nr. 1018105428. Baumuster DB.605A. May 1944.

Spitfire Mk. VB W.3134 (Merlin 45) Brief Performance Trials. Aeroplane and Armament Experimental Establishment Boscombe Down. June 1941.

Spitfire Mk. VC AA.878 (Merlin 45) Climb, speed, and cooling tests at combat rating. Aeroplane and Armament Experimental Establishment Boscombe Down. 25 November, 1942.

Spitfire L.F. IX. RAF Aircraft Data Card, 2nd Issue. 28, October 1943. The performance of Spitfire IX aircraft fitted with high and low altitude versions of the intercooled Merlin engine. Aeroplane and Armament Experimental Establishment Boscombe Down. March 1943.

USAAF 8th Airforce Bombing Raid Records.


Secondary:

Scheidhauer, Bernard W.M. Traces of War.

Douglas, Calum E. Secret Horsepower Race: Second World War Fighter Aircraft Engine Development on the Western Front. TEMPEST, 2020.

C. Douglass, personal communication, November 25, 2022.

Price, Alfred. The Spitfire Story. Silverdale Books. 2nd Edition, 2002.

Radinger, W. & Otto W. Messerschmitt Bf 109F-K Development Testing Production. Schiffer Publishing. 1999.

Spitfire EN 830. Lostaircraft.com

Galland, Adolf. The First and the Last. Bantam. 1979.

 

Credits

  • Article written by Henry H.
  • Edited by Stan L. and Henry H.
  • Ported by Henry H.
  • Illustrations by Godzilla

 

8.8 cm Flak 18/36/37

Nazi flag Nazi Germany (1933)
Anti-Aircraft Gun – 19,650 Built

8.8 cm FlaK 18/36/47 in the Anti-Tank role Source: T.L. Jentz and H.L. Doyle Panzer Tracts No. Dreaded Threat The 8.8 cm FlaK 18/36/47 in the Anti-Tank role

With the growing use of aircraft during the First World War, many nations developed their own anti-aircraft weapons. Initially, these were mostly crude adaptations of existing weapons systems. During the interwar period, the development of dedicated anti-aircraft guns was initiated by many armies. Germany, while still under a ban on developing new weapons, would create the 8.8 cm Flak 18 anti-aircraft gun. The gun, while originally designed for the anti-aircraft role, was shown to possess excellent anti-tank firepower. This gun would see action for the first time during the Spanish Civil War (1936-1939) and would continue serving with the Germans up to the end of World War II.

This article covers the use of the 8.8 cm Flak gun in the original anti-aircraft role. To learn more about the use of this gun in its more famous anti-tank role visit the Tank Encyclopedia website.

 

World War One Origins

Prior to the Great War, aircraft first saw service in military operations during the Italian occupation of Libya in 1911. These were used in limited numbers, mostly for reconnaissance, but also for conducting primitive bombing raids. During the First World War,  the mass adoption of aircraft in various roles occurred. One way to counter enemy aircraft was to employ one’s own fighter cover. Despite this, ground forces were often left exposed to enemy bombing raids or reconnaissance aircraft that could be used to identify weak spots in the defense.

To fend off airborne threats, most armies initially reused various artillery pieces, sometimes older, or even captured guns, and modified them as improvised anti-aircraft weapons. This involved employing ordinary artillery guns placed on improvised mounts that enabled them to have sufficient elevation to fire at the sky. These early attempts were crude in nature and offered little chance of actually bringing down an enemy aircraft. But, occasionally, it did happen. One of the first recorded and confirmed aircraft kills using a modified artillery piece happened in September of 1915, near the Serbian city of Vršac. Serbian artilleryman Raka Ljutovac managed to score a direct hit on a German aircraft using a captured and modified 75 mm Krupp M.1904 gun.

A captured Krupp gun was modified to be used for anti-aircraft defense by the Serbian Army during the First World War. Other warring nations also employed similar designs during the war. [telegraf.rs]
On the Western Front, the use of these improvised and crude contraptions generally proved ineffective. Dedicated anti-aircraft guns were needed. This was especially the case for the Germans who lacked fighter aircraft due to insufficient resources and limited production capacity. The Germans soon began developing such weapons. They noticed that the modified artillery pieces were of too small a caliber (anything smaller than 77 mm caliber was deemed insufficient) and needed much-improved velocity and range. Another necessary change was to completely reorganize the command structure, by unifying the defense and offensive air force elements, into a single organizational unit. This was implemented in late 1916. This meant that the anti-aircraft guns were to be separated from ordinary artillery units. The effect of this was that the new anti-aircraft units received more dedicated training and could be solely focused on engaging enemy aircraft.

The same year, trucks armed with 8 to 8.8 cm anti-aircraft guns began to appear on the front. While these had relatively good mobility on solid ground, the conditions of the Western Front were generally unsuited for such vehicles, due to difficult terrain. With the development of better anti-aircraft gun designs, their increased weight basically prevented them from being mounted on mobile truck chassis. Instead, for mobility, these were placed on specially designed four-wheeled trailers and usually towed by a K.D.I artillery tractor.

Both Krupp and Ehrhardt (later changing their name to Rheinmetall) would develop their own 8.8 cm anti-aircraft guns, which would see extensive action in the later stages of the war. While neither design would have any major impact (besides the same caliber) on the development of the later 8.8 cm Flak, these were the first stepping stones that would ultimately lead to the creation of the famous gun years later.

The Krupp 8.8 cm anti-aircraft gun. [Wiki]
As the newer German anti-aircraft guns became too heavy to be used in more mobile configurations by mounting them on trucks, they had to be towed instead. Source: W. Muller The 8.8 cm FLAK In The First and Second World War

Work after the War

Following the German defeat in the First World War, they were forbidden from developing many technologies, including artillery and anti-aircraft guns. To avoid this, companies like Krupp simply began cooperating with other arms manufacturers in Europe. During the 1920s, Krupp partnered with the Swedish Bofors armament manufacturer. Krupp even owned around a third of Bofors’ shares.

The Reichswehr (English: German Ground Army) only had limited anti-aircraft capabilities which relied exclusively on 7.92 mm caliber machine guns. The need for a proper and specialized anti-aircraft gun arose in the late 1920s. In September 1928, Krupp was informed that the Army wanted a new anti-aircraft gun. It had to be able to fire a 10 kg round at a muzzle velocity of 850 m/s. The gun itself would be placed on a mount with a full 360° traverse and an elevation of -3° to 85°. The mount and the gun were then placed on a cross-shaped base with four outriggers. The trailer had side outriggers that were raised during movement. The whole gun when placed on a four-wheeled bogie was to be towed at a maximum speed of 30 km/h. The total weight of the gun had to be around 9 tonnes. These requirements would be slightly changed a few years later to include new requests such as a rate of fire between 15 to 20 rounds per minute, use of high-explosive rounds with a delay fuse of up to 30 seconds, and a muzzle velocity between 800 to 900 m/s. The desired caliber of this gun was also discussed. The use of a caliber in the range of 7.5 cm was deemed to be insufficient and a waste of resources for a heavy gun. But despite this, a 7.5 cm Flak L/60 was developed, but it would not be adopted for service. The 8.8 cm caliber, which was used in the previous war, was more desirable. This caliber was set as a bare minimum, but usage of a larger caliber was allowed under the condition that the whole gun weight would not be more than 9 tonnes. The towing trailer had to reach a speed of 40 km/h (on a good road) when towed by a half-track or, in case of emergency, by larger trucks. The speed of redeployment for these guns was deemed highly important. German Army Officials were quite aware that the development of such guns could take years to complete. Due to the urgent need for such weapons, they were even ready to adopt temporary solutions.

Krupp’s first 8.8 cm Flak 18 prototype. [8.8 cm Flak 18/36/37 Vol.1]
Krupp engineers that were stationed at the Sweden Bofors company were working on a new anti-aircraft gun for some time. In 1931, Krupp engineers went back to Germany, where, under secrecy, they began designing the gun. By the end of September 1932, Krupp delivered two guns and 10 trailers. After a series of firing and driving trials, the guns proved to be more than satisfactory and, with some minor modifications, were adopted for service in 1933 under the name 8.8 cm Flugabwehrkanone 18 (anti-aircraft gun) or, more simply, Flak 18. The use of the number 18 was meant to mislead France and Great Britain that this was actually an old design, which it was in fact not. This was quite commonly used on other German-developed artillery pieces that were introduced to service during the 1930s. The same 8.8 cm gun was officially adopted when the Nazis came to power.  In 1934, Hitler denounced the Treaty of Versailles, and openly announced the rearmament of the German Armed forces.

Production

While Krupp designed the 8.8 cm FlaK 18, aside from building some 200 trailers for it, was not directly involved in the production of the actual gun. The 8.8 cm Flak 18 was quite an orthodox anti-aircraft design, but what made it different was that it could be mass-produced relatively easily, which the Germans did. Most of its components did not require any special tooling and companies that had basic production capabilities could produce these.

Some 2,313 were available by the end of 1938. In 1939, the number of guns produced was only 487, increasing to 1,131 new ones in 1940. From this point, due to the need for anti-aircraft guns, production constantly increased over the coming years. Some 1,861 examples were built in 1941, 2,822 in 1942, 4,302 in 1943, and 5,714 in 1944. Surprisingly, despite the chaotic state of the German industry, some 1,018 guns were produced during the first three months of 1945. In total,  19,650 8.8 cm Flak guns were built.

Of course, like many other German production numbers, there are some differences between sources. The previously mentioned numbers are according to T.L. Jentz and H.L. Doyle (Dreaded Threat: The 8.8 cm FlaK 18/36/47 in the Anti-Tank role). Author A. Radić (Arsenal 51) mentions that, by the end of 1944, 16,227 such guns were built. A. Lüdeke (Waffentechnik Im Zweiten Weltkrieg) gives a number of 20,754 pieces being built.

Year Number produced
1932 2 prototypes
1938 2,313 (total produced at that point)
1939 487
1940 1,131
1941 1.861
1942 2.822
1943 4,302
1944 5,714
1945 1,018
Total 19,650

 

Design

The gun 

The 8.8 cm Flak 18 used a single tube barrel that was covered in a metal jacket. The barrel itself was some 4.664 meters (L/56) long. The gun recuperator was placed above the barrel, while the recoil cylinders were placed under the barrel. During firing, the longest recoil stroke was 1,050 mm, while the shortest was 700 mm.

The 8.8 cm gun had a horizontal sliding breechblock which was semi-automatic. It meant that, after each shot, the breach opened on its own and ejected the shell casing, enabling the crew to immediately load another round. This was achieved by adding a spring coil, which was tensioned after firing. This provided a good rate of fire of up to 15 rounds per minute when engaging ground targets and up to 20 rounds per minute for aerial targets. If needed, the semi-automatic system could be disengaged and the whole loading and extracting of rounds done manually. While some guns were provided with a rammer to help during loading the gun, it was sometimes removed by the crew.

This particular gun is equipped with a loading rammer with a new round which is ready to be loaded into the chamber. [Pinterest]
For the anti-tank role, the 8.8 cm Flak was provided with a Zielfernrohr 20 direct telescopic sight. It had 4x magnification and a 17.5° field of view. This meant a 308 m wide view at 1 km. With a muzzle velocity of 840 m/s, the maximum firing range against ground targets was 15.2 km. The maximum altitude range was 10.9 km, but the maximum effective range was around 8 km.

The dimensions of this gun during towing were a length of 7.7 m, width of 2.3 m, and height of 2.4 meters. When stationary, the height was 2.1 m, while the length was 5.8 meters. Weight in firing position, it weighed 5,150 kg, while the total weight of the gun with the carriage was 7,450 kg. Due to some differences in numbers between sources, the previously mentioned 8.8 cm Flak performance is based on T.L. Jentz and H.L. Doyle (Panzer Tracts Dreaded Threat The 8.8 cm FlaK 18/36/47 in the Anti-Tank role).

When stationary, the gun had a height of 2.1 meters, which offered a relatively large target for enemy gunners. Good camouflage and well-selected positions were vital for its crew’s survival. [defensemedianetwork.com]

The Gun Controls

The gun elevation and traverse were controlled by using two handwheels located on the right side. The traverse handwheel had an option to be rotated at low or high speed, depending on the need. The lower speed was used for more precise aiming at the targets. The speed gear was changed by a simple lever located at the handwheel. To make a full circle, the traverse operator, at a high-speed setting. needed to turn the handwheel 100 times. while on the lower gear, it was 200 times. With one full circle of the handwheel, the gun was rotated by 3.6° at high speed and 1.8° at low speed.

Next to it was the handwheel for elevation. The handwheel was connected by a series of gears to the elevation pinion. This then moved the elevation rack which, in turn, lowered and raised the gun barrel. Like the traverse handwheel, it also had options for lower and higher rotation speed, which could be selected by using a lever. During transport, in order to prevent potential damage to the gun elevating mechanism, a locking system was equipped. In order to change position from 0° to 85°, at high speed, 42.5 turns of the handwheel were needed. One turn of the wheel at high speed changed the elevation by 2°. At lower speed, 85 times turns of the handwheel were needed. Each turn gave a change of 1°.

The two control handwheels. The front handwheel is for traverse while the rear one is for elevation. Source: W. Muller (1998) The 8.8 cm FLAK In The First and Second World Wars, Schiffer Military

Sometimes, in the sources, it is mentioned that the traverse was actually 720°. This is not a mistake. When the gun was used in a static mount, it would be connected with wires to a fire control system. In order to avoid damaging these wires, the guns were allowed to only make two full rotations in either direction. The traverse operator had a small indicator that informed him when two full rotations were made.

The 8.8 cm Flak at its maximum elevation. Source: T.L. Jentz and H.L. Doyle Panzer Tracts No. Dreaded Threat The 8.8 cm FlaK 18/36/47 in the Anti-Tank role

The 8.8 cm fuze setter is located on the left side of the gun. Two rounds could be placed for their time fuse settings. These were usually done manually but the gun controls could also be connected to an external control system.

The 8.8 cm fuze setter. [Pinterest]

The Kommandogerat 36

The fire control system Kommandogerat 36 (Stereoscopic Director 36) was an important device when using the 8.8 cm guns in an anti-aircraft role. This piece of equipment actually is a combination of a stereoscopic rangefinder and a director. It uses a 4-meter-long, stereoscopic rangefinder. It has a magnification of 12 to 14x with a reading case ranging from 500 to 50,000 meters. When the unit was being transported, the stereoscopic rangefinder would be disengaged and placed in a long wooden box. If for some reason the Stereoscopic Director 36 was not available or not working, a smaller auxiliary Stereoscopic Director 35 could be used instead.

The 8.8 cm guns were usually used in a square formation consisting of four guns.  Inside this squire was a command post, which would usually have additional range-finding equipment and instruments. These four gun’s positions were also connected to the battery unit command.

The Stereoscopic Director 36 was a vital piece of equipment that provides the necessary acquisitions of targets. [waralbum.ru]
Common 8.8 cm anti-aircraft employment was a square formation with four guns. Source: W. Muller The 8.8 cm FLAK In The First and Second World War

Mount

The mount which held the gun barrel itself consisted of a cradle and trunnions. The cradle had a rectangular shape. On its sides, two trunnions were welded. In order to provide stability for the gun barrel, two spring-shaped equilibrations were connected to the cradle using a simple clevis fastener.

Carriage

Given its size, the gun used a large cross-shaped platform. It consisted of the central part, where the base for the mount was located, along with four outriggers. The front and the rear outriggers were fixed to the central base. The gun barrel travel lock was placed on the front outrigger. The side outriggers could be lowered during firing. These were held in place by pins and small chains which were connected to the gun mount. To provide better stability during firing the gun, the crew could dig in the steel pegs located on each of the side outriggers. This cross-shaped platform, besides holding the mount for the main gun, also served to provide storage for various equipment, like the electrical wiring. Lastly, on the bottom of each outrigger, there were four round-shaped leveling jacks. This helped prevent the gun from digging in into the ground, distributing the weight evenly, and to help keep the gun level on uneven ground.

A close-up view of the dismantled 8.8 cm Flak cross-shaped platform. The two folding side outriggers are missing. The central octagonal base would later be replaced with a much simpler square-shaped one. Source: German 88-mm AntiAircraft Gun Materiel, US War Department Technical Manual
The side outriggers could be lowered during firing. In order to provide better stability during firing the gun, the crew could dig in the steel pegs located on each of the side outriggers. At the bottom of each outrigger were round-shaped leveling jacks. Their purpose was to prevent the gun from digging into the ground and to keep the gun level on uneven ground. Source: German 88-mm AntiAircraft Gun Materiel, US War Department Technical Manual
The side outriggers are fully raised during transport. [o5m6.de]
To prevent damaging the gun during transport, a large travel lock was installed on the front outrigger. Source: German 88-mm AntiAircraft Gun Materiel, US War Department Technical Manual

Bogies

The entire gun assembly was moved using a two-wheeled dolly, designated as Sonderanhanger 201. The front part consisted of a dolly with single wheels, while the rear dolly consisted of a pair of wheels per side on a single axle. Another difference between these two was that the front dolly had 7, and the rear had 11 transverse leaf springs. The wheel diameter was the same for the two, at 910 mm. These were also provided with air brakes. While these units were supposed to be removed during firing, the crew would often not remove them, as it was easier to move the gun quickly if needed. This was only possible when engaging targets at low gun elevations. Aerial targets could not be engaged this way, as the recoil would break the axles. The front and rear outriggers would be raised from the ground by using a winch with chains located on the dollies. When raised to a sufficient height, the outriggers would be held in place by dolly’s hooks. These were connected with a round pin, located inside of each of the outriggers.

The two trailer units were connected to the front and rear outriggers by using simple hooks, which would quite easily be disengaged. Source: German 88-mm AntiAircraft Gun Materiel, US War Department Technical Manual
The front view of the Sonderanhanger 201 dolly could be easily identified by the use of only two wheels. The chain’s winch would be used to raise the outriggers. Source: German 88-mm AntiAircraft Gun Materiel, US War Department Technical Manual

Firing with both trailer units still connected to the gun as possible, but it raised the height of the gun and prevented it from engaging air targets. [o5m6.de]
Later, a new improved Sonderanhanger 202 model was introduced (used on the Flak 36 version). On this redesigned version, the two towing units were redesigned to be similar to each other. This was done to ease production but also so the gun could be towed in either direction when needed. While, initially, the dolly was equipped with one set of two wheels and the trailer with two pairs, the new model adopted a doubled-wheeled dolly instead.

Protection

Initially, the 8.8 cm Flak guns were not provided with an armored shield for crew protection. Given its long-range and its intended role as an anti-aircraft gun, this was deemed unnecessary in its early development. Following the successful campaign in the West against France and its Allies in 1940, the Commanding General of the I. Flakkorp requested that all 8.8 cm Flak guns that would be used at on the frontline receive a protective shield. During 1941, most 8.8 cm Flaks that were used on the frontline were supplied with a 1.75 meter high and 1.95 meters wide frontal armored shield. Two smaller armored panels (7.5 cm wide at top and 56 cm at bottom) were placed on the sides. The frontal plate was 10 mm thick, while the two side plates were 6 mm thick. The recuperator cylinders were also protected with an armored cover. The total weight of the 8.8 cm Flak armored plates was 474 kg. On the right side of the large gun shield, there was a hatch that would be closed during the engagement of ground targets. In this case, the gunner would use telescopic sight through the visor port. During engagement of air targets, this hatch was open.

Most guns were initially not provided with a shield. Given its original purpose, this is not surprising. Source: T.L. Jentz and H.L. Doyle Panzer Tracts. Dreaded Threat The 8.8 cm FlaK 18/36/47 in the Anti-Tank role
Most guns that were issued for field use would be provided with a large 10 mm thick front armored shield. The wire cover on the top was used for camouflage. Source: T.L. Jentz and H.L. Doyle Panzer Tracts Dreaded Threat The 8.8 cm FlaK 18/36/47 in the Anti-Tank role
On the left side of the gun shield, there was a hatch that would be used for the gunner to find his aerial targets. [worldwarphotos.info]

Ammunition

The 88 mm FlaK could use a series of different rounds. The 8.8 cm Sprgr. Patr. was a 9.4 kg heavy high-explosive round with a 30-second time fuze. It could be used against both anti-aircraft and ground targets. When used in the anti-aircraft role, the time fuze was added. The 8.8 Sprgr. Az. was a high-explosive round that had a contact fuze. In 1944 the Germans introduced a slightly improved model that tested the idea of using control fragmentation, which was unsuccessful. The 8.8 Sch. Sprgr. Patr. and br. Sch. Gr. Patr. were shrapnel rounds.

The 8.8 cm Pzgr Patr was a 9.5 kg standard anti-tank round. With a velocity of 810 m/s, it could penetrate 95 mm of 30° angled armor at 1 km. At 2 km at the same angle, it could pierce 72 mm of armor. The 8.8 cm Pzgr. Patr. 40 was a tungsten-cored anti-tank round. The 8.8 cm H1 Gr. Patr. 39 Flak was a 7.2 kg heavy hollow charge anti-tank round. At a 1 kg range, it was able to penetrate 165 mm of armor. The 8.8 cm ammunition was usually stored in wooden or metal containers.

The 8.8 cm Flak used large one-piece ammunition. It was stored in either wooden or metal containers. [defensemedianetwork.com]

Crew

The 88 mm Flak had a crew of 11 men. These included a commander, two gun operators, two fuze setter operators, a loader, four ammunition assistants, and the driver of the towing vehicle. Guns that were used on a static mount usually had a smaller crew. The two gun operators were positioned to the right of the gun. Each of them was responsible for operating a hand wheel, one for elevation and one for the traverse. The front operator was responsible for traverse and the one behind him for elevation. The front traverse operator was also responsible for using the weapon gun sight for targeting the enemy. On the left side of the gun were the two fuse operators. The loader with the ammunition assistants was placed behind the gun. A well-experienced crew needed 2 to 2 and a half minutes to prepare the gun for firing. The time to put the gun into the traveling position was 3.5 minutes. The 8.8 cm gun was usually towed by an Sd.Kfz. 7 half-track or a heavy-duty six-wheel truck.

The 8.8 cm guns that were used for supporting ground units had a fairly large crew. [Pinterest]
The Sd.Kfz. 7 half-tracks were the primary towing vehicles for this gun. [defensemedianetwork.com]
Six-wheeled heavy-duty trucks would sometimes be used due to the lack of half-tracks. They did not offer the same driving performance. [worldwarphotos.info]

Flak 36 and 37

While the Flak 18 was deemed a good design, there was room for improvement. The gun itself did not need much improvement. The gun platform, on the other hand, was slightly modified to provide better stability during firing and to make it easier to produce. The base of the gun mount was changed from an octagonal to a more simple square shape. The previously mentioned  Sonderanhanger 202 was used on this model.

Due to the high rate of fire, anti-aircraft guns frequently had to receive new barrels, as these were quickly worn out. To facilitate quick replacement, the Germans introduced a new three-part barrel. It consists of a chamber portion, a center portion, and the muzzle section. While it made the replacement of worn-out parts easier, it also allowed these components to be built with different metals. Besides this, the overall performance of the Flak 18 and Flak 36 was the same. The Flak 36 was officially adopted on the 8th of February 1939.

As the Germans introduced the new Flak 41, due to production delays, some of the guns were merged with the mount of a Flak 36. A very limited production run was made of the 8.8 cm Flak 36/42, which entered service in 1942.

In 1942, the improved 88 mm Flak 37 entered mass production according to T.L. Jentz and H.L. Doyle. On the other hand J. Ledwoch (8.8 cm Flak 18/36/37 Vol.1 Wydawnictwo Militaria 155) state that the Flak 37 was introduced to service way back in 1937. Visually, it was the same as the previous Flak 36 model. The difference was that this model was intended to have better anti-aircraft performance, having specially designed directional dials. The original gunner dials were replaced with the “follow-the-pointer” system. It consists of two sets of dials that are placed on the right side of the gun. These received information about the enemy targets from a remote central fire direction post connected electrically. This way, the gun operator only had to make slight adjustments, such as elevation, and fire the gun.

The necessary information about the enemy targets was provided by a Funkmessgerate ( Predictor) which was essentially a mechanical analog computer. Once the enemy aircraft were spotted, their estimated speed and direction were inserted into this computer which would then calculate the precise position and elevation. This information would be sent to any linked anti-aircraft batteries by a wire connection. One set of the dials would then show the crew the necessary changes that need to be done to the elevation and direction of the enemy approach. The crew then had to manually position the gun elevation and direction until the second dials indicators matched the first one. The funkmessgerate computer also provided correct fuse time settings. In principle, this system eased the aiming task of the crew and at the same time improved accuracy. When used in this manner the Flak 37 could not be used for an anti-tank role.

The last change to this series was the reintroduction of a two-piece barrel design. Besides these improvements, the overall performance was the same as with the previous models. From March 1943 only the Flak 37 would be produced, completely replacing the older models.

The 8.8 cm Flak 37 introduced the use of specially designed directional dials, which help the crew better adjust the gun. Source: Norris 8.8 cm FlaK 16/36/37/ 41 and PaK 43 1936-45

Organization 

German air defense was solely the responsibility of the Luftwaffe, with the majority of 8.8 cm guns being allocated to them. The German Army and Navy also possessed some anti-aircraft units, but these were used in quite limited numbers. The largest units were the Flak Korps (Anti-aircraft corps). It consisted of two to four Flak Divisionen (Anti-aircraft divisions). These divisions, depending on the need, were either used as mobile forces or for static defense. These were further divided into Bigaden (brigades ) which consisted of two or more Regimenter (Regiments). Regiments in turn were divided into four to six Abteilunge (Battalion). Battalion strength was eight 8.8 cm guns with 18 smaller 2 cm guns. To complicate things a bit more, each Battalion could be divided into four groups: Leichte (Light, equipped with calibers such as 2 cm or 3.7 cm), Gemischte (mixed light and heavy), Schwere (Heavy equip with a caliber greater than 88 mm) and Scheinwerfer  (Searchlight).

Mobile War

Initially, operations and crew training was carried out by the Reichswehr. They were organized into the so-called Fahrabteilung (Training Battalion) to hide their intended role. By 1935, the German Army underwent a huge reorganization, one aspect of which was changing its name to the Wehrmacht. In regard to the anti-aircraft protection, it was now solely the responsibility of the Luftwaffe. For this reason, almost all available 8.8 cm guns were reallocated to Luftwaffe control. Only around eight Flak Battalions which were armed with 2 cm anti-aircraft guns were left under direct Army control.

In Spain

When the Spanish Civil War broke out in 1936, Francisco Franco, leader of the Nationalists, sent a plea to Adolf Hitler for German military equipment aid. To make matters worse for Franco, nearly all his loyal forces were stationed in Africa. As the Republicans controlled the Spanish navy, Franco could not move his troops back to Spain safely. So he was forced to seek foreign aid. Hitler was keen on helping Franco, seeing Spain as a potential ally, and agreed to provide assistance. At the end of July 1936, 6 He 51 and 20 Ju 57 aircraft were transported to Spain under secrecy. These would serve as the basis for the air force of the German Condor Legion which operated in Spain during this war. The German ground forces operating in Spain were supplied with a number of 8.8 cm guns.

These arrived in early November 1936 and were used to form the F/88 anti-aircraft battalion. This unit consisted of four heavy and two light batteries. Starting from March 1937 these were allocated to protect various defense points at Burgos and Vittoria. In March 1938, the 8.8 cm guns from the 6th battery dueled with an enemy 76.2 cm anti-aircraft gun which were manned by French volunteers from the International Brigades. While the 8.8 cm guns were mainly employed against ground targets they still had a chance to fire at air targets. For example, while defending the La Cenia airfield, the 8.8 cm guns from the 6th battery prevented the Republican bombing attack by damaging at least two SB-2 bombers on the 10th of June 1938. Three days later one SB-2 was shot down by an 8.8 cm gun. In early August another SB-2 was shot down by the same unit. The performance of the 8.8 cm gun during the war in Spain was deemed satisfying. It was excellent in ground operations, possessing good range and firepower.

An 8.8 cm Flak gun in Spain.[weaponsandwarfare.com]

During the Second World War

Prior to the war, the 8.8 m guns could be often seen on many military parades, exercises, and ceremonies. The first ‘combat’ use of the 8.8 cm Flak in German use was during the occupation of the Sudetenland in 1938. The entire operation was carried out peacefully and the 8.8 cm gun did not have to fire in anger.

Prior to the war, the 8.8 cm guns war could have been often seen on military parades, exercises, and ceremonies. Source: W. Muller The 8.8 cm FLAK In The First and Second World Wars

The Polish campaign saw little use of the 8.8 cm guns. The main reason for this was that the Polish Air Force was mostly destroyed in the first few days of combat. They were mainly used against ground targets. In one example, the 8.8 cm guns from the 22nd Flak Regiment tried to prevent a Polish counter-attack at Ilza. The battery would be overrun while the crew tried to defend themselves, losing three guns in the process. The 8.8 cm Flak gun also saw service during the battles for Warsaw and Kutno.

The 8.8 cm followed the Germans in their occupation of Denmark and Norway. One of the key objectives in Norway was the capture of a number of airfields. Once captured, the Germans rushed in Flak guns including the 8.8 cm, to defend these as they were crucial for the rather short-ranged German bombers. On the 12th of April 1940, the British Air Force launched two (83 strong in total) bombing raids at the German ships which were anchored at the Stavanger harbor. Thanks to the Flak and fighter support, six Hampden and three Wellington bombers were shot down.

Following the conclusion of the Polish campaign, the Germans began increasing the numbers of the motorized Flak units. Some 32 Flak Batteries were available which the Germans used to form the 1st and 2nd Flak Corps. 1st Corps would be allocated to the Panzergruppe Kleist, while the second was allocated to the 4th and 6th Army. The Luftwaffe, as in Poland (September 1939), quickly gained air superiority over the Allied Air Forces. Despite this, there was still opportunity for the 8.8 cm guns to fire at air targets.  During the period from the 10th to 26th May 1940, the following successes were made against enemy aircraft by flak units that were part of the XIX Armee Corps: the 83rd Flak Battalion brought down some 54, 92nd Flak Battalion 44, 71th Flak Battalion 24, the 91st Flak Battalion 8, 36th Flak Regiment 26, 18th Flak Regiment 27, and 38th Flak Regiment 23 aircraft. During the notorious German crossing near Sedan, a combined Allied air force tried to dislodge them. The strong Flak presence together with air fighter cover, lead to the Allies losing 90 aircraft in the process.

Following the Western Campaign, the 8.8 cm guns would see extensive service through the war. Ironically they would be more often employed against enemy armor than in the original role. Given the extensive Allied bombing raids, more and more 8.8 cm would be allocated to domestic anti-aircraft defense. One major use of 8.8 cm Flak was during the German evacuation of Sicily, by providing necessary air cover for the retreating Axis soldiers and materiel to the Italian mainland.

In the occupied Balkans, the 8.8 cm Flak was a rare sight until late 1943 and early 1944. The ever-increasing Allied bombing raids forced the Germans to reinforce their positions with a number of anti-aircraft guns, including the 8.8 cm Flak. Some 40 8.8 cm Flak guns were used to protect German-held Belgrade, the capital of Yugoslavia. Most would be lost after a successful liberation operation conducted by the Red Army supported by Yugoslav Partisans. The 8.8 cm Flak guns were also used in static emplacements defending the Adriatic coast at several key locations from 1943 on. One of the last such batteries to surrender to the Yugoslav Partisans was the one stationed in Pula, which had twelve 8.8 cm guns. It continued to resist the Partisans until the 8th of May, 1945.

Some of the 8.8 cm guns were destroyed or abandoned. Source: A. Radić Arsenal 51

Defense of the Fatherland

While the 8.8 cm Flaks would see service supporting the advancing German forces, the majority of them would actually be used as static anti-aircraft emplacements. For example, during the production period of October 1943 to November 1944, around 61% of the 8.8 cm Flak guns produced were intended for static defense. Additionally, of 1,644 batteries that were equipped with this gun, only 225 were fully motorized, with an additional 31 batteries that were only partially motorized (start of September 1944).

When the war broke out with Poland, the Luftwaffe anti-aircraft units had at their disposal some 657 anti-aircraft guns of various calibers. The majority were the 8.8 cm with smaller quantities of the larger 10.5 cm and even some captured Czezh 8.35 anti-aircraft guns. An additional 12 Flak Companies equipped with the 8.8 cm guns were given to the navy for the protection of a number of important harbors. The remaining guns were used to protect vital cities like Berlin and Hamburg. The important Ruhr industry center was also heavily defended.

The majority of the 8.8 cm Flak guns built would be used in static defense without the cross-shaped platform. These would mostly be destroyed by their crews to prevent their capture when the Allies made their advances into Germany. Source: W. Muller The 8.8 cm FLAK In The First and Second World Wars

One of the first enemy aircraft shot down over German skies were British Wellington bombers. This occurred on the 4th of September 1939 when one or two enemy bombers were brought down by heavy Flak fire. These intended to bomb vital German naval ports. In early October 1939, in Strasbourg, a French Potez 637 was shot down by the 84th Flak Regiments 8.8 cm guns. One Amiot 143 and a Whitley aircraft were shot down in Germany in mid-October. During December 1939 British launched two bombing raids intended to inflict damage on German ports. Both raids failed with the British losing some 17 out of 36 Wellington bombers.

After Germany’s victory over the Western Allies in June, the Germans began forming the first Flak defense line in occupied territories and coastlines. These  were not only equipped with German guns but also with those captured from enemy forces.

A 8.8 cm by the Atlantic coast in 1941. This crew had already achieved two kills, judging by the kill marks on the barrel. Source: W. Muller The 8.8 cm FLAK In The First and Second World Wars

Due to the poor results of their daylight bombing raids, the British began to employ night raids. These initially were quite unsuccessful with minimal damage to Germany’s infrastructure and industry. The Flak defense of Germany was also quite unprepared for night raids, unable to spot enemy bombers at night. The situation changed only in 1940 with the introduction of ground-operated radar. Thanks to this, the first few months of 1941 saw German Flak units bring down 115 enemy aircraft.

In 1942 the British military top made a decision to begin the mass bombing of German cities. The aim was to “de-house” (or kill) workers, damage infrastructure to make urban industrial areas unusable, and try and cause a moral collapse as was the case in 1918. Implementation of this tactic was initially slow due to an insufficient number of bombers. In addition, vital targets in occupied Europe were also to be bombed. In May 1942, the British launched a force that consisted of over 1,000 aircraft causing huge damage to Germany, killing 486 and injuring over 55,000 people.

In 1943 several huge events happened. The German defeats in East and North Africa led to huge material and manpower losses, while the Allies were preparing to launch massive bombing raids mainly intended to cripple Germany’s production capabilities. In response, the Germans began increasing their number of Flak units. At the start of 1943, there were some 659 heavy Flak batteries, which were increased to  1,089 by June the same year. Due to a lack of manpower, the Germans began mobilizing their civilians regardless of their age or sex. For example, in 1943 there were some 116,000 young women who were employed in various roles, even operating the guns. Near the end of the war, it was common to see all-female crews operating Flak batteries. In addition in 1944 some 38,000 young boys were also employed in this manner. Ironically, while all German military branches lacked equipment, the anti-aircraft branch had spare equipment and guns, but lacked the manpower to operate them. To resolve this, foreign Volunteers and even Soviet prisoners of war were pressed into service. The downside was the general lack of training, which greatly affected their performance.

In the first few months of 1944, the Allied 8th and 15th Air Forces lost some 315 bombers with 10,573 damaged, all attributed to the heavy Flak. In 1944 (date unspecified in the source) during an attack on the heavily defended Leuna synthetic oil refinery, some 59 Allied bombers were brought down by the heavy Flak guns. By 1944 the number of heavy anti-aircraft guns that were intended for the defense of Germany reached 7,941. By April 1945 the Flak guns managed to shoot down 1,345 British bombers. The American 8th lost 1,798, while the 15th Air Force lost 1,046 bombers due to German Flak defence by the end of the war.

The last action of the 8.8 cm Flak guns was during the defense of the German capital of Berlin. Due to most being placed in fixed positions, they could not be evacuated and most would be destroyed by their own crews to prevent capture. Despite the losses suffered during the war, in February 1945, there were still some 8,769 8.8 cm Flak guns available for service.

The Flak provided necessary and crucial defense of vital industrial centers. Source: W. Muller The 8.8 cm FLAK In The First and Second World Wars

Effectiveness of the 8.8 cm Guns in Anti-aircraft Role

Regarding the effectiveness of the 8.8 cm anti-aircraft guns with the necessary number of rounds needed to bring down enemy aircraft. Author E.B. Westermann (Flak German Anti-Aircraft Defenses 1914-1945) gives us a good example and comparison between three main German anti-aircraft guns. The largest 12.8 cm Flak on average fired some 3,000 rounds to take down an enemy aircraft. The 10.5 cm gun needed 6,000 and the 8.8 cm 15,000 rounds (some sources mentioned 16,000). This seems at first glance like a huge waste of available resources, but is it right to conclude that?

According to an Allied war document dated from early 1945, they mentioned a few interesting facts about German flak defense. According to them, in 1943 some 33% of bombers destroyed by Germany were accredited to heavy Flak gunfire. In addition, 66% of damage sustained by their aircraft was also caused by the heavy Flak fire. In the summer of 1944, this number increased. The majority (some 66%) shot down enemy bombers were accredited to the heavy Flaks. And of 13,000 damaged bombers some 98% were estimated to be caused by the Flaks. Here it is important to note that by this time, Luftwaffe fighters lacked the ability to attack bomber formations en mass. Therefore this increase of aircraft shot down by the Flaks may be explained by this.

In addition, we must also take into account two other functions that these guns had which are often overlooked. They did not necessarily need to bring down enemy bombers. It was enough to force the enemy fly at higher altitudes to avoid losses. This in turn led to a huge loss of accuracy for the bombers. Secondly, the enemy bombers were often forced to break formation when sustaining heavy Flak fire, which left them exposed to German fighters. The shrapnel from the Flak rounds could not always directly bring down a bomber, but it could cause sufficient damage (fuel leaks for example) that the aircraft, later on, had to make an emergency landing, even in enemy territory. The damaged aircraft that made it back to their bases could spend considerable time awaiting repairs. Lastly, the Flak fire could incapacitate, wound or even kill bomber crews. Thus there was a huge psychological effect on enemy bomber crews. B-17 gunner Sgt W. J. Howard from the 100th Bomb Group recalled his experience with the German Flak. “All the missions scared me to death. Whether you had fighters or not you still had to fly through the flak. Flak was what really got you thinking, but I found a way to suck it up and go on.”

Hitler was quite impressed with the 8.8 cm performance. On the 28th of August 1942, he stated:  “The best flak gun is the 8.8 cm. The 10.5 has the disadvantage that it consumes too much ammunition, and the barrel does not hold up very long. The Reich Marshall Göring continually wants to build the 12.8 into the flak program. This double-barreled 12.8 cm has a fantastic appearance. If one examines the 8.8 from a technician’s perspective, it is to be sure the most beautiful weapon yet fashioned, with the exception of the 12.8 cm”.

Despite the best German efforts, the Flak’s effectiveness greatly degraded by late 1944. The reason for this was the shortage of properly trained crews. At the start of the war, the Germans paid great attention to crew training, which lasted several months. As the Flak guns were needed on the front, less experienced and trained personnel had to be used instead. In the later stages of the war, these crews received only a few weeks of training, which was insufficient for the job they had to perform. Lastly, Allied bombing raids eventually took their toll on German industry, greatly reducing the production of ammunition, which was one of the main reasons why the anti-aircraft defense of Germany ultimately failed. Of course, a proper analysis and conclusion could not be easily made and would require more extensive research, a wholly different topic on its own.

Self-Propelled Versions

When used as anti-aircraft weapons, the 8.8 cm guns were in most cases used as static defense points. Despite this, the Germans made several attempts to increase their mobility by placing the 8.8 cm guns on various chassis. One of the first attempts was by mounting the 8.8 cm gun on a VOMAG 6×6 truck chassis. The small number built was given to the 42nd Flak Regiment which operated them up to the end of the war.

The VOMAG truck was armed with 8.8 cm guns. Source: W. Muller The 8.8 cm FLAK In The First and Second World War

The truck chassis offered great mobility on good roads, but their off-road handling was highly problematic. So Germans used half-tracks and full-track chassis.  Smaller numbers of Sd. Kfz 9 armed with the 8.8 cm gun were built. Attempts to build a full-track vehicle were made but never went beyond a prototype stage. The 8.8 cm Flak auf Sonderfahrgestell was a project where an 8.8cm gun was mounted on a fully tracked chassis with a folding wall, but only one vehicle would be built.  There are some photographs of Panzer IV modified with this gun, and while not much is known about them they appear to be a field conversion, rather than dedicated design vehicles. There were even proposals to mount an 8.8 cm gun on a Panther tank chassis, but nothing would come from it in the end.

Some 12 Sd. Kfz. 9 were modified by receiving an 8.8 cm gun. [worldwarphotos.info]
The 8.8 cm Flak auf Sonderfahrgestell Pz.Sfl.IVc prototype.[uofa.ru]
The strange-looking Panzer IV armed with this gun. [armedconflicts.com]
Mounting the 8.8 cm gun on railroad cars was a common sight in Germany at early stages of the war. There was various design that may differ greatly from each other. [defensemedianetwork.com]

Usage after the war

With the defeat of Germany during the Second World War, the 8.8 cm Flak guns found usage in a number of other armies. Some of these were Spain, Portugal, Albania, and Yugoslavia. By the end of the 1950s, the Yugoslavian People’s Army had slightly less than 170 8.8 cm guns in its inventory. These were, besides their original anti-aircraft role, used to arm navy ships and were later placed around the Adriatic coast. A number of these guns would be captured and used by various warring parties during the Yugoslav civil wars of the 1990s. Interestingly, the Serbian forces removed the 8.8 cm barrel on two guns and replaced them with two pairs of 262 mm Orkan rocket launcher tubes. The last four operational examples were finally removed from service from the Serbian and Montenegrin Army in 2004.

The 8.8 cm Flak in the Yugoslavian People’s Army service, during military training near the capital in 1955. Source: A. Radić Arsenal 51
Two 8.8 cm Flak guns were reused by replacing the gun with two 262mm rocket launchers. While not a success, these two remained in use up to 1998. [srpskioklop.paluba.info]

Conclusion

The 8.8 cm Flak was an extraordinary weapon that provided the German Army with much-needed firepower during the early stages of the war. The design as a whole was nothing special, but it had a great benefit in that it could be built relatively cheaply and in great numbers. That was probably its greatest success, being available in huge numbers compared to similar weapons of other nations.

Its performance in the anti-aircraft role was deemed satisfying, but still stronger models would be employed to supplement its firepower. The 8.8 cm anti-air gun’s effectiveness was greatly degraded toward the end of the war, which was caused not by the gun design itself but other external forces. These being mainly the lack of properly trained crews and shortages of ammunition.

8.8 cm Flak 18 Specifications:
Crew: 11 (Commander, two gun operators, two fuze setter operators, loader, four ammunition assistants, and the driver)
Weight in firing position: 5150 kg
Total weight:  7450 kg.
Dimensions in towing position: Length 7.7  m, Width 2.2 m, Height 2.4 m,
Dimensions in deployed position: Length 5.8  m, Height 214 m,
Primary Armament:  8.8 cm L/56 gun
Elevation: -3° to +85°  

 

Gallery

The Flak 88 mm gun in towing postion

 

Flak 88 in firing position

Credits

  • Written by Marko P.
  • Edited by by Ed Jackson & Henry H.
  • Illustrations by David B.

Sources

  • J. Norris  (2002) 8.8 cm FlaK 16/36/37/ 41 and PaK 43 1936-45 Osprey Publishing
  • D. Nijboer (2019) German Flak Defences Vs. Allied Heavy Bombers 1942-45, Osprey Publishing
  • T.L. Jentz and H.L. Doyle  Panzer Tracts No. Dreaded Threat The 8.8 cm FlaK 18/36/41 in the Anti-Tank role
  •  T.L. Jentz and H.L. Doyle (2014) Panzer Tracts No. 22-5 Gepanzerter 8t Zugkraftwagen and Sfl.Flak
  • W. Muller (1998) The 8.8 cm FLAK In The First and Second World Wars, Schiffer Military
  • E. D. Westermann (2001) Flak, German Anti-Aircraft Defense 1914-1945, University Press of Kansas.
  • German 88-mm AntiAircraft Gun Materiel (29th June 1943) War Department Technical Manual
  • T. Anderson (2018) History of Panzerwaffe Volume 2 1942-45, Osprey publishing
  • T. Anderson (2017) History of Panzerjager Volume 1 1939-42, Osprey publishing
  • S. Zaloga (2011) Armored Attack 1944, Stackpole book
  • W. Fowler (2002) France, Holland and Belgium 1940, Allan Publishing
  • 1ATB in France 1939-40, Military Modeling Vol.44 (2014) AFV Special
  • N, Szamveber (2013) Days of Battle Armored Operation North of the River Danube, Hungary 1944-45
  • A. Radić (2011) Arsenal 51 and 52
  • While A. Lüdeke, Waffentechnik im Zweiten Weltkrieg, Parragon
  •  J. Ledwoch 8.8 cm Flak 18/36/37 Vol.1 Wydawnictwo Militaria 155
  • S. H. Newton (2002)  Kursk The German View, Da Capo Press
  • W. Howler (2002 France, Belgium and Holland 1940, Ian Allan
  • J. S. Corum (2021) Norway 1940 The Luftwaffe’s Scandinavian Blitzkrieg, Osprey Publishing
  • https://uofa.ru/en/zenitnoe-orudie-88-vermaht-strashnaya-vosemdesyat-vosmaya/

 

Weiss Manfred WM 21 Sólyom

Hungarian Flag Kingdom of Hungary (1938)
Reconnaissance Aircraft & Light Bomber – 128 Built

The Weiss Manfrédfrom WM 21 two-seat reconnaissance aircraft. [lasegundaguerra.com]
The Hungarian Aviation industry was rather small in scope in comparison to many in Europe. Regardless, it managed to introduce a number of domestic development projects. One of these was the Weiss Manfréd from WM 21, a two-seat reconnaissance aircraft of which some 128 were produced during the Second World War.

History

In the years after the First World War, Hungary was strictly forbidden from developing combat aircraft. To overcome this limitation, the Hungarians did what the Germans did and began developing a civil aircraft industry to help gain valuable experience in aircraft design. One of these companies that would emerge during the late 1920s was Weiss Manfréd, from Csepel near Budapest. In 1928 this company began working on the design and construction of gliders and engines.

Due to an initial lack of funds, the Hungarian Air Force was forced to rely on foreign aircraft that were bought in relatively small numbers. For example, by 1937 Hungarians had only around 255 operational aircraft. To help gain more experience, Weiss Manfrédfrom began producing Fokker F.VIII and C.V aircraft under license. When sufficient funds and experience were gained, Weiss Manfrédfrom engineers in 1935 began working on a new reconnaissance biplane design.  They decided on a simple design, reusing some components that were already in production, and it would be a further development of the already produced WM 16 model, which was heavily based on the D version of the Fokker C.V.

The WM 21 predecessor was the WM 16 model which in turn was based on the C.V aircraft. [Wiki]
When the prototype of the new short-range reconnaissance aircraft, WM 21 “Sólyom” (Falcon) was completed, it was presented to Hungarian Air Force officials, who were generally satisfied with its performance and gave an order for some 36 WM 21 in 1938. At that time, massive funds were being allocated to the development of the aircraft industry. In addition, Hungarian Air Force officials wanted to decentralize aircraft production. For this reason, the WM 21 was to be built by various other companies, including twelve to be built by MÁVAG  and MWG

It was estimated that the production would commence during April and March 1939. It took longer to do so, with the first aircraft being available at the end of 1939. While the aircraft was slowly put into production, the Hungarian Air Force asked for more aircraft to be built.

In Combat

The WM 21 was primarily designed as a reconnaissance aircraft but due to a general lack of other aircraft types, it would be adopted for other roles. Its first combat use was during the so-called Transylvanian Crisis. Namely, in June 1940 Hungarian government demanded that Romania return the Transylvania region to them. Since it looked like war was coming, Hungarian Air Force began relocating its aircraft close to the Romanian border. Thanks to the commencement of negotiations, no war broke out. But by late August the Hungarians ordered a complete mobilization as the negotiation led nowhere.

While primarily intended to be used as a reconnaissance airfare it would be also used in other roles even as a light bomber. [lasegundaguerra.com]
Germany did not want to lose its vital Romanian oil supply and forced both countries to begin new negotiations under German and Italian supervision. While the negotiations were underway, some smaller air skirmishes occurred. On the 27th of August, a Romanian He 112 attacked a Hungarian Ca 135 aircraft, which was heavily damaged and one crew member was killed. The following day a WM-21 piloted by Captain János Gyenesin, dropped bombs on the Romain Szatmárnémeti airfield in retaliation for the lost airman. On its way back it crash-landed, damaging the aircraft. In the end, Hungary emerged as the victor, gaining large territorial concessions over the Romanians.

When the April War broke out on the 6th of April 1941, between the Kingdom of Yugoslavia and the Axis, the Hungarians joined the offensive. They employed their 1st Air Brigade which had some 60 aircraft. By the 17th of April, the war was over, and the Hungarian Air Force had lost 6 aircraft including one WM 21.

A colorized picture of the WM 21 rearview. [all-aero.com]
On the 26th of June 1941, the Hungarian town of Kassa was bombed by three aircraft. The circumstance of this incident is not clear even to this day, but the Hungarian government asserted that it was a Soviet attack. The decision was made to declare war on the Soviet Union as a response.  For the initial operation in the war against the Soviets, the Hungarian Air Force allocated 25 bombers (Ju 86 and Ca 135), 18 CR 42 fighters, and the 8th and 10th reconnaissance squadrons each equipped with 9 WM 21.

By 1942 most WM 21’s were allocated for use by training schools and as liaisons. Some would be used in later years for anti-partisan operations. By the end of the war, some WM 21 pilots managed to reach Austria where they hoped to surrender to the Western Allies.

Technical Characteristics 

The WM 21 was a mixed-construction, biplane aircraft, designed to fulfill multiple roles. The fuselage and the wings were of metal construction which was covered in fabric. The lower and the upper wings were connected with each other by one “N” shaped metal strut on each side. In addition, there were two “V” shaped metal brackets that were connected with the fuselage and the upper wing.  Lastly, there were two larger metal struts on each side that connected the landing gears to the top wing.

The WM 21 was a biplane two-seater aircraft. The lower and upper wings were held in place by various smaller metal bars, connecting them to each other and to the fuselage. [all-aero.com]
The landing gear consisted of two fixed road wheels and a rear-positioned landing skid. Partly-covered front wheels were connected to the aircraft fuselage by three large metal bins.

Initially, the WM 21 was powered by an 870 hp Weiss WM K-14A radial piston engine. With this engine, the WM 21 could reach a maximum speed of 320 km/h. Later produced aircraft were equipped with a stronger 1,000 hp WM K-14B engine. With this engine, the maximum speed was increased to 380 km/h.

The pilot and the observer/machine gunner were placed in two separate open cockpits, the front for the pilot, and the rear for the observer.  For better downward visibility the observer was provided with two fairly large glass panels, placed just under him on both fuselage sides.

Side view of the WM 21. Note the small glass panel located under the observer cockpit. [lasegundaguerra.com]
The WM 21 was armed with two forward-firing 7.92 mm Gebauer machine guns. One additional defensive machine gun was placed in a flexible mount which was installed in the rear cockpit. Additionally, the offensive capabilities of the aircraft could be increased by adding bombs. The bomb bay was placed between the two crew members. To release the bomb the crews would use a release mechanism. The bomb load could consist either of 12 10kg anti-personnel bombs, or 60 1kg incendiary bombs. Later versions increased the bomb load to around 300 kg.

To the rear an additional 7.92 mm Gebauer machine gun was placed in a rotating mount for self-defense. [airwar.ru]

Production and Modifications

The WM 21 was produced in four small series. When the production ended in 1942 some 128 aircraft would be constructed. While designed by Manfred Weiss, this factory produced only 25 aircraft. The MAVAG produced 43 with the 60 being built by MWG. Due to the relatively low production numbers, only one modification of the original aircraft was ever made:

  •  WM 21A – Powered with an 870 hp Weiss WM K-14A engine,
  • WM 21B – Slightly improved version powered by 1.000 hp  WM K-14B engine
Some 128 WM 21 would be built by 1942 when the production ended. [all-aero.com]

Conclusion

The WM 21 was a Hungarian reconnaissance aircraft that would see service on several different fronts. While initially used in its intended role, it quickly became obsolete and was allocated to secondary missions, as a training aircraft or for liaison missions. Due to a lack of adequate aircraft, some WM 21would even see service as combat aircraft against Partisans forces, mostly in the Soviet Union.

WM-21A Specifications
Wingspan 12.9 m / 42 ft 4 in
Length 9.65 m / 31 ft 8 in
Height 3.5 m / 11 ft 5 in
Wing Area 32.75 m² / 352.53 ft²
Engine One 870 hp (649 kW) Weiss WM K-14A radial piston engine
Empty Weight 2,450 kg / 5,400 lb
Maximum Takeoff Weight 7,606 kg / 3,450 lb
Maximum Speed 320 km/h / 200 mph
Cruising Speed 275 km/h / 170 mph
Range 750 km / 466 mi
Maximum Service Ceiling 8,000m / 26,245 ft
Climb speed Climb to 6,000 m (19,700 ft) in 7 minutes and 30 seconds
Crew One pilot
Armament
  • Three 7.92mm machine guns
  • Total bomb load of some 100-300kg

Gallery

Weiss Manfred WM 21 “Sólyom”

Credits

  • Written by: Marko P.
  • Edited by:
  • Illustrations by Carpaticus

Sources:

  • D. Monday (1984, 2006) The Hamlyn Concise Guide To Axis Aircraft Of World War II, Aerospace Publishing Ltd.
  • G. Sarhidai, G. Punka, and V. Kozlik (1996) Hungarian Eagles, Hikoki Publication
  • G. Punka (1994) Hungarian Air Force, Squadron Publication
  • S. Renner. (2016) Broken Wings The Hungarian Air Force, 1918-45, Indiana University Press
  • http://all-aero.com/index.php/56-planes-v-w/15565-weiss-wm-21-solyom 

 

 

 

 

 

Dewoitine D.520

French flag France (1936-1953)
Fighter – 900 Built

A restored D.520 in GC I/3 camouflage. [le blog du lignard]
The Dewoitine D.520 was the most advanced French fighter aircraft of the World War II period to have been employed in large numbers during the Battle of France. It was superior to the Morane-Saulnier MS.406 and Bloch MB.152. Often considered the only French fighter able to challenge the dominance of the Luftwaffe’s Bf 109E, the D.520 garnered a strong reputation and popularity among the general public in France. Though this aspect of its history is typically overlooked, the Dewoitine would also see extensive service after the Battle of France, particularly in the air force of the Vichy Regime, but also with Germany’s Italian and Bulgarian allies.

Dewoitine: French Pioneer of Interwar Metal Monoplanes

The Constructions Aéronautiques Emile Dewoitine (Emile Dewoitine Aeronautical Manufacturing) society was founded in 1920 under the lead of the eponymous engineer. Dewoitine had previously been employed by Latecoere during the First World War, which gave him experience on the subject of military aviation.

Dewoitine’s company was located in South-Western France, in Toulouse – an ideal location for strategic industry, as it was about as far as one could be in France from what was still viewed as a potential future adversary in 1920, namely Germany.

Dewoitine’s main products quickly became monoplane fighters. Though other types of planes were also developed, it was with parasol wing monoplanes that Dewoitine met its initial success. While the company failed to procure major domestic orders, Dewoitine fighters such as the D.1, D.9, or D.25 were export successes, seeing service in a number of countries such as Switzerland, Czechoslovakia, Turkey, Italy or Argentina. Dewoitine’s fighters were occasionally quite innovative – for example, the Dewoitine D.9 was an entirely metal parasol wing fighter, which was quite remarkable for a plane which first flew in 1924. While rejected by France, it was licence-produced by Italy as the Ansaldo AC.3, with 150 being manufactured for the Regia Aeronautica. Dewoitine also manufactured small numbers of D.9s for Belgium, Switzerland, Yugoslavia and Hungary.

Dewoitine’s D.9 metallic parasol monoplane fighter. [Aviafrance]
In large part due to none of its planes being adopted by France’s military, Dewoitine faced considerable woes in the late 1920s, being liquidated in January of 1927, before being re-founded the next year. The 1930s would prove more fruitful for Dewoitine. Most notably, the company won some sizeable contracts in the mid 1930s for its Dewoitine D.500, D.501 and D.510, which were low wing, or cantilever-wing, monoplanes, the latter two featuring, a 20 mm autocannon firing through the propeller hub. With more than 300 aircraft ordered for French service, and some limited export contacts, the Dewoitine cantilever wing monoplanes powered the company through the 1930s, and formed the bulk of France’s fighter force all the way up to 1938-1939.

A Dewoitine D.510 in flight. The D.500/501/510 fighters were a great achievement for, Dewoitine which helped cement the manufacturer’s credibility as a major French fighter manufacturer. [avion-légendaires]
Dewoitine first experimented with a cantilever-wing monoplane fighter with a retractable landing gear in the form of the D.513 fighter which first flew in January of 1936. It generally proved quite disappointing, suffering from instability, and was unable to reach the speed that was expected of it, while also suffering from cooling and landing gear problems, leading to the fighter quickly being discontinued.

The Birth of the “520”

In the French Air Force’s nomenclature, the role of single-seat fighters was classified “C1” (C for chasseur, the French equivalent of fighter, and 1 for single-seat). The air force department in charge of equipment procurement, the Service Technique Aéronautique (STAé – ENG : Aeronautical technical service), would regularly publish calls for aircraft manufacturers to design fighters to fill this role along with a series of required specifications. By late 1936, the last design request had been formulated more than two years prior, in March of 1934. The aircraft from this program, which was being considered for adoption, Morane-Saulnier’s MS.405 (which would become the MS.406), was still in the prototype phase, and had yet to receive orders for production.The MS.405 was already a fairly modern fighter, being a cantilever wing monoplane with a retractable landing gear. But Dewoitine believed that more advanced fighters using the same features could be developed. Anticipating a new design request for the C1 role, Dewoitine began development of a single-seat fighter in late 1936. It was not long before the STAé issued a new request. On the 12th of January 1937, aircraft manufacturers were asked to design a fighter able to reach a maximum speed of 520 km/h, climb to 8,000 meters in less than 15 minutes, land on a runway of 400 meters, and featuring a centerline Hispano-Suiza 20 mm HS.9 autocannon and two 7.5 mm MAC 34 machine-guns, equivalent to the armaments on the D.520 and MS. 405/406.

As the Dewoitine fighter project was still very early in development when the specifications were issued, its design took them into account. The requested maximum speed, 520 km/h, ended up being the project’s number designation.

Another major event happened in March of 1937, when Dewoitine’s Constructions aéronautiques Emile Dewoitine was nationalized by the French state. This was part of a massive nationalization plan that concerned all aspects of France’s defense industry, which was being run by the socialist-leaning popular front government in power since May 1936. Though this meant Dewoitine’s company was now state property, Emile Dewoitine was not displaced in his function as main engineer and leader of the company. The company, however, took a new name – Société Nationale des Constructions Aéronautiques du Midi (SNCAM – ENG: National Society of Aeronautical Constructions of the Midi -‘Midi being the area allotted to the company near Toulouse).

Though Dewoitine was still in full control of his company, all of the reorganization that took place in 1937 meant that work on the D.520 was mostly postponed or paused, resuming only in 1938. On the 3rd of April 1938, SNCAM obtained a contract for the construction of a prototype. Production of the first D.520 began and the prototype, D.520-01, would take off for the first time on the 2nd of October 1938.

Design of the Dewoitine fighter

The first D.520 prototype in flight. [joseph bibert fichiers]
The fighter aircraft designed by Dewoitine and his team was a low, cantilever-wing monoplane fighter that used an Hispano-Suiza 12Y in-line engine. The plane used riveted duralumin construction, both in structure and skinning.

The D.520’s wings used a one-piece, reinforced single-spar structure. Two MAC 34 7.5 mm machine-guns with gun cameras were installed towards the front, closer to the fuselage, while further inboard in the wings, a 120 liter fuel tank was located. To the rear were the flaps, which were also the only part of the aircraft covered with fabric instead of duralumin. Without the flaps, the wings had a surface of 13 square meters. The flaps had a surface area of 1 square meter, and each wing had a surface area of 14 square meters in total. When counting the wing root, where the fuselage and wings meet, the surface area was 16 square meters. On the first prototype, there was no radiator in the fuselage, and instead a radiator was installed under each wing.

The D.520-01 prototype used a Hispano-Suiza 12Y-31 V12 890 hp engine, without the cannon installed, though later prototypes, followed by production models would use more powerful versions of the Hispano-Suiza 12Y engine with provision for a 20 mm gun firing through the propeller hub. Between the engine and pilot, a 396 liter fuel tank was located (though typically it would only be filled for ferrying, and not combat operations). With a total fuel capacity of 636 litres, the D.520 had high endurance, with a ferrying range of up to 1,500 km in good weather.

The landing gear of the D.520 opened outwards. The definitive production model of the D.520 had a length of 8.6 meters, a wingspan of 10.2 meters, and a height of 3.435 meters.

Prototype Testing

The first prototype, D.520-01, was in some ways more of a demonstrator than a true prototype. From the start, the prototype had a number of differences from the standard models. The model of Hispano-Suiza 12Y that was used, the 12Y-21, did not have a provision for a propeller-hub-firing cannon, and with 890 hp, was less powerful than what was later installed. The wing machine-guns were not mounted either. During its first flight, the prototype failed to reach the desired speed of 520 km/h, not exceeding 480, and several issues were found. The two wing radiators caused too much drag, and a fuselage-mounted radiator was chosen instead. The tail’s control surfaces were found to be too small, and were enlarged. New exhaust pipes were also installed. The 12Y-21 engine was replaced by a 12Y-29, which produced 910 hp. Lastly, a variable pitch propeller was also installed.

A view of D.520-01 in flight. [Guerre et Histoire – Sciences et vie]
The first D.520 prototype undertook a second flight on the 11th of January 1939. This second attempt was much more successful, and showed great promise. It possessed good dive capabilities, with the prototype reaching more than 800 km/h in a dive, and reached 525 km/h in level flight, exceeding the 520 km/h required of the specifications.

A formidable view of the second D.520 prototype in flight over fields, France, 1939. [WW2aircrafts.net]
The second prototype of the D.520, D.520-02, had its first flight on the 28th of January, 1939. This prototype was much closer to the production model. It was fully armed, including the 20 mm propeller mounted autocannon, and had incorporated all the changes the D.520-01 had undertaken, as well as some new ones: a new landing gear and larger empennage. On the 5th of May, the third prototype, D.520-03, took to the air for the first time. This example featured the 12Y-31 engine, with full armament.

With successful trials of the second prototype, a production order for the D.520 was first placed on the 7th of April 1939, with 200 fighters ordered. The successful trials of the third prototype led to an additional order, initially for 600 aircraft, though reduced to 510 in June. In September, France entered into conflict with Germany, which saw widespread industrial mobilization and orders for new equipment. The total number of D.520s on order rose to 1,280 and through most of 1939, production was being set up at SNCAM’s facilities at Toulouse. Orders continued to accumulate, with 2,250 aircraft on order in April of 1940, including 120 for the navy.

In the meantime, testing continued on the D.520 prototypes. On the 11th of January 1940, D.520-02 was flown by pilot Leopold Galy in diving trials. During a dive from an altitude of 8,000 meters, the aircraft reached a speed of over 900 km/h – Leopard Galy indicated that the instruments showed the speed that the aircraft reached as 920 km/h.

Production Model: Features and Performance

Plans of the Dewoitine D.520 production model. [joseph bibert fichiers]
The first D.520s from the production run took to the air in November of 1939. A number of additional features had been added to Dewoitine’s fighter. The newer Hispano-Suiza 12Y-45 engine was chosen, as this model produced 935 hp and featured a much improved Szydlowski-Planiol supercharger, providing the Dewoitine with better high-altitude performance.

The armament of the production model consisted of a Hispano-Suiza HS.404 20 mm autocannon firing through the propeller hub (the prototypes used the earlier HS.9). The HS-404 had a rate of fire of 700 rpm, with a drum magazine holding only 60 rounds, the D.520 could expend its 20 mm ammunition in 9 seconds of continuous fire. The MAC 34 machine-guns were provided with more ammunition. Chambered for the 7.5×54 mm French cartridge adopted in 1929, the MAC 34 machine-guns had 675 rounds each. With a rate of fire of 1,200 rounds per minute, the MAC 34 would expend their ammunition in a little over half a minute. These machine-guns were electrically heated to avoid ice jamming the gun action at high altitudes.

The mounting of the MAC 34 machine-guns in the D.520’s wings. [L’Armement des avions de chasse français]
Empty, the D.520 had a weight of 2,050 kg. The aircraft had a structural weight of 892 kg, the engine block empty 517 kg, additional engine accessories 373 kg, empty fuel tanks 56.4 kg, and additional equipment 252 kg. 650 kg would be added on average to get the plane into operation: 337 kg of fuel (the aircraft’s fuel tanks had a capacity of 636 litres), 226 kg including the guns and their ammunition, and an average of 87 kg for the pilot and his equipment. The weight of the plane in operation would therefore be 2,740 kg. With a wing surface of 16 square meters, this meant the D.520 had a quite high wing load of 195 kg/cm2. The D.520 used a three-bladed Ratier variable pitch propeller, with a diameter of 3 meters.

The plane had an automatic fire extinguishing system controlled from the cockpit. As for fuel capacity, the plane featured a 396 liter self-sealing fuel tank located between the cockpit and the engine. Each wing featured a 120 liter fuel tank. The D.520’s fuel capacity of 636 liters was fairly considerable by 1940, and would give it a better range than most one-engined fighters used in Western Europe, with a ferry range of about 1,500 km.

The D.520 could reach a maximum speed of about 535 km/h at the altitude of peak engine performance, which was 6,750 m, and with the engine running at 2,400 rpm. Cruising speed at the same altitude was of 400 km/h with the engine running at 2,000 rpm. The stall speed was 125 km/h.

The rate of climb was 12 meters per second for the first 1,000 meters of flight. 4,000 meters could be reached in a little under 6 minutes, and thanks to its supercharger, the D.520 retained a good climb rate at high altitude. It reached 6,000 meters in 9 minutes and 8,000 meters in a little under 14 minutes. The D.520 would typically be capable of reaching those altitudes before the Bf 109E. The ceiling of the Dewoitine fighter was 11,000 meters.

Though the first examples of the D.520 were completed in November of 1939, some changes were still made, notably, the engine block was lengthened by 16 cm, meaning the first examples produced had to be retrofitted. The D.520 would only commence delivery to the air force in January of 1940, and by May, only a single fighter group had been equipped, though several would receive the new type as production was hastened during the Battle of France.

The aircraft were painted in the standard French air force camouflage scheme of brown, green, and gray color during their manufacturing process. The rudder section was painted in the colors of the French flag. The type of the aircraft (Dewoitine D.520) as well as the aircraft’s production number were indicated in black letters over this French flag-colored tail. French roundels were featured on the wings and on the central fuselage. The underside was typically painted in the same metallic gray color as parts of the fuselage and wings. The propeller hubs and propeller were painted in black.

Two completed D.520s outside of Dewoitine’s factory, 1940. [Archives Départementales de la Haute-Garonne, Airbus collection]
D.520s that have just been delivered to the air force, aligned before they are tested, 1940. [Archives Départementales de la Haute-Garonne, Airbus collections]
The D.520 assembly lines at Saint-Martin du Touch in February of 1940 [sam40.fr]

Future Production Models as Planned in 1940

Improved versions of the D.520 were quickly scheduled for production, and it was planned that these improved models would quickly be introduced to the production lines in the summer of 1940, if everything went well.

The D.521 was an experimental aircraft which mated the D.520 fuselage with the British Merlin III engine. Only one prototype was built, and it was not meant for serial production. The D.522, 523, 524 and 525, however, were D.520s powered by more powerful versions of the Hispano-Suiza 12Y engine.

The D.522 actually went back to the old Hispano-Suiza 12Y-31 860 hp engine block, which was significantly less powerful than the 12Y-45 on paper. It would, however, be fitted with a new Hispano-Suiza supercharger, larger in size than the Szydlowski-Planiol and providing better high-altitude performance. The planned production run for the D.522 was of 75 aircraft, from the 526th to the 600th Dewoitine fuselages, which would likely have meant the production run would have commenced in July of 1940. The D.522 would then have been succeeded by the D.523.

The D.523 used the 12Y-51 model of the 12Y engine, but retained the Szydlowski-Planiol supercharger. This new model of the 12Y produced up to 1,000 hp at optimal altitude. One D.523 prototype was produced (using the 45th D.520 fuselage), and underwent trials from the 9th to the 14th of May 1940. It was able to reach a maximum speed of 570 km/h at the optimal altitude, and climbed faster than the D.520 by a significant margin. This would have made this model a powerful rival to German Bf 109E and F fighters.

Though the D.525 was nominally the last, it was to be produced between the 523 and 524, and was more closely related to the 523 than the 524 was. The D.525 merely combined the 12Y-51 engine from the D.523 and the Hispano-Suiza supercharger from the D.522. Just 30 were to be produced, fuselages 751 to 780.

Finally, the D.524 was to be the last direct derivative of the D.520 scheduled for production by 1940. Its main improvement over previous models was to be the Hispano-Suiza 12Z engine – the most refined model of Hispano-Suiza’s 12Y engine yet, it was to produce 1,300 hp. While very promising in concept, the D.524 was yet to reach the prototype stage by the Invasion of France. While D.520 variants using the 12Z would come to be built at prototype stage later, the D.524 was canceled with the fall of France. It was expected to reach a maximum speed of around 616 km/h at 7,000 m, and climb to 8,000 m in 8’20’’.

By the armistice of June 1940, which put a temporary end to the D.520’s production run, about 440 aircraft had been manufactured, of which closer to 350 had been accepted by the French Air Force. This meant that no further D.520-derived models would see production, and plans to produce them were indefinitely shelved and never revisited.

A rear view of the HD 780 prototype, which featured a significantly redesigned wing as well as the necessary provisions to enable the land-based monoplane into a floatplane fighter. The HD 780 never flew and, as such, its performance data is not known. An estimate placed its maximum speed at around 440 km/h. [war thunder forums]
A floatplane fighter version of the D.520, the HD 780, had also been designed, with one prototype being produced. It incorporated many differences, such as folding, gull-shaped wings, a larger engine block, and two large floats. The prototype was completed in March of 1940, but remained inside its factory and would never take flight.

Into GC I/3

While the first serial-production D.520 had been delivered in November of 1939, these aircraft would later have to be revised and were by no means ready for service.

Dewoitine D.520 n°12 of GC I/3 in early 1940. The plane was flown by French pilot Commandant Thibaudet. [ww2fighters.e-monsite.com]
The D.520 would start effectively entering service during the first months of 1940, with the first squadron, GC I/3, being entirely outfitted with the type in the months of April and early May 1940. There, the D.520 replaced the Morane-Saulnier MS.406. Although another monoplane fighter with a retractable landing gear, the Morane was a plane which had noticeably lower performance in comparison to the Hawker Hurricane or Bloch MB.152, let alone the “triad” of modern fighters available by 1940, which would consist of the Spitfire Mk.I, the Bf 109E and the D.520.

As such, by the start of the campaign, the French Air Force had one squadron fully outfitted with the new fighter type. This fact, however, was tempered to a considerable extent. As mentioned previously, the fighters had only just been delivered to the squadron by the time fighting began in May of 1940. In other words, there had been little to no time for the pilots to accommodate with the newer fighter and become properly accustomed to it – which would prove a larger issue than anticipated, as the D.520 would prove a quite complicated and technical plane to pilot. Many of the pilots which flew the D.520 into combat during the Battle of France – perhaps even more so in the squadrons which would receive the plane during the campaign, would engage in combat during some of their first ten or even five flights of the D.520. Under these circumstances, one could hardly expect good performance with the pilots under such duress.

As hostilities began on the 12th of May, GC I/3 quickly moved into position at the airfield at Wez-Thuisy, in the Marne region of North-East France. From this point, the squadron would be engaged for the rest of the campaign all the way until the 17th of June, when it would retreat to the other side of the Mediterranean to avoid the capture of its planes.

The typical missions of the squadron were defensive, as simply put, the French Armée de l’Air struggled to impose any form of threat against the Luftwaffe. A large number of reasons for this can be attributed to this defensive role of the French air force. One could easily identify the comparative lack of modern fighters in comparison to a Luftwaffe that now universally operated the Bf 109E, a lack of coordination between the French air and ground forces, and many other limiting factors. As such, the D.520 would typically be used to try and intercept flights of German bombers, typically Heinkel He 111s or Dornier Do 17s, as these harassed French logistical centers and cities. In this role, the D.520 would enjoy some successes. It was faster at straight and level flight, and a better climber than previous French fighters, which was quite significant as the German bombers were moderately fast aircraft. The Morane Saulnier MS.406, notably, always struggled to catch the fast German bombers, while the D.520 could do so with relative ease.

Four pilots of the 2nd flight of GC I/3 in front of D.520 n°73 in 1940. [ww2fighters.e-monsite.com]
An MS.406 of GC III/6 before the squadron converted to the D.520. The older Morane monoplane was already fairly lacking by its introduction in the late 1930s, outperformed by the Hawker Hurricane or early variants of the Bf 109. Still fielded in large numbers during the campaign of France, the fairly sluggish monoplane would often struggle to intercept German fast bombers, particularly the Dornier Do 17 and Junkers Ju 88. [ww2fighters.e-monsite.com]
The D.520 was credited with its four first victories on the 13th of May, when planes from GC I/3 shot down an He 111 bomber from KG 55 as well as three Henschel Hs 126 reconnaissance planes. The next two days, 14th and 15th, would see very heavy engagements for the squadron. On the morning of the 14th, the squadron would be engaged against a strike force of Dornier Do 17 and He 111 bombers under escort by Bf 109Es. The D.520 of GC I/3 would claim six confirmed kills in the morning, two on He 111s, two on Dornier Do 17s and two on Bf 109s, plus a claimed but unconfirmed kill on another Bf 109. In the late afternoon, D.520s of the squadron would engage in combat against a flight of Bf 110 heavy fighters from ZG 26. As often when the Bf 110 was faced with single-engine fighters without backup from Bf 109s, this ended up fairly bloody for the German squadron which lost four planes, with an additional probable Bf 110 killed claimed by the French.

On the 15th, defence against German raids in the morning would see the squadron claim three confirmed and a probable Dornier Do 17 kills, as well as a confirmed Bf 110 and He 111. In the early hours of the afternoon, D.520s would claim one confirmed and two probable Bf 109s.

The squadron’s actions would wind down in the following days, as it retreated from its first airfield to a new one in Meaux-Esbly, closer to Paris. With German pressure now concentrating against the encircled French and British forces in the North, action would be more sporadic. Between the 15th of May and the 3rd of June, the squadron would claim confirmed kills on an He 111, a Bf 109 and a Do 17, as well as further probable kills for another He 111 and another Dornier 17.

From early June onward, with the Dunkirk pocket liquidated by German advance, attention would shift towards the south once again as Germany progressed further into France, while the French organized a fairly desperate defense on the so-called “Weygang Line.” On the 3rd of June 1940, the squadron claimed its first Ju 88 kill, as well as claiming another Bf 109, and probable shoot downs on three Dornier Do 17s and a Heinkel 111. The 5th and 6th of June were particularly intense in terms of combat with German fighters, with the D.520 claiming four Bf 109s and an Hs 126 on the 5th, and a further two confirmed and two probable 109s as well as a confirmed Do 17 on the 6th. The 7th saw the squadron claim a confirmed Do 17 and Bf 109, and two further probable Do 17s.

A flight of German Dornier Do 17Z during the Campaign of France. Variants of the Do 17, alongside with the slower He 111 and the lighter Ju 87, were the most common bombers encountered by the French air force in 1940. The fairly fast Dornier could prove hard to catch for the MS.406. The later MB.152 and Curtiss H75 were already more effective in such a task, but the D.520 was clearly the best equipped French fighter to deal with fast enemy bombers. [Asisbiz]
German soldiers pose in front of a shot down D.520 of GC I/3. This particular plane was flown by Lieutenant Clarisse and shot down on the 21st of May 1940, the pilot being killed. [ww2fighters.e-monsite.com]
The 9th of June 1940 saw the D.520 make the most claims of the Battle of France. The squadron was engaged against a raid of Dornier Do 17s escorted by Bf 109s around noon, claiming four fighters and a bomber. In the late afternoon, the squadron was engaged again against Dornier Do 17s and Junkers Ju 87s once again escorted by Bf 109s, seeing the French fighters down a confirmed Do 17 and Bf 109 as well as two Ju 87s, with a further two probable Do 17 and Bf 109.

The 9th of June 1940 would also begin to see the squadron retiring from its airfield near Paris to go further south, to avoid the now very threatening German advance on the ground. Though a further few engagements were fought fromt the 14 to 16th, most of the action was now behind the squadron. From the 17th to the 21st of June, the squadron would jump from airfield to airfield, from Southern France, to Algeria, finally settling in Kaala-Djerda and later Tunis-El Aouina in French Tunisia.

GC I/3 had claimed a considerable number of victories during the campaign, showing the qualities of the aircraft despite the general lack of training that was to be found in a squadron only recently introduced to its fighter. In total, the squadron claimed 55 confirmed and 19 probable victories. This was at the cost of 32 D.520s lost – of which 21 were lost in aerial combat, the rest being victims of either bombing runs or accidents. This was a rather decent success for a unit which had just received the new fighter type.

Other Squadrons

A number of other squadrons did receive the Dewoitine D.520 during the campaign and used it against German and later Italian forces.

A D.520 of GC II/3 in flight in 1940. The squadron’s emblem, a greyhound, can be observed on the tail. GC II/3 was the second most successful squadron flying the D.520 during the campaign of France. [ww2fighters.e-monsite.com]

The first squadron to receive D.520s after GC I/3 was GC II/3, which transitioned to the D.520 in 10 days from the 10th to the 20th of May. This was a very short transition for the new fighter, which many would imagine to be fairly worrying for the performance of the squadron. Nonetheless, GC II/3 would perform quite admirably during the campaign. Engaged heavily from the 20th of May onward, it would claim a single victory, an He 111, on its first day of combat, five confirmed and two probable victories on Dornier Do 17s, He 111s and Me 110s on the 21st, and ten confirmed victories (eight Ju 87s and two Hs 126s) on the 22nd. During the entire duration of the campaign, GC II/3 would claim 31 confirmed and 15 probable victories at the cost of 20 D.520s, though only three pilots were killed. The squadron notably counted on Czechoslovak pilot Cukr Vaclav, who would claim two confirmed kills and six shared kills, as well as French Capitaine Raymond Clausse, with three confirmed, and two probable kills on his own, as well as two confirmed, and two probable shared kills.

D.520 n°273, flown by GC II/7 in June of 1940. [ww2fighters.e-monsite.com]
D.520 n°119 of GC II/7, shot down on the 15th of June 1940. [ww2fighters.e-monsite.com]
Other squadrons received their D.520s later in the campaign and would see the fewer kills , among other factors, due to the D.520 being received later in the campaign, at which point German air superiority had more or less been established, and sometimes having to work in mixed squadrons that still incorporated slower Morane-Saulnier MS.406s. GC II/7 was one such mixed squadron, receiving their first D.520s around the 25th of May, while at the same time retaining Moranes until at least the 1st of June. The D.520s of the squadron would still claim more than a dozen victories at the cost of nine of their own aircraft.

GC III/3 fought the most intense parts of its campaign with MS.406s, but was refitted with the D.520 in late May, seemingly not engaged from the 20th of May to the 5th of June, during the transitional period. Going back into action with the Dewoitine, pilots of the squadron would go on to claim eight confirmed, and one probable victory in June, with three confirmed Bf 109s shot down, and another probable, one each of the He 111, Me 110, Dornier Do 17, and two Hs 126s.

Pilots of GC III/3 plot their next mission on the tail of a D.520, June of 1940. [AeroVFR.com]
GC III/6 is one of the most well known of the D.520 squadrons despite receiving the aircraft late into the campaign. By mid-June 1940, the squadron was in the process of converting from the MS.406 to the D.520, when the entry of Italy into the war forced it to be put into action against Italian aircraft. Under these conditions, French pilot Capitaine Pierre le Gloan would first shoot down two Fiat BR.20 bombers on the 13th of June. On the 15th, Le Gloan took off on a routine patrol around 11:45 pm, originally comprised of three Dewoitines, but soon reduced to two due to technical issues of one aircraft forcing it to return to base. The two remaining fighters, operating near Saint-Tropez on the Mediterranean coast, encountered a force of twelve Fiat CR.42 biplanes of the Italian squadron 23e Gruppo CT. The two D.520s engaged the biplanes. Le Gloan damaged two, one that caught fire and was later written off, and the other pilot ejected, before the faster French fighters broke off. Le Gloan’s wingman’s guns jammed, forcing him back to base as well. Not content with merely two CR.42 shot down though, Le Gloan encountered a further patrol of CR.42s from 18e Gruppo, shooting one down before evading the others in a dive using the largely superior speed of the 520. Le Gloan then returned to Luc airfield, where GC III/6 was stationed, shooting down a CR.42 attempting strafing runs. Lastly, he would down a BR.20 attempting photo reconnaissance of the airfield, attempting to identify the effects of Italian strafing. The Dewoitine was out of cannon ammunition by this point and the BR.20 had to be shot down by machine-gun fire, requiring a total of five passes. This action would have been sufficient to make Le Gloan an ace not just in a day, but in a single sortie, though he had already scored two victories previously. While it was performed using the higher speed of the D.520 against slower biplanes, which would not effectively pursue the French fighter, it remains an impressive feat and likely the most famous action of the D.520 during the campaign of France. Le Gloan’s victories also appear to be the only confirmed ones scored by GC III/6 with the D.520.

A D.520 of GC III/6 during the Battle of France. [ww2fighters.e-monsite.com]

Two other French army squadrons, GC II/6 and III/7, began transitioning to the D.520 in June but could not be made operational on the aircraft in time to meaningfully take part in the Battle of France. This was also largely the case for two ground-based squadrons of the French navy’s Flottile F1C, AC 1 and AC 2, which received a few D.520s in the later stages of the Battle of France.

The Tricolor Cockade and the Balkenkreuz: Dewoitine versus Messerschmitt

A topic which inevitably comes up when discussing the D.520 is its comparison with the mainstay German fighter at the time, the Bf 109E. This comparison has been a considerable subject of debates, particularly in France, where a significant amount of pride has often been instilled in the D.520 as the only modern indigenous French fighter that saw intense action and was able to challenge the German fighter.

In practice, the duel between the two aircraft was a rather complicated matter – which was known to the French air force, as a Bf 109E captured during the Phoney War was quite extensively tested in comparison to the D.520 in April of 1940.

A Bf 109E-1, previously of JG 76, which was forced to make a landing in France in November of 1939 and was subsequently tested by the French. [asibiz]
The Bf 109 had a clear climb rate advantage over the D.520, which was particularly felt at low altitude, due to being better engined than the French fighter, which was sometimes found to be lacking in horsepower. German engine cooling was also found to be superior, which allowed the aircraft to run for longer at full throttle, while French pilots would often have to temporarily limit running the engine at full throttle to avoid overheating. This would usually allow the German fighter to dictate the terms of engagement, but considering the mostly defensive use of the D.520s, the Bf 109s were forced to provide cover to German bombers, and were often operating in escort, and not air superiority sweeps.

Where the D.520 is often said to have had an advantage is in maneuverability. The D.520 had the advantage of more subtle and less abrupt controls in comparison to the Bf 109E, which would typically give an advantage to the French fighter in a prolonged dogfight. The Dewoitine also enjoyed good engine torque, and in comparison to the BF 109E the cockpit of the D.520 offered far greater visibility which would prove an advantage in such a situation. This was not, however, a massive advantage, and the comparative trials held in April of 1940 saw a duel typically last for several minutes before one of the two aircraft could mount an advantage over the other. In turning fights, the D.520 had a known issue where it was vulnerable to stalling and temporary loss of control during some turns. This was an issue if the enemy fighter was in a favorable position at the moment, though in some engagements it was found that the stalling could be used as an evasive maneuver if the enemy fighter was at a considerable speed advantage. In general, the D.520 was found to still be more comfortable to pilot than the 109 in prolonged dogfights. In turnfights, the D.520 would typically win when the turns were towards the right, but the Bf 109 could be expected to win those towards the left.

In general, while French patriotism would encourage many French authors to claim the D.520 as equal or sometimes even superior to the Bf 109, in practice, the German fighter could arguably be claimed to usually have a slight edge – its ability to dictate the terms of engagement was not entirely compensated for by the maneuverability of the French fighter. This, however, does not paint the full picture. While one may ponder at length over whether the D.520 could be considered equal or slightly inferior to the Bf 109E, it remains clear that it was highly superior to the pre-existing fighters in the French air force, such as the Curtiss H75, Bloch MB.152, and particularly the Morane-Saulnier MS.406, when it came to intercepting fast German bombers such as the He 111, and particularly the Do 17 and Ju 88. The MS.406, notably, would often struggle to catch up with German bombers, while the D.520 could do so relatively easily – giving the French air force a far better tool against enemy bombers, though obviously one which arrived way too late. As such, the D.520 represented a major improvement in the capability of the French air force – which would have been further reinforced by additional new fighter types entering service in June of 1940, the Bloch MB.155 and Arsenal VG.33, with the later managing even better performance than the D.520, with a less powerful engine of the same type, and likely offering a serious competitor to the Bf 109 and Spitfire had the war not abruptly interrupted for the French Third Republic.

An Arrow through the Cockade: Vichy’s Workhorse

Absolutely defeated on the ground by a better equipped, led, and coordinated German army, France was forced into an armistice with Germany, negotiated on the 22nd of June 1940 and going into effect on the 25th of June 1940. In this Compiègne Armistice, the Third Reich inflicted on its French archenemy what was, in many ways, a revenge and repeat of Versaille, with the French as the victim, seriously limiting the size of the French army and its ability to produce new equipment.

However, strategic requirements are a more important matter than symbolism. The French government was in control of many colonial areas around Africa and Asia which Great-Britain was now interested in seizing to further their situation and, with the sinking of the French fleet of Mers-El Kébir on the 2nd of July 1940, this set a major precedent of hostility between the new French regime and the British. Under these conditions, allowing the new Vichy French government to retain a military that could offer resistance to British and Free French attempts to seize colonial territories and naval assets was a useful prospect for Germany. As such, France was allowed to keep a number of squadrons and military units operational – most notably in French North Africa and the French Levant, but also Metropolitan France to an extent.The air force was allowed more strength than the army, which could not operate any armored vehicles outside of Panhard 178s downgraded to a machine-gun armament in mainland France.

D.520 n°277 of GCIII/6, the personal plane of French ace Pierre le Gloan, in flight in French North Africa during the early months of the Vichy regime. One can observe the identification arrow, which in this case extended all the way to the propeller hub, but on other aircraft stopped around or slightly in front of the cockpit. [ww2fighters.e-monsite.com]

Dewoitine D.520 of GC III/7 in Chateauroux, France, August 1940. The planes are yet to receive any Vichy identification markings and were likely not used operationally at this point. [Pinterest]
As such, authorization was given for the Vichy regime to maintain squadrons I/3, II/3, III/6, II/7 and AC1 operating the D.520. All would be stationed first in French North Africa, with all being located in Algeria outside of II/7 operating in Tunisia. The motive behind putting Vichy’s best fighters in French North Africa was that this location was now the most valuable colony still in the hands of the regime, and was much more vulnerable than the French mainland to potential attack attempts by the Allies. At the same time, while the D.520’s range could allow it to comfortably ferry over the Mediterranean and generally operate in a theater where longer ranges could be desirable, Vichy did retain a number of squadrons operating the shorter-ranged Bloch MB.152 in Metropolitan France. With the Bloch fighter unable to reasonably make the crossing, and ill-equipped to reasonably protect French North Africa, the D.520 was pretty much the only possible choice outside of a now incredibly outdated MS.406 that was on its way out of Vichy’s air force.

During their service life, Vichy aircraft were given a number of recognition markings to differentiate them from British or Free French aircraft and avoid friendly fire incidents from German or Italian planes. At first, this manifested in the form of a white line going through the rear and center of the fuselage, with the cockade superimposed on top and an arrowhead in the direction of the front of the plane. This was put on from the late summer of 1940 onward. From early 1941 onward, these were judged insufficient to reasonably identify Vichy’s aircraft, and they saw their tail sections and propeller hubs painted yellow to further ease identification; it is with these identification markings that the Vichy D.520 would fight during the Levant campaign in May of 1941. In the summer of 1941, the recognition markings were pushed even further, with orange stripes included within the yellow sections, and in many cases, parts of the engine cover painted in the same yellow and orange scheme as the tail.

A magnificent colorized photograph of GC III/6 D.520 fighters. This photo was taken at Eleusis airfield, Athens, in May of 1941, a refueling stop for the French fighters heading to the Levant. It gives a formidable view of the D.520’s camouflage, the yellow tail section, and the identification arrow. [Flickr]
A good view of a Vichy D.520 in the markings which were now standard by 1942, with the white identification line no longer featuring an arrowhead, and yellow-and-orange stripes on the empennage and engine fairing. [Asibiz]
In April of 1941, with German approval, production of the D.520 resumed to fulfill an order for 550 new planes for Vichy’s air force. The goal was now to make the D.520 the standard fighter of the French air force to the greatest extent possible, first replacing the MS.406 in the squadrons then operating it, and in the further future the MB.152 and MB.155 operated by the fighter groups in Metropolitan France. Two new fighter groups operating the D.520 were created, GC I/2 in Châteauroux, Metropolitan France, and GC II/6 intended for French Occidental Africa, while four squadrons operating other types were re-equipped with the D.520 in Metropolitan France, these being GC I/1, GC III/9 and GC II/1. The last squadron, GC II/5, located in Casablanca, Morocco, was in the process of switching during the Allied invasion of French North Africa, Operation Torch, in November of 1942.

A number of Dewoitine D.520 fighters in the SNCAM-Dewoitine factories of Toulouse/Saint-Martin-du-Touch in 1942. The planes are now being completed with the identification white band, the arrowhead no longer featured, and with the orange and yellow sections at the empennage and around the engine block. [ww2fighters.e-monsite.com]
In a fairly cruel twist of irony, what was once the only fighter able to offer resistance to Germany’s Luftwaffe, by 1940 now flew for the Vichy Regime, and only truly became the most common French fighter under this collaboration government. The D.520 would see considerable action in defending Vichy’s colonial territories against British, Free French and American intervention, now fighting a whole different set of aircraft. However, this would once again be under lackluster conditions; pilot training under Vichy was not as extensive and long as under the pre-armistice conditions, partly due to lack of fuel restricting the flight hours which would be performed. While the pilots who fought under Vichy during the Levant campaign and Operation Torch had had more time to accustom themselves to the D.520 than those flying during the Battle of France, these were often the same men from the same squadrons which had now made the switch to the D.520 during the Battle of France. They flew fewer hours per year overall, and as such had their skills not as “well maintained” as their Allied counterparts that were regularly flying combat missions against the Regia Aeronautica and Luftwaffe over North Africa and the Mediterranean.

Another view of the Toulouse/Saint-Martin-Du-Touch facilities, showing the considerable industrial effort by Vichy at manufacturing the D.520. Still present in only moderate numbers in the Battle of France, it is only under Vichy that the D.520 would truly become the mainstay fighter of the French air force. [aérothèque.com]
Under the Vichy regime, studies were also performed in outfitting the D.520 with more powerful engines in order to make the Dewoitine a viable fighter for later in the war. This resulted in the D.520Z, fitted with a Hispano-Suiza 12Z 1,600 hp engine. This project would result in work on a prototype, completed in February of 1943 with German approval, but would only fly in 1947. A project modernizing the D.520 further, the M.520T, would never even reach prototype stage. Vichy had hoped the D.520Z would be serially produced, and postwar trials indeed indicated the fighter had respectable performance even by mid-war standards, being able to reach 659 km/h at 9,150 meters, and could climb to 4,000 meters in 4 minutes 10 seconds, to 8,000 meters in 8 minutes 22 seconds, and to 11,000 m in 14 minutes 19 seconds. This was a very significant improvement in comparison to the D.520, though it came at the cost of the 12Z being a sometimes unreliable engine that would require a lot of maintenance. The occupation of the Vichy regime would prevent any further development, despite a production of up to 230 having been hoped for in the middle of 1942.

A view of the D.520Z prototype postwar. Had production been undertaken in the mid-war, the D.520Z would have been a decent fighter, but by the post-war era, it could only really be used as a testbed. [Pinterest]
A profile view of the M.520T. While on the loose technical basis of the D.520, it would in many ways have been a new aircraft. [War Thunder Forums]

Dewoitines Against Hurricanes: The Levant Fiasco

On the 1st of April 1941, a coup in previously British-influenced Iraq brought to power a pro-Axis government, the Golden Square, which would result in the Anglo-Iraqi War lasting for much of the month of May. Germany and Italy, eager to use this opportunity to open another front against the British Empire in the Middle-East, pushed Vichy France to allow Axis planes to use the French colonies of Syria and Lebanon as a base to get to Iraq and support their troops against British Commonwealth forces.

After the end of this campaign, this breach of Vichy’s non-belligerence in favor of Axis support would lead to British, Australian, Indian, and Free French troops invading the Vichy colonies of the Levant. The Vichy regime attempted to put up a defensive effort, which, in the air, relied on Dewoitine fighters.

Prior to May of 1941, only the older MS.406 were located in Levant. With the rise of tensions as the colony now hosted Axis planes, GC III/6 was relocated from Algeria to Rayack in Lebanon on the 27th-28th of May 1941. This airfield would be used until late June, when the squadron would move to Alep. During the Levant campaign, GC III/6 would be joined by GC II/3, which moved into the Levant, transiting through Axis-occupied Greece and would operate from Homs and later Alep during the campaign. The French Navy’s AC 1 squadron would be deployed to the Levant as well.

The opposition the French would face consisted of Hawker Hurricane and Curtiss Tomahawks (P-40), as well as occasionally older Gloster Gladiators, escorting bomber formations typically composed of Blenheim bombers.

Dewoitine D.520 N°383 of GC III/6 at Rayack airfield, Lebanon, May 1941. The aircraft features the yellow recognition tail as well as a recognition arrow stopping in front of the cockpit. This aircraft, flown by Capitaine Rival Mazières, second in command of GC III/6, was shot down by British Curtiss Tomahawk fighters on the 23rd of June 1941 with the pilot, at this time Sergent Savinel, killed. [ww2aircraft.net]
The mangled wreck of the same Dewoitine, shot down on the 23rd of June 1941. [joseph bibert fichiers]
The French squadrons put up considerable opposition in the air, with the D.520 still being a decent adversary for the fighter aircraft they were facing. GC II/3’s scoreboard was fairly moderate, with two Blenheims and a Tomahawk shot down on the 2nd of July, with one confirmed and one probable Tomahawk on the 11th of July. GC III/6, present in the operations for longer, would feature a much more accomplished score-board during the campaign. They claimed 16 confirmed and 2 probable Hurricanes, a Fulmar, a Maryland, a Tomahawk, and three Gladiators. Pierre le Gloan, still flying with GC III/6, claimed seven victories: six Hurricanes and a Gladiator. As for the Navy’s AC 1 squadron, it would claim seven confirmed and one probable kill.

Though these were some considerable victories, the D.520 suffered some significant losses during the campaign, with about 40 planes lost, though only eight pilots were killed. Most of these were not shot down in flight. The issue the French faced in Levant were limited aviation facilities that featured little to no anti-aircraft defenses. Against a considerably numerically superior adversary, this resulted in the French being unable to defend their airfields against strafing runs, which decimated the fleet of Dewoitine aircraft. As British forces were progressing through the region swiftly, the three D.520 squadrons were redeployed to Algeria transiting through Greece in early July, so that the remaining fighters, and most importantly their pilots, could participate in the defense of French North Africa, now that the French Levant was irredeemably lost.

A Navy D.520 during the early Vichy area. The aircraft’s branch can be identified by the anchor present on the rudder section. [Cols bleus : hebdomadaire de la Marine française, French Navy, September 1985]
It should be noted that two D.520s left behind by Vichy’s air force in the Levant would be captured by the Free French and re-used for a short while in order to train the pilots of Free French GC 3 “Normandie.” This squadron would, from late 1942 onward, be deployed to the Soviet Union, operating with great success using Soviet Yak fighters for the remainder of the war, and gaining great fame as the only Western Allied fighting unit on the Eastern Front, and a highly successful squadron by both Free French and Soviet standards. Previously, the Free French had operated three D.520s that had defected from France to England in June of 1940. Two were conscripted into the force which attempted to seize Dakar in September of 1940, and following the failure of this attempt, they were unloaded in French Equatorial Africa, a colony which joined the Free French. One was lost in an accident, and the other left at its airfield when Free French pilots moved to Egypt to be equipped with Hawker Hurricanes.

Dewoitine D.520 n°302, one of the two D.520s captured by the Free French in the Levant. The two fighters were used by GC 3 Normandie before it moved to the USSR and eventually became the famous “Normandie-Niémen”. [warisboring.com]
The Free French D.520 n°139, by this point in time the only one in service, preparing for take-off in Chad, January of 1941. [ww2fighters.e-monsite.com]
 

French Droplets on the Torch

A Vichy D.520 of an unidentified squadron in French North Africa, 1941. [ww2aircraft.net]
In November of 1942, with the war in the desert in Libya clearly going to the advantage of the Allies, French North Africa appeared as an increasingly appealing territory to seize to further the position of the Allies in North Africa. The large colony, comprising Morocco, Algeria and Tunisia, was however fairly well defended, with the heaviest military forces still in the hands of the Vichy Regime located there. In terms of squadrons using the Dewoitine, these being GC I/3, II/3, III/3, III/6, II/7 and AC 1.

The Anglo-American landings were performed on the 8th of November. For air cover, they relied on large numbers of Grumman F4F Wildcat/Martlet and some Hawker Sea Hurricanes, which were still fighters the D.520 could hope to challenge – and the French squadrons did put up some considerable opposition to Operation Torch.

US Navy F4F Wildcat aboard USS Ranger CV-4 during Operation Torch. The American carrier fighter was about a match for the D.520, with a fairly similar maximum speed, likely slightly superior manoeuvrability but lower climb rate. [World War Photos]
GC I/3, operating near Oran, racked up a considerable score on the 8th of November, shooting down six Fairey Albacore light naval bombers, five Douglas C47 transport planes, five Hurricanes or Sea Hurricanes, and even a Spitfire. GC III/3, operating near Oran, appears to have claimed nine victories for seven D.520s lost. GC II/3, III/6 and II/7 were not located in areas as hot as the major Algerian harbour of Oran, and appear not to have claimed any victories during the battle. The French Navy’s AC 1 operating in Morocco claimed two F4F Wildcats for no aerial losses.

A D.520 of squadron 2AC of Flottila 1F on the runway in French North Africa, 1942. [ww2fighters.e-monsite.com]

However, while the French Dewoitines could still put up quite a fight against an F4F in the air, the numerical superiority of Allied fighters, and lack of French airfield defences would once again come back to haunt the French air force, with the AC 1 losing 19 of its 27 D.520s against strafing and bombing runs during the three-days of fighting during Operating Torch.

Luckily for the French, the colonial authorities of North Africa swiftly decided not to continue a vain opposition to Allied advances, and instead sided with the Allies against the Axis. With this, the Vichy squadrons, comprising a little over 130 D.520s, were now fighting against Axis troops. One was repainted in American colors and tested by the US Army Air Corps.

However, the end of the service of the D.520 in North Africa would be fairly swift, with the squadrons soon refitted with fighters such as Hurricanes and Spitfires for further operations, the D.520 no longer being seen as an up-to-date fighter and they lacked the facilities in France likely necessary for the manufacture of spare parts. The Dewoitine was relegated to a training role, in which it was still used in early 1944.

A flight of Free French D.520s over North Africa, early 1944. The planes received a roundel, and no other markings. Due to their operation in an area now void of Axis activity, no risk of confusion with an aircraft of a now nonexistent Vichy air force was considered. [joseph bibert fichiers]

Case Anton: The Dewoitine Under the Balkenkreuz

Days after French North Africa was invaded by the Allies, attention would now turn to the unoccupied part of France under the jurisdiction of the Vichy Regime. On the 11th of November 1942, Germany launched Case Anton, the Wehrmacht rushing to take control of Southern France, facing no resistance from Vichy troops that had been ordered to stay in their barracks and not oppose the Germans invaders. With this swift move, Germany captured around 250 Dewoitine D.520 fighters as well as the facilities which were in the process of producing more.

D.520 n°95 of JG 101 at Pau airfield, France, 1944. The German D.520s were repainted in a camouflage fairly similar to what could be found on other German aircraft by that point in the war. [Asisbiz]
The French production facilities would continue to work during German occupation, albeit at a reduced rate, seeing as the D.520 was a very low priority by late 1942. About 60 further fighters would be completed under German occupation.

Within the Luftwaffe, the D.520 was put to use as a trainer aircraft. Though now obsolete as a frontline fighter, it could still provide a decent introduction to modern, metal monoplanes with retractable landing gear. For this purpose, JG 101 was outfitted with the D.520 and operated in occupied France, mostly from Pau, in the South, where it would be free from sweeps and raids performed from the British Isles. JG 103, operating during the remainder of the war in the Netherlands or Austria, also used the D.520, as did JG 105, operating near Paris and Chartres, and JG 107 in Nancy. In German service, the D.520s were painted in a light gray color with darker gray spots on much of the aircraft, something typically found on many late-war German aircraft. The underside of the aircraft, and in some cases the nose and tail sections, were painted in a garish yellow color, likely for identification purposes as a training aircraft. The planes received a Balkenkreuz marking on the central fuselage and a swastika on the tail.

German maintenance crews at work near a D.520 in occupied France. [Pinterest]
The D.520 was noted to not always be a very easy plane to pilot, as it had some unforgiving flight characteristics and suffered from some mechanical issues, such as landing gear which at times failed to retract completely. However, in comparison to German fighters of the time, it offered much smoother and lighter controls for the pilot in comparison to the now quite heavy Bf 109G which were being operated by this point. There would nonetheless be several accidents, with at least three German pilots killed and two wounded on the Dewoitine. A number were also destroyed by Allied bombings of French airfields used by the Luftwaffe.

Outside of a training aircraft, there was another use the Germans could find to the D.520 by the second half of the war. It offered a convenient ‘hand-me-down’ aircraft to outfit the air forces of Axis states which requested fighters from Germany, without diverting any frontline German fighters being manufactured by this point. Two German allies would be outfitted with considerable numbers of D.520 in this fashion, Italy and Bulgaria, though it is sometimes claimed some outfitted Romania as well.

The French Fighter of the Regia Aeronautica

The Regio Esercito (Italian Army) captured 30 Dewoitines during the Battle of France, with many more being transferred to Italy after German capture in France.

The D.520s were assigned to various Regia Aeronautica (Italian Air Force) fighter groups, tasked with intercepting American bombers in the defense of various major cities, an endeavor which was met with mixed results. As Italy began to fall, some Dewoitines were destroyed by retreating Italians, or recaptured by the Germans.

It is of note that the Italians regarded the D.520 largely inferior for various reasons, but did praise the aircraft’s armament, making mention of the formidable 20mm cannon.

Regia Aeronautica D.520 of an unidentified squadron. The planes have by this point received Italian markings, such as the cross and the white band, but the base camouflage appears to remain the one featured on the original French planes, outside of perhaps the red propeller hub. [Pinterest]

The Shield of Bulgaria

A magnificent view of a Bulgarian D.520 in front of a mountain range. The camouflage used by the Bulgarian air force was similar to the Luftwaffe’s, but using Bulgarian markings and stripping their planes of any garish yellow paint. [Pinterest]
The other Axis air force which received a large number of D.520s was the Bulgarian Air Force. Though a member of the Axis powers, Bulgaria had chosen to remain out of Operation Barbarossa, and to not declare war on the Soviet Union, with its contribution to the war effort mostly consisting of its occupation of parts of Greece and Yugoslavia as well as economic cooperation with the Reich. As such, providing fighters for the Bulgarian Air Force may have seemed to be a lower priority for Germany in comparison to other allies, such as Hungary and Romania, which were actively fighting on the Eastern Front. However, Bulgaria was nonetheless at war with the Western Allies and, from 1943 onward, the subject of air raids increasing in frequency and intensity.

The D.520 seemed to be an appropriate hand-me-down for this lower priority but not insignificant part of the Axis, especially as the aircraft, while obsolete against modern fighters by 1943, could still be used against bombers and Bulgaria was still mostly out of reach of Allied single-engined fighters. Up to 150 D.520s appear to have been offered to Bulgaria, of which 120 would be ordered and 96 effectively delivered, the first 48 in August of 1943.

6th Fighter Regiment D.520s at a hangar at Karlovo airfield, Bulgaria, September of 1943. While the Avia fighters which shared the same engine family as the D.520 were no longer frontline fighters by this point, the experience gained by Bulgarian mechanics working on them likely simplified the transitional period to the D.520. [ww2fighters.e-monsite.com]

A major advantage of the D.520 for Bulgaria was that the old Czechcoslovak fighters already in use by the Bulgarian air force, the Avia B-71 and B-135, already used engines of the Hispano-Suiza 12Y family, albeit older models. This meant that Bulgarian mechanics would already have some experience with engines similar to those found on the Dewoitines, and that some amount of parts commonality could be expected, easing the logistical burdens Bulgaria would suffer in comparison to obtaining a fighter with an unrelated engine.

The Bulgarian Dewoitines were painted in schemes generally similar to the German ones, with a light gray base, dark upper, along with mottled spots in between. They, however, made more use of brown and green colors as well. The cross of the Bulgarian air force was painted on the aft fuselage, with the individual fighter number behind it. A yellow or white band was sometimes featured in front of the cross, behind the cockpit. The tips of the wings and sometimes the propeller hub were also painted in yellow.

The Bulgarian Dewoitines were delivered to the 6th IP (Fighter Regiment), where they formed the core of the 1st and 2nd groups. They would be operated in intercept missions, fighting along with Bf 109G-2 fighters also operated by the Bulgarians. American raids at this time typically consisted of B-24 bombers escorted by P-38 twin-engine fighters. While these escorts were significantly faster and better armed than the Dewoitines, the Bulgarian fighters could still count on their superior maneuverability to avoid being shot down. It appears the first victories by Bulgarian Dewoitines were scored on the 24th of November 1943, when three to four American planes were shot down by a Bulgarian fighter force composed of 24 D.520s and 16 Bf 109s. The first loss in combat appears to have been on the 10th of December, when one of 22 D.520s flying to intercept a flight of 60 B-24s and 60 P-38s was shot down. Ten days later, on the 20th, D.520s would score two victories, including an escorting P-38. On the 10th of January, Bulgarian pilots, flying 23 D.520s and 16 Bf 109s, in cooperation with 30 German Bf 109s, would claim four B-17s and four P-38s for the loss of a D.520.

Bulgarian air force personnel in front of a D.520 at Karlovo airfield in 1943. The D.520 would form a considerable portion of the Bulgarian air force’s fighter complement in late 1943 and early 1944, though it would progressively be superseded by the more modern Bf 109G. [ww2fighters.e-monsite.com]
The 30th of March 1944 saw the largest air raid of the war on Bulgaria, with more than 360 B-17s and B-24s attacking Sofia. The Bulgarian air force scrambled all aircraft it could muster, including some Avia B-135s from training schools in addition to 28 D.520s from the first group of 6th Fighter Regiment (I/6) and 6 from the 2nd group (II/6). The Dewoitine-equipped groups claimed a B-17 for I/6, and two bombers and a P-38 for II/6. By this point however, losses were starting to increase for Bulgarian fighters, with 4 to 5 D.520s lost against P-38s and defensive fire from the bombers. By the spring of 1944, American air raids now included P-51 and P-47 escorts in addition to the P-38, further complicating the task of Bulgarian pilots. The D.520s appear to have been falling out of favor in comparison to Bf 109s for interception purposes by this point. While 44 Dewoitines were still available to the Bulgarian air force on the 1st of May 1944, they would claim their last victory on 5th of May with a B-17 shot down. Losses started to mount at this point, mostly due to bombing runs against Bulgarian airfields as well as lack of spare parts to support continued operation. By the 1st of September 1944, only 32 D.520s were still in Bulgarian hands, with only about half in flying condition. Overall, the D.520s appear to have claimed 5 B-17s, 2 B-24s and 4 P-38s, attacking in intercept missions against the USAAF, at the loss of seven D.520 in combat. Eight to ten were actually lost in accidents, and overall, eight Bulgarian pilots were killed flying the Dewoitine.

Bulgarian air force personnel of the 6th Fighter Regiment in front of a row of parked D.520s. [ww2fighters.e-monsite.com]
As Soviet forces reached Bulgaria, a communist coup took over on the 9th of September 1944 and Bulgaria joined the war on the side of the Soviet Union. Remaining Bulgarian D.520s would operate against German forces from September to November, with a further two planes being lost, before the type was sent away from the frontlines in November of 1944. D.520s would remain in use by Bulgarian flight schools until 1947, when the type was finally retired from the service of the Bulgarian air force, and surviving aircraft were scrapped.

Bulgarian air force cadets stand on a D.520 during the plane’s last year of service in Bulgaria, 1947. [ww2fighters.e-monsite.com]

The Dewoitine into Liberation

By the 6th of June 1944, the D.520 was no longer used as a frontline fighter by any air force in the West. The Luftwaffe and Free French air force both operated the type as a trainer, with many of the Luftwaffe’s fleet of Dewoitines based in France.

While in the first two months following Operation Overlord, Allied progress would remain fairly slow and confined to Normandy, the breakthrough of Operation Cobra in late July saw a lightning-fast liberation of France by a combination of Allied mobile troops, and uprisings by the Forces Françaises de l’Intérieur (French Forces of the Inside or FFI) the leading organized French resistance. This would result in many D.520s being left behind on overrun airfields.

A first use of the D.520 by the FFI would be by a group of resistance fighters taking over the German occupied airfield at Châteauroux on the 20th of August 1944, where they found several damaged aircraft. Cannibalizing parts from different planes, the FFI managed to repair a single Dewoitine. Repainted in French colors, with a Cross of Lorraine on the tail, a French flag on the empennage, and “FFI” painted on the central fuselage, the Dewoitine was flown by a pilot that had not flown since the Battle of France, but ended up belly-landing. Two days later, German troops fleeing Southern France temporarily occupied Chateauroux again, with the FFI camouflaging their plane, and going into hiding until German forces finally left on the 10th of September.

The belly-landed FFI D.520 of Chateauroux, 27th of August 1944. [ww2fighters.e-monsite.com]

A more organized and professional use of the Dewoitine by the Free French, or French Forces of the Interior (FFI) would be accomplished by the Marcel Doret fighter group. Following the Allied Landings in Provence on the 15th of August 1944, much of Southern France was liberated by Allied troops and FFI uprisings in the following days, including at German airfields in Southern France, the facilities of the Morane-Saulnier, the SNCASE-Dewoitine factories in Toulouse, and the surrounding area. This resulted in a considerable number of Dewoitines falling into the hands of the FFI, which would very swiftly put them to use. Under the command of Marcel Doret, the most prolific French test pilot in the pre-war era, a fighter group was established, operating two squadrons of D.520s, one in Toulouse and one in Tarbes, both in Southern France. This group was grown as the “1er Groupe de Chasse FFI” (1st FFI fighter group), or more colloquially as the “Doret group”. It appeared to have had a strength of 18 D.520s.

Doret fighter group D.520s in late 1944. This photo shows how different markings co-existed at the time. The aircraft towards the left features a Cross of Lorraine on the tail and “FFI” inscribed within the invasion stripes, which the aircraft to the right as well as the one in the background lack. [Association des Amis du musée de l’Air]
A Free French D.520 with an unusual-looking, dotted camouflage pattern. [ww2fighters.e-monsite.com]
 

The Doret group was officially dissolved on the 1st of December 1944 – in practice, it was integrated into the formal structure of the French army as GC 2/18 “Saintonge.” The group was deployed to the Western French coast and used in recon missions as well as escorting Douglas A-24 Banshee bombers over the remaining German “pockets”, areas on the coast which remained under German control due to the presence of highly fortified U-Boat bases the Allies preferred to blockade, rather than attempt a costly take-over. In February of 1945, the D.520s were transferred to GC I/18 Vendée, continuing to see use in similar operations. This fighter group, the last operating the D.520 as a frontline fighter, was dissolved in October of 1945.

The camouflages used by the FFI were based on the German camouflages the D.520 were found with when captured, meaning a lighter gray base with darker gray spots. In some cases, the same brown as present on the D.520 previously in the service of the French air force was reintroduced on parts of the plane. Green could sometimes also be found. The FFI repainted the plane’s tail control surface with the French flag, as found on French air force aircraft prior to the armistice and the capture of the French fighters. A red cross of Lorraine was often found in the white stripe of this tail making. In the first months of operation, the D.520s also received the black and white invasion stripes in order to avoid any form of friendly fire incidents. In some cases, “FFI” appears to have been written in black letters in the white parts of the invasion stripes on the central fuselage. The D.520s also received French roundels on their wings, and later had their invasion stripes removed, with the space left on the central fuselage used for another roundel. A number in a circle was also present on the tail of many aircraft for identification purposes.

GC I/18 “Vendée” D.520s in flight in the spring of 1945. [WWII aces e-monsite]
A number of FFI D.520s were also exhibited during an aviation exhibition in Paris in the spring of 1945.

D.520s exhibited on the Champs-Elysées, Paris, Spring of 1945. [ww2fighters.e-monsite.com]

The Undying Trainer

One would expect the conclusion of the war to finally have buried the old D.520, by this point completely obsolete against modern prop fighters, let alone jets. Nonetheless, the plane saw continued use in the training role it had often been relegated in the later phases of the war.

This trainer role saw a final variant of the D.520 be designed and produced, the D.520 DC, double commande (dual control.) As the name suggests, this was a D.520 with an extended cockpit to the rear, intended for two men, a cadet and an instructor. The plane would receive dual controls allowing the instructor to take over control of the plane.

The unusual-looking D.520DC trainer conversion seen in 1946. This plane is D.520 n°243, the first of the 13 D.520DC, arguably the “prototype” of the series of conversions. [ww2fighters.e-monsite.com]

The modification had been devised by a French air force adjutant, with a first D.520, n°243, converted in the autumn of 1945. This was a very much makeshift conversion, using pedals from an Fw 190, a control stick from a no longer flyable D.520, and seemingly a seat from an A-24 Banshee for the instructor. Nonetheless, after a first flight in October of 1945, impressions were positive, and after a few modifications were performed, a dozen of D.520s were converted to the DC standards in early 1946. These planes would be used to train a number of French air force cadets, including the first few women to obtain military pilot licenses in the French air force.

The training service of both DC and single-seat D.520s would continue in the following year, though the type was progressively retired as more modern aircraft, including jets, were introduced. The last flight of a D.520 in the French air force was performed on the 30th of September 1953.

Surviving Aircraft

A D.520 is present on static display at France’s Musée de l’Air et de l’Espace du Bourget (ENG: Museum of Air and Space of the Bourget) near Paris. It is painted as a fighter of GC III/6, the squadron of the type’s most successful pilot, Pierre le Gloan.

A restored D.520 in GC I/3 camouflage. [le blog du lignard]
A D.520 in flyable condition is currently in the hands of the Conservatoire de l’Air et de l’Espace d’Aquitaine (Air and Space Conservatory of Aquitaine). It was restored to airworthiness from 2005 onward, after having been in storage for decades. A third D.520 is present in a hangar of the French navy, awaiting restoration alongside a number of other aircraft.

A fourth D.520, n°408, was part of the Musée de l’air et de l’espace as soon as it was phased out of service in 1957. Surviving as a warbird, it tragically crashed in July 1986, killing the pilot.

Variants

  • D.520-01 – The first prototype, utilizing a Hispano-Suiza 12Y-21 generating 890hp. No armament fitted. Numerous modifications included changes to the radiators, tail, exhaust, a 12Y-29 engine, and propeller.
  • D.520-02 – A fully armed prototype. Implemented all prior modifications, along with improved landing gear, and a larger empennage.
  • D.520-03 – Prototype with upgraded 12Y-31 Engine
  • D.520 – Main Production Version, fitted with the Hispano-Suiza 12Y-45 engine. Around 900 produced.
  • D.521 – Prototype utilizing the British Merlin III Engine.
  • D.522 – Version fitted with the slightly older Hispano-Suiza 12Y-31, fitted with a new Hispano-Suiza supercharger, providing better high-altitude performance. Production was scheduled to start in July 1940, but never occurred due to the German invasion of France.
  • D.523 – Fitted with the improved Hispano-Suiza 12Y-51 mated to a Sydlowski-Planiol supercharger, producing up to 1,000 hp at altitude. Also offered significant speed and climb advantages over the original D.520. Only one prototype produced.
  • D.524 – Scheduled for 1940 production, would have used the Hispano-Suiza 12Z engine, a refined version of the 12Y engine, expected to have produced 1,300 hp. None built.
  • HD 780 – Prototype floatplane naval version of the D.520 featuring foldable, angled, gull wings, increased engine size, and two floats. Was completed in March 1940 but never flown.
  • D.525 – Combined the Hispano-Suiza 12Y-51 engine with the Hispano-Suiza supercharger used on the D.522. Only 30 produced.
  • D.520Z – Produced under the Vichy Regime in 1943 with German approval, this prototype installed the Hispano-Suiza 12Z engine, making 1,600 hp, a considerable boost in power. First flight didn’t take place until 1947.
  • M.520T – Project to further modernize the D.520, never reached the prototype stage.
  • D.520DC – A two seat trainer version developed immediately post-war. DC roughly indicates ‘dual control.’

Operators

  • French Armée de l’Air (French Air Force) – The French Air Force hastily produced and deployed to active squadrons mere months before hostilities broke out between Germany and France. After the conclusion of the Battle of France, and subsequent armistice, the aircraft would continue to serve under the air force the Vichy Regime.
  • Forces Françaises de l’Intérieur (FFI / Free French Forces) – Organized FFI forces operating in recaptured areas of France after Allied breakthroughs in 1944 assembled a few small squadrons and began flying reclaimed D.520s, most notably the “Doret Group,” before being reabsorbed into the formal structure of the revitalized French Army.
  • Regia Aeronautica (Italian Air Force [Axis]) – The Italians managed to acquire several dozen D.520s throughout the course of the war, and pressed them into domestic service defending and intercepting allied bombers over the Italian mainland.
  • Luftwaffe (Nazi Germany) – During Germany’s various incursions into France, several hundred D.520s came under their control, in addition to continuing serial production under German occupation. The Dewoitines that found their way into German service were primarily used as trainers, or were transferred to Axis allies, namely Italy and Bulgaria.
  • Bulgarian Air Force – As Bulgaria was an ally of the Axis powers, upwards of 98 D.520s were transferred to the country’s air force, and used to intercept Allied bomber raids.

Conclusion – The Incarnation of “Trop peu et trop tard”: The D.520 in French Mythos

Since the end of the Second World War, the D.520 has progressively gained a near-mythical status in French military enthusiast circles. The reasons for this are quite easy to identify. The D.520 was the best performing French fighter introduced in large numbers during the Battle of France, and seemingly the only one which posed a credible threat to the Bf 109. However, it arrived too late, and numbers too small to Germany’s advance. In this regard, it was one of a considerable amount of fairly advanced pieces of equipment the French army was close to introducing in 1940, but never could due to the Armistice, similar in this fashion to its fellow Bloch MB.155 and Arsenal VG.33 fighter aircraft, the two Richelieu-class battleships, and the MAS 40 semi-automatic rifle of the French army.

This massive place in French mythos, reinforced by Pierre Le Gloan’s commendable combat record with the type, could be said, however, to have caused some bias to exist in some French analysts, where placing the D.520 as an equal to the Bf 109 has become sort of tradition. While the D.520 was much closer to competing with the German fighter in comparison to the previous MS.406 or MB.152, in some ways, the German fighter could be said to still be a little better performing. It is also questionable whether or not the D.520 could have evolved to become a mainstay fighter for the French air force for the rest of the war, as the Spitfire was for the Royal Air Force and the Bf 109 for the Luftwaffe. In some ways, the VG.33 airframe, which slightly outperformed the D.520, with a previous and weaker version of the same engine, may eventually have provided a better long-term mainstay fighter for France. In any case though, difficult circumstances prevented the VG.33 from ever reaching service, but the D.520 would have the opportunity to live an active service life in a number of air forces, one which saw it in action against both Axis and Allied forces alike.

Dewoitine D.520C-1 specifications

Wingspan 10.18 m /
Length 8.75 m /
Height 2.55 m /
Wing Area 16 m² /
Engine Hispano-Suiza 12Y-45
Power at Critical Altitude 935 hp at 4,200 m
Max RPM 2,400 RRM
Propeller Three-bladed Ratier or Chauvière (3 m diameter)
Empty Weight 2,050 kg /
Maximum Takeoff Weight 2,740 kg /
Wing Load 195 kg/m²
Fuel Capacity 400 liters standard

640 liters with wing fuel tanks

Time to Altitude 4,000 m in 5’13”

6,000 m in 7’57”

8,000 m in 13’24”

Maximum Speed 425 km/h at sea level

535 km/h at 6,750 m

Cruising Speed 400 km/h
Stall Speed 125 km/h
Range Around 900 km with standard fuel load

1,500 km at max fuel fuel load (equipped w/ wing tanks)

Maximum Service Ceiling 11,000 m /
Crew 1 Pilot
Armament 20 mm HS-404 firing through the propeller hub with 60 rounds

4x MAC34M39 machine-guns with 675 rounds per gun in the wings

Number Completed Around 900 (produced 1939-1944)

Gallery

D.520 No.12 Cdt Thibaudet – GC I/3, Cannes-Mandelius, March 1940
D.520 No.90 Sergent Michel Madon who would go on to be credited with 11 confirmed kills during the war – GC I/3, Suippes, France, May 1940
D.520 No.61 Czechoslovak Pilot Cukr Vaclav – GC II/3, Oran-La-Senia Airfield, July 1940
D.520 No.277 flown by “Ace in One Day” Pierre Le Gloan – GC III/6, Prior to Armistice 1940
D.520 No.343 Cdt Moriat – GC II/3, Alep-Nerab Syria, July 1941
Free French D.520 – Not long after the Invasion of Normandy

Credits

  • Written by Marisa Belhote
  • Special Thanks for Contributions to the Italian Section by Arturo Giusti
  • Edited by Henry H., Stan L. and Ed J.
  • Illustrations by Ed Jackson

Sources

North American P-51B Mustang

sweden flag USA (1943)
Fighter Aircraft – 3,738 Built

 

A P-51B undergoes testing at a Lockheed reassembly plant in Liverpool, UK. December 1943. [National Archives]
Initially developed to provide an export alternative to the P-40 for France and the UK, North American’s P-51 would prove to be a superb aircraft that would rank among the most decisive weapons of the Second World War. With its streamlined airframe and highly efficient cooling system, the aircraft would reach new heights when equipped with the far more advanced Packard Merlin engine. Though its early years would prove troublesome, it would solve long standing issues regarding the lack of long range bomber escorts, and achieve a level of performance beyond its Axis contemporaries.

Interwar Fighter Developments

The Merlin powered P-51’s share the distinction of being among the most successful fighter aircraft ever developed, but also having one of the convoluted development paths of any mass production fighter. While the aircraft would make its first flights in 1943, it had its roots in the late interwar period where many of the technologies it incorporated were first established.

US interwar fighter development saw rapid technical advancement, but a comparatively small build up of planes. Here an XP-40 undergoes wind tunnel testing, the design would go through a number of changes that would result in the P-40. [This day in Aviation]
The general environment of interwar fighter development for the US Army Air Corps was one of high theoretical advancement, but comparatively slow practical development. While major milestones were made in regards airframe and powerplant design, there was considerably less urgency to develop and mass produce fighters for use by the Air Corps. This was mostly a result of an isolationist foreign policy, which limited availible resources, and to a lesser degree, a desire within the Air Corps to focus on bomber procurement. While the development of new fighters was limited, the Air Corps had great freedom in procuring aircraft for testing purposes. While funding was still limited, they were allowed to procure up to 14 examples of an aircraft through their budget before they would need to petition Congress for additional funding. While a large build up of the Air Corps during this period was a financial and political impossibility, it would prove sufficient for exploring aircraft design and development. This environment would exist into the late 1930’s as the political situations in both Europe and Asia destabilized, and subsequently, the order was given to continue the development of the XP-38, XP-39, and XP-40 into new fighters for use with the Air Corps (Ethell 9).

While these aircraft were being prepared for service, vital new developments were being made in regards to airframe design. At the National Advisory Committee for Aeronautics (NACA) offices at Langley field, efforts had been made to produce airfoils which could achieve laminar flow. In short, this effect is characterized by minimal disruptions to the airflow of the surfaces of the wings and adjoining fuselage. In the context of fighter aircraft, this allowed for a much lower drag coefficient, which would permit better acceleration and would lessen the instability encountered at higher Mach numbers. They would achieve this by June of 1938 when an airfoil displayed laminar flow characteristics in wind tunnel tests (Ethell 10).

Europe Ablaze

The escalation to and the outbreak of hostilities in Europe would completely dispense with the interwar malaise and saw the US begin a massive arms build up. The most notable shift in policy was President Franklin Delano Roosevelt’s call for 50,000 aircraft in January of 1940. The resulting surge of orders would end up leaving most US aircraft manufacturers at capacity, and though they would satisfy domestic demand, the fulfillment of export orders was not a priority. This represented a serious issue facing the Allies in Europe. At the outbreak of the war, the French and British air forces were still largely in the process of expanding and modernizing. While they both possessed examples of modern fighter aircraft, such as the Dewoitine D.520 and Supermarine Spitfire Mk.I’s respectively, they also employed a large number of outdated aircraft in comparison to the better equipped German Luftwaffe. The expedient solution to this problem seemed to be to purchase aircraft abroad, and the US was by far the best source.

To this end British and French interests were served by the British Purchasing Commission. While they had decided on the ideal candidate being the Curtis-Wright P-40, they found the at-capacity firm unwilling to compromise its contracts to the US Army. They were soon negotiating with other firms for P-40’s which would be manufactured under license, and by 1940 had placed as many orders as they could. It was clear to all parties involved that any of the larger firms that were involved in US rearmament would be unable to deliver any sizable number of aircraft to the Allies. In January of 1940, Oliver Echols, in charge of Air Corps procurement, would suggest to the Purchasing Commission to approach a manufacturer that lacked any major contracts involved with US rearmament (Ethell 10).

This suggestion would see the British Purchasing commission returning to older offers from firms that they had turned down the previous year. The most important of these would be North American Aviation. North American had earlier proposed to build P-40’s under license for the Allies, though the offer was given little consideration (Ethell 10). They were likely turned down over their relative inexperience in the field of fighter aircraft, having previously built advanced trainers, like the AT-6 Texan, and the crude NA-50 and NA-68 export fighters. In spite of this, and finding few options among other US aircraft manufacturers, the British Purchasing commission would once again approach North American. This time however, North American was given the option to either produce license-built P-40’s, or instead to design a new aircraft with the aid of research data acquired from Curtiss-Wright on the XP-46 fighter prototype. NAA’s small, but enthusiastic team would choose the latter, and prepared to design a new fighter built around the Alison V-1710 engine.

Enter North American

North American’s greatest claim to fame before the Mustang was the AT-6, arguably the best advanced trainer of its day. [Wikimedia]
By the standard’s of most US industries of the time, North American Aircraft was a fledgling company, though one with great promise. It was originally formed as a holding company in 1929 to purchase stock in other aviation concerns, and was later incorporated under General Motors’ General Aviation branch. As a holding company, North American would gather a considerable amount of resources in these early years, of particular note was the firm’s acquisition of Fokker. In 1934, as a result of new regulations on air mail carriers, General Motors was required to divest itself of North American, which then became an independent firm. Thereafter, North American incorporated its parent company, General Aviation, and continued under the direction of its president James H. ‘Dutch’ Kindelberger (O’Leary 9). He would subsequently take the company west in 1936 where they would open a new facility at Mines Field, California. Prior to the war they would develop the O-47 reconnaissance and observation aircraft, which had begun under General Aviation, and the AT-6 advanced trainer, which was among the most successful designs of its type. They would also produce a set of unsuccessful export fighters which were altogether unimpressive. With this in mind it’s understandable North American was initially passed over, they were in fact, inexperienced in fighter development and their only real foray into that field was a disappointment. However, when the British Purchasing commission returned to the company in 1940, they found the firm more than ready to meet their needs. Their contract was worked out for 400 planes at a price no higher than $40,000 dollars a unit, and spare parts in the amount of 20% of the value of the aircraft.

The first step in developing the new fighter was purchasing the most recent data on fighter design from Curtiss-Wright’s XP-40 and XP-46 prototypes, and acquiring the new breakthrough aerofoil designs recently developed under NACA (Ethell 10, 11). This information was made available to the design team headed by Edgar Schmued, a German born aeronautical engineer who had previously been a GM field service manager for their Brazil branch. The work soon began on a new fighter under the designation NA-50B, later changed to NA-73, under a common and straightforward design strategy. Schmued would work to build a plane that would excel by incorporating all of the most recent developments in fighter design to produce an aircraft that was both cutting edge, yet conventional (Douglas 252). The Curtiss-Wright prototypes were a starting point that was quickly surpassed, with engineer and aerodynamicist Ed Horkey considering the prototypes too dated for use on the new project, and the data was discarded (Forsyth 13). This came as somewhat of a blow considering they were forced to pay about $50,000 for the test data. The same cannot be said for the data acquired from NACA.

Edgar Schmued would join North American through its parent company’s acquisition of Fokker. He would lead the team responsible for designing the Mustang which would be developed continuously through the Second World War. [alchetron]
Horkey would come across NACA’s research through a confidential release for American industrial use, and was convinced that it would make an excellent addition to the new fighter’s design. NAA would send a representative to collect the data from NACA at Langley Field, and they would go on to receive minor technical support. While the design did not possess true laminar flow characteristics, it did drastically reduce drag and improve the performance of the aircraft (Ethell 11). Further streamlining was achieved through the mounting of a low drag, centerline radiator which incorporated the work of British scientist, Dr. F.W. Meredith. This divergent-convergent duct was capable of using the heat ejected by the radiator to actually produce thrust and offset some of the speed loss incurred by drag incurred by the radiator’s air scoop (Douglas 252).

 

Great care was taken to build the prototype in good time. The NA-73X, would make use of a number of components from North American’s AT-6 trainer, including its landing gear, hydraulics, and electrical systems. Remarkably, the construction of the prototype was completed on the 102nd day of the project, but it would have to wait another 20 days for its Allison V-1710-39/F3R engine (Marshall & Ford 94). The supply of Allison engines at the time was constrained, and resulted in the project having to delay its deliveries to the British. Despite this, the fast pace of the program, and the fall of France would see the British order another 320 aircraft before the prototype even flew. With the program approaching testing, the British were awaiting the results and readying their own test pilots to become acquainted with the new plane. The prototype was first flown by American test pilot Vance Breese on the 20th of October, 1940. It would go on to make several more test flights before having to be repaired after an accident with test pilot Paul Balfour. The accident was a result of pilot error, who failed to switch over from an empty fuel tank, and as such the incident did not reflect poorly on the design itself (Marshall & Ford 151). As the sleek new fighter was taking shape, the British Purchasing Commission would notify NAA that the aircraft’s RAF designation was to be the ‘Mustang’ in a communique sent in December 1940 (O’Leary 24).

This prototype NA-73 was delivered to the US Air Corps for testing, though they would not place orders for Mustangs until a later date. [This day in aviation]
Among the last modifications to the NA-73 regarded its armament, fuel capacity, and reinforcement of its wings. Several proposals for its armament were considered, but for the British Mustang they installed a pair of .50 caliber guns in the nose cowling with another two .30 caliber guns in each wing. With these last additions made, the British soon received several of the new aircraft, which now bore the more familiar title of Mustang. The first, AG345, would be put through tests to find any issues from the transition from the NA-73. Several issues arose over the stiffness in the ailerons, power surges in dives, and overheating. These were subsequently addressed, though more drastic changes were needed in the case of the engine, which required installing a new carburetor scoop, and altering the scoop for the radiator (Marshall & Ford 165). The culmination of these new changes would result in the finalized Mustang Mk.I, and a second development prototype, NA-83.

While the aircraft’s development was proceeding at a rapid pace for the British, the USAAC would show very little initial interest in the Mustang. The aircraft the USAAC had dubbed the XP-51 was largely overshadowed by other developments and comparatively little effort was made to conduct exhaustive tests on the XP-51 prototypes at Wright Field to correct their faults. Their interest in the aircraft would be piqued only after the U.S. entrance into the second World War.

Mustang Mk. I

In British service the Mustang would take a different developmental path than what was proceeding in the United States. While the British were receiving their Mustang fighter aircraft, the US had been forced to develop the aircraft into a dive bomber, the A-36, as funds for fighter development had been expended for 1942. In the case of the RAF, the Mustang Mk. I went into service as soon as was practicable and saw their first squadrons, numbers 161 and 613, receive supplies of the new aircraft in April of 1942. They would first be employed as reconnaissance aircraft before later taking on more dangerous work during Operation Jubilee in which they undertook offensive recon sorties over the raid area in Dieppe, France. Beyond this they would be subsequently used to fly nuisance raids and fighter sweeps across the low countries. Its long range, high speed, and effective armament were used to great effect over these areas as they harassed rail and road communications, while also remaining quite capable against enemy fighters wherever they were encountered (Ethell 24, 25). Even by this early mark, the once uncertain contract they signed with North American had already paid off.

It was during this period that the aircraft’s faults and strengths would make themselves evident. The nose mounted guns were troublesome and complicated maintenance; they were often removed from operational planes and were eliminated from the succeeding models of the aircraft. The radiator still presented teething issues, as under certain conditions the oil could freeze over and would fail to circulate, and eventually cause the radiator to boil over. Visibility too would become an issue, as the canopy frame of the cockpit severely restricted the pilot’s view. However despite its faults, the plane was fast, possessing good acceleration and a high top speed that made it capable of outrunning all fighters in the theater at sea level (Ethell 24).

The Mustang Mk.I would prove an exceptional fighter with the RAF, if at first, a little rough around the edges. [wikimedia]
While the radiator issues would be addressed and a new bubble canopy was developed, another, more serious drawback of the design would require far more resources to address. The Allison engines that the early Mustangs were equipped with were considerably lacking when it came to high altitude performance due to their single stage, single speed superchargers. While the aircraft received good marks for its low altitude performance from pilots in the RAF, above the 15,000ft the Allison V-1710 suffered considerable power loss. Though this was by no means surprising, it represented an area where performance could be significantly improved. At higher altitudes the aircraft was outpaced by both contemporary models of the Fw 190 and Bf 109. At low altitudes, it was made somewhat redundant by the RAF’s new Hawker Typhoon, which both flew faster at low altitudes and was better armed. It wasn’t long until the idea arose to fit the Mustang with an engine possessing better high altitude performance, a combination that might well produce an exceptional fighter that was as capable at high altitude as it was down low (Douglas 253).

The first major step toward this came on April 29, 1942, when Wing Commander Ian Campbell-Orde invited one of Rolls Royce’s test pilots, Ronald W. Harker, to test the new aircraft. Harker was impressed by its performance and he believed that if the aircraft was fitted with the new Merlin 61, it would be able to outpace a similarly equipped Spitfire by a considerable margin (Marshall & Ford 215). The Merlin 61 was the obvious choice for many reasons, chief of which was its two stage, two speed supercharger which stood to offer the plane exceptional high altitude performance. To this end, a Mustang Mk.I was provided to Rolls Royce at Hucknall to undergo the necessary modifications. By the beginning of June 1942, the British had correctly projected that the Mustang’s top speed would be increased to 430mph at an altitude of 25,000ft, which was roughly twice as fast as the Allison powered Mustang at that altitude (Douglas 254). When the test aircraft was complete the results were quite impressive, as during a fly off between a Spitfire Mk. IX and a Mustang, both fitted with Merlin 61’s, the Mustang quickly outpaced the Spitfire.

Across the Atlantic, a parallel development began underway after a study of the Mustang’s combat debut with the RAF. The new United States Army Air Force, no longer constrained by funding, rushed to acquire supplies of the Mustang, and sought to re-engine the fighter to improve its high altitude performance. To this end, two P-51’s were set aside for conversion. By the early half of the Summer of 1942, both British and American Mustang experiments were underway. While the Mustang was previously seen as a side project which was never a wholly American or British effort, it was by then extremely clear that the design had tremendous potential and the development of which was of immense importance to the Allies.

Shoeing the Mustang

Orders for various Mustang types for the USAAF would begin in 1942, including this P-51 armed with four Hispano 20mm cannons. These orders were quickly overshadowed by developments to get the Packard engine into the aircraft. [Wikimedia]
Re-engining the Mustang was by no means an easy task, as the Merlin was considerably heavier than the Allison and required a larger cooling system. To achieve this, the radiator was reworked, with the oil cooler moved apart from the radiator matrix to a forward position, and the ducting of the entire scoop assembly being redesigned. Earlier aerodynamic and buffeting issues caused by the radiator intake were also resolved by moving the scoop out of the boundary layer under the fuselage. The resulting set up would also achieve the earlier described Meredith effect, which produced thrust that offset the drag caused by the scoop (Marshal & Ford 97, 219). Additionally, the carburetor’s intake duct was moved beneath the nose which also necessitated lowering the wing to accommodate the lower cowl.

In addition to higher cooling requirements, the new Merlin engine weighed 350lbs more than the Allison and would mount a larger, heavier propeller, which would represent a significant shift in weight. To compensate, 61lbs of ballast was added, the primary fuselage longerons were strengthened, and the wings were strengthened and moved lower and forward. These changes would also help to compensate for the stronger vortex generated by the propeller and the greater forces generated by the improved ailerons (Marshall & Ford 219). The new engine and the subsequent operations would also result in some yaw instability. Adding a fin ahead of the horizontal stabilizer seemed an adequate solution, but it would not be undertaken until far later.

While the testing for most of these modifications was done through a variety of converted air frames, the prototype that brought them all together was the XP-51B, which first flew on October 1, 1942. The importance placed on this aircraft was considerable, as several months prior, a large order for 1200 P-51A’s was placed by the US government on the provision that their production could be switched for P-51B’s, given advanced notice (Marshall & Ford 230).

The first of two XP-51B’s would be ready in October of 1942, however, a long and difficult development process would delay serial production until the summer of the following year.[Thisdayinaviation]
The XP-51B would prove promising but it was troubled by radiator issues which would remain with the aircraft through January of 1943. These were tracked down to a chemical reaction which was found to be degrading the coolant tubes, and was resolved by a lacquer liner. There were also air flow issues within the radiator, which were solved through moving its aftercooler core to improve airflow through the scoop. The prototype’s last major issue was the tendency for its air scoop to produce loud, and worrying, vibrations at high speed. Resolving the problem once again required them to change the geometry of the scoop (Marshall & Ford 258, 311). This was solved by the aforementioned modification that moved it out of the boundary layer below the wing, and further improved as the depth of the gutter was increased and the inlet size was reduced (Matthews 7).


Most of the issues with re-engining the P-51 involved its cooling systems and air scoop, which were revised several times. [NACA]
All of the production models of the Merlin powered P-51’s would fly with engines produced under license by Packard. It was a matter of good fortune that Packard was already engaged in the mass production of their version of the Merlin engine prior to the demand for the engine for the new Mustangs. Packard had built its first V-1650-1’s, a license built Merlin 28, in August of 1941 which were later destined for use in Canadian built Avro Lancasters, DeHavilland Mosquitos, and the updated Curtis Wright P-40F (Marshall & Ford 176). Changing production to suit the needs of the P-51B would however not be easy, and matters were made worse by a general strike at the main plant which, alongside slow development at Wright Field, made for considerable delays. Some of the supply issues would be addressed as the new Mustangs would receive the first priority in terms of supplies, superseding the P-40F and L, and denying its use on the P-38. However, beyond these were the predictable teething troubles, and combined with the less predictable hurdles, they saw widespread deployment of the P-51B delayed considerably. Packard would go on to supply North American with engines, however they would never fully be able to meet the massive demands of both the United States and Great Britain (Marshall & Ford 347).

My Kingdom for a Horse

While development on the Merlin powered P-51’s proceeded, the USAAF had formulated and launched a strategic bombing campaign dedicated to destroying industries vital to the German war effort. The theoretical foundations of this strategy had been set in the interwar era and were initially seen as a means to expand the Army Air Corps into a force with greater autonomy. Many early interwar theorists, such as Maj. Harold George, would describe a vague ‘economic web’ that could be destroyed and force an industrial and morale collapse, but in 1943 these theories were put to the test. The practical details of the campaign were laid out at the Allied conference at Casablanca. There a series of targets was decided upon, but later altered to a plan that favored targeting aircraft and submarine production, in addition to ball bearing plants (Overy 45, 305). However, the main concern for USAAF bombing operations was that thus far, all daylight strategic bombing campaigns had ended in failure after formations of unescorted bombers were shredded by fighters.

The USAAF bombing campaign against Germany began in earnest in early 1943, it was based on a number of untested theories which planners hoped would bring an early end to the war. [National Archives]
Since before the war, it was commonly believed among the Air Corps senior officers that a formation of well armed bombers was capable of defending itself from whatever threats it might face. This assertion would be disproven, as even the small raids against targets in France and the low countries sustained casualties that made consistent raids impossible. In early 1943, the next step of the campaign would be far more ambitious, moving on to targets deeper within Germany itself. The need for a long range escort fighter had already become apparent before this point, and work was underway to produce external fuel tanks for existing fighters, but the offensive would be continued without a fighter aircraft able to accompany raiders for the full duration of their missions.

Throughout the summer and autumn of 1943, the USAAF would launch numerous raids against targets in Western Germany, though the bombers could only be escorted over the low countries by P-47’s and P-38’s. It wasn’t long until these range limitations were understood, and soon after, exploited by the Luftwaffe. Wherever Luftwaffe fighters were untroubled by Allied fighters, they were free to make use of their most effective anti-bomber tactics.

Generalmajor Adolf Galland’s prescribed method of attack for single engine fighters was to make head on, or oblique, attacks from slightly above the bomber formation, carried out by at least a Schwarm, or two pairs of fighters (Marshall & Ford 267). This achieved two things, it increased the closure rate to reduce the likelihood of being hit by defensive gunners, and it was from this position that both the pilot and copilot of the bomber were most vulnerable. In the absence of escort fighters, Luftwaffe pilots would be able to regroup, fly ahead of the formation, climb, and repeat the attack. The lack of escort fighters also meant the Luftwaffe was safe to employ its two engined fighters against bomber formations, which with their heavier armaments, were much better equipped to bring down bombers. Over time their tactics grew even more complex as dedicated aircraft, typically Ju 88’s, were tasked with shadowing bomber formations to pass their altitude, course, and speed to flak and fighter control services.

Many Luftwaffe aircraft would be re-equipped to take on heavy bombers, like this Bf 109G-6 with its underwing 20mm gun pods. [Bundesarchiv]
Prior to the arrival of the P-51’s, the USAAF had two suitable fighters for the purposes of escorting bombers at high altitude, the P-38 and P-47. While they had the high altitude performance, they did not have the range to reach deep into the continent. The issue would be partially resolved through the addition of external fuel tanks, which had been discussed at a conference with the Material Division at Wright Field in March of 1942 (Ethel 51). Work however, was slow and the 108 and 75 gallon drop tanks were not delivered in large numbers until the end of summer, 1943.  These tanks would allow the shorter ranged P-47 to be able to cover bombers over their flight over the low countries, and the P-38, over the Rhineland. It should also be noted that the escort range was considerably lower than the maximum combat range of the aircraft, as the planes flew in a zig-zag pattern overhead so as not to out pace the bombers. Supplies of larger volume fuel tanks which would take the fighters further into German air space would not be available until the spring of the following year. External fuel tank development and procurement had been mismanaged by Army Air Force leadership who were still largely convinced that the bomber’s defensive capabilities were adequate. Had there been a greater supply, and larger volume tanks initially available, the P-47 and P-38 could have escorted bombers over most of Germany. To make matters worse, the P-38, which by then handled the most important leg of the trip, was troubled by a number of technical issues. While the P-38 possessed good high altitude performance, an exceptional climb rate, and a heavy armament, it was handicapped by a cockpit that pilot’s rated the worst of any US fighter in service and had flying characteristics that made it difficult for pilots to aggressively pursue Luftwaffe aircraft (Dean 164). The large, twin engine Lightning also had an unmistakable appearance, such that Luftwaffe pilots would almost always spot and identify the Allied plane before Lightning pilots could do likewise. With this benefit, Luftwaffe pilots were typically the ones who dictated the engagement, and would depart when conditions were unfavorable. On the defense they would have another advantage, both the Fw 190A and the Bf 109G were capable of out maneuvering the P-38 in high speed dives. The P-38 encountered severe compressibility issues at speeds significantly lower than those encountered on the two German fighters (Marshall & Ford 441). Thus, while the P-38 was capable of performing long range escort missions, its pilots would be forced to employ more conservative tactics than those used in the P-47.

By the start Autumn of 1943, USAAF planners were hoping to accelerate their progress on Operation Pointblank. This plan would see bombers raid targets that were vital to the German aviation industry in order to achieve air supremacy over Western Europe before an invasion of the continent. While losses for these raids were still extremely high, it was hoped that dispatching a larger force capable of inflicting serious damage would make it worth it. On August the 17th, the 8th Air Force prepared for its largest raid yet, with 376 B-17’s dispatched to attack the ball bearing works, at Schweinfurt, and a Messerschmitt factory, at Regensburg. Both of these facilities were located deep within Germany and most of the journey would see the B-17’s outside the area where they could be escorted. To compensate for this, the flight over Regensburg would continue over the Alps and into Allied controlled Tunisia. It was hoped that flight over the Alps would prove easy, and in the case of the Schweinfurt force, they believed that the German fighter squadrons would still be on the ground refueling after their first attacks while the bombers made their return. Both would be met with disaster as the Luftwaffe would hit both forces after their escort fighters turned for home, and the Luftwaffe fighters had taken to the air again as the Schweinfurt raiders made the return trip.

The bombers of the USAAF flew in staggered formations in order to maximize the the defensive capabilities of the aircraft. These tactics alone proved totally inadequate to protect bomber formations from fighters and were revised several times to compensate for flak. [National Archives]
Of the 376 bombers to leave England, 60 would be shot down, 176 were damaged, and 30 remained in North Africa where they awaited repairs at the overburdened facilities in Tunisia. Losses in combat and written off airframes amounted to 31% of the dispatched force; in contrast the Germans lost only 28 fighters (Overy 340, 341). Following the disaster, the 8th Air Force would carry out raids only where there was full escort cover and the next deep incursion into German airspace would only be conducted in the spring of the following year. The winter of 1943 would spell uncertainty for the campaign, as it was clear that for all intents and purposes, much of German industry lay beyond striking range. With this limitation threatening to seriously cut back the USAAF’s campaign, they would request that Lockheed, Republic, and North American increase the internal fuel capacity of their fighters, and hoped that a suitable long range escort would materialize.

Leaving the Stable

Col. Charles McCorkle, 15th AF with pilots. The P-51B proved the solution to the problems plaguing the ailing strategic air campaign. [National Archives]
As a result of the pressure to produce new, long range fighters for the escalating campaign in Europe, the first P-51B’s were produced before the prototype had gone through its testing and modification cycles. The first plane, a P-51B-1, was completed March 31, 1943 and would include several features that would later be found unsound on prototype. As a result, these initial planes would have to be altered accordingly and would have many parts that were non-interchangeable with later models (Marshall & Ford 316). In addition to reworking the air scoop and radiator, they would also have their ailerons modified, both to improve their effectiveness and to remove a steel diaphragm which would interfere with the plane’s magnetic compass. Most importantly, the decision was made that the aircraft would incorporate an additional 85 gallon fuselage fuel tank which would provide the aircraft with phenomenal range.

With this new aircraft, the USAAF would finally possess what they had been searching for. With the addition of the new internal fuel tank, the aircraft would be capable of deep incursions into German airspace, and it would deliver on what was promised back in the spring of 1942. They were excellent fighters, especially at high altitude. The early P-51B’s would use the Packard V-1650-3 engine, a license production of the British Merlin 61, which produced 1410 hp at 29,300 ft and 1630 hp at 16,400ft at War Emergency Power (P-51 operation manual 31). This engine would later be replaced with the Packard V-1650-7 in later models of the aircraft, which was geared for better performance at medium altitude. These engines, combined with the low drag fuselage and laminar designed wings would provide the aircraft with a superb climb rate, a high top speed at altitude, and exceptional high speed maneuverability.

While the aircraft had taken a largely completed form with the P-51B-5 and P-51C-1, it would be continuously modified in the field and on the production line, throughout its service with the air force. The most notable of these changes were the additions of a fuselage tank, booster motors for its ammunition belts, a vertical fin extension, and field retrofits for a perspex canopy dubbed the Malcom Hood. However, only the 85 gallon fuel tank would be a universal addition.

The fuselage tank would enable the P-51B’s to reach much of central Europe from England, but it was not present in the first deliveries of the aircraft, as was the case with the 59 P-51B’s active in England at the end of November 1943. The installation kits were first sent out in September of 1943, and the tank was later incorporated into the production run with the first long range P-51B being accepted by the Army in December of the same year (Marshall & Ford 393, 407).

The next addition to the aircraft was intended to solve a major issue with the plane’s machine guns, which were found to be prone to jamming when the pilot pulled turns of over 1g. This issue was a result of the canted position of the guns in the wings which put stress on the ammunition belts. The ideal solution was to reposition the guns, but seeing as that would necessitate a considerable redesign, engineers would instead work in a stop gap measure in the form of boost motors for the ammunition belts. These were issued as kits like the fuel tank, though unlike those for the fuselage fuel tank, they were issued in more limited numbers and the issue persisted well into 1944 (Ethell 64).

The Mustang had long had a tendency to yaw in the opposite direction of a roll, which affected its handling since its earliest models, and this was made significantly worse when fuel was carried in the fuselage tank. Despite the problem being an evident and considerable inconvenience, its solution wouldn’t materialize until much later. Eventually, it was decided to fit the aircraft with a fin extending from its vertical stabilizer, along with adding reverse rudder boost tabs. However, these kits arrived very late, having begun production in April of 1944, and later incorporated into the design of late P-51C’s and the subsequent P-51D (Marshall & Ford 306).

The Malcom Hood provided far better visibility than the earlier ‘birdcage’, and was added to a number of P-51B’s based in Northern Europe. [National Archive]
Many long standing issues revolved around the ‘birdcage’ canopy of P-51 since the aircraft’s inception, and as was the case with the engine, an improvement was found in British service. With the RAF, many Mustangs received a new frameless bubble canopy. This canopy vastly improved visibility, especially to the rear of the aircraft, which was virtually non-existent from within the birdcage, and it could be drawn back on landing and take-off. Dubbed ‘Malcom Hoods’ after their manufacturer, a plexiglas works named Robert Malcom Ltd. they were subsequently sought after by the USAAF for use with their P-51’s in Europe.

Breaking the Stalemate

The new P-51B’s would make their first major debut with the 8th Air Force in early 1944, though the introduction was not as smooth as had been hoped. Squadrons reported a number of issues with the new aircraft, which included high altitude fuel transfer failures with external tanks, glycol reserve tanks that leaked and froze, radiator corrosion and coolant leaks, radios and spark plugs failing, and excessive oil loss (Marshall & Ford 425). However the USAAF hadn’t the time to immediately resolve these teething issues, and with these problems passed along to the manufacturer and Air Force maintenance services, the P-51’s would soon play a key role in the escalating bomber offensive.

Through the winter of 1943, both the day and night bombing campaigns were facing withering losses which spelled serious trouble for maintaining the pace of operations over Europe. With less than one thousand bombers stationed in England, the USAAF would lose 200 in September alone (Douglas 326). In the face of these losses, the Combined Bomber Offensive was failing to carry out the Pointblank directive, which aimed to cripple the Luftwaffe before an invasion of Europe was conducted. During this period the Luftwaffe had actually built up the strength of its fighter force and had reorganized and improved its defenses into a centralized command structure. To make matters worse, the head of RAF’s Bomber Command, Arthur Harris, would ignore orders to attack German industries involved in aircraft production. Instead, he would order Bomber Command to continue to carry out an ineffective area bombing campaign of Germany’s cities believing it would bring an end to the war without the need for an invasion (Overy 343, 344). It was under these bleak circumstances that the US’s Eighth and Fifteenth Airforces were tasked to cripple the Luftwaffe and establish air superiority over much of Europe before the invasion, now only a few months away. However, they would soon see a change in leadership and the delivery of new equipment that would put them on the path to controlling the skies over Europe.

Escort fighters typically flew a few thousand feet above their charges when they weren’t independently seeking the enemy. They weaved back and forth over the bombers in order to not speed past them. Here a flight of four P-51’s flies overhead at roughly 30,000 ft. This tactic declined in use when the relay system came to prominence. [National Archives]
In December of 1943, the USAAF established a joint strategic air command to consolidate their bomber forces over both the European and Mediterranean theaters, and drive them towards a unified objective. With Gen. Spaatz in command of all strategic bomber forces, and Maj. Gen. James Doolittle in command of the Eighth Airforce in England, the USAAF would now have clear strategic direction, and more aggressive leadership. Doolittle would take a pivotal role in revising the existing strategy into one which proved instrumental in undermining, and dismantling the Luftwaffe in the coming weeks. Crucially, he recognized the inadequacy in trying to undermine the Luftwaffe’s fighter strength solely through targeting the production of new aircraft. To hold to this existing, overly conservative strategy was hopeless, and the invasion of France was scheduled for five months after he took office. Targeting the factories alone wasn’t enough, and thus Doolittle would give the order for returning escort fighters to perform fighter sweeps and seek out enemy planes in the air and on the ground (Overy 361). Among the first and most important moves was to create a more effective relay system for the fighters, further increasing the time they could spend over enemy territory.

By the start of 1944, Maj. Gen. Kepner, 8th Air Force, would also play a major role in implementing this new strategy, as he officially untethered the Eighth’s fighters from the bombers and allowed them to seek out the enemy at their discretion. The P-51 would play a pivotal role, as its excellent high altitude performance and range meant it was able to take up the last position of the fighter relay, and was more than a match for whatever it found. Beyond the existing penetration, target, and withdrawal relay positions, the P-51 was also able to take up a fourth mission. These units would perform sweeps 50 to 70 miles ahead of the bomber formation and attack German fighters as they were climbing, assembling, or transiting towards the bomber formation. Their efforts were greatly aided by British signals intelligence services that provided the assembly points for the Luftwaffe’s fighter groups (Marshall & Ford 425, 425; Overy 362).

This change in tactics would have immediate and profound impacts as they began to be widely implemented in February and March of 1944. The first major achievement of the new strategy were the widespread losses inflicted on the twin engined fighter forces, which had earlier proven themselves as potent anti-bomber weapons. Against the new long range fighters, they were almost defenseless, and were withdrawn in March (Overy 366). Similar effects were felt throughout the Luftwaffe’s fighter forces, which thanks to the new P-51’s, were left without any safe haven. Whenever the bombers were over Germany, their escort fighters could make their appearance. While the new strategy often meant that the bomber formations were often less protected, this was counterbalanced in that it placed the German fighters on a defensive footing. The days of Luftwaffe fighters leisurely climbing alongside a formation before diving at it head on were over, now whenever they reached a formation they were forced to conduct hit and run attacks, or face off against the escorts.

Luftwaffe attrition escalated as airfields that were once ignored were now periodically harassed by fighters that attacked transiting and grounded aircraft. Doolittle did all he could to promote these attacks, and would allow for the destruction of aircraft on the ground to count towards a pilot’s ace status (Marshall & Ford 423). These attacks would prove costly to the USAAF, but well worth it as Luftwaffe operational losses for all aircraft increased sharply and it robbed them of the ability to train new pilots in secure airspace. This shift in strategy and subsequent success would prove instrumental to the USAAF in the following months, as their responsibilities were soon to broaden when the Allies landed in France.

When equipped with external fuel tanks, the P-51B could operate over any part of Germany. This proved disastrous for the Luftwaffe as transiting aircraft and those on the ground were now vulnerable, no matter how far they were from Allied air bases. [National Archive]
While the Eight and Fifteenth air forces were still occupied with the task of destroying the Luftwaffe in the air and on the ground, they would soon be given additional missions. The most unexpected of which came in the form of Operation Crossbow, which called upon the Eighth Air Force to disrupt Germany’s use of the new V-1 bomb from coastal bases. Then came the task long awaited, which called upon the Eighth to begin the preparations for Operation Overlord. To meet these new objectives, the Pointblank raids were accelerated, culminating in ‘Big Week’ in February of 1944.

Between the 19th and the 26th, the Eighth and Fifteenth air forces would fly roughly 6,200 sorties against 18 aircraft assembly plants and two ball bearings plants, at a loss of 247 bombers and 28 fighters. Undoubtedly steep, but sustainable in comparison to the Luftwaffe which lost roughly one third of its single engine fighters (Overy 369). The success of the raids themselves was difficult to judge, as fighter production still increased, though at a significantly reduced rate which saw a shortfall of roughly 38.5 percent (Overy 370). During these operations the P-51 would provide the USAAF deep penetration cover and perform strafing attacks against German airfields. However, there weren’t enough long range escorts for full coverage until the summer of 1944. The situation was further complicated when all P-51B’s were grounded between the 10th through the 15th of March in order to address structural issues with the aircraft’s engine mounts, wings, and tail. These were subsequently resolved by replacing the retaining bolts for the engine, reinforcing the tail empennage and ammunition doors, and installing landing gear locks to prevent their uncontrolled release at high speed (Marshall & Ford 442, 446). These issues would however not present a long term obstacle during the early months of 1944 as the tempo of operations and list of targets grew in the following months.

With the major push against the German aviation industry mostly over, the USAAF would soon set its sights on two major targets, rail communications across much of Northwestern Europe, and Germany’s oil industries. The first was an immediate necessity for the success of Operation Overlord, crippling German strategic mobility was essential for an invasion which would require considerable time after the first landings to build up a force on the continent. The formalities were worked out in March when the Transportation Plan was decided upon. It would fortunately have the support of RAF Bomber Command, as Harris’s evident failure to end the war on his terms would see him temporarily divert his force into supporting the preparations for the invasion of France. The subsequent offensive against fuel production would start far less formally. Spaatz was convinced of its necessity, but due to the months it would need to take effect, he was at first unable to convince his superiors to divert resources to it. However, in a matter of weeks, he was able to argue for its necessity under the Pointblank Directive and was then allowed to conduct attacks against Germany’s synthetic fuel industry whenever resources permitted (Overy 371).

Between the now crippling fuel shortage and marauding allied fighters, the Luftwaffe soon found themselves completely overwhelmed by the autumn of 1944. Here a P-51 lines up on an He 177 heavy bomber, as the one beside it continues to burn. [National Archives]
With these new policies in place, the Luftwaffe would be thoroughly disrupted as a result of Spaatz’s strategy, and Doolittle and Kepner’s tactics. The USAAF would end up inflicting punishing losses on the Luftwaffe in the air, disrupting the manufacturing of new aircraft, and eventually causing chronic fuel shortages that severely limited their ability to conduct large scale operations of any kind. In this, the P-51 would prove essential with its exceptional high altitude performance, and its endurance that could take it anywhere over Germany.

In many ways, the bombing of factories alone was a largely ineffective means of inflicting serious damage to the German war economy, as many industries proved to be exceedingly resilient. Fighter production proved a particularly difficult target, as apart from the later targeted aero engine industry, production and final assembly plants could be dispersed and were largely safe from raiders. When fighter production was further streamlined and resources were diverted to support it, Germany would end up vastly expanding fighter production during the period in which those industries were the most frequently raided (Zeitlin 59). This was, however, was achieved only by reducing the rate of modifications and improvements, and transferring resources away from the production of bombers. In comparison, the later targeting of fuel production and rail transportation proved key, as the inability to reliably move material by rail combined with chronic fuel shortages proved a fatal military and economic obstacle. As a result, establishing air supremacy over Western Europe before Operation Overlord was as much an achievement of long range fighter operations as it was of the bombers. The Luftwaffe could sustain itself when aircraft deliveries did not meet expectations, but it quickly found itself struggling when it lost scores of pilots and found itself hard pressed to train new ones once they had lost control of the skies over Germany.

Pre-war military theorists envisioned fleets of bombers destroying vital war industries with the near pin-point accuracy they achieved in controlled tests. The reality of the campaign revealed this as hopelessly optimistic when even the most accurate raids resulted in large amounts of collateral damage. [National Archives]
In the end it must also be said that the civilian costs of the raids were steep, and while the Eight and Fifteenth Airforces were not involved in a campaign directed against the civilian populace, as was the case with Bomber Command and the USAAF elsewhere, the technical limitations of the time meant that bombs frequently fell on civilian areas. Even under ideal circumstances, the dimensions of a bomber formation were larger than their targets and it was physically impossible to strike factories, railyards, and refineries without causing significant damage to the surrounding area. The realities of the campaign would also prove worse than predicted. Targets were frequently obscured by bad weather and smoke generators, and formations typically took heavy anti-aircraft fire on the approach. As a result, bombs were often released by the best estimate from the bomb sight or at the direction of a ground mapping radar system (Overy 347). Even outside of Germany, the civilian costs of these operations were heavy as the Allied air forces carried out the transportation plan. In France alone, between March and June of 1944, French officials placed the figure of civilians killed by Allied bombing at 25,266 (Overy 574).

The 4th Fighter Group ‘Debden Eagles’

When the US entered the Second World War, few American airmen had any combat experience, with the notable exceptions being volunteer airmen in service with foreign armies. The Debden Eagles were one such group, having volunteered to serve with the RAF and entered service in late 1940 and 1941. While they were among the few Americans fighting against Nazi Germany at the time, they had garnered a somewhat unfortunate reputation as glory-seekers and primadonnas thanks to their unique position (Bucholtz 6). Their tendency of excessive overclaiming of victories during this period would prove particularly irritating to their superiors. With the US entry into the war, the Eagle squadrons, and their Supermarine Spitfires, were subsequently integrated into the USAAF.

Capt. Donald Willis, an Eagle Squadron pilot alongside a Spitfire Mk V, late 1943. [National Archives]
The RAF’s 70th, 121, and 133 Eagle Squadrons would become the 334th, 335th, and 336th Squadrons of the 4th Fighter Group on the 12th of September 1942. These units flew Spitfire Mk IX’s and within the month were supporting the nascent bomber offensive which was targeting installations in France. The start of this effort went poorly, when only one aircraft out of a twelve plane flight returned, the rest having been lost to enemy fighters, harsh weather conditions, or having run out of fuel in the short range fighter. Thankfully for the Group, this would be their worst day of the war. Despite this setback, the unit saw its first major mission carried out on the 20th of October in the Calais area escorting B-17’s carrying out a high altitude raid. This would be the first major bomber operation carried out under escort and was met with success. Their Spitfires would prove a very capable fighter aircraft, but their short range rendered them unable to conduct escort missions far beyond the English Channel. In any case, this wouldn’t prove much of an issue, as for the rest of the year as they would mostly conduct fighter sweeps across the low countries and provide convoy cover (Bucholtz 9). However, with the changing of the year, the 4th would exchange their venerable Spitfires for new P-47’s.

The 4th FG flew their Spitfires in combat for the last time on April 1st, 1943, after which they completed the full transition to P-47C’s. This change was not viewed favorably, as most of the unit’s pilots disliked the considerably heavier Thunderbolt (Marshall & Ford 340). The changeover had little initial impact on operations, and the squadron was largely involved in the same missions as before. However, the group would later accompany bombers on deeper raids into Europe thanks to newly issued external fuel tanks for their P-47’s. They would use these new 200 gallon fuel tanks on an escort mission into Ghent on July 25th and soon after their first foray into Germany airspace over Westhoff-Emmerich. It should be noted that these fuel tanks were a rare piece of equipment at the time and the 4th only had them thanks to the efforts of Lt. Col. Cass Hough of the 8th Fighter Command’s technical section. They were, unfortunately, as troublesome as they were vital, often failing to transfer fuel above 20,000, and were later withdrawn as British made paper 108 gallon tanks became more available (Marshall & Ford 411).

Despite their complaints, the 4th FG’s veteran pilots would master their new planes and had put them to good use. In a battle defending a formation of B-17’s over the city of Utrecht, the 4th FG was credited for the destruction of nine enemy aircraft at the cost of one of their own, with the pilot having bailed out over the occupied Netherlands (Bucholtz 16). With their P-47s, the 4th would take up an important supporting role in the escalating bombing offensive, one which saw their longer ranged P-47s making more flights into the German frontier. This tempo and the 4th’s change in command under the more aggressive Lt. Col. Don Blakeslee would see the unit become among the most successful in the entire USAAF.

Col. James Matthew Blakeslee would lead the 4th FG from January to November 1944, after which he remained on the ground after several high profile pilots of the USAAF had been lost in a short period of time. He is pictured here receiving the Distinguished Service Cross from Supreme Allied Commander in Europe, Dwight Eisenhower. [National Archives]
Lt. Col. Blakeslee was made C.O. of the 4th with the turn of the year, and in addition to bringing new, more aggressive tactics to the table, he would work to ensure his unit was re-equipped with the new P-51. Blakelsee would meet personally with General William Kepner and argue that his squadron would be the best candidate for refamiliarization with the new plane as their experience with the similarly-engined Spitfire would make for an easier transition. Kepner was convinced, and subsequently put the 4th FG at the top of the list for P-51’s. The schedule for the transition was harsh as they continued to fly combat missions in their P-47’s while also familiarizing themselves with the new aircraft. The process was time consuming and they would not make their operational debut with their new planes until February 28, 1944 (Marshall & Ford 432). These Mustangs would nearly double the combat range of the unit, and the pilots favored them over their older P-47’s, but they experienced a variety of harsh teething issues and mechanical failures.

While the conversion was taking place, the 4th would be committed to Doolittle’s more aggressive strategy against the Luftwaffe, with the aim to achieve aerial supremacy over Western Europe before the invasion of France. As such their independent actions increased, and on January 31, 1944, they would join the 355th FG in bombing the Luftwaffe’s airfield at Gilze-Rijen (Marshall & Ford 425). In many ways this mission bore some similarity to the fighter sweeps they had conducted since they had flown with the RAF, but it would mark a first in that direct assaults on Luftwaffe airfields would then become more commonplace. Among the last major actions the unit would perform with its P-47s was its support of ‘Big Week’.

Their first combat mission in the new planes was fairly uneventful, on February 28, when flying as escorts for a formation of bombers attacking a V-1 launch site they encountered no enemy aircraft but strafed a Ju 88 on their way home. They would claim their first aerial kills two days later during a bomber withdrawal support mission near Frankfurt where they claimed two enemy fighters (Bucholtz 38). The following day the unit would help achieve a major milestone, the first fighter escort operation to Berlin and back. The operation would prove anything but easy, as deteriorating weather conditions saw most of the aircraft involved turn back. However, elements of the 3rd Bomb Division would press on, supported by the 4th, 55th, 354, and 363rd FG’s. The 4th would engage a formation of roughly 60 Fw 190’s and Bf 110’s northeast of Wittenberg in the day’s first encounter with the enemy. They claimed five victories but suffered one loss from enemy fire, and another as a result of a radio failure which made navigation across a storm in the English channel impossible. The pilot was later forced to ditch his aircraft in France after a failed attempt to reach neutral Spain (Marshall & Ford 439, Bucholtz 39).

Capt. Don Salvatore Gentile was among the leading aces in the 4th FG. He was credited with 21 aerial and 6 ground victories, though his combat service ended after a botched aerobatics stunt in front of assembled members of the press. He was grounded and went on a tour to raise war bonds, later becoming a test pilot. [National Archives]
Perhaps the most exciting encounter that day was experienced by Capt. Don Gentile and Lt. John Godfrey, both aces in the 4th. The two pilots were unable to join the rest of their flight as a result of extremely poor weather, but proceeded with their mission regardless. En route the weather would clear, and reveal a flight of roughly 50 Do 217 night fighters, pressed into service as daylight bomber destroyers, and dozens of Fw 190’s which were preparing to attack a nearby formation of USAAF bombers. The pair would decide to attack, in order to disrupt the enemy formation and prevent them from engaging the nearby bombers from an advantageous position. Gentile and Godfrey dove on the night fighters, damaging one and sending the group diving in an effort to escape. The engagement turned into utter chaos as the single-engined fighters joined in. In the confusion, the pair of aces would claim one enemy aircraft in a series of defensive fights that eventually saw them make their escape through the clouds. Flying on instruments and practically lost, they made their way back to England by their intuition, landing at RAF Hurn (Bucholtz 40).

The unit would return to Berlin on March 6 in support of a massive 8th Air Force operation. Favorable weather conditions would allow the 8th to dispatch a force of 730 bombers against a series of targets in and around the German capital, where they would meet the Luftwaffe in the largest air battle of the war up to that point. The 4th, led by Col. Blakeslee, would be tasked with escorting the bombers, which would prove a difficult undertaking, with the sheer number of opponents forcing the group to disperse into individual flights and sections to expand their coverage. The unit would be credited for the destruction of 15 enemy aircraft of the 45 claimed by P-51’s that day, in exchange for five losses. In comparison, P-47 units were credited with 37 kills for 5 losses, and P-38 units brought down three units at the cost of three of their own. It should also be noted the P-38’s comprised the minority of the fighters, while there were roughly twice as many P-47’s as there were P-51s. The USAAF would claim a total of 83 ‘confirmed’ enemy aircraft with the Luftwaffe having recorded the loss of 75 fighters (Marshall & Ford 439; Bucholtz 43, 45). The majority of these kills were twin engine and night fighters pressed into daylight service. This engagement, while not representing a distinct turning point, did demonstrate a noticeable shift in the war over Germany. Of the 672 bombers that proceeded with the mission, 69 failed to return, and 6 were written off. These were certainly heavy losses, but were a fraction of the nightmare that the Allies were facing in the summer and autumn of the previous year. Beyond that, Luftwaffe losses were mounting both in the sky and on the ground, and the use of its heavier, twin engined bomber destroyers had become untenable in the face of agile new opponents.

D-Day

During the first day of Operation Overlord, most fighter units were dedicated to countering a Luftwaffe response that never came. Several would go on to attack inland targets. [National Archives]
Over the coming weeks the 4th would continue to support the bombing campaign, but in June of 1944 they would participate in something far more decisive. The group would be among the many fighter units providing top cover for the invasion of Normandy. Throughout D-Day, each of the unit’s three squadrons would operate independently and continuously until nightfall. The day began with the 334th and 335th squadrons undertaking an offensive patrol under the command of the unit’s C.O., Col. Blakeslee, between 03:20 and 09:45 over Rouen, France. The patrol found no enemy fighters and sought out targets of opportunity, in their case a pair of locomotives that they strafed with their machine guns. Their only loss was 1st. Lt. Fraser, who had lost contact with the rest of the squadron and was subsequently downed by German fighters and taken prisoner. The 336th would sortie at 06:42 to provide cover for warships shelling the landing areas, which proved uneventful (Bucholtz 84).

At 11:20, the 334th would sortie again to Rouen with one section carrying bombs. They would attack a troop train to poor effect, though an encounter with a flight of 10 Fw-190 near their airfield at Evreux proved more successful. In the ensuing battle the 334th was credited with the destruction of four enemy fighters, with the only damaged P-51 making it back home. While this confrontation was happening, the 335th had attacked the marshaling yards at Fleury. The 336th would fly for the last time that day at 13:35 conducting a fighter bomber sweep near Evraux. They would find no targets and would lose an aircraft to ground fire, with 1st Lt. Freiderick being taken as a PoW. The last mission of the day would see the 334th and 335th conduct attacks against a radar station and a road convoy near Rouen. While successful in their mission, they incurred heavy losses when elements of the unit were attacked by around 15 fighters belonging to JG 2 and JG 26 as the US fighters attacked infantry positions.

Capt. Winslow Sobanski was a Polish infantryman at the outbreak of the war, eventually finding his way to the US where he then joined one of the Eagle Squadrons. He was among those killed in action during the group’s last sortie on D-Day. Pictured here in a P-47. [National Archives]
The day would prove exhausting, with pilots flying up to three missions from dawn to dusk. Between flights most of the 4th’s pilot’s would rest, usually either having coffee or trying to get some sleep in before their next mission. The different squadrons would also find themselves having vastly different experiences, with the 336th having spent most of the day covering the invasion force which the Luftwaffe hadn’t the strength to attack, and taking part in a fighter bomber sweep that found no worthwhile targets and saw one aircraft lost to flak. In comparison, the 334th and 335th spent the entire day conducting offensive sweeps which claimed a number of targets, but also saw them sustain higher casualties than any of the other US fighter squadrons over Normandy that day with ten fighters lost (Bucholtz 82, 83).

Shuttle Mission to VE-Day

Following the success of the landings, and subsequent breakout in Normandy, many of the USAAF fighter units would take on tactical missions in support of the armies in Western Europe, in addition to the ongoing strategic air campaign. However, some P-51 units were selected to participate in an escort mission in which the bombers would land at prepared airfields in the Soviet Union instead of returning to their home bases. A 45 aircraft detachment of fighters from the 4th would depart for the Soviet Union on June 20th. The mission would see them join a force of 1,000 bombers as they attacked targets in the Rhineland, and then on to Piryatin, Ukraine some seven hours away. 45 Mustangs of the 4th would make the trip, encountering some 25 enemy fighters over Siedlice, downing two, but losing one of their own. All but one of the remaining planes landed at their intended destination, with one 2nd Lt. Hofer being forced to land at Kiev after running low on fuel after pursuing enemy fighters (Bucholtz 88). However, unbeknownst to the assembled American aircraft, the formation had been trailed by a Ju 88. Soon after, a well coordinated attack by the Luftwaffe using its He 177 heavy bombers saw many of the US bombers hit, though their P-51’s were unscathed.

The P-51’s were subsequently dispersed and flew a variety of missions in the following weeks which brought them over Central Europe and the Mediterranean. They soon flew an escort mission against an oil refinery in Drohobycz, Poland on the 26th. The return leg of the mission took them to Lucera, Italy where they would support the bombing operations of the 15th Air Force. The largest of these missions would take them over Budapest to perform a fighter sweep ahead of the strike force. There they encountered 80 German and 18 Hungarian Bf 109G’s and a massive dogfight ensued. In the battle the 4th would claim eight Axis fighters at the cost of four of their own. This included 2nd Lt. Hofer who had died during a strafing attack against an airfield. (Bucholtz 89). The unit would be led back to England on the 3rd of July.

American and Soviet personnel during Operation Frantic. [National Archives]
Beyond Operation Frantic the 4th settled back into the ‘usual’ operations they’d had since most of the group had left for the Soviet Union. They continued to fly deep penetration and escort missions over Germany, though by the end of the summer, Luftwaffe activity in the air had been considerably reduced. The savage war of attrition over Germany had been decisively won by the USAAF, as the Luftwaffe began to feel ever more crippling shortages of experienced pilots and fuel. Ironically, the Luftwaffe’s supplies of fighter aircraft were secure, though transporting them to airfields would prove ever more troublesome through the remainder of the war. While they had the aircraft, a subsequent USAAF campaign against rail communications across Germany would make overland transportation difficult, and ever more frequent fighter sweeps made transiting by air a very dangerous prospect.

For the remainder of the war the 4th FG remained committed to supporting the strategic bombing campaign, especially as it pertained to offensive fighter sweeps and attacks against Luftwaffe airfields. Their last victory of the war was a probable destruction of an Me 262 that was damaged over the Prague/Ruzyne airfield, with the group credited for 1,058.5 total victories against enemy aircraft, both in the air and on the ground (Bucholtz 120). They would end the war among the most successful Fighter Groups in the USAAF, having come a long way from the overly boastful volunteers that had flown against the Luftwaffe before any other Americans.

The 99th Fighter Squadron ‘The Tuskegee Airmen’

As black aviators, the men of the Tuskegee-trained squadrons would face unique challenges, having to face prejudice from their own countrymen who sought to deny them the opportunity to fight. They were initially excluded from many of the pre-war programs that turned out many of the pilots who later joined the ranks of the USAAF and US Navy. Many who ran these programs espoused the belief that they were incapable of the judgment needed for leadership, and that they had lacked ‘the proper reflexes to make a first class fighter pilot’ in the words of General Edwin J. House (Moye 102).

Their chance came with the Civilian Pilot training program in 1939, having been excluded from the program the previous year. The program was extended to a series of predominantly black colleges and universities, with the most critical being the Tuskegee Institute in Alabama. The university would build a fledgling airfield that eventually grew into an Army Air Corps training base, which proved controversial even among hopeful applicants, as in their eyes they were clearly still segregated from the rest of the Army. While the controversies flowed in the small Alabama town, the Air Corps moved to create the first black pursuit squadron, the 99th.

Col. Benjamin O. Davis would lead the 99th fighter squadron and the later 332nd Fighter group. He would go on to become a Brig. General in the newly formed United States Air Force after the war. [San Diego Air and Space Museum]
The first cadets of the 99th would graduate March 7, 1942 under the command of Capt. Benjamin O. Davis. The squadron would subsequently fly within the US before its transfer to the Mediterranean in late March 1943, equipped with new P-40L’s (Moye 99). They occupied a former Luftwaffe airfield in Morocco and were to be attached to the 33rd Fighter Group after they had gotten some experience in theater. In May, the squadron would be deemed ready for service and would move to a field in Tunisia. They would see success there, but the leader of their fighter group, Col. William Moymer was immediately hostile to their presence. He failed to return the salutes of the 99th’s officers and he placed the squadron on patrol duties over secure air space. He would then openly criticize them for being ‘unaggressive’ for failing to claim victories over territory where they were unlikely to encounter enemy aircraft (Bucholtz 18, 19; Moye 101). In spite of this, the unit pushed on and would aid in the preparations for the invasion of Sicily.

The 99th’s first combat missions were fighter sweeps against enemy positions in Southern Italy, their first target being a German airfield on the island of Pantelleria on June 2, 1943. The airbase would be the site of many more attacks, including the unit’s first encounter with enemy fighters. On June 9th, six P-40’s from the 99th Squadron accompanied A-20’s to the airfield, encountering four enemy fighters. In the ensuing fight they successfully drove off the enemy aircraft, and damaged one, taking no losses of their own. A further effort was made to intercept a flight of Ju 88’s at high altitude but were unable to, as their P-40’s had their oxygen systems removed to save weight for the low altitude mission (Bucholtz 21). The pilots of the 99th were particularly enthused that in their first encounter with the enemy, they had managed to complete their mission and all returned home safely.

While they would eventually be known for their iconic red tailed P-51’s, members of the Tuskegee fighter squadrons would fly the P-40L, P-39Q, and P-47D before they were issued Mustangs. [National Archives]
The squadron would be redeployed days later, partially a result of Moymer who sought to see the squadron reduced to coastal patrol duties. Instead, the 99th was transferred to the 79th Fighter Group, who’s commander, Col. Earl E. Bates, did his best to integrate the unit into the group. While they remained formally segregated, they enjoyed a far more open and professional environment than what they endured with the 33rd (Moye 103). Their first mission with the unit was on July 2 and saw them escort a flight of 16 B-25’s to their target, a German airfield in Castelvetrano, Italy. It would prove less than ideal when the B-25’s failed to line up with their target on the initial approach and had to repeat the attack, giving Axis fighters stationed nearby the time they needed to scramble. Two of the 99th’s pilots were lost in the first pass from the German fighters, but the remaining members soon regained control of the situation. In the ensuing confrontation with enemy Fw 190’s, Bf 109’s, and a Macchi 202, the 99th would claim one confirmed destruction, one probable, and two damaged aircraft. Though perhaps most importantly, none of the B-25’s they were escorting came to harm (Bucholtz 21, 22).

The coming weeks saw them mostly fly ground attack missions in support of the ongoing invasion of Italy, and met very few enemy aircraft for the remainder of the year. It was during this time that they also discovered that the Tuskegee training center wasn’t large enough to supply a sufficient number pilots to the squadron, while also supporting the construction of three additional squadrons. Their pilots resultantly flew an abnormally high number of missions due to being short handed (Bucholtz 25). This period also saw them defeat a great deal of the unfair criticism leveled against them and had largely cemented a favorable reputation within the Army Air Force. Among the most notable victories on that front was an article in Time, which had previously published an article based on Moymer’s alleged grievances with the squadron. Maj. Roberts of the 99th would be quoted “people assumed we were not producing because we were negroes…but now that we have produced, things have changed.” The 99th had also succeeded in convincing most of the 79th FG of their worth, and had garnered a great deal of respect as they moved into 1944. Many white pilots of the 79th disobeyed an order from the commander of the Air Force commander in the MTO, and held a desegregated dinner party to celebrate the anniversary of the 99th’s combat debut (Moye 104, 105).

Forming the 332nd Fighter Group

While 99th gained valuable experience over the Mediterranean, they began to rotate pilots out to train the next pursuit squadrons to form a segregated fighter group. These squadrons were the 100th, 301st, and 302nd, all of which would be formed at Selfridge Field, Michigan. Selfridge would prove a particularly dreadful post for these men, as it was here that they would face intense discrimination both by the local populace and base staff, while being a stone’s throw from the racial powder keg of Detroit. However, this would not remain their home for long, and they would soon depart for their operational assignments by the end of the year. They would join the 99th in the Mediterranean Theater of Operations in January of 1944, being equipped with a set of used P-39s. These aircraft would prove troublesome in service due to their age and condition, and as such numerous accidental losses followed, so by the early summer of 1944, Col. Davis had managed the acquisition of new P-47Ds. However, the unit would soon transition again to the newer P-51 soon after the 99th joined the rest of the fighter group in July, something the group’s veterans would resent as they felt they had been segregated again after finding acceptance within the 79th FG.

Capt. Andrew Turner aboard a P-51. The group’s transition to this aircraft vastly expanded the range and variety of operations across the Mediterranean and Central Europe. [National Archives]
The group would fully transition to Mustangs by July of 1944, and would be reassigned to the 15th Air Force where they would support long range bombing operations. Their first mission in their new planes was on July 4th, where they took 40 aircraft to to escort two bomber wings, but they would encounter only a pair of Bf 109’s that made no attempt to attack the allied aircraft . Beyond this, their pace of escort missions rose and they would take part in supporting raids against Axis positions in Northern Italy and Southern France. Soon after, they would provide support for the amphibious invasion of Southern France. On August 12, All four of the 332nd’s squadrons were given specific targets, with the 99th striking radar stations in Montpelier and Sete, the 302nd attacking radar stations in Narbonne and Leucate, the 100th attacked the radar stations near Marseilles and Cape Couronne, and the 301st attacked four targets around Toulon. At the loss of three pilots, one captured and two killed, all of the targeted radar stations sustained considerable damage .

The remainder of the war saw the 332nd fly a considerable number of escort missions, including an earlier attack against the Ploesti oil fields in Romania on July 13th, 1944. It was during that mission that they had begun to cement their status as one of the most reliable escort units in the USAAF, after they dispersed a flight of eight German fighters that had attacked bombers of the 55th Bomb Wing. Their C.O., Col. Davis maintained an unwavering directive to his unit, on escort missions they were never to abandon their bombers. This didn’t sit well with some but it was accepted, in part because many felt that a failure to protect the bombers would come down harder on them than the other squadrons (Bucholtz 51, 105; Moye 102). As such, their record for defending bombers was exemplary, having lost only 27 bombers to enemy fighters from June of 1944 to April 1945. It should also be noted that 14 of these losses occurred during a single day when a failure in mission planning resulted in the bombers and their escorts failing to meet at the proper time. As the target that day was the Luftwaffe air base at Memmingen, Germany, losses were correspondingly high (Bucholtz 53, Haulman 2). This places the remaining 13 bomber losses among the other 178 escort missions they performed over ten months. This policy would however, result in the squadron having the lowest aircraft kill to loss ratio of any other P-51 squadron in the theater, however, they would still consistently outscore all of the veteran P-38 squadrons in the Mediterranean (Marshal & Ford 477).

Among their most impressive escort missions was in support of a bombing raid against the Daimler-Benz tank assembly plant in Berlin, on March 24, 1945. From the 332nd’s base in Ramitelli Italy, this was a 1600 mile round trip, the longest mission ever conducted by the 15th Air Force. 59 Mustangs of the 332nd would leave their base at 11:45 under the command of Col. Davis, though he would soon return after experiencing engine trouble and left the squadron in the command of Capt. Edwin Thomas. They would encounter some two dozen enemy fighters outside of the German capital, including a number of Me 262s. The jets would initially prove difficult to catch, and the aircraft, belonging to JG 7, would at first disengage from the bombers whenever the escorts drew close. However, several of the jets would later press their attack on the formation. In the ensuing battle 1st Lt. Earl R. Lane, Flt. Officer Joseph Chineworth, and 1st Lt. Roscoe Brown would each be credited with a confirmed kill on three downed Me 262s. On their return flight they engaged several targets of opportunity, including two trains. The success of this mission earned the unit one of their three Distinguished Unit Citations, and the personal thanks of Gen. Lawrence of the 5th Bomb Wing (Bucholtz 108, 109).

Beyond their role as escorts for the 15th Airforce’s bombers, the 332nd would be engaged in a number of fighter bomber missions across the Meditteranean and Central Europe. These missions were conducted whenever time permitted between bombing raids and would see the squadron engage a number of targets. These would include airfields and various transportation targets varying from trains to river barges. A raid on August 30, 1944 would mark the unit’s most successful day when the 332nd attacked poorly camouflaged aircraft at Grosswardein airfield, Romania. In the ensuing strafing attack, they would be credited with the destruction of 83 aircraft with a further 31 damaged, ranging from 30 Ju 88’s, to a pair of super heavy Me 323 transport aircraft (Bucholtz 66). They would mount similar attacks against Axis airfields from Romania to Hungary.


Pilot’s of the 332nd, Lt. Clarence ‘Lucky’ Lester on the right, leads the group with 3 credited victories, all claimed on the same day. [National Archives]
The 332nd would end their campaign at an airfield in Cattolica, Italy, and was credited for the destruction of 111 aircraft in the air, 150 on the ground, 57 locomotives, 600 rail cars, and had flown 15,533 sorties (Bucholtz 116). It was a common myth that the squadron had never lost a bomber to enemy fighters, this being a rumor circulated by the press near the end of the war. This was not the case, but even with the failure over Memmingen, their bomber losses to fighters were half of the average and they were a considerable morale booster for the bomber crews of the 15th Airforce.

Flight Characteristics and Pilot’s Remarks

 

[P-51B pilot training manual]
The P-51B would prove to be an excellent fighter, but one that could present some challenges to those unaware of its quirks. It shared most of its general flight and handling characteristics with its older Allison powered predecessors, though some alterations to the design would make themselves felt, and not always to the plane’s benefit or pilot’s wishes.

Overall, the Merlin Mustang’s would prove to be fast and highly maneuverable, but with more complex flight characteristics than the Allison powered models that came before. Under most flight conditions, the plane was positively stable and possessed controls that were light and responsive. This aspect had been improved from the previous models, as the P-51B would be equipped with improved internally sealed and balanced ailerons which kept control stick forces light. These were rated very well, though pilots would note they were still ‘mushy’ at low speeds. However, as the plane’s top speed increased, it was capable of pulling maneuvers that could prove hazardous to pilots. Above 4g turns where a pilot without a g-suit was partially blacked out, the stick reversal could be harsh, but the worst of its effects were eliminated by a 20lb bobweight that was incorporated into the control system later on (Dean 350, 349).

The plane’s stall characteristics were mixed, but mostly mild. A one g stall in a clean aircraft was characterized by a roll to the right which came on after rudder buffering and aileron snatching, and was easily recovered from. Pilots were generally positive about the stall warning and recovery characteristics. However, its accelerated stall behavior proved to be far less universally understood. Some pilots claimed an easy recovery after ample warning, and others claimed it came on suddenly and viciously. Its low drag wings would contribute partly to this, as with its lack of air flow disturbances, stalls could come on without much warning. In the event of a spin, recovery was achieved by throttling back and pulling up while directing the rudder in the opposite direction of the spin. A spin could be serious trouble as a typical recovery resulted in a loss of about 9,000 ft in altitude (Dean 351, 352; P-51B flight manual 80).

While the plane was certainly very capable in regards to its maneuverability, pilots would have to take great caution when performing maneuvers of any kind when the fuselage tank still contained fuel. When the 85 gallon tank still contained fuel, the plane’s center of gravity shifted considerably and induced severe longitudinal instability. Hard maneuvers with any considerable volume of fuel still in the tank would result in a stick reversal that would require the pilot to brace themselves against the movement of the stick. Failing to do so would result in a loss of control or a further tightening of the turn which could result in a high speed stall or even structural failure (Dean 347, 348). Both RAF and USAAF manuals would ban aerobatics with roughly forty or more gallons of fuel in the tank, and suggested caution once it had been reduced to 25 gallons (Pilot’s Training Manual 68, Pilots Notes 30). In service this issue was one that rarely affected the plane’s effectiveness in combat, as the long range tank was the first to be used on long patrols and escort missions and thus typically contained little or no fuel when contact with enemy aircraft was made.

On early and mid production P-51B’s, pilots would also have to be cautious of high speed snapping brought on by the aforementioned longitudinal instability while they were conducting rolls. Pilots caught unaware were often injured during this violent jolt, and rolls were restricted accordingly. The addition of a fin extension for the vertical stabilizer and reverse rudder boost tabs would largely solve this issue, and the restrictions were lifted on suitably modified aircraft (Dean 350).

Perhaps where the aircraft shined the brightest were its dive characteristics, which were achieved as a result of its low drag wings and fuselage. These granted it excellent acceleration and a higher critical mach number than most of its contemporaries. Due to the changes in air flow across an aircraft’s wings as a plane approaches the sound barrier, most aircraft would experience buffeting, and a loss of control along and total loss of lifting forces. This change in flight characteristics that results in this loss of control is known as compressibility, a phenomenon that occurs when an aircraft exceeds the speed of its critical mach number.

A visual explanation of compressibility from the P-51B’s pilot training manual, the disturbed airflow results in a loss of lifting forces on the wings and control surfaces. The P-51’s wings mitigated the worst of its effects until much higher speeds. [Pilot’s training manual]
Thanks to its laminar flow airfoil, the P-51 was almost unique in its ability to remain controllable at otherwise unheard of speeds. However, in a high speed dive the P-51 would eventually experience compressibility and a pilot needed to be aware of the changing characteristics of their aircraft. In the P-51 this would first be felt through a ‘nibbling’ at the controls, afterwards by the stick ‘walking’ back and forth, and lastly by the aircraft pitching up and down with motions that grew more violent as the aircraft picked up speed (Pilot’s Training Manual 74, 75). On earlier models that lacked the vertical stabilizer extension, there was also directional instability that occurred at high speed, which required rudder correction or the plane could be sent into a spin. However with the later modifications the plane was nothing less than astounding. In diving tests from 35,000ft, pilots were able to reach mach .83 while retaining control of the aircraft, and despite the violent shaking and buffeting of the aircraft, were able to recover from the dive. In more practical conditions, control characteristics would remain normal until the aircraft was between .72 and .74 mach, after which the plane would experience escalating tuck-under, or a tendency to pull downwards airspeed increased. The maximum permissible dive speed was set at 505 mph IAS below 9000 ft, and 300 mph IAS at 35,000 ft, TAS being 539 mph (Mach .81). The maximum permissible engine RPM in dives was 3300 (Dean 341, 342, 343). Overall, the P-51B proved to be phenomenal in a dive, with only the British Hawker Tempest gaining a slight lead in tests, it being another aircraft equipped with laminar flow airfoils (Ethell 62).

Its take-off procedure was fairly typical of contemporary US fighters and required a strong right rudder deflection during take off to counteract the powerful torque from its engine. Its best climb out speed was between 160 to 170 mph IAS, which was quickly achieved after its flaps and landing gear had been retracted (Dean 341). Landing was somewhat more challenging, as the 140 mph IAS glide slope offered poor forward visibility, and little was improved as the plane came in to land at about 90 mph. It was thus fairly common for combat pilots to make tail up, level landings in order to have a better view of the landing strip before touching down. Its widely spaced gear and wide tire tread otherwise made the landing fairly easy.

While the P-51B’s possessed some truly phenomenal flight characteristics, the same cannot be said for the canopy. In US Navy evaluations the ‘birdcage’ canopy was found to result in poor all-around vision, most notably fore and aft. It was also fairly restrictive and made turning to view behind the aircraft more difficult (Dean 353). The frame itself could also not be opened on take off or landing and thus proved to be of some annoyance to pilots. This would later be solved with the addition of the ‘Malcom Hood’ which provided excellent visibility and was far less confining. The rest of the cockpit was judged to be satisfactory and capable of accommodating pilots of varying stature.

The ‘birdcage’ was unpopular as it was quite restrictive in terms of visibility, and it could not be kept open on the landing approach or takeoff. [Pilot’s Training Manual]
Its armament however, was distinctly lacking and fairly unreliable. It’s armament of four .50 caliber AN/M2’s was considerably lighter than most US fighters of the time and were installed in such a way that the ammunition links were prone to deformation in high-g maneuvers. It was not uncommon for P-51B/C’s to return from their missions with several guns malfunctioning as a result of failures to feed or extract. As a gun platform, its qualities were judged as roughly the same as the P-40, and below those of the P-38 and P-47 (Dean 353).

Comparisons with American Fighter Aircraft: Early to Mid 1944

Entering service alongside the P-47 and P-38, the new P-51’s would compare very well. When it came to the P-47D, equipped with R-2800-63’s, these aircraft were in some ways complementary, and excelled in areas the other did not. Thanks to its powerful turbosupercharger, the P-47 would retain the power needed to outperform the P-51 above 25,000ft, but was significantly slower at lower altitudes. The P-47 was also less vulnerable to ground fire and thus better suited for ground attack missions. The P-51B however, outstripped the P-47D in rate of climb, linear speed, acceleration at altitudes below roughly 30,000ft, and dive performance (Ethell 70; Marshall & Ford 526). Ergonomically speaking, the P-51B was the superior aircraft, as the turbosupercharger controls of the P-47D added to the workload of the pilot.

The P-47’s Turbosupercharged R-2800 engine provided unparalleled performance above 30k feet, and it’s durability made it ideal for fighter bomber missions. It was fairly lacking in its rate of climb and acceleration at low to medium altitudes. [National Archive]
When it came to escorting bombers, the P-47D and P-51B were the most effective tools at the USAAF’s disposal. Both aircraft performed superbly at and above the altitudes the bombers typically flew at, though the P-51B would prove the more vital as it could travel significantly further. By late spring 1944, external fuel tanks had been introduced that extended the P-47’s escort radius across most of Germany, however, by this time the P-51B was capable of accompanying bombers beyond Poland (Marshal & Ford 516). While the shorter range of this aircraft was often used to excuse the high bomber losses during earlier campaigns, the fact is that had they been supplied with the proper external fuel tanks, they would have been capable of deep incursions into German airspace months before the P-51 entered service.

The P-38 experienced serious reliability and performance issues due to the extremely low temperatures encountered at high altitude over Northern Europe. Its poor high altitude dive performance was also widely known, and exploited by Luftwaffe pilots. [National Archives]
The older P-38J Lightning would not stack up quite as favorably against the new Mustang. While the P-38J possessed a better climb rate and acceleration, it was out-stripped in linear speed by the P-51B at all altitudes, and possessed a very low critical mach number which meant that virtually any opponent at high altitude could escape by diving away. To make matters worse, a number of technical and operational issues spelled trouble for these aircraft in the colder Northern European climate. These issues, compounded by the extremely poor cockpit and canopy of the P-38, saw Lightning squadrons fall behind Thunderbolt and Mustang squadrons in victory credits (Marshall & Ford 439, 516; Ethell 70).

While the P-38J would receive external fuel tanks that would allow it to travel to Berlin and back, it was held back by a number of factors that severely reduced its combat effectiveness. In the European Theater of Operations, the P-51B would present a clear and general improvement over the P-38s, which saw more success in other theaters with conditions that they were better suited to, namely the Mediterranean and Pacific.

German Fighter Comparison: Early to Mid 1944

Entering service near the end of 1943, the P-51B compared very well to the German Fw 190As and Bf 109Gs in service at that time. The typical Bf 109 encountered through the first half of 1944 was the Bf 109G-6 series, which possessed better firepower than those that preceded it, but was heavier, and initially slower for it. These planes were equipped with either the Daimler-Benz DB 605A, or the high altitude, DB 605AS engines, both of which were later equipped with MW-50 boost systems. In all cases the P-51B possessed the superior linear speed, but in the case of MW-50 equipped aircraft, the Mustang had a slightly lower climb rate at low to medium altitude (Marshall & Ford 526, 523; P-51 flight tests). Without the boost system, which came into widespread use in the summer of 1944, the Bf 109G-6 was considerably slower and had a clear disadvantage in top speed and climb rate at all altitudes. The disparity with the high altitude model was much narrower, though the P-51 still held an edge.

The Bf 109G-6 was the most common Luftwaffe fighter encountered by the P-51. Later versions boasted considerably higher engine power thanks to the MW50 boost system; they did not compare well to many western allied fighters prior to this. Here one prepares for a fighter bomber sortie. [Asisbiz]
When it came to maneuverability, both aircraft had their own advantages, with the Bf 109 having better low speed handling and the P-51 having the advantage at high speed. The dive performance of the P-51B was far superior even at lower altitudes as the Bf 109 experienced stiffening of the elevator at high speed.

Visibility the Bf 109 was more or less on the same level of the standard ‘birdcage’ P-51B, and this would largely remain the case, as both planes would be re-equipped with improved canopies that offered better visibility. However, the cockpit of the P-51 was considerably more spacious and was further improved by the Malcolm hood. The Bf 109’s greatest strength was that it was equipped with an automatic RPM governor and mixture control that took a great deal of work off the pilot.

In terms of armament, both aircraft were comparable, with an unmodified Bf 109G-6 possessing a pair of 13mm machine guns and either a 20 or 30mm cannon, which fired through the propeller hub. Of the two, the 30mm was far less common.

Overall, the Bf 109G-6 was a somewhat dated fighter, one that had its advantages, but was  generally outclassed by the new Mustang. However, upgrades like water-methanol injection, an improved vertical stabilizer, and a new canopy helped keep the aircraft competitive and staved off obsolescence. The much refined ‘Kurfurst’ series would match P-51 performance in a number of areas, but its introduction was well after the Luftwaffe had lost control of German airspace.

The P-51B would face several models of the Fw 190A, with the most up to date being the A-8. The P-51B would have considerable linear speed, climb, and high altitude dive advantages over the earlier models. The Fw 190A-8 would have the benefit of a significant boost in power to its BMW 801D-2 engine, first by means of a fuel injection system, and in the summer of 1944, they were judged robust enough to be run at higher manifold pressures and had their supercharger boost regulators overridden. These modifications allowed the engine to produce significantly more power and increased the aircraft’s top speed at all altitudes (Douglass 344). In terms of top speed, this put these two aircraft on closer footing at low altitude, and ahead of the other two American fighters. It was, however, nowhere close to offsetting the general disparities at higher altitudes. The excellent defensive characteristics of the aircraft helped to offset some of its disadvantages against the P-51, as the Fw 190A held the best roll rate in the theater, solid dive characteristics, and good rearward visibility.

The Fw 190A’s were completely outclassed at altitude by the P-51B, owing to their relatively low full throttle height. They would however, be on somewhat closer footing at lower altitudes and could hold their own against the other two American fighters. [Asisbiz]
In terms of armament it was no contest, as the earlier A-6’s and A-7’s possessed a pair of either 7.92mm or 13mm machineguns respectively, and a pair of 20mm cannons. This was increased to two pairs on the Fw 190A-8. In regards to ergonomics the Fw 190A was excellent, with good visibility, clean instrumentation, and an advanced engine control system which handled RPM, manifold pressure, and mixture through the use of a single, integrated electro-mechanical computer. Its controls too were tight and responsive, if a little heavy at speed, thanks to its push rod control system. However, as was also the case with the Bf 109, its cockpit was comparatively cramped compared to the P-51.

Subsequent models of both these aircraft, the most numerous being the Bf 109G-14 and the Fw 190D-9, would largely eliminate the performance disparity at low altitude. However, at medium to high altitudes, the P-51 would still enjoy a considerable edge in top speed, dive performance, and high speed maneuverability. Only later Bf 109G’s with enlarged superchargers and better high altitude performance were close to closing the gap, with the K-4 series finally achieving high altitude parity near the very end of the war.


The Bf 109G-14 and the Fw 190D-9 would enter service in the Autumn and Winter of 1944, though they would not entirely replace their predecessors by the end of the war. [Largescaleplanes, Asisbiz]
The Me 262 presented a much greater threat in the air for obvious reasons. The jet fighter possessed a top speed roughly 100 miles per hour faster than the P-51 and was the only Luftwaffe fighter capable of following it into a dive. It was, however, considerably lacking in acceleration, which presented itself most dangerously on take off and on the landing approach. While the high top speed of the jets meant that they could disengage safely from most confrontations, they were helpless if caught near taking off or landing. Thus the general strategy for defeating these aircraft was to catch them as they were returning to their bases, where Allied fighters would await them. This is not to say this was easy, as their airfields were well defended by some of the best flak units available to the Luftwaffe and they would eventually have their own dedicated fighter cover (Ethell 97, 98). Higher up the jet could prove a deadly opponent as when flown well, it was extremely difficult to catch and an experienced pilot had control over most engagements.

The Me 262 was a world first, and had many USAAF planners concerned. On paper it had the ability to wreak untold havoc on allied bomber formations, but its technical limitations and the general poor state of the Luftwaffe late in the war prevented it from operating in numbers large enough to make a major impact. [Asisbiz]
In any case, encounters with the new jet fighters were fairly uncommon as they were constrained by operational restrictions owing to the temperamental nature of the new turbojet engines and the lack of a dedicated trainer for the aircraft until late 1944. They would not be seen flying against the Allies in appreciable numbers until the late autumn of that year.

Building the P-51B & C

The P-51B’s and C’s were built at plants in Inglewood, California, and Dallas, Texas, respectively. The distinction exists due to the differences in manufacturing between these two facilities, but these are functionally the same aircraft. With the exception of the earliest model, the P-51B-1, which had a different aileron design, their components were interchangeable. The main production models were equipped with the Packard V-1650-7 engine. Deliveries of these models began in February of 1944 (Marshall & Ford 253)

Production of this aircraft was complicated greatly by the breakneck pace of its procurement, which saw massive orders placed before its prototype had completed testing. As such, the aircraft that left the factories differed considerably even when they were built mere weeks apart. While all WWII fighters underwent constant modification, the level and rate of changes made to the P-51B and C were extensive and rapid. In addition to minimal changes, like changing the pilot’s seat from a wooden one to a magnesium one, in a matter of weeks the P-51B would receive an additional fuselage fuel tank, an extension to its vertical stabilizer and a rudder anti-balance tab, and an elevator control system which made use of a 20lb bob weight (Dean 329). These features would constitute a considerable challenge to work into the design without compromising the pace of production for an aircraft that USAAF planners wanted in as great quantity in the shortest possible time.

The Inglewood P-51 production line. [North American Aviation]
This challenge would highlight both the greatest strengths and weaknesses in US aircraft manufacturing. Most aircraft factories in the US operated by building large batches where the design would be frozen to allow faster construction. Modifying the design meant changes to the production line, which meant slowing down or stopping. US factories operated at batch sizes of up to 1,500, compared to the British Supermarine Spitfire’s production lines which operated at or below 500. The compromise was the modification center, to which “finished” aircraft would be delivered to be fitted out to new modifications. In practice, this system was extremely inefficient and saw quality control drop significantly. It also proved to be a highly inefficient use of labor, and could represent between 25 to 50% of the total labor required to complete an aircraft. Quality control also dropped considerably as the modification center was primed to try and deliver aircraft as quickly as possible (Zeitlin 55, 59). Lastly, the centers saw a great deal of wastage of material, accumulating a much larger proportion of metal scrap from rushed fittings, and ruined parts than the production lines (O’Leary 142). The USAAF would have its Mustangs, but only at a considerable cost and of initial questionable quality.

In the end they were successful in that they delivered the P-51B in great quantities despite the rushed pace of procurement, development, and production. However, it certainly contributed to the severe teething issues experienced by the aircraft that would see it briefly grounded in March of 1944 and would trouble it for weeks later.

In all, 1,988 P-51Bs were built with the first leaving the production lines, at a very low initial rate, in the summer of 1943 with the first deliveries taking place in August, with a further 1,750 P-51C’s being built. Production of both types declined as the P-51D production began in January of 1944, with the last P-51B’s leaving Inglewood in March and P-51C production continuing for several more weeks (Dean 321).

Construction

Wings

The wing group of the P-51 was composed of each wing, bolted together at the centerline. Each wing was of a cantilever stressed skin construction and consisted of a main panel, the wingtip, the flap, and the aileron. The main panel was built up around a main forward spar and a rear spar, to which twenty one pressed ribs were attached. These spars were spliced together roughly around half their length. A self-sealing 90 gallon fuel tank was fitted at the inboard section and a bay for its .50 caliber machine guns and ammunition was found near the center. The ailerons were of a fairly heavy construction, being all metal and supported by two spars and twelve flanged ribs. They were aerodynamically balanced by a diaphragm attached to the forward edge of the aileron and sealed to the rear spar by a fabric strip. These were controlled by means of a cable, as were all of the control surfaces of this aircraft. These were equipped with trim tabs and were adjustable in flight. The flaps were all metal plain flaps that were hinged on three sealed ball bearings and were hydraulically actuated.

[Legends in their time]
The landing gear was hydraulically actuated with a fully retractable tail wheel. The main landing gear were fixed to the wings by a cast magnesium supports and were equipped with multiple disc brakes connected to the hydraulic cylinder by metal tubing. The wheels were 27 inches in diameter and possessed a fairly wide tread, which helped to give the P-51 excellent ground handling.

The wings of the P-51 were designed to achieve laminar flow and used a NAA/NACA 45-100 series airfoil. It would fall short of true laminar flow as even extremely minor surface imperfections resulted in airflow disruptions that made laminar flow impossible. However, these were among the most aerodynamically advanced wings used by any fighter during the Second World War, providing extremely low drag and excellent high altitude dive performance.

Fuselage

[Legends in their time]
The fuselage was composed of two main sections, both of which had a semi-monocoque construction. The main section was formed by four extruded longerons, around which the intermediate frames and stringers were connected. The upper longerons were extruded H-sections which extended from the sheet metal firewall and tapered into a T-section. The lower longerons, consisting of an H-section and U-channel, extended the full length of the main fuselage. This entire unit was made up of eight assemblies which were riveted and bolted together, these being the firewall, turnover, truss, upper deck, left and right side panels, radio shelf, web assembly, and the radiator air scoop.

The main fuselage section also contained the cockpit, the windshield being composed of a center pane of bullet resistant five pane laminated glass, with two Plexiglas windows to either side. The canopy was either a metal framed Plexiglas ‘bird cage’, or a Malcom Hood. The birdcage had panels that opened outward on the top and port side. The hood slid back across the rear of the canopy. Behind the pilot were lucite windows which enclosed the radio space. A relief tube was installed and stored beneath the seat, and proved quite useful considering the long flights that this aircraft commonly made.

Early P-51B instrumentation. [Legends in their own Time]
The rear section was comparatively simple, composed of two longerons, a shelf, five formers, and three solid bulkheads. The fuselage, as with the rest of the aircraft, was skinned in Alclad. This section was reinforced after structural failures during high speed rolls in early models.

Tail Section

The tail section was affixed to the rear fuselage and consisted of the horizontal stabilizer, elevators, fin, vertical stabilizer, and the rudder. The horizontal stabilizer was a one piece assembly supported by two spars, fixed to the fuselage by four bolts, and through which the vertical stabilizer was attached. The elevators consisted of a front spar with eighteen flanged ribs, and was initially fabric skinned with Alclad leading edges before it was later entirely metal skinned. These were fastened with five sealed ball bearing hinges and each had an adjustable trim tab.

The vertical stabilizer was supported by two spars along with four ribs and a detachable tip. Extensions to the vertical stabilizer by means of a fin were added to P-51B/C’s to correct for longitudinal stability issues with a full fuselage fuel tank, and to correct certain undesirable characteristics when the aircraft was put through a roll. The rudder was fitted at the rear of the stabilizer and was supported by a single spar to which twenty flanged ribs were attached. Much of the rudder was skinned with mercerized cotton, save for the reverse edge. The rudder was fitted with a trim tab and aerodynamically balanced by means of a 16.6 lb lead weight at the tip.

Engine Section

The engine section consisted of the engine mounting and external cowl components and was bolted to the firewall. The cowl consisted of a frame made of Alclad beams to which the cowl panels fastened. This frame acts as a cradle for the engine which is mounted by a bracket through anti-vibration units. The entire section is designed to facilitate easy access to the engine through panels, and the engine mount allows for the rapid removal of the Packard engine.

[Legends in their time]

Engine

The early models of the P-51B used a Packard V-1650-3, with this engine being replaced on the production line in February of 1944 with the Packard V-1650-7. These are largely the same engine, though their superchargers were geared for optimal performance at different altitudes and thus have different maximum outputs. The 1650-3 was designed specifically for high altitude use and gave the P-51B/C a full throttle height of 29,000 feet, the 1650-7 was geared to achieve a higher engine output at a FTH of 21,400 feet (Marshall & Ford 253).

These engines had a bore of 5.40 inches, a stroke of 6 inches, a displacement of 1,649 cubic inches, a compression ratio of 6.0:1, a width of 30 inches, a height of 41.6 inches, length 87.1 inches, a frontal area of 5.9 sq. ft, and a weight of 1690 lbs. They differed in that the -3 supercharger ratios of 6.391:1 and 8.095:1, and those of the -7 were 5.80:1 and 7.35:1 (Wilkinson 125, 127). They were both fitted with a four blade Hamilton-Standard 24D50-65 or -87 hydropneumatic propeller with aluminum blades of a diameter of 11 feet and 2 inches. These blades were either 6547-6, 6547A-6, or 6523A-24 types. The engine exhaust stacks were of a stainless steel construction which had a removable exhaust shroud to keep heat from the spark plugs and to reduce drag.

Packard V-1650-7 [Pilot’s training manual, Smithsonian]
Both engines used a two stage, two speed supercharger and was equipped with an aftercooler. The supercharger was automatically controlled and governed by the air pressure at the carburetor intake, which was found just below the prop spinner. The controls for the engine were conventional, requiring manual throttle and rpm adjustments.

Radiator and Cooling Systems

The engine was cooled by two separate systems, one dedicated to the engine, and the other cooled the supercharged fuel-air mixture. Both of these systems were connected through the main radiator matrix within the air scoop below the main fuselage, with the coolant flow maintained by an engine driven pump. A smaller radiator for the oil cooler was placed below and ahead of the radiator matrix for the engine and aftercooler. The radiator setup was designed to make use of the Meredith effect, which in practical terms meant that the heated air flow out of the radiator produced thrust which counteracted a large percentage of the drag incurred by the scoop. The outlet for the radiator was automatically controlled. This design was able to reduce net drag upwards of 90% and was one of the most important features which allowed the aircraft to achieve such a high top speed (Marshall & Ford 510).

[Legends in their time]
The hoses for the radiator which extended through roughly two thirds of the aircraft, and the unarmored radiator, which sat at the bottom center of the aircraft, constituted the most vulnerable part of the aircraft’s design. These made the aircraft fairly vulnerable to ground fire, as the high cooling requirements of the Packard Merlin engine meant that a failure of the cooling system wouldn’t take long to put the aircraft out of action.

Fuel System

The initial models of the P-51B possessed only two 92 gallon wing fuel tanks with an 85 gallon fuselage fuel tank being included later through modification kits and was eventually incorporated into the production line. The Mustang was also capable of carrying two external fuel tanks by means of wing mounts. Fuel was drawn only from individual fuel tanks, requiring the pilot to manage up to five individual sources of fuel throughout longer flights (Pilot’s Training Manual 26).

[Pilot’s Training Manual]
The inclusion of the 85 gallon fuselage tank would introduce new challenges, as the shift in weight caused by a full tank introduced severe longitudinal instability. For this reason this tank was the first to be consumed. The combined tankage was 269 gallons.

Armament and Armor

P-51B’s were equipped with four .50 caliber AN/M2 machine guns. Each inboard gun was supplied with up to 250 rounds, with the outboard weapons having 350 each. These guns were mounted at roughly 45 degree angles within the wing, which caused severe cycling issues when the guns were fired while the aircraft was pulling hard maneuvers. These issues were lessened with the addition of electric boost motors for the ammunition feed, but were not completely solved until the subsequent P-51D model. The guns were electrically heated to prevent them from locking up at high altitudes. These aircraft were typically equipped with the N-3B reflector gunsight, with later aircraft receiving K-14 gyroscopic gunsights.

[National Archives]
Wing pylons allowed the aircraft to carry a payload of up to 500 pounds at either side, being either external fuel tanks or bombs. These aircraft could be made to carry rockets by means of field modification kits. Armor plates were placed ahead of the radiator header tank, at the engine fire wall, and behind the pilot.

(Dean 355-376)

Conclusion

It would take a considerable effort to develop the P-51B from its Allison engined predecessors, and even greater hurdles would have to be overcome to produce them in the quantities needed. In the end, both were achieved and the P-51B would enter large-scale operation in the Spring of 1944. In spite of its harsh teething issues, it would become among the most decisive weapons of the Second World War. With its incredible range and medium and high altitude performance, the aircraft would prove instrumental in establishing air superiority over Western Europe prior to Operation Overlord, and contesting the skies over Germany itself.

P-51B production was switched over to the D model at Inglewood in March of 1944, but the aircraft would remain in service in large numbers through the end of the war. [National Archives]
Its design, while not revolutionary, was thoroughly advanced and represented a considerable leap in aerodynamics and airframe design. The P-51B would however, be only a starting point for the Packard Merlin Mustangs, as further refinements would result in the iconic, and much more widely produced P-51D.

Specifications

P-51B/C ( with Fuselage tank) Specification
Engine  Packard Merlin V-1650-3, V-1650-7
Engine Output [V-1650-7] 1630 hp [1720 hp]
Maximum Escort Fighter Weight 11,150 lbs (2x108gal external)
Gross Weight 9,681 lbs
Empty weight 6,988 lbs
Maximum Range [External Fuel] 1350 miles [2150 miles]
Combat radius [External Fuel] 375 miles [750 miles]
Maximum speed (V-1650-7) 444 mph (75″ Hg) at 20600ft
Armament  4x .50 cal M2 machine guns, 1200 rounds of ammunition
Crew Pilot
Length 32′ 2
Height (tail down) 12’8
Wingspan 37.03′
Wing Area 235.75 sq.ft

 

P-51B/C ( with Fuselage tank) Specification
Engine  Packard Merlin V-1650-3, V-1650-7
Engine Output [V-1650-7] 1630 hp [1720 hp]
Maximum Escort Fighter Weight 5058 kg (2×409 liters external)
Gross Weight 4391 kg
Empty weight 3169 kg 
Maximum Range [External Fuel] 2172 km [3460 km]
Combat radius [External Fuel] 603 km [1207 km]
Maximum speed (V-1650-7) 714 km/h (1905mm Hg) at 6279 m
Armament  4x 12.7mm M2 machine guns, 1200 rounds of ammunition
Crew Pilot
Length 9.80 m
Height (tail down) 3.86 m
Wingspan 11.29 m
Wing Area 21.9 sq.m

(Dean, Performance Tests on P-38J, P-47D and P-51B Airplanes Tested with 44-1 Fuel., Marshall & Ford)

Maximum Level Speed Speed at 67″ Hg, 3000 RPM 75″ Hg, 3000 RPM No wing racks, 75″ Hg, 3000 RPM
Sea level 364 mph 380 mph 388 mph
Critical altitude low blower 408 mph at 10400 ft 411 mph at 2300 ft 422 mph at 7400ft
Critical altitude high blower 426 mph at 23900 ft 431 mph at 20600ft 444 mph at 20600ft
Aircraft Specification Gross weight 9680lbs, P-51B-15  (V-1650-7)

*A note on fuels: The 75″ of manifold pressure figure represents the high end of performance using 150 octane fuels, these were typically only available to P-51 squadrons based in England.

Climb rate 67″, 3000 RPM 75″ Hg, 3000 RPM
Maximum at low blower 3,920 ft/min at 5600 ft 4,380 ft/min 2,300 ft
Maximum at high blower 3,170 ft/min at 19,200 ft 3,700 ft/min at 15,600 ft
Aircraft Specification Gross weight 9680lbs, P-51B-15

 

Maximum Level Speed Speed at 1701 mm Hg, 3000 RPM 1905mm Hg, 3000 RPM No wing racks, 1905mm Hg, 3000 RPM
Sea level 586 km/h 611 km/h 624 km/h
Critical altitude low blower 656 km/h at 3169 m 661 km/h at 701 m 679 km/h at 2255 m
Critical altitude high blower 685 km/h at 7284 m 693 km/h at 6278 m 714 km/h at 6278 m
Aircraft Specification Gross weight 4390 kg, P-51B-15 (V-1650-7)

 

Climb rate 1701 mm Hg, 3000 RPM 1905 Hg, 3000 RPM
Maximum at low blower 1194  meter/minute at 1707 m 1335 meter/minute 701 m
Maximum at high blower 966 meter/minute at 5852 m 1128 meter/minute at 4755 m
Aircraft Specification Gross weight 4390 kg, P-51B-15

(Performance Tests on P-38J, P-47D and P-51B Airplanes Tested with 44-1 Fuel.)

P-51 Variants through P-51D

North American USAAF RAF Engine Armament No. Built Additional Notes. First delivery
NA-73X Allison 1 Prototype. October 1940
NA-73, -83 XP-51 Mustang Mk I Allison 2x .50 cal MG, 4x .30 cal MG 622 RAF, export. August 1941
NA-91 P-51 Mustang Mk Ia Allison 4x 20mm cannons 150 ‘Plain P-51’. July 1942
NA-97 A-36A Allison 6x .50 cal MG, bombs 500 Dive Bomber. October 1942
NA-99 P-51A Mustang Mk II Allison 4x .50 cal MG 310 March 1943
NA-101 XP-51B Packard 4x .50 cal MG 2 (converted) P-51B prototype
NA-102, -104 P-51B Mustang Mk III Packard 4x .50 cal MG 1988 Inglewood production. Summer 1943
NA-101, -103 P-51C Mustang Mk IIIB Packard 4x .50 cal MG 1750 Dallas production. August 1943
NA-106 (through -124) P-51D Mustang Mk IV Packard 6x .50 Cal MG +8000 Bubble canopy. January 1944

(Dean 321)

P-51B & C Variants

P-51B & C Variants Notes Serial No.’s
P-51B-1-NA Earliest production model, steel aileron diaphragms, two point aileron attachment.  43-12093 to 12492.
P-51B-5-NA Three attachment points per aileron, non-magnetic diaphragm.  43-6313 to 6352, 43-6353 to 6752, 43-6753 to 7112.
P-51B-7-NA B-1s and 5s which received a new fuselage fuel tank carried this designation. Aircraft often carried prior designation in practice. Converted aircraft.
P-51B-10-NA Production model with fuselage tank.  43-7113 to 7202, 42-106429 to 106538, 42-106541 to 106738.
P-51B-15-NA Engine changed to Packard V-1650-7 (previous models were converted to this engine via supercharger kits).  42-106739 to 106908, 42-106909 to 106978, 43-24752 to 106738.
P-51C-1-NT Same as P-51B-5-NA.  42-102979 to 103328
P-51C-2-NT C-1s which received a new fuselage fuel tank carried this designation. Aircraft often used prior designation in practice. Converted aircraft.
P-51C-5-NT Same as P-51B-15-NA. 42-103329 to 103378, 42-103379 to 103778.
P-51-C-10-NT Production model with stabilizing fin extension. 42-10818 to 103978, 43-24902 to 25251, 44-10753 to 10782, 44-10818 to 10852, 44-10859 to 11036, 44-11123 to 11152.
P-51C-11-NT Production model. 44-10783 to 10817, 44-10853 to 10858,44-11037 to 11122.
F-6C Photoreconnaissance. Converted Aircraft.
TP-51C Dual control trainer. Converted Aircraft.

(Marshall & Ford, O’Leary)

Video

Gallery

Illustrations by Ed Jackson

XP-51B, 312093. The XP-51B’s were a pair of earlier Mustangs converted to use the Packard V-1650-3. Their cooling systems would prove the most troublesome, though the general teething issues these aircraft experienced were harsh and varied.
P-51B-7-NA 43-6913 ‘Shangri-La’. Debden, UK 1944. Debden ,UK 1944. This aircraft was flown by Capt. Don Gentile of the 4th Fighter Group, one of the unit’s leading aces.
P-51B. 325th Fighter Group. Poltava, USSR 1944. The 325th was among the units that participated in Operation Frantic, where they supported a series of USAAF raids launched from within the Soviet Union during the summer and fall of 1944.
P-51B-5-NA, 43-12214 ‘Rebel Queen’. Debden, UK 1944. This aircraft was flown by Col. Don Blakeslee, Commanding Officer of the 4th Fighter Group. This aircraft is an early production P-51B which had been equipped with a Malcolm Hood bubble canopy, this modification greatly improved visibility.
P-51C-10-NT ‘By Request’. Ramitelli, Italy 1944. This aircraft was flown by Col. Benjamin Davis, Commanding Officer of the 332nd Fighter Group. This is a late model which has been fitted with a fin fillet, extending from the vertical stabilizer. This addition greatly improved the aircraft’s stability in rolls and high speed dives.

B-17’s accompanied by a P-51B over England, March 1945.[National Archives]
A collection of P-51’s accompany a flight of B-24s of the 8th Air Force, near England. 1944. [National Archives]
The Malcom Hood bubble canopy would offer pilot’s great visibility compared to the ‘birdcage’. [National Archives]
The P-51A can be easily differentiated from its merlin powered counterpart by the tube shaped carburetor intake over the nose. [wikimedia]
Though most P-51B’s would be sent to Europe, some would serve in the China-Burma-India theater. Here a Mustang cruises alongside a C-47. [National Archives]
Ground crew pose alongside one of their planes. [National Archives]
A P-51B in the CBI theater is cleaned. This plane has had its exhaust fairing removed, a fairly common modification made in the field which some pilots believed cut down on drag. [National Archives]
A P-51B comes in to land, the wide tire tread and wheel base of these planes helped give these planes good landing and ground handling. [National Archives]
Ground crew pose with one of their planes, the tail fin extension as equipped to this plane helped alleviate some of the aircraft’s less desirable characteristics when it was rolled. [National Archives]
Among the challenges caused by segregation for the 332nd were personnel shortages. The only available training facility at Tuskegee struggled to turn out enough pilots and ground crew to support the segregated squadrons. Mechanics and armorers were among the most affected, especially when the fighter group rapidly transitioned from P-39’s, P-47’s, and P-40’s to P-51’s over the late spring and summer of 1944. [National Archive]
P-51B’s of the 325th Fighter group accompany bombers on their way to the Soviet Union during Operation Frantic. [National Archives]
The success of Operation Overlord saw the redeployment of many USAAF units to the continent. These P-51’s of the 9th AF were the first to be deployed to France. [National Archives]
The F-6C was a photo-reconnaissance variant that had a camera installed in the fuselage, the lens cover for which sits here just behind the radiator scoop. This model was credited with the last kill in the ETO, after downing a Fw 190 on May 8 1945 (Dean 339). [Wikimedia]

Credits

  • Written by Henry H.
  • Edited by  Ed Jackson & Henry H.
  • Illustrations by Ed Jackson

Sources

Primary:

  • Flight Tests On The North American P-51B-15 Airplane, AAF NO. 43-24777, 1944.
  • Preliminary Results of Performance Tests on a P-51B Airplane with 44-1 Fuel P-51B-5-NA, V-1650-7 Engine. 1944.
  • P-51B-15-NA 43-24777 (Packard Merlin V-1650-7) Performance Tests on P-38J, P-47D and P-51B Airplanes Tested with 44-1 Fuel. (GRADE 104/150). 15 May, 1944.
  • Matthews, H. F. Elimination Of Rumble From The Cooling Ducts Of A Single-Engine Pursuit Airplane. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. 1943.
  • Messerschmitt A.G. Augsburg. (1944). Leistungen Me 109 G-14/U4 mit Db 605 Am u. Asm. 1944.
  • Pilot Training Manual for the Mustang. United States Army Air Force, 1943.
  • Pilot’s Flight Operating Instructions P-51B-1 Airplane. Evansville, Indiana: United States Army Air Force, 1943.
  • Pilot’s Notes for Mustang III Packard Merlin V-1650-3 Engine. Air Council, 1944.
  • Wilkinson, Paul. Aircraft Engines of the World. 1944.
  • The United States Strategic Bombing Survey: Over-All Report (European War). U.S. Govt. Printing Office, 1945.

Secondary:

  • Bucholtz, Chris. 332Nd Fighter Group: Tuskegee Airmen. Oxford: Osprey Publishing, 2007.
  • Bucholtz, Chris. 4Th Fighter Group “Debden Eagles”. Oxford: Osprey Publishing, 2008.
  • O’Leary, Micheal. Building the P-51 Mustang the Story of Manufacturing North American’s Legendary WWII Fighter in Original Photos. Specialty Pr Pub & Wholesalers, 2011.
  • Dean, Francis H. America’s Hundred Thousand: the US Production Fighter Aircraft of World War II. Schiffer Publ., 1997.
  • Douglas, Calum E. Secret Horsepower Race: Second World War Fighter Aircraft Engine Development on the Western Front. TEMPEST, 2020.
  • Ethell, Jeffrey L. Mustang: A Documentary History of the P-51. London: Jane’s, 1981.
  • Haulman, Daniel L. Nine Myths about the Tuskegee Airmen. October 21, 2011.
  • Marshall, James William; Ford, Lowell. P-51B Mustang: The Bastard Stepchild that saved the Eighth air force. Bloomsbury Publishing Plc. 2020. (Electronic)
  • Moye, J. Todd. Freedom Flyers: The Tuskegee Airmen of World War II. New York, NY: Oxford University Press, 2012.
  • Overy, Richard James. The Bombing War: Europe 1939-1945. London: Penguin Books, 2014.

Nakajima Ki-115 Tsurugi

 Empire of Japan (1945)
Kamikaze Aircraft – 105 Built

The Ki-115 suicide aircraft [Combat Workshop via Pinterest]

Throughout 1945, it was becoming clear to Japanese Army Officials that an Allied invasion of the Japanese mainland was growing ever more likely. Seeing as their navy and airforce had been mostly destroyed, they needed new weapons to fight off a probable Allied attack on Japan. Among these new weapons were Kamikaze aircraft, with many older designs having already been used in this role. However, some Kamikaze aircraft were to be specially designed for such a role, being cheap and able to be built quickly and in great numbers. One such aircraft was the Ki-115 Tsurugi (Sabre) which was built in small numbers, and never used operationally.

History

Rear view of Ki-115 suicide aircraft [ijaafphotos.com]
Following the extensive loss of men, materiel, and territory during the fighting in the Pacific, the Japanese Army and Navy were in a precarious situation, especially as there was a great possibility of an Allied invasion of their homeland. Unfortunately for them, the Japanese fighting forces on the ground, in the air, and on the sea were mostly mere shadows of their former selves, unable to prevent the rapid Allied advance across the Pacific. This was especially noticeable after the costly Japanese naval defeat during the Battle of Leyte Gulf in October 1944 and later Battle of Okinawa which ended in July 1945.. The desperation, or better said fanatical refusal to accept that the war was lost, led to the development and use of Kamikaze (divine wind) tactics. This name was taken from Japanese history, the term arose from the two typhoons that completely destroyed the Mongol invasion fleets.

Essentially, the Kamikaze were Japanese pilots that used their own explosive-laden aircraft as weapons, and sought to crash into important targets, such as Allied warships. This term also entered widespread use to designate all Japanese suicide craft used in this way. During the war, these tactics managed to sink over 30 Allied ships and damage many more.

Allied anti-aircraft fire was often concentrated in order to prevent Kamikaze attacks. But, despite this, Japanese aircraft would often get through. [Wiki]
The suicide attacks were mostly carried out using any existing aircraft that was operational, including older trainers and obsolete aircraft. Kamikaze are a subject with a great deal of nuance and can be difficult to understand through a conventional lens. However, supplies of these aircraft would inevitably become limited and their previous usage meant fewer would be serviceable compared to newer, more expensive models. Thus, the Japanese Army wanted a specially designed Kamikaze aircraft that could be produced in great numbers. These aircraft needed to have a simple construction and use as little of dwindling material stockpiles as possible.

On 20th January 1945, the Japanese Army contacted the Nakajima aircraft manufacturer with instructions to design and build such an aircraft. The basic requirements included a bomb load up to 800 kg (1,760 lbs). It had to be able to be powered by any available radial engine in the range of 800 hp to 1,300 hp. The maximum speed desired was 515 km/h (320 mph). Construction and design had to be as simple as possible. They also wished to speed up the whole development and production process and also to reduce the need for skilled labor. It was especially emphasized that the undercarriage had to be jettisonable, not retractable. It was not expected for the aircraft to fly back, so a retractable landing gear was not needed and this would make the production and design process somewhat quicker.

First Prototype

The job of designing this aircraft was given to Engineer Aori Kunihiro. He was supported by engineers from Ota Manufacturing and the Mitaka Research Institute. While Nakajima received the contract in January 1945, it only took two months to complete the first prototype. In March 1945, this prototype was presented to the Japanese Army and then put through a series of tests. Almost immediately, a series of faults with the design were noted. This was not surprising given that the whole design process lasted only two months. During running on the ground, the fixed and crude undercarriage was difficult to control. The pilot’s poor frontal visibility further complicated matters. This was unacceptable even for skilled pilots, while less experienced pilots would have had great difficulty in successfully operating it on the ground. The Army rejected the prototype and requested a number of modifications to be done.

The Ki-115 first prototype. [ijaafphotos.com]
The Ki-115 cockpit was positioned in the middle of the fuselage and offered the pilot limited forward vision when on the ground. [Wiki]

Technical Specifications

The Ki-115 was designed as a low-wing mixed construction suicide attack aicraft. The front fuselage, containing the engine compartment, and the central part were built using steel panels. The engine compartment was held in place by four bolts and was specially designed to house several different potential engines. Eventually, the Japanese chose the 1,130 hp Nakijama Ha-35 14 cylinder radial piston engine. It had a fixed-pitch three blade propeller. In order to help reach its target quicker, two small auxiliary rocket engines were placed under each wing.

The wings were built using all-metal construction with stressed skin. The rear tail unit was built using wood and was covered by fabric. The cockpit was placed in the upper centre of the fuselage. It was semi-open, with a front windshield.

As requested, the Ki-115 prototype had a fixed and jettisonable undercarriage. It had a very simple design, using simple metal tubes with no shock absorbers. While two wheels were used in the front, a tailskid was used at the rear. The fixed undercarriage tested on the prototype proved to be highly ineffective. All later produced aircraft were instead equipped with a simple and easy to build shock absorber.

Ki-115 side view [ijaafphotos.com]
The armament consisted of a bomb load of up to 800 kg (1,760 lbs). This included using either a single 250 kg (550 lb), 500 kg (1.100 lb) or 800 kg (1.760) bomb. The bomb was not to be dropped on the enemy, but instead be detonated once the aircraft hit its target. Beside the bomb, no other armament was to be provided on the Ki-115.

The Ki-115 was initially meant to be supplied with a fixed undercarriage, which proved to be problematic. Production aircraft were instead provided with simple shock absorbers. [ijaafphotos.com]

The Fate of the Project

Once the prototype was back in Mitaka Kenkyujo (where the prototype was built), the engineers began working on improving its performance. The redesigned undercarriage, which incorporated a simple shock absorber, was completed by June 1945, by which time a series of test flights were done. By August 1945, some 104 Ki-115 aircraft were ready. Two Ki-115s were given to Hikoki K.K., where the Japanese Navy Air Force was developing its own suicide attack aircraft. By the war’s end, none of the Ki-115s built would be used in combat.

Surviving Aircraft

The Ki-115 planes were later captured by the Allies, and nearly all were scrapped. Surprisingly, two Ki-115s have survived to this day. One can be seen at the Pima Air & Space Museum. This aircraft is actually on loan from the National Air and Space Museum. The second aircraft is currently located in Japan. Not wanting to potentially damaged tis aircrafts on the side of caution no restoration attempts are planned for the near future.

The surviving Ki-115 at the Pima Air & Space Museum. [Wiki]
A picture of the second surviving aircraft taken during the 1980’s in Japan. [hikokikumo.net]

The Ki-115b Proposal

In order to further improve the aircraft’s performance and reduce cost, the Ki-115b version was proposed. This included replacing the all-metal wings with ones built of wood. These new wings were larger and had to be equipped with flaps. To provide the pilot with a better view, his cockpit was moved to the front. Due to the end of the war, nothing came from this proposal.

Production and Modifications

The Ki-125 was built in small numbers only, with some 104 production planes plus the prototype. These were built by the two Nakajima production centres at Iwate (22 aircraft) and Ota (82 aircrafts). The production lasted from March to August 1945.

  • Ki-115 prototype – Tested during early 1945.
  • Ki-115 – In total, 104 aircraft were built, but none were used operationally.
  • Ki-115b – Proposed version with larger wooden wings, none built.
Only 105 Ki-115 aircraft, including the prototype, were ever built. [ijaafphotos.com]

Conclusion

Luckily for the Japanese pilots, the Ki-115 was never used operationally. It was a simple and crude design which was born out of desperation. If the Ki-115 was ever used in combat, it would have likely presented an easy target for enemy fighters and suffered from poor reliability due to its cheap construction.

Ki-115 Specifications
Wingspan 28 ft 2 in / 8.6 m
Length 28 ft 1 in / 8.5 m
Height 10 ft 10 in / 3.3 m
Wing Area 133.5 ft² / 12.4 m²
Engine One 1,130 hp Nakijama Ha-35 14 cylinder radial piston engine
Empty Weight 3,616 lbs / 1,640 kg
Maximum Takeoff Weight 6,440 lbs / 2,880 kg
Maximum Speed 340 mph / 550 km/h
Cruising speed 186 mph / 300 km/h
Range 745 miles / 1,200 km
Crew Pilot
Armament
  • Bomb load up to 1,760 lbs (800 kg)

Gallery

Illustrations by Ed Jackson

Another Ki-115 Tsurugi in Natural Metal with 500kg Type 92 Bomb
Ki-115 Tsurugi in Green with 500kg Type 92 Bomb
Ki-115 Tsurugi in Natural Metal with 500kg Type 92 Bomb

Credits

  • Written by: Marko P.
  • Edited by: Stan L. & Henry H.
  • Illustrations by Ed Jackson

Sources

  • R. J. Francillon (1970) Japanese aircraft of the Pacific war, Putham and Company
  • D. Nešić (2007) Naoružanje Drugog Svetskog Rata Japan, Tampoprint
  • D.Mondey (2006) Guide To Axis Aircraft Of World War II, Aerospace Publishing