The Messerschmitt Me 109, although an outstanding aircraft, still had room for improvement. Its most noticeable shortcomings included a rather small operational radius, significantly reducing its combat potential in prolonged engagements. To address this, Messerschmitt initiated the development of a successor model designated as the Me 309. However, from the outset, this new fighter was plagued with numerous mechanical faults that could not be resolved in the foreseeable future. Consequently, only four prototypes were built before the project was ultimately canceled.
The Me 309 first prototype. Source: https://www.luftwaffephotos.com/lme2091.htm
History
At the onset of the Second World War, Germany relied heavily on the Me 109 as its primary fighter aircraft. Renowned for its exceptional performance and cost-effectiveness, the Me 109 outmatched most of the enemy fighters it encountered over Europe. Following the fall of France in June 1940, Germany launched a significant bombing campaign against the UK. This prolonged engagement highlighted a critical issue: the Me 109’s limited operational range prevented it from carrying out long-range fighter sweeps, or being usable as a bomber escort.
Recognizing the urgent need for enhancements, Messerschmitt began experiments on improving the performance, and range, of the Me 109. Initial assessments underscored the necessity for substantial improvements, including an 85% increase in operational range and a minimum 25% boost in maximum speed. Additionally, there were aspirations to augment its firepower, introduce a pressurized cockpit, implement a tricycle undercarriage, and incorporate retractable radiators. Before commencing work on a completely new fighter, Messerschmitt opted to experiment with these features by modifying an existing Me 109F
Some of the changes such as the tricycle undercarriage were first tested on one Me 109. Source: https://militarymatters.online/forgotten-aircraft/the-messerschmitt-me-309-redundant-beauty/
The new fighter project was initiated by Messerschmitt in 1940. However, the German Aviation Ministry (RLM) was not enthusiastic about it, after significant delays. Actual work on the project didn’t commence until the end of 1941. The project, designated Me 309, was led by Woldemar Voigt and Richard Bauer. It’s worth noting that Messerschmitt’s previous attempt to develop a fighter, based on the record-breaking Me 209, failed because its airframe wasn’t suitable for military purposes. Despite the RLM’s initial skepticism towards the Me 309, they eventually ordered nine prototypes.
The side view of the Me 209V1 prototype. While initially used as a speed record-breaker, Messerschmitt tried to adopt it for the military role but ultimately failed in this. Source: ww2fighters.e-monsite.com
The first Me 309 V-1 (GE-CU) prototype was completed in June 1942, and immediately underwent ground trials at the end of that month. However, almost from the outset, a major issue became apparent, the new landing wheel configuration proved difficult to control on the ground. Subsequent flight tests revealed additional challenges, including strong vibrations at high speeds. In July 1942, after a series of modifications, the prototype underwent flight testing once more, only to encounter new problems with the landing gear. The hydraulic retraction system was found to be inadequate, and issues with engine overheating and aerodynamic instability persisted. On one occasion, test pilot Karl Baur was forced to abort the flight after just seven minutes in the air.
Addressing these issues required further modifications, including redesigning the tailplane and improving the hydraulic system for the landing gear. Despite these efforts, subsequent test flights did not yield significant improvements in the overall flight performance of the Me 309. Messerschmitt’s test pilot, Fritz Wendel, expressed dissatisfaction with the aircraft, noting that its flight characteristics were not markedly superior to those of the Me 109. He criticized the high landing speed and the poor design of the control surfaces.
Not ready to abandon the Me 309 prematurely, the first prototype underwent evaluation at the Rechlin test center for further assessment. On the 20th of November 1942, a report was issued deeming the overall performance of the Me 309 unpromising, even inferior to the new Me 109G. Consequently, the RLM reduced the initial production order from nine prototypes to just four. Initially, the RLM had little enthusiasm for the Me 309, and still preferred instead to prioritize increased production of the Me 109. Introducing another fighter design would inevitably cause production delays. Compounding the industrial challenges, perfecting the Me 309 design would likely require additional time, months if not years of work.
Despite these setbacks, the development of the Me 309 continued at a sluggish pace. The first prototype was initially equipped with a 1,750 hp DB603A-1 engine. It would later be replaced by a 1,450 hp DB 605B engine instead during the testing phase. During one landing, the front landing gear collapsed, causing the aircraft to nose down. Fortunately, the damage sustained was minor. However, the same couldn’t be said for the second prototype (GE-CV), which underwent flight testing on November 28, 1942. Upon landing during its maiden flight, the front landing gear failed, resulting in a hard impact on the ground. The force of the impact nearly split the aircraft into two parts, rendering it extensively damaged and subsequently written off. Despite this setback, two more prototypes were constructed during 1943.
The Me 309 had a troublesome landing gear and a tendency to flip over the nose. In one such accident, the second prototype was lost. Source: https://militarymatters.online/forgotten-aircraft/the-messerschmitt-me-309-redundant-beauty/
Technical characteristics
The Me 309 was conceived as a single-seat fighter, featuring an all-metal construction with a low-wing design. There is limited information available regarding its overall construction. The fuselage was of an oval shape, while the wings were characterized by a dihedral angle with rounded tips, accompanied by automatic leading-edge slots for better maneuverability at low speed. Notably, the wings also incorporated large flaps extending from the wing roots to the ailerons’ end. The canopy was fully glazed, affording excellent visibility of the surroundings.
There is some disagreement among available sources regarding the precise engine used in this aircraft. According to J.R. Smith and A.L. Kay in (German Aircraft of WWII) it was initially powered by a 1,750 hp DB 603A-1 engine, which enabled the Me 309 to achieve a maximum speed of 733 km/h at an altitude of 8,500 meters. This claim is supported by B.C. Wheeler in (Aviation Archive: German Fighters of WWII) although Wheeler does not specify which DB 603 engine was used. On the other hand, Jean-Denis G.G. Lepage, in (Aircraft of the Luftwaffe) mentions that the Daimler-Benz DB 603G engine model was used, with the same maximum speed being achieved. The DB 603G is the likely most correct engine used on the Me 309, considering it was an experimental high-altitude model that never entered mass use.
The later prototypes were powered by a smaller 1,450 hp DB 605B engine. Even the first prototype was eventually reequipped with this engine. As a result, the overall performance dropped significantly to 575 km/h, according to D. Nesić (Naoružanje Drugog Svetsko Rata-Nemačka).
With a fuel capacity of 880 liters, its operational range extended to 1,400 km. Equipped with a retractable ventral radiator positioned under the fuselage, the aircraft’s landing gear retracted inward into the wings. A notable departure from convention was the absence of the standard tailwheel; instead, it featured a nosewheel, retracting rearward into the fuselage’s front section.
The Me 309 was initially tested with the DB 603A-1 engine with which it achieved a maximum speed of 733 km/.h. Source: http://www.luftwaffephotos.com/lme2091.htmRear view of the Me 309. Source: http://www.luftwaffephotos.com/lme2091.htmThe Me 309 incorporated some new features such as the new landing gear and a retracting radiator both of which can be seen here. Source: airpages.ru
Fate
Despite the considerable investment of time and resources into the Me 309 project, its overall flight performance fell short, ultimately leading to the project’s demise. By the beginning of 1943, the RLM had lost interest in the aircraft, prompting the cancellation of the project after the completion of four prototypes. Despite the cancellation, Messerschmitt proceeded to develop two additional prototypes.
One of these, the Me 309V-3 (CA-NK or CA-CW), was intended as a replacement for the lost V-2 prototype. Its maiden flight took place in March or April of 1943. The fourth prototype marked a significant milestone as it was the first to be equipped with offensive armament, including four 13 mm MG 131 (300 rounds), two 20 mm MG 151 (150 rounds), and two 30 mm MK 108 (65 rounds) cannons. Alternatively, it could be outfitted with two 15 mm MG 151 cannons and three 13 mm MG 131s. Although these armaments were primarily experimental and not used operationally, they were essential for various testing purposes.
Unfortunately, the fate of the last two prototypes remains unclear, with records suggesting they were lost during Allied bombing raids in 1944.
Despite the Messerschmitt hope the Me 309 would not be adopted for service, and the few built prototypes would be mainly used for various testing and evaluation. Source: http://www.luftwaffephotos.com/lme2091.htm
Even before the official cancellation, Messerschmitt officials were hopeful for a larger production order. To this end, they presented several variant proposals for the Me 309. The Me 309A was designed as a fighter variant, equipped with one MG 151 cannon and two MG 131 machine guns. The Me 309B was intended to serve as a fighter-bomber variant, armed with two 250 kg (550 lbs) bombs. As for the Me 309C, it was designed as a destroyer, featuring three MG 151 cannons and up to four MG 131s. An intriguing proposal was the Me 309 Zwilling (Eng. Twins), which involved two aircraft joined together in a configuration reminiscent of the post-war US F-82, but ultimately, this concept did not materialize.
A drawing of the proposed Me 309zw aircraft. Source: D.Sharp Luftwaffe: Secret Designs of the Third Reich
Interestingly in 1944 Japan expressed interest in its design and asked for plans and drawings of the Me309V-3 aircraft. But nothing came of this in the end.
Prototypes
Me 309V-1 – First prototype powered by a 1,750 hp DB 603A-1 engine
Me 309V-2 – Second prototype lost during the first test flight
Me 309V-3 – This prototype was built in early 1943 as a replacement for the second prototype
Me 309V-4 – First prototype to be armed.
Proposed Variants
Me 309A – Proposed fighter variant
Me 309B – Proposed fighter-bomber variant
Me 309C –Proposed destroyer variant
Me 309zw- Proposed twi-aircraft configuration
Conclusion
The Me 309, despite the investment and the hope that it would be an adequate successor to the Me 109, proved to be a troubled design and pulled down by wartime pragmatism. From the start, it was plagued by various mechanical problems that were never resolved. The fact that RLM was never interested that much in such a project did not help either. As it would take considerable time to fully remediate all the noted issues, the project was abandoned in favor of the latter Me 262.
Me 309V-1 Specifications
Wingspans
11.04 m / 36 ft 2 in
Length
9.46 m / 31 ft 1 in
Height
3.4 m / ft
Wing Area
16.55 m² / 178.08 ft²
Engine
One 1,750 hp DB 603A-1
Empty Weight
3,530 5kg / 7,784 lbs
Maximum Takeoff Weight
4,250 kg / 9,371 lbs
Maximum Speed
733 km/h / 455 mph
Cruising speed
665 km/h / 413 mph
Range
1,400 km / 870 miles
Maximum Service Ceiling
12,000 m / 39,360 ft
Climb to 8 km
In 10 minutes
Crew
1 pilot
Armament
Illustration
Credits
Written by Marko P.
Edited by Henry H.
Illustrations by Oussama Mohamed “Godzilla”
Source:
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putnam
D. Myhra (2000) Messerschmitt Me 209V1, Schiffer Military History
M. Griehl () X-planes German Luftwaffe prototypes 1930-1940, Frontline Book
D.Sharp (2018) Luftwaffe: Secret Designs of the Third Reich, Mortons
Jean-Denis G.G. Lepage (2009) Aircraft Of The Luftwaffe, McFarland & Company, Inc
B. C. Wheeler (2014) Aviation Archive German Fighters of WWII, Kelsey Publishing Group
Independent State of Croatia (1944-1945)
Fighter – 15 to 30 Operated
Following the collapse of the Kingdom of Yugoslavia after the Axis invasions in April of 1941, the Nezavisna Država Hrvatska (Eng. Independent State of Croatia) was created. It immediately began forming its military, including an air force. This air force, while managing to acquire a few hundred aircraft of various types, always lacked fighter planes. Nothing major was done to improve them in this regard up to 1944, when finally, Germany agreed to send a small group of Me 109’s to the NDH to bolster their fighter force.
After Italy’s unsuccessful invasion of Greece, Benito Mussolini was forced to ask his German ally for help. Adolf Hitler agreed to assist, fearing that a possible Allied attack through the Balkans would reach Romania and its vital oil fields. In the path of the German advance towards Greece stood Yugoslavia, whose government initially agreed to join the Axis side. This agreement was short-lived, as the Yugoslav government was overthrown by an anti-Axis, pro-Allied military coup at the end of March 1941. Hitler immediately gave an order for the preparation of the invasion of Yugoslavia. The war that began on 6th April 1941, sometimes called the April War, was a short one and ended with a Yugoslav defeat and the division of its territory between the Axis powers.
With the collapse of the Kingdom of Yugoslavia, Croatia, with German aid, was finally able to declare independence, albeit becoming a fascist puppet state. It was officially formed on the 10th of April 1941. The new state received a significant territorial expansion by annexing most of western Yugoslavia, including Bosnia, parts of Serbia, and Montenegro.
While the conquest of the Kingdom of Yugoslavia proved to be an easy task for the Axis, holding these territories proved to be much more difficult. This was mainly due to two major resistance movements that were actively engaged in sabotage, destroying railways and bridges, and attacking isolated occupation units’ positions and strong points. Despite attempts to suppress these attacks, the resistance movements, especially the Communist Partisans, grew rapidly, forcing the Germans and their Allies to introduce ever-larger occupation forces. The NDH forces were especially targeted by the resistance as they committed numerous war crimes, including mass murders and deportations to concentration camps. Thanks to German help, they managed to form a small air force that had in its inventory all kinds of obsolete, and in rare cases, modern equipment. By 1943, it was in the process of reorganization, and the NDH officials during this period often asked their German overlords for more modern aircraft. Sometimes they even portrayed their own Air Force as being weaker than it was in the hope of getting military aid. Eventually, near the end of the war, several dozen Me 109s were sent from Germany to NDH.
A Brief Me 109 History
The Me 109 was Willy Messerschmitt’s response to the German Air Force’s request for a modern fighter in 1934. Despite being a completely unknown aircraft designer, his aircraft, thanks to its simplicity and performance, easily beat the competition. Soon after it entered mass production in 1936. It was quite an advanced design for its time and superior to most fighters around the world. Over the years various versions were built, each introducing various modifications. Some were even specially made for various other roles, such as training or reconnaissance. By the end of the war over 30.000 were built making it the second most produced military aircraft in history. Given the sheer number of produced aircraft, it should not be surprising that many were sold or given to various nations in Europe.
One of the most iconic fighters of the Second World War was the Me 109. Source: Wiki
The Need of the NDH Air Force
Following the collapse of the Kingdom of Yugoslavia, the NDH began organizing its newly created armed forces. Its air force was created on the 19th of April, 1941. Immediately, work began on creating an adequate structural organization, acquiring manpower, and procuring equipment. Initially, plans for arming this Air Force were ambitious and included acquiring the newest German aircraft design. For example, the main fighter aircraft was to be the Me 109E. A single fighter group would consist of 22 such aircraft. The Germans on the other hand decided to ignore this request, as these planes were needed for the upcoming invasion of the Soviet Union. They also did not fully trust the NDH officials. As a compromise, the NDH air force was to be equipped with the stockpiles of captured Yugoslavian aircraft. The Germans, once again disappointed in the state of their air force, gave the NDH only those aircraft that were mostly obsolete while transferring the better aircraft, like the Hurricanes, to Romania instead.
Prior to the war the Kingdom of Yugoslavia operated a number of modern Me 109E fighters. Despite the NDH’s constant requests to the Germans to deliver at least some of these nothing came of this. Source: www.paluba.info
Under German Command
While the Germans did not provide the NDH with the Me 109, the Croatian pilots still got the chance to fly on them. While receiving no major import of equipment from their ally, the NDH still wanted to have a good relationship with the Germans. When the massive invasions on the Soviet Union were launched, while the NDH did not directly participate in this attack, its government issued a proclamation for volunteers at the start of July 1941. It called for volunteers among the Croatian population to join the German Army. The NDH Air Force also contributed to this voluntary enlisting. While it lacked equipment, it did not have shortages of personnel willing to go and fight the Soviets. For this purpose, the 4th Air Force Regiment was formed. It consisted of the 4th Air Force Fighter Group and the 5th Air Force Bomber Group. The 4th Group had in total over 200 members. Once assembled, the fighter group was transported to Furth in Germany where their training was to commence. The training officially began on the 19th of July 1941. For this purpose, the Germans provided some Bu 133, Ar 96, and even some older Me 109D planes. During the training process, one pilot was killed in an accident. During this period the 4th Group was divided into two newly created 10th and 11th squadrons
At the end of September 1941, elements from the 10th Squadron were sent to fight on the Eastern Front. They arrived on the 6th of October and were allocated to the Jagdgeschwader (Eng. Fighter wing) 52. They were to pilot five allocated Me 109Es, with six more being expected to arrive later. Their first combat flight mission occurred on the 9th of October. They were patrolling the area around Ahtijevka-Krasnograd when the unit spotted a lone Soviet aircraft. It was engaged and shot down by a German pilot who served as a liaison officer in this unit. The following month saw the unit mainly tasked with patrolling and protecting the German airfields in this region. On the 2nd of November, the first air victory was achieved by Croatian pilots. Seven days later another victory was scored. On the 16th of November, the German liaison officer Lieutenant Baumgarten managed to achieve another victory. He died two days later when he collided in mid-air with a Soviet Aircraft. At the end of November, a Soviet I-16 fighter was shot down. At the start of the following month, the first Croatian pilot, Ivan Karner, lost his life in an accident.
During December they were stationed in the Azov area. During January, pilots from this unit managed to shoot down some 23 Soviet aircraft. By April 1942, 12 more enemy aircraft were shot down over the Kerch Peninsula. In May, the whole unit was renamed to Jagdgruppe Džal (Eng. Fighter Group Džal) which was a common thing for the Germans to name particular military groups for their commanders, in this case, Colonel Franjo Džal. By that time the unit operated the older Me 109E and requested the delivery of newer models. In July 1942, the first Me 109G-2 version began to reach this unit. July and August were quite successful for the Croatian pilots who achieved many air victories, some 137 at that point, against various types of Soviet aircraft, despite being used mainly for support missions.
The Croatian pilots returned to the NDH at the end of 1942 for rest and recuperation. By this point, they had achieved 164 confirmed air victories over 3,300 flights. The best fighter ace of this unit was Cvitan Galić who was credited with 24 air victories, plus 7 more that were not confirmed. The unit was not without casualties as six pilots were lost. After a few months spent resting, they returned to the Soviet Union in February 1943. They were stationed in Crimea and saw heavy action there. Interestingly they encountered Allied-supplied Spitfires and P-39s. While they continued bringing down many more Soviet pilots, the rapid deterioration on the frontlines caused some of these pilots to second-guess their place in the war. In May and June, at least three pilots defected to the Soviet Union. Fearing that more would follow, the Germans prohibited any further flights by Croatian pilots. The unit commander was temporarily removed from this post but reinstated later in September 1943. In late October more combat flight patrols with new pilots were initiated. The 4th Group in October had only 8 fully operational aircraft.
The 4th Group mainly operated the Me 109E with a better model arriving later into the war. Source: www.destinationsjourney.comIn July 1942 first Me 109G-2 fighter versions began to reach this unit, followed by many more different versions. Source; T. Likso and D. Čanak The Croatian Air Force In The Second World War
This unit would remain active on the Eastern Front in 1944. In September 1944, two more pilots defected to the Soviet Side, forcing the Germans to once again forbid the remaining Croatian pilots from flying. In November, the unit was disbanded and its personnel received infantry training. In early 1945 these saw action as standard infantry in Poland. After March 1945 those that survived were sent back to the NDH. In total the 4th Group that served over four years on the Eastern Front was credited with the destruction of over 300 enemy aircraft.
Despite being a small unit the 4th Squadron pilots managed to claim 300 enemy aircraft. Source: T. Likso and D. Čanak The Croatian Air Force In The Second World War
In NDH service
It was not until early 1945 that the first Me 109 began to arrive in the NDH itself. These included the G-6, 14, and 10 variants. These aircraft were acquired for the 4th Fighter Group (11th and 12th Squadrons). While nominally part of the NDH Air Force, the 4th Fighter Group was actually under the direct control of the Germans. While 15 aircraft were to be delivered, 5 of them never reached Croatia as they were lost during the transit. These numbers are according to T. Likso and D. Čanak. (The Croatian Air Force In The Second World War). However, both authors expressed their doubts about the precise number of delivered aircraft. They believe that that number was actually higher and that more than 15 aircraft were delivered.
Author V. V. Mikić (Zrakoplovstvo Nezavisne Države Hrvatske 1941-1945) gives a different account. According to him, some 30 Me 109s were allocated to the NDH service. The first 10 aircraft arrived at the end of November 1944. The second group of 10 aircraft reached NDH at the end of 1944. The last 10 were to arrive in January 1945. On transit flight two of them accidentally collided, with one more benign heavily damaged during the landing.
In The Balkans
Given that these fighters arrived late into the war, there is little surviving documentation that mentions their use in combat. In March, two Me 109s were used to attack a partisan airfield Smrdan but without any success.
During March and April 1945, some of these newly arrived aircraft were used for crew training. These flights mainly lasted between 10 to 15 minutes, and the older Me 109G-6 was used for this purpose. On the 26th of March, and later on the 2nd of April, ground attacks against Partisan-held airfields were made.
By 1945, defections from the NDH’s forces became a common occurrence, and they were having a hard time keeping the Army intact. The Air Force was not an exception to this, as its pilots often managed to escape either to the Allies in Italy, or the Yugoslav Partisans. On the 16th of April 1945, while flying a patrol mission, two Me 109s escaped to Italy and surrendered to the Allies. These were piloted by Josip Ceković, flying aMe 109G-10, and Vladimir Sandtner, in a Me 109G-14. The first pilot escaped to Falconara and the latter to Ancona. Allegedly, these two fighters had acted as a guard to a secret NDH delegation that was to fly to Italy and ask the Allies for peace, and possibly even switch sides.
In late April 1945 pilot Josip Ceković while flying a Me 109G-10 escaped to Falconara in Italy and surrendered to the Allies. Source: www.britmodeller.com
Two more pilots deserted with their aircraft, both flying Me 109G-10s, on the 20th of April. These were part of a group of four Me 109s that were tasked with attacking Partisan ground targets. Instead, two pilots defected and flew to the city of Mostar, which was at that time in Partisan hands. They were immediately put into partisan service after the NDH symbols were repainted. On the 7th of May, they saw action against the retreating Axis ground forces.
On the 23rd of April 1945 while on patrol, two NDH Me 109s spotted two Allied P-51s. The Me 109 pilots managed to fly at a close range of some 80 meters and opened fire. One of the P-51s caught fire, and while the pilot tried to escape a second burst of cannon fire from the Me 109 brought it down. They were intercepted by two more P-51s. The NDH aircraft, despite receiving many hits, managed to damage another P-51. As more Allied fighters began to approach this engagement, the Me 109s began to fly away toward their base of operation, managing to escape the pursuers.
The few remaining Me 109s were used in the last days of the war. They tried to defend the Axis positions at the Sermian Front in the Eastern part of Croatia. This was a vital defense line for the remaining Axis Forces that was for some time besieged by the advancing Partisans. During this time, the Me 109 participated in a few skirmishes with the Partisan-operated Yak fighters. The NDH Me 109s generally avoided direct fights as they were severely outnumbered.
In the last days of the war, many of the Me 109 escaped to Austria. It is believed that up to 17 aircraft made this flight, and they were left abandoned, later to be put to use by the advancing Partisans
Camo and markings
The NDH Me 109s were left in German late time war-type camouflages. This usually consisted of Dunkelgrun (Eng. Dark green) and Grau (Eng. Grey) on the upper aircraft surfaces, and Hellblau (Eng. Sky Blue) on the lower surfaces. A yellow-painted ring followed the black nose. To the rear, the usually yellow-painted band that goes around the fuselage was repainted in green. A standard Croatian white and red checkerboard coat of arms was painted on the tail unit. Starting from 24th February 1945 the NDH Air Force introduced the use of a black trefoil that was painted on the aircraft fuselage sides or wings.
A good view of the NDH Me 109 side view, notice the large black trefoil that was painted on the aircraft fuselage sides or wings. Source: falkeeins.blogspot.com
Technical Specification
The Bf 109 was a low-wing, all-metal, single-seat fighter. To keep the production of this aircraft as simple as possible, Messerschmitt engineers decided to develop a monocoque fuselage that was divided into two halves. These halves would be placed together and connected using simple flush rivets, thus creating a simple base on which remaining components, like the engine, wings, and instruments would be installed.
In order to provide room for the retracting landing gear, Messerschmitt intentionally used only a single wing spar which was positioned quite to the rear of the wing. This spar had to be sufficiently strong to withstand the load forces that acted on the wings during flight. The wings were connected to the fuselage by four strong bolts. This design enables the wings to have a rather simple overall construction with the added benefit of being cheap to produce. During the Bf 109’s later service life, the damaged wings could be simply replaced with others on hand. The wings were also very thin, which provided the aircraft with better overall control at lower speeds but also reduced drag which in turn increased the overall maximum speed
The cockpit was placed in the center of the fuselage. It was a fully enclosed compartment that was riveted to the fuselage. The Bf 109 cockpit itself was quite cramped. The Me 109 possessed quite an unusual landing gear arrangement. The landing gear was mainly connected to the lower center base of the fuselage, which meant that the majority of the weight of the aircraft would be centered at this point. The two landing gear struts retracted outward towards the wings.
As the production of this aircraft went on for years, various modifications and improvements were carried out to improve the flight performance. This included its overall shape, engine, armament, and instrumentation. For example, the Me 109B-1 which was introduced before the outbreak of the war in Europe, was powered by a 635 hp Jumo 210D engine and armed with three 7.92 mm MG 17 machine guns
The later Me 109G-6 which was introduced to service in early 1943 was powered by a much stronger 1,475 hp DB605A engine. In addition, the armament was improved with either one 30 mm (1.18 in), or two 20 mm (0.78 in) cannons and additional two 13 mm (0.51 in) machine guns It was a mass-produced fighter aircraft that stayed in service up to the end of the war. There were several sub-variants of the G-6 some of which were the R-2 reconnaissance, R-3 with larger fuel load, and R-6 with stronger armament in the wings.
The G-14 variant incorporated some minor changes mainly intended to standardize some parts of the Me 109 series. This includes using the erla haube type canopy, a larger tail fin, and standardized the use of methanol-water injection. The G-14 was an attempt to consolidate all of the modifications that had accumulated with the G-6 into a common variant, the G-10 was converted from old airframes to get the newer DB 605D engine into service faster.
The G-10 (essentially modified G-14/G-6) was an attempt to increase the overall flight speed and high-altitude performance by introducing the new DB 605D engine equipped with a larger supercharger. In addition, this variant received several modifications such as a reinforced, lengthened tail wheel strut, using wider front wheels, somewhat larger wings, etc. It was introduced to service in late 1944 and saw relatively limited combat action due to this.
Conclusion
The Me 109 was the best NDH fighter during the war. Unfortunately for the NDH, these began to arrive at the end of 1944. It is way too late and in too few numbers to have any meaningful impact on the war in Yugoslavia. Lack of fuel, the Allied air supremacy, and the rapidly collapsing Axis resistance meant that these stood little chance to effectively fight back.
Me 109G-6 Specifications
Wingspans
9,92 m / 32 ft 6 in
Length
9 m / 29 ft 7 in
Height
2.6 m / 8 ft 6 in
Wing Area
16.2 m² / 175 ft²
Engine
One 1,475 hp DB605 AM
Empty Weight
2,700 kg / 5,950 lbs
Maximum Take-off Weight
3,200 kg / 7,055 lbs
Maximum Speed
620 km/h / 373 mph
Range
600 km / 620 miles
Maximum Service Ceiling
11,550m / 37,895 ft
Crew
1 pilot
Armament
One 30 mm (1.18 in), or two 20 mm (0.78 in) cannons and two 13 mm (0.51 in) machine guns
Illustration
Credits
Written by Marko P.
Edited by Henry H.
Illustrated by Godzilla
Source:
A. Pelletier (2002) French Fighters Of World War II in Action, Squadron/Signal Publication
J. R. Beaman (1983) Messerschmitt Bf 109 in action part 2, Squadron publication
V. V. Mikić, (2000) Zrakoplovstvo Nezavisne Države Hrvatske 1941-1945, Vojno istorijski institut Vojske Jugoslavije.
T. Likso and Danko Č. (1998) The Croatian Air Force In The Second World War, Nacionalna Sveučilišna Zagreb
J. R. Smith and A. L. Kay (1990) German Aircraft of the Second World War, Putnam
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
C. Chants (2007) Aircraft of World War II, Grange Books.
Upon its introduction before the outbreak of the Second World War, the German Me 109 emerged as one of the premier fighter designs globally. While it proved formidable during the conflict, rival aircraft gradually matched and even exceeded its performance in several key areas. In a bid to secure a successor for the Me 109 late in the war, Messerschmitt endeavored to develop the Me 209A, a highly modified design based on its predecessor. Despite demonstrating promising flight attributes, logistical constraints hindered its adoption for active service.
While the Germans acknowledged the effectiveness of the Me 109, it became evident that a new fighter design, or serious enhancements to the existing model, would be necessary. In early 1941, Messerschmitt began developing a successor to the Me 109. This exploration resulted in the creation of the Me 309. It was a brand-new fighter aircraft that incorporated a new fuselage design, larger wings, and a tricycle undercarriage. It was powered by a 1,750 hp DB 603A-1. A few different armament systems were to be tested including four 13 mm MG 131 (300 rounds), two 2 cm MG 151 (150 rounds), and two 30 mm MK 108 (65 rounds) cannons. Alternatively, it could be outfitted with two 15 mm MG 151 cannons and three 13 mm MG 131s.
By June 1942, the prototype underwent flight testing. Despite an initially promising design, testing revealed that the Me 309 did not offer significant improvements over the Me 109G, which was already in mass production. Consequently, recognizing the impracticality of further investment, the Me 309 project was ultimately terminated.
The Me 309 was one of the Messerschmitt failed attempts to develop a successor for the Me 109. Source: www.luftwaffephotos.com
As the development of the Me 309 proved fruitless, Messerschmitt continued to strive towards a suitable replacement for the Me 109. Fortunately for the company, the German Air Ministry (RLM) initiated the development of a new high-altitude fighter on April 23, 1943. In response, Messerschmitt introduced the Me 209. Interestingly, this name was recycled from an earlier project, the original Me 209, which had been crafted specifically to set world-breaking speed records. However, it was ill-suited for military purposes and the project was ultimately shelved having fulfilled its original purpose. Despite this, Messerschmitt endeavored to develop a viable fighter based on the Me 209 but met with little success. To avoid potential confusion, the new project, which bore no resemblance to the record-breaking aircraft, was designated as the Me 209A (also occasionally referred to as the Me 209-II).
The Me 209 which had been crafted specifically to set world-breaking speed records, proved to be unsuited for fighter adaptation. Source: ww2fighters.e-monsite.com
In order to expedite development and minimize costs, the design of this new fighter used many components from the Me 109. A powerful engine was essential for achieving optimal flight performance. Thus, the prototype, powered by a 1,750 PS DB 603A-1 engine, underwent completion and testing in early November 1943, with Fritz Wendel as the pilot. To avoid confusion, it was designated as the Me 209V-5 (SP-LJ), distinguishing it from the original Me 209 prototypes, V-1 to V-4.
The success of the first prototype led to the completion and testing of a second prototype by the end of 1943, both exhibiting impressive flight characteristics. Encouraged by this achievement, construction of another prototype commenced. However, due to shortages of the DB 603A-1 engine, the decision was made to utilize the 1,750 hp Jumo 213E instead. This third prototype underwent flight testing in May 1944, prompting a designation change to Me 209A. The prototypes, with their alternate engine configurations, were then distinguished with the suffixes A-0, A-1, and A-2 for the first, second, and third, respectively.
Technical characteristics
Unfortunately given the obscurity of this project, its overall technical specifications are somewhat ambiguous. What is known is that it incorporated some 65% of its construction from the Me 109G. The original Me 109 fuselage was a monocoque design that was divided into two halves. These halves would be placed together and connected using simple flush rivets, thus creating a simple base on which remaining components, like the engine, wings, and instruments would be installed.
In order to accommodate the retracting landing gear, Messerschmitt deliberately opted for a single wing spar positioned towards the rear of the wing. This spar needed to be robust enough to withstand the flight’s load forces. The wings were attached to the fuselage by four sturdy bolts, simplifying the overall wing construction and reducing production costs. The Me209A boasted a larger wingspan and area, consequently increasing wing loading by 25% compared to the original Me 109. Furthermore, alterations were made to the wings and tail to address the Me 109’s strong yaw forces on takeoff. Whether these adjustments successfully rectified the issue in the Me 209A remains unclear according to available sources.
Initially, it was powered by a 1,750 hp DB 603A-1 engine which was provided with an annular radiator and a three-blade propeller. With this engine, a maximum record speed achieved was 724 km/h 450 mph at an altitude of nearly 7 km (22,960 ft). The third prototype (A-2) received a new 1,750 hp Jumo 213E engine. It too was provided with an annular radiator. With it, a maximum speed of 660 km/h (410 mph) was achieved at an altitude of 6 km (19/680 ft)
The canopy was placed in the center of the fuselage. It was a fully enclosed compartment that was riveted to the fuselage.
The Me 109 boasted an unconventional landing gear arrangement, at least for German standards, with the landing gear primarily affixed to the lower center base of the fuselage. This configuration centralized the aircraft’s weight at this pivotal point, while the two landing gear struts extended outward toward the wings. In contrast, the Me 209 utilized a wide-track undercarriage unit, with the pivot points being out on the wings.
Various sources have proposed different armament configurations for the Me 209. One suggestion was the installation of two 3 cm MK 108 cannons, each equipped with 70 rounds of ammunition, alongside two 2 cm MG 151 cannons with 250 rounds per cannon, all to be housed within the aircraft’s wings. Alternatively, another proposal suggested the placement of four MK 108 cannons within the wings and two MG 151 cannons positioned above the engine compartment. However, it remains unclear whether any of these proposed armament configurations were ever implemented on the Me 209A.
The side view of the only photograph of the Me 209A first prototype. Source: http://www.luftwaffephotos.com/lme2091.htm
Fate
In 1944, further testing ensued, yet for Messerschmitt, the advent of the new Fw 190D posed a challenge. The Fw 109D, slowly making its way into production, boasted better performance, being faster in both high and low altitudes. What ultimately sealed the fate of the Me 209A project was the swiftness and cost-effectiveness with which the Fw 190D could be put into production. While the Me 209 incorporated many components from the Me 109, setting up its production would demand considerable time. A luxury in short supply for the Germans in 1944. Additionally, Messerschmitt’s focus at that time was squarely on the new Me 262 production, leaving scant resources to spare for yet another piston-powered fighter.
Despite these challenges, Messerschmitt made a final push to advance the Me 209 project with the construction and testing of the fourth prototype, designated Me 209H V-1, in June 1944. This iteration underwent several modifications, including enlarged wings and propulsion by a DB 603G engine. Unfortunately, the first prototype fell victim to an air raid on August 14, 1944, casting uncertainty over the fate of the remaining aircraft. Although there were intentions to export the Me 209A to Japan, these plans never materialized. It was also competing with the Ta 152H, which was easier to put into production while also having better performance, at least on paper.
Prototypes
Me 209A-0- First prototype powered by a 1,750 hp DB 603A-1 engine
Me 209A-1- Secon aircraft is essentially a copy of the first prototype
Me 209A-2- Third tested with a new 1,750 Jumo 213E engine
Me 209H V-1 – The fourth prototype powered by a DB 603G engine and received larger wings
Conclusion
The Me 209A project ultimately reached a dead end, not because it was a poorly designed aircraft, but simply because it didn’t offer significant enough improvements to justify production. The new Fw 109D, boasting similar flight performance, was already in the production phase. Introducing yet another new design without any notable advancements in this fighter category would have been illogical and a waste of already meager resources.
Me 209A-2 Specifications
Wingspans
10.95 m / 35 ft 11 in
Length
9.62 m / 31 ft 6 in
Height
3.65 m / 12 ft 2 in
Wing Area
17.15 m² / 184.53 ft²
Engine
1,750 hp Jumo 213E
Empty Weight
3,475kg / 7,662 lbs
Maximum Takeoff Weight
4,200 kg / 9,261 lbs
Maximum Speed
660 km/h / 410 mph
Cruising speed
490 km/h / 305 mph
Range
690 km / 430 miles
Maximum Service Ceiling
13,000 m / 42,650 ft
Crew
1 pilot
Armament
None
Illustration
Credits
Written by Marko P.
Edited by Henry H.
Illustrations by Oussama Mohamed “Godzilla”
Source:
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putnam
D. Myhra (2000) Messerschmitt Me 209V1, Schiffer Military History
B. C.Wheeler, German Fighters of WWII, Aeroplane Special
R. Jackson (2005) Infamous Aircraft, Pen and Sword
M. Griehl () X-planes German Luftwaffe prototypes 1930-1940, Frontline Book
Empire of Japan (1937) Fighter Aircraft – Number Operated 30
During the war with China, the Japanese Air Forces encountered enemy fighters that were much better than what they currently had in their inventory. As their modern fighters were either under development or only available in limited numbers, they tried to acquire new fighters from aboard. The options for acquiring such fighters were rather limited, and the Japanese turned to the Germans for a solution. This came in the form of 30 He 112 known in Japanese service as the A7He1.
The He 112 in Japanese service. Source: D. Bernard Heinkel He 112 in Action
A brief He 112 history
Before the Second World War, the Luftwaffe was in need of a new and modern fighter that was to replace the older biplane fighters in service, such as the Arado Ar 68 and Heinkel He 51. For this reason, in May 1934 the RLM issued a competition for a new and modern fighter plane. While four companies responded to this request, only the designs from Heinkel and Messerschmitt were deemed sufficient. The Heinkel He 112 was a good design that offered generally acceptable flight characteristics and possessed a good basis for further improvements. The Bf 109 on the other hand had slightly better overall flight performance and was much simpler and cheaper to build. Given the fact that the Germans were attempting to accelerate the production of the new fighter, this was seen as a huge advantage over the He 112. Ultimately it would not be accepted for service, and only 100 or so aircraft would be built. These would be mainly sold abroad, with those remaining in Germany used for various testing and evaluation purposes.
While the He 112 project was canceled by the RLM, to compensate for the huge investment in resources and time into it, Heinkel was permitted to export this aircraft. A number of countries such as Austria, Japan, Romania, and Finland showed interest, but only a few actually managed to procure this aircraft, and even then, only in limited numbers.
Attempts to make a deal with Japan
In 1937 a war between Japan and China broke out. While Japan had a better-equipped and more organized army, it faced stiff resistance. The Chinese were supported by the Soviet Union which supplied them with weapons and equipment, including aircraft. These caused huge concern within the Imperial Japanese Navy. Their newest fighters were either present only in small numbers or were still under development. As a temporary solution, IJN officials decided to approach Germany for assistance in the hope of acquiring new fighters.
For this reason, a military delegation was dispatched to Germany in the Autumn of 1937. Despite its later known fame, the German Air Force at that time was still in its early stage of rebuilding and realistically did not have much to offer, being in need of modern fighters themselves. This would come in the form of the Messerschmitt Me 109. Its competing Heinkel He 112 lost the competition but was allowed to be sold abroad if anyone was interested. It was probably for this reason that the Japanese delegation visited the Heinkel factory at Marienehe. There they had the choice to observe the He 112 V9 aircraft. They were generally satisfied with what they saw and placed an initial order for 30 He 112Bs. If these proved to be as good as they hoped they would be, another, larger order for 100 more aircraft was to be given. As a confirmation of this agreement, the Japanese delegation returned with one He 112 aircraft that was to be used for familiarization and evaluation.
One of the 30 He 112 sold to Japan in 1938, Source: D. Bernard Heinkel He 112 in Action
Naming Scheme
As this aircraft was expected to enter service, it was designated as A7He1 by the IJN. The capital ‘A’ stands as a designation for a fighter. The number ‘7’ represents that this aircraft was to supersede the type 6 designation fighter. He stands for the Heinkel, and lastly the ‘1’ stands for the first variant of this type. The Allied intelligence services discovered its existence within the IJP and awarded it the code name Jerry.
Testing In Japan
Four aircraft arrived in 1937, and the last one arrived at the end of 1938. As the first aircraft began to arrive, the IJN began testing the A7He1’s performance in contrast to other fighters that they had in inventory, namely the Mitsubishi A5M2. While the A7He1 proved to be some 65 km/h faster, in other regards such as climbing speed and general maneuverability it proved equal or even worse than the Japanese fighter. The Japanese were not satisfied with the A7He1 engine which was deemed too complex. These factors ultimately led the commission which examined it to propose that it should not be adopted, nor that any further orders should be given. After the arrival of the last A7He1, the order for an additional 100 aircraft was canceled.
Ultimate Fate
As the A7He1 was not adopted for service, the IJN had to decide what to do with the 30 aircraft. They still represent a financial investment that could not be simply discarded. Some of these were allocated to various research institutes for future studies and evaluation, the remainder were given to training schools. None were ever used operationally in combat either in China or in the Pacific.
Quite surprisingly given their age and the rather limited numbers that were acquired, a few He1 survived the war and were captured by the Allies. One example was found in Atsugi airfield near Honshu in early October 1945. Unfortunately, the fate of these captured aircraft is not known but they were likely scrapped at some point after the war.
Despite the limited number of acquired aircraft, some of them survived the war and were later captured by the Allies. Source: www.destinationsjourney.comAnother aircraft (on the left) is being photographed by the Allied soldiers. It is possible that it was the same aircraft as in the previous photograph just taken later when it was being scraped. Source: www.destinationsjourney.com
Technical Characteristics
The He 112 was an all-metal single-engine fighter. The monocoque fuselage consisted of a metal base covered by riveted stress metal sheets. The wing was slightly gulled, with the wingtips bending upward, and had the same construction as the fuselage with a combination of metal construction covered in stressed metal sheets.
During its development life, a great number of engines were tested on the He 112. For the main production version, the He 112 B-2, the 700 hp Jumo 210G liquid-cooled engine was used, and some were equipped with the 680 hp Jumo 210E engine. The He 112 had a fuel capacity of 101 liters in two wing-mounted tanks, with a third 115-liter tank placed under the pilot’s seat.
The landing gear was more or less standard in design. They consisted of two larger landing wheels that retracted into the wings and one semi-retractable tail wheel. The He 112 landing gear was wide enough to provide good ground handling and stability during take-off or landing.
The cockpit received a number of modifications. Initially, it was open with a simple windshield placed in front of the pilot. Later models had a sliding canopy that was either partially or fully glazed.
While the armament was changed during the He 112’s production, the last series was equipped with two 7.92 mm MG 17 machine guns and two 2 cm Oerlikon MG FF cannons. The ammunition load for each machine gun was 500 rounds, with 60 rounds each for the cannons. If needed, two bomb racks could be placed under the wings.
Conclusion
While the He 112 was often portrayed as a modern fighter, from the Japanese point of view it proved to be disappointing in any case. While expecting a potentially effective fighter that was better with everything they had, the He 112 proved to be quite the opposite. After the 30 aircraft arrived no further orders were given. This only serves to prove that the old saying the grass is always greener on the other side is correct once in a while.
He 112B-2 Specifications
Wingspans
29 ft 10 in / 9.1 m
Length
30 ft 2 in / 9.22 m
Height
12 ft 7 in / 3.82 m
Wing Area
180 ft² / 17 m²
Engine
One 700 hp Jumo 210G liquid-cooled engine
Empty Weight
3,570 lbs / 1,620 kg
Maximum Take-off Weight
4,960 lbs / 2,250 kg
Climb Rate to 6 km
In 10 minutes
Maximum Speed
317 mph / 510 km/h
Cruising speed
300 mph / 484 km/h
Range
715 miles / 1,150 km
Maximum Service Ceiling
31,170 ft / 9,500 m
Crew
1 pilot
Armament
Two 20 mm (1.8 in) cannons and two machine guns 7.92 mm (0.31 in) machine guns and 60 kg bombs
He 112 v5 as it was tested by Japan
Credits
Written by Marko P.
Edited by Henry H.
Illustrations by Godzilla
Source:
Duško N. (2008) Naoružanje Drugog Svetsko Rata-Nemаčaka. Beograd
J. R. Smith and A. L. Kay (1990) German Aircraft of the Second World War, Putnam
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
D. Bernard (1996) Heinkel He 112 in Action, Signal Publication
R.S. Hirsch, U, Feist and H. J. Nowarra (1967) Heinkel 100, 112, Aero Publisher
C. Chants (2007) Aircraft of World War II, Grange Books.
USSR (1921)
Experimental Single-seat light aircraft – 1 Prototype Built
While the Russian Civil War was raging on, there were early attempts to rebuild its shattered aviation industry. Aviation engineers and enthusiasts attempted, despite the chaos around them, to build small experimental aircraft to test their ideas and concepts. One such young individual was Andrei Nikolayevich Tupolev. His ANT-1 was a specialized design to test the concept of using metal alloys in aircraft construction.
Tupolev began his career as an aircraft engineer in 1909, when he was admitted to the Moscow Higher Technical School. There he met Professor Nikolai Yagorovich who greatly influenced Tupolev’s interest in aviation. In the following years, he spent time developing and testing various glider designs. When the First World War broke out Tupolev managed to get a job at the Russian Dux Automotive factory in Moscow, which produced a variety of goods, including aircraft. There he gained valuable experience of aircraft manufacturing.
Andrei Nikolayevich Tupolev was one of the greatest Russian/Soviet aviation engineers and designers. Source: Wiki
In 1917, the October Revolution plunged the disintegrating Russian Empire into total chaos. The few aircraft manufacturing centers were either abandoned or destroyed. All work on the design and construction of new aircraft was essentially stopped. The Dux was one exception and continued to work at a limited capacity. It was renamed to Gosudarstvennyi aviatsionnyi zavod (Eng. State aircraft factory) or simply GAZ No.1. Given that he was one of few aviation engineers left, with most skilled either being killed or fled the country, Tupolev remained working for the GAZ No.1. He spent a few years working on various projects such as designs improving weapon mounts for older aircraft that were still in service.
In 1921, Tupolev was elected as the deputy of the Aviatsii i Gidrodinamiki AGO (Eng. Aviation and Hydrodynamics Department). This department was tasked with developing various aircraft designs but also including torpedo boats. In 1921 he and his team from AGO began working on a new aircraft design that was to test new concepts. Two new innovative features were that it should be a monoplane, and be built using mainly metal alloy. Its primary purpose was not to gain any production orders, but instead to serve as a test bed for new ideas and concepts. The aircraft was named ANT-1, where ANT stands for the initials of Andrei Nikolayevich Tupovlev. This designation should not be confused with a snowmobile developed by Tupolev, which shared its name.
During this period, Soviet aviation officials and the German Junkers company spent years negotiating the possibility of producing a Duralumin alloy that could be used for aviation construction. Junkers proved the validity of this concept on the J.I saw service during the First World War. The German company wanted to avoid sanctions on arms and aviation development imposed by the Allies, while the Soviets wanted the technology for themselves, not wanting to depend on the Germans entirely. The Soviet Union in 1922, managed to produce their own copy of Duralumin known as Kol’schugaluminiyem alloy. The name was related to a small village Kol’chugino where this factory was located. Limited production of this alloy began in 1923.
Due to problems with the production of the new alloy, Tupolev was forced to postpone the development of his new aircraft until 1922. At that time the alloy was not yet available, so Tupovlev decided to go on with a mix-construction design, but mostly using wood. The benefit of using wood was that it was an easily available material, with almost unlimited supply in Russia. It was cheap and there were plenty of skilled woodworkers. However, there were also numerous flaws in using wooden materials. The greatest issue was a generally short service life in harsh climates as in Russia, in addition, standardization of spare parts is almost impossible to do.
Tupolev himself preferred the new metal technology believing that it would offer many benefits to the aircraft industry, giving new aircraft a lighter and stronger overall construction. Tupolev eventually decided to go for a mixed-construction solution. His decision was based on a few factors, such as the general lack of this new material, and he wanted to be on the safe side as using metal in aircraft construction was still a new and not yet fully proven concept. In addition, he wanted to be sure about the Aluminum alloy material’s quality before proceeding to design a fully metal aircraft.
Once the choice for the construction material was solved the next step was to decide whether it was to be a single or two-seat configuration. The wing design was also greatly considered. After some time spent in calculations and small wind testing, the choice was made to proceed with a single engine and low-wing monoplane.
For the engine, three different types were proposed including 14hp and 18 hp Harley-Davidson and a 20 hp Blackburn Tomtit. Despite Tupovlev’s attempts, he failed to acquire any one of these three. It was not until early 1923 that he managed to get his hands on an old 35hp Anzani engine which was over 10 years old by that point. Despite its poor mechanical state, Tupovlev knowing that nothing else was available decided to try salvage it.
Testing and the Final Fate
The construction of this aircraft took over a year to complete. Given the general chaos at that time, this should not be surprising. It was finally completed in October 1923, and the first test flight was carried out on the 21st of October of the same year. Despite using the older engine, the flight proved successful. It was piloted by Yevgeni Pogosski.
The completed ANT-1 test aircraft. Source: www.globalsecurity.org
Following this, the ANT-1 was used mainly for various testing and evaluation. It would see service in this manner for the next two years. In 1925 the aging engine finally gave up, and this made the aircraft unflyable. Tupovlev tried to find a factory that could potentially refurbish it. He ultimately failed, as the engine was simply beyond repair by that point.
The aircraft was for some time stored at Factory No.156. The fate of this aircraft is not clear in the sources, however, there are few theories about what happened to it. After Tupovlev’s imprisonment by Josef Stalin, his plans and documentation were confiscated. The aircraft was believed to be also confiscated and scrapped in the late 1930s. Another possibility is that it was moved to another storage facility where it was eventually lost during the Axis Invasion of the Soviet Union in 1941.
Specification
The ANT-1 was designed as a cantilever low-wing monoplane aircraft of mixed construction. The fuselage consisted of four spruce longerons. The lower two were connected to the wing spars and were held in place with four bolts. The parts of the fuselage starting with the pilot cockpit to the engine were covered in the metal alloy. This alloy was also used to provide additional strength of some internal wooden components of the aircraft fuselage. The pilot Pilot cockpit was provided with a small windscreen. Inboard equipment was spartan consisting only of an rpm counter, oil pressure indicator, and ignition switch.
The cantilever wings were made of single pieces. At the end of the two tips (on each side of the wings) large wooden spars were installed. Some parts of the wing were built using metal parts such as the wing ribs, The rest of the wing was mainly covered in fabric. The tail unit was made of wood, its surfaces were covered with a metal-fabric cover.
The fixed landing gear consisted of two large wheels. These were connected to a metal frame which itself was connected to the aircraft fuselage. Small rubber bungees acted as primitive shock absorbers.
Given that nothing else was available, the ANT-1 was powered by an old, refurbished 35-hp strong Bristol Anzani engine.
A good view of the ANT-1 internal wing and fuselage construction. Source: www.globalsecurity.orgThe cantilever wings received on each side one large wooden spar. Source: WikiThe pilot cockpit received only a few basic instruments and a small windshield. Source:www.globalsecurity.org
Conclusion
The ANT-1 despite its simplicity, and being built a single, cobbled-together prototype, could be considered a great success for Tupolev. Through this experimental aircraft, Tupovlev gained valuable experience in designing an aircraft by using metal alloy. This success emboldened Tupovlev to go even further and design and build the Soviet first all-metal construction aircraft known as ANT-2. The ANT-1 was Tupovlev’s first stepping stone in a long and successful career as an aircraft designer in the following decades.
ANT-1 Specifications
Wingspans
7.2 m / 23ft 7 in
Length
5.4 m / 17 ft 8 in
Height
1.7 m / 5 ft 7 in
Wing Area
10 m² / 108 ft²
Engine
One 35 hp Bristol Anzani engine
Empty Weight
230 kg / 5,070 lb
Maximum Takeoff Weight
360 kg / 7,940 lb
Maximum Speed
125 km/h / 78 mp/h
Range
400 km / 250 miles
Maximum Service Ceiling
600 m / 1,970 ft
Maximum Theoretical Service Ceiling
4,000 m / 13,120 ft
Crew
1 pilot
Armament
None
Gallery
Credits
Article written by Marko P.
Edited by Henry H.
Illustration by Godzilla
Sources:
Duško N. (2008) Naoružanje Drugog Svetsko Rata-SSSR. Beograd.
Y. Gordon and V. Rigmant (2005) OKB Tupolev, Midland
P. Duffy and A. Kandalov (1996) Tupolev The Man and His Aircraft, SAE International
B. Gunston () Tupolev Aircraft Since 1922, Naval Institute press
Twin-engined fighter-bombert Number built: 114 plus two prototypes
In the history of aviation, small production numbers usually indicated that a particular aircraft did not meet the desired results, or was simply a bad design. However, there were designs that performed well in their designated roles, but still built in few numbers. In such cases, external factors were usually to blame for that aircraft’s downfall. These were typically connected to production difficulties, such as the unavailability, or the unreliability of components. This was the case with the UK Westland Whirlwind, a twin-engined fighter that despite its excellent performance, failed due to engine supply issues, and was built in limited numbers.
The Westland Whirlwind twin-engined day and night fighter. Source: Wiki
History
The 1930s saw the United Kingdom Royal Air Force’s extensive adoption of new technologies. Improvements in fuselage design, new materials, heavier armaments, and more powerful engines were key in this period. These allowed for the development of faster, harder-hitting fighters than those previously in service. At that time, the fighter force of the RAF consisted of biplanes such as the Bristol Bulldog, for example. These were becoming obsolete in regard to speed of and offensive armament. In 1934, the development of much better low-wing fighters was initiated by the Air Ministry. These would evolve into the well-known Hurricane and Spitfire fighters. Such aircraft were armed with licensed 7.62 mm (0.3 in) Browning machine guns, but something with a heavier punch was also considered. For this purpose, the French Hispano-Suiza company was contacted. This company produced the well-known 20mm (0.78 in) Hispano cannon. A license was acquired and these cannons would be built by the BSA company. The delivery of new guns was carried out at a slow pace, and it was not produced in great quantities up to 1942. With the acquisition of a sufficiently strong armament and the availability of more powerful engines, the Air Ministry issued a request for more heavily armed twin-engined aircraft designs. This included the single and a two-seat day and night fighter configuration.
The final specifications for such aircraft were issued in 1936. The principal concept of this new aircraft was to focus a strong armament of four 20mm cannons inside of the aircraft nose. Several companies responded to these requests. The Air Ministry was mostly satisfied with the work of the Bristol, Supermarine, and Westland companies.
Westland Aircraft Ltd., was a relatively new, but successful aircraft manufacturer in mid-1930, and they were highly interested in the new twin-engine fighter project. For this, a team was gathered under the leadership of was designed by W.E.W. Petter. The project was initially designated as P.9, “P” stands for Petter but has nothing to do with its chief designer, and was presented to the Air Ministry. The following year the Westland project was deemed the best design and given the green light. Orders for the construction of two prototypes were issued, initially designated L6844 and L6845, in February 1937. The first wind-tunnel tests showed that some changes were needed regarding the model tail assembly due to longitudinal control problems. The Whirlwind was initially to have a twin rudder and fins configuration, but this was changed to a high-set tailplane to solve the problem. In May 1937 the first mock-up was completed. As it was deemed sufficient, work on the first prototype began shortly after its unveiling. Due to delivery problems, this aircraft could not be completed until October 1938.
The first prototype during its early testing phase. Source: M. Ovcacik and K. Susa Westland Whirlwind
At that time, the project was officially designated as Whirlwind. The same month, the first ground test was completed, and shortly after that the maiden flight was made. The aircraft was flight-tested by Westland’s own chief pilot Harald Penrose. Following that, it was allocated to the Royal Aircraft Establishment at Farnborough for future testing.
During this early testing stage, numerous problems were encountered. The engine was somewhat problematic as it was prone to overheating. Another major problem was poor directional stability during flight. This was solved by increasing the rudder area at the tailplanes. In addition, the engineers added a concave-shaped surface on the rudders. To further stabilize the aircraft during stall and dives, an oval-shaped extension was added at the connection point of the vertical and horizontal stabilizers.
With these modifications, the flight testing of the first prototype continued into 1939. At that time the work on the second prototype was nearing completion. It would be tested with engines that rotated in the same direction. As this did not affect its overall performance, it made the production slightly easier. As both prototypes performed well, a production order of 200 aircraft was placed at the start of 1939.
However, precise specifications needed for production were not made until May 1939. The delay was caused by the indecisiveness regarding which engine to use, during this period various proposals were made. Further tests showed problems with exhaust systems, which had to be replaced with simpler designs. The overheating problems led to the redesigning of the pressurized cooling system.
The second prototype aircraft. Source: Wiki
As there were no available 20mm cannons, the prototypes were initially not fitted with any offensive armament. Once these were available, they would be fitted on both prototypes. Additional firing trials were to be carried out. These were to test various other proposed armaments
Following the successful testing of the first prototype, it would be allocated to the No.4 School of Technical Training. The second prototype would be allocated to RAF No. 25 Squadron In June 1940. It would remain there until it was damaged in an accident and removed from service in June 1941.
Despite the whole project being undertaken in secrecy, both Germany and France were aware of its existence. The French even published technical papers mentioning this aircraft, with the Germans publishing their own in 1940. However, in Britain, the existence of this aircraft was only publicly announced in 1942.
Production
The production of the Whirlwind was delayed due to a lack of engines up to May 1940. The fighter versions that slowly began to be issued for operational use were designated Whirlwind MK. I. The production version was slightly different from the prototypes. The mudguards on the landing wheels were removed and the exhaust was modified. Some other changes would be implemented during its production, such as moving the position of the radio mast. Initially, it was positioned on the sliding hood but later it would be moved further forward. Beyond that, the cockpit underwent a minor redesign. There were plans to adopt this fighter for service in other parts of the British Empire, but this request was never implemented.
As the production was slowly going on, another order for 200 more aircraft was placed in 1939. But this production quota would be canceled at the end of 1940. The Air Ministry limited the production of this aircraft to only 114 examples. The reasons for these limited production numbers were a general lack of Peregrine engines. These engines were actually being phased out of production in favor of more powerful engines, namely the Rolls Royce Merlin. The last aircraft was completed in December of 1941 or January 1942 depending on the source. Production was carried out at the newly built factories at Yeovil.
Service
Given their small production numbers, it should not come as a surprise that the distribution of this aircraft to frontline units was limited. The first three operational aircraft were allocated to No.25 Squadron stationed at North Weald. These were only briefly used by this unit from June to mid-July 1940. It was decided to instead re-equip the unit with the Beaufighter Mk. IF. The RAF’s No.263 squadron stationed at Grangemouth was next to be supplied with the Whirlwinds. The deliveries of the first aircraft were scheduled to arrive in July 1940. On the 7th of August, an accident occurred where one aircraft was lost. During a take-off, one of the tires blew out damaging the loading gear. Despite this, the pilot managed to retain control and fly off the aircraft away from the airstrip. Once in the air, he was informed of the damage sustained during the take-off. The pilot at that point had two options, either to try a hard landing and hope to survive or to simply bail out of the aircraft and use his parachute. The pilot chose the latter option, while the aircraft was completely lost, the pilot was unharmed. Due to slow delivery, only 8 aircraft were received by this unit by October 1940. At the end of that year, the unit was repositioned to Exeter. The first combat action occurred on the 12th of January 1941. One aircraft took off and tried to engage returning German bombers. After a brief skirmish, one German Ju 88 was reported to be damaged. The first air victory was achieved a month later when a Whirlwind managed to shoot down an Arado 196 near Dodman Point.
In March, some 9 out of 12 operational Whirlwinds would be damaged in one of many German air raids. For this reason, the unit was moved to Portreath and then to Filton. During this period the unit suffered further casualties, of which three were in action while the majority were lost during accidents.
On the 14th of June, some 6 aircraft were used in ground attack operations against German airfields at the Cherbourg peninsula. Due to bad weather, the attack was rather unsuccessful. In August, this squadron was repositioned to Charmy Down. From this base it flaw several escort missions. The same month several air raids against enemy air bases were also undertaken. These were successful, with the Whirlwinds managing to destroy many enemy aircraft on the ground. These included: three Ju 88s, possibly up to eight Ju 87s, and a few Bf 109s. Interestingly, even one German submarine was reportedly destroyed.
On a few occasions, enemy aircraft were engaged in the air. During one air clash, some 20 Bf 109s engaged a group of four Whirlwinds. In the following skirmish, the Germans lost two fighters. The British had two damaged aircraft, with one more being lost after a forced landing due to damage sustained during this fight.
No.137 squadron was another operational unit that had some Whirlwinds in its inventory. It was fully operational starting from October 1941 when it was stationed at Charmy Down. This unit was formed with the assistance of the previously mentioned squadron which provided experienced pilots and ground crew. One of the first combat actions of this unit occurred in February 1942. During an engagement with German Bf 109 fighters, this unit lost four Whirlwinds. Both units would continue to operate the Whirlwinds in various combat missions, which usually involved attacking ground targets and facilities, either along the English Channel or in Western parts of occupied Europe.
With its four 2 cm cannon armament this aircraft possesses quite strong firepower. Source: WikiGiven their limited numbers, only two squadrons would be ever equipped with this type of aircraft during the war. Source: Wiki
Fighter-Bomber Adaptation
While the armament of four cannons offered strong offensive capabilities, a bomb load would expand the air-to-ground capabilities of the plane even further. Such rearmament was proposed in September 1941 by T. Pugh, one of the squadron leaders. Given their limited number and the urgency of other projects, the first tests were not carried out until July 1942. One aircraft was modified at the Aeroplane and Armament Experimental Establishment to be able to carry either 113 kg (250 lb) or 226kg (500 lb) bombs placed beneath the outer wings. The results were positive and mechanics from the No.263 squadron began adding the bomb bracket on the wings starting from August 1942. No.137 squadron followed up soon with the same modifications. While no official designations were issued for these modifications, the units that used them referred to them as Whirlibombers. In total, some 67 such modifications would be carried out.
The first combat action of these modified aircraft occurred on the 9th of September 1942. The British launched an attack on German trawler ships near Cherbourg. These aircraft would see extensive use up to 1943 against various ground targets. Trains were a common target, with some 67 being destroyed.
With the addition of bombs the firepower of this aircraft was greatly boosted. Source: www.staplesandvine.comClose-up view of the bomb release mechanism. Source: Pinterest
Whirlwind Mk.II Project
While having a good overall design, the Whirlwinds had a few shortcomings. While having excellent flight performance at low altitudes, at greater heights its performance dropped sharply. The main reason for this was that its Peregrine engines used a small, single-stage, single-gear supercharger, and the small engine lost a considerable amount of power in thinner air. But there were some attempts made to further improve its performance, designated as Mk.II. The main drawback of the whole design was the engines, which while good had the potential to be further improved, and they were quite underpowered compared to the Rolls Royce Merlin engines. In 1940 it was proposed to use stronger Peregrine engines, a modified armament, and an increased fuel load. The armament would have consisted of four 2 cm Hispano Mk.II cannons which were belt-fed. While the fuel load would be increased by 42 gallons. Given that the main producer of engines, Rolls-Royce, was focusing all available resources on Merlin engine production there was simply no room for other projects. Thus the Air Ministry would simply abandon plans to further improve this aircraft.
Final Fate
All produced aircraft would be only used by these two units. Eventually, due to limited production numbers, and the wear of equipment, they were relegated to limited service. No.137 squadron retained its Whirlwinds up to June 1943 before they were replaced with Hurricane Mk.IVs. The other unit operated them a bit longer, until the end of the year. These would be replaced with the Hawker Typhoon. The surviving aircraft were gathered at various maintenance depots before finally being declared obsolete and scrapped in late 1944. Only one aircraft survived the war. It remained in service up to 1947 before it too was scrapped.
Limited Export Service
As very few aircraft were produced, there was little prospect of them being exported to other Allied nations. An exception would be one aircraft (P6994) which was shipped to America in June 1942. There it was likely used for evaluation and testing, but its history or fate is unknown.
Technical characteristics
The Whirlwind was designed as a twin-engined low-wing, all-metal, day and night fighter. Despite being originally intended for this double role, it was never used in night operations. The fuselage was oval-shaped and consisted of 17 metal formers that were connected together. The front sections were built using aluminum while the rear part used magnesium alloy. The nose is where the main armament was located, along with a 9 mm thick armor plate to protect the pilot.
The tail assembly had the same construction. Which consisted of a metal frame covered in duralumin sheeting. But if in need of repairs, the whole rear section could be removed. As mentioned the horizontal stabilizers had to be moved further up the fin. An interesting feature of this aircraft was the two-part rudder. Initial testing showed that they were quite ineffective during take-off. For this reason, they were replaced with new ones that were concave,on both sides, in shape.
The wings were constructed using metal frame ribs. These were then covered with duralumin sheeting which was flush riveted. Several various sizes of access panels were added to help the ground repair crew during the maintenance or replacement of damaged parts of the wings. The ailerons were also covered in metal. These were provided with trimming tabs which could be adjusted when the aircraft was on the ground. The wings on this aircraft incorporated the two-engine nacelles. These fairly large, but aerodynamically well-shaped nacelles were used to store the engine, fuel, and oil pumps that the front landing gear units. A highly interesting design decision was to add coolant radiators which were located on the central part of the wing trailing edges. This allows them to reduce the drag as much as possible.
Behind the aircraft’s nose, the cockpit was located. It had a large canopy which provided an excellent all-around view for the pilot. Given the offensive role of the aircraft, the pilot was fairly well protected. To the front, a 9 mm armor plate was positioned. While on the rear and lower parts of the seat were protected by a 6 and 4-mm thick armor plate. The cockpit itself was connected to the main fuselage by using bolts. The front part of the canopy was protected by bullet-resistant laminated glass. Under and behind the cockpit various equipment was stored. This included a radio unit, de-icing tanks, accumulators, exigent tanks, etc. To have easy access to some of these a small hatch was installed on the right side of the rear fuselage.
The Whirlwind was designed as a twin-engined low-wing all-metal day and night fighter. Some of the easily recognizable features were the enlarged glazed cockpit and the positions of the tail horizontal stabilizers. Source: Wiki
The landing gear consisted of two wing-mounted retractable wheels. With one smaller tailwheel placed. To provide a smoother landing, the front landing gear units used a pair of heavy shock absorbers. These use 790 x 270 mm (31 in x 10 in) Dunlop-type wheels. All three landing gear units retracted to the rear. The two larger wheels retracted into the engine nacelles. The lowering or retracting of the landing gear was controlled by the pilot by using a lever.
This aircraft was powered by two compact, 880 hp Rolls-Royce Peregrine I engines. These were actually fairly underpowered, they weighed about as much as a Merlin but were significantly less powerful. It’s a major reason this plane wasn’t retained, they simply couldn’t upgrade it with a better, but larger engine. These two engines were provided with a 25 cm (10 in) diameter thick de Havilland three-bladed with variable pitch propellers. This engine was electrically started. The engine was seated on a specially designed mount which consisted of two bearers and bracing tubes. The engine, while enclosed, was provided with several small hatch access points for repair and maintenance. Fuel was supplied to the engine using two separate systems of power by pumps. The fuel was stored inside two tanks located in each wing. These were encased in a duralumin shell. To avoid spilling the fuel inside the aircraft, a self-sealing covering was also used. The total fuel capacity was 609 liters (134 gallons).
This aircraft was powered by two Rolls-Royce Peregrine engines. The lack of this engine ultimately leads to the abandonment of the whole project. Source: dingeraviation.net
The main armament of this type consisted of four 2 cm Hispano Mk.I type 404 cannons. These were mounted in pairs and located in the front aircraft nose. Its ammunition load consisted of 60 rounds per gun set in large drum magazines. Before the aircraft was to fly into action the Hispano cannons had to be manually cocked while still on the ground. Initially, a hydraulic firing mechanism was used. It would be replaced later in the production by a pneumatic firing system.
Besides the use of four cannons various other armament installations were also proposed or tested. For example, a redesigned nose mounting that consisted of 12 Browning machine guns was tested. Another experimental mount consisted of four vertically positioned cannons and three machine guns. Additional tests were carried out with larger 3.7 cm and 4 cm guns. The plans of using two 4 cm guns were quickly discarded as it would require extensive rework of the aircraft design. In 1942 attempts were made to add two machine guns for self-defense but this was abandoned too.
Once the nose cover was removed we can clearly see the arrangement of the four 2 cm Hispano Mk.I type 404 cannons. The ground crew member to the left is holding the 60-round drum magazine. Source: /dingeraviation.net
Other experimental proposals included adding 12 machine guns. Source: M. Ovcacik and K. Susa Westland WhirlwindWhile this proposal included four horizontally positioned cannons and three more machine guns. In either case, none of these would be adopted. Source: M. Ovcacik and K. Susa Westland Whirlwind
Production Versions
Two Prototypes – Both used for varius testing and evaluation with one being lost in an accident
Mk. I Fighter-bomber – over 60 aircraft were armed with bombs
Mk.II – Proposed improved versions, none built
Operators
UK – The only operator of these aircraft
USA – One Aircraft was shipped to America for testing and evaluation, but its fate is unknown
Westland Whirlwind Reconstruction
The completed pilot cockpit and the armament are located at the Kent Battle of Britain Museum. Source: https://www.whirlwindfp.org/
Conclusion
The Westland Whirlwind was a quite advanced twin-engined fighter design for its day. Although initially designed as a day and night fighter, it would never fully be used in this role due to problems with the acquisition of stronger engines and limited production run. Thanks to its strong armament it saw combat service as a ground attack aircraft with good results.
But despite its performance, the lack of sufficiently strong engines and general lack of vision for this aircraft ultimately killed the project. It was more a case that the aircraft was built around an engine that just wasn’t very good, and it couldn’t accept the larger, but much more powerful Merlin engine.
Westland Whirlwind Specifications
Wingspans
13.7 m / 45 ft
Length
9.8 m / 32 ft 3 in
Height
4.9 m / 16 ft 3 in
Wing Area
23.23 m² / 250 ft²
Engine
Two 880 hp Rolls Royce Peregrine inline piston engine
Empty Weight
3.770 kg /8.310 lb
Maximum Takeoff Weight
5.180 kg /11.410 lb
Climb Rate to 6.1 km
In 8 minutes
Maximum Speed
580 km/h / 360 mph
Diving speed
645 km/h / 400 mph
Range
1,115 km / 630 miles
Maximum Service Ceiling
9.240 m / 30.300 ft
Crew
1 pilot
Armament
Four 2 cm ( 0.78in) cannons
Payload of 454 kg (1,000 lb kg) bombs
Credits
Article written by Marko P.
Edited by Henry H.
Ported by Marko P.
Illustrated By Godzilla
Illustrations
Whirlwind in the Battle of Britain era camouflage scheme.Whirlwind in the 1942/43 livery
Source:
M. Ovcacik and K. Susa (2002) Westland Whirlwind, 4+ Publication
D. Monday (1994) British Aircraft Of World War II, Chancellor Press
Duško N. (2008) Naoružanje Drugog Svetsko Rata-.Beograd
P. J. R. Moyes The Westland Whirlwind, Profile Publication
Kingdom of Hungary (1938)
Fighter Aircraft – 4 aircraft operated
Despite being not adopted for service by the German Luftwaffe, the He 112 had great potential as an export aircraft. Spain, Romania, and Japan were some of the countries that got their hands on fighter aircraft. Hungary, with its close ties to Germany, also wanted this fighter in its inventory, though it was not to be. Unfortunately for them, despite their efforts, only a few of these aircraft would ever see service with their Air Force. This was mainly due to the reluctance of Germany to provide the necessary parts and licenses, and the start of the Second World War. The few aircraft that did reach Hungary were mainly used for crew training and even saw limited combat use.
Prior to the Second World War, the Luftwaffe was in need of a new and modern fighter to replace the older biplanes that were in service, such as the Arado Ar 68 and Heinkel He 51. For this reason, in May 1934, the RLM issued a competition for a new, modern fighter plane. While four companies responded to this request, only the designs from Heinkel and Messerschmitt were deemed sufficient. The Heinkel He 112 was a good design that offered generally acceptable flight characteristics and possessed a good foundation for further improvements. The Bf 109 on the other hand, had slightly better overall flight performance and was much simpler and cheaper to build. Given the fact that the Germans were attempting to accelerate the production of the new fighter, that alone was seen as a huge advantage over the He 112. Ultimately it would not be accepted for service, and only 100 or so aircraft would be built. These would be mainly sold abroad, with those remaining in Germany being used for various testing and evaluation purposes.
While the He 112 project was canceled by the RLM, to compensate for the huge investment in resources, Heinkel was permitted to export this aircraft. A number of countries such as Austria, Japan, Romania, and Finland showed interest, but only a few actually managed to procure this aircraft, and even then, only in limited numbers.
Hungarian Interest in the He 112
Being that it was on the losing side of the First World War, the Hungarians were in a similar situation to Germany in regard to military restrictions under the Treaty of Versailles. Crucially, it prohibited the Hungarians from developing their air forces. In time though, the Allies became less and less involved in maintaining the Treaty, and the Hungarians began slowly rebuilding their air force. By 1938 the Magyar Királyi Honvéd Légierő MKHL (English: Royal Hungarian Home Defence Air Force) was openly presented to the world. At that time, the Hungarians undertook steps to rebuild their armed forces in the hope of reclaiming some of their lost territories. For a modern air force, they needed better fighter designs, as their aged biplanes would not be sufficient. By 1938, they had improved their relations with Germany, and it was then possible to acquire new equipment from them.
The Hungarian military delegation that was in Spain during the civil war observed the relatively new Heinkel He 112 fighter in action and immediately became interested in it. In June 1938, a military group disguised as a civilian delegation visited Heinkel’s company. Three Hungarian pilots had the chance to flight test the He 112V9 aircraft. They were highly impressed and urged the Hungarian Army officials to adopt this aircraft. Unsurprisingly, based on the glowing report, the Hadügyminisztérium (Ministry of War Affairs) asked Heinkel for 36 such aircraft.
Unfortunately for them, Heinkel never actually put the He 112 into mass production, given the fact that it was not adopted for service with the German Air Force. It did, however, build a small series that was intended for Spain and Japan. The Hungarian offer was not considered as important, and thus no aircraft would be delivered to them. The Reichsluftfahrtministerium RLM (English: German Ministry of Aviation) also intentionally delayed the delivery of weapons to Hungary. This was done to politically and economically pressure the Hungarians and Romanians who were on the brink of war at that time, in an attempt to reduce tensions.
Still, the Hungarians persisted, and at the start of 1939, they requested again for the 36 aircraft, and once again, the Germans denied this request. However, a single He 112 V9 was given to Hungary and was used for flight testing near Budapest. On the 5th of February 1939, it crashed during a test flight against a CR-32 biplane fighter. In March 1939, another aircraft was sent to Hungary, this one being a He 112 B-1. It was extensively tested by the Hungarians who generally liked its design.
The He 112 V9 was lost in an accident during its first test flight. Source: D. Bernard Heinkel He 112 in Action
As the Romanians acquired a batch of 24 He 112 In 1939, the Hungarians were concerned over their neighbor’s growing military strength. Realizing that the Germans would not deliver the promised aircraft, they decided to ask for a production license instead. This was granted, and Heinkel also delivered two more He 112 B-1 with the Jumo 210E engine. When the license document arrived in Hungary in May 1939, a production order for the 12 first aircraft was given to the Weiss Manfréd aircraft manufacturer. Several changes were made, including the installation of 8 mm 39.M machine guns and the addition of bombing racks. In addition, the original 2 cm cannons were to be replaced by the Hungarian, domestically built, Danuvla 39, though it is unclear if any were actually installed. As the preparation for the production was underway the three available He 112 were adopted to service. This received coded designation V.301 to 303 where the V stands for Vadász (English: Fighter).
The B-series was in many aspects a complete redesign of the previous series. Including the introduction of a new tail unit, and part of the fuselage, to name a few. Source: www.luftwaffephotos.com
Despite the best Hungarian attempts to put the He 112 in production, the situation was made impossible by the coming war between Poland and Germany. The RLM would officially prohibit the export of any German aircraft engines and equipment at the start of the war. This meant that the vital delivery of the Jumo 210 and DB 601 engines could not be made. Based on this fact, all work on the Hungarian He 112 was canceled. Instead, Weiss Manfréd investigated to see if it could reuse most of the He 112 production line to produce a new domestic design named WM–23 Ezüst Nyíl(English: Silver arrow). While one prototype was built it was lost in an accident which ended the project.
The WM–23 Ezüst Nyíl prototype. Source: www.destinationsjourney.comThe V.303 during pilot training in 1940. Source: www.destinationsjourney.comDespite their best efforts, the Hungarians managed to operate only three He 112 (not including the single aircraft last way back in Budapest) Source: www.destinationsjourney.com
In Combat
In the Summer of 1940, the rising tension between Romania and Hungary over Transylvania reached a critical point. Transylvania was once part of Hungary but was lost after the First World War when it was given to Romania. By 1940, the Hungarian Army began preparing for a possible war with Romania over the territory. As neither side was willing to enter a hastily prepared war, negotiations began to find a possible solution. But despite this, there were some minor skirmishes, and Hungarian aircraft made several reconnaissance flights over Romania. The three Hungarian He 112 were stationed near the border, and the Romanians also had some He 112 in their inventory. While the Hungarian He 112’s did take up to the sky, no combat action by them was reported. Ultimately, at the end of August, Romania asked Germany to arbitrate the issue regarding the disputed territory, With Hungary being given the northern part of Transylvania in the settlement.
During the Axis invasion of Yugoslavia in April 1940, Hungary once again mobilized its He 112s. These were stationed near the border with Yugoslavia but they were not used in any combat operations.
By the time the Axis attacked the Soviet Union in June 1941 all three He 112 were used as training aircraft, with their secondary role being to protect the Weiss Manfréd factory. Due to a lack of spare parts, there was no point in sending this aircraft to the frontline. Two aircraft were involved in a landing accident where they were damaged. While their final fate is not completely clear, they may have been destroyed in 1944 when the Allies intensified their bombing campaign against Hungary. It is unlikely that the He 112s were operational at this point.
The V.301 had an accident where the pilot forgot to activate the landing gear. This is not surprising given that most pilots at that time mainly flaw on the older biplanes that had fixed landing gear. Source: www.destinationsjourney.comIn the Summer of 1941 the V.303 was damaged during a landing where the left landing gear wheel simply broke off. Source: www.destinationsjourney.com
Technical Characteristics
The He 112 was an all-metal, single-engine fighter. The monocoque fuselage consisted of a metal base covered by riveted stress metal sheets. The wing was slightly gulled, with the wingtips bending upward, but otherwise had a conventional construction.
During its development life, a great number of different engines were tested on the He 112. For the main production version, the He 112 B-2, it carried a 700 hp Jumo 210G liquid-cooled engine, with some others being equipped with the 680 hp Jumo 210E engine. The He 112 had a fuel capacity of 101 liters in two wing-mounted tanks, with a third 115-liter tank placed under the pilot’s seat.
The landing gear was more or less standard in design. It consisted of two larger landing wheels that retracted into the wings and one semi-retractable tail wheel. The He 112 landing gear was wide enough to provide good ground handling and stability during take-off or landing.
The cockpit received a number of modifications. Initially, it was open with a simple windshield placed in front of the pilot, with Later models having a sliding canopy.
The armament was changed throughout the He 112’s production, and the last series was equipped with two 7.92 mm MG 17 machine guns and two 2 cm MG FF cannons. The ammunition load for each machine gun was 500, with 60 rounds for each of the cannons. If needed, two bomb racks could be placed under the wings.
Conclusion
The He 112, although few in number, provided the Hungarian Air Force with one of its first modern fighter aircraft. Despite the Hungarian attempts to acquire over 30 aircraft from Germany, this was never achieved. In the end, the Hungarians only had three operational He 112, and one was lost in an accident during testing. While these were stationed on the front line on two occasions they never saw actual combat action. By 1941 due to a lack of spare parts, they were allocated for training purposes. The Hungarians eventually got a production license for the Messerschmitt Bf 109G making the few available He 112 unnecessary.
He 112B-1 Specifications
Wingspans
29 ft 10 in / 9.1 m
Length
30 ft 2 in / 9.22 m
Height
12 ft 7 in / 3.82 m
Wing Area
180 ft² / 17 m²
Engine
One r 680 hp Jumo 210E liquid-cooled engine
Empty Weight
3,570 lbs / 1,620 kg
Maximum Take-off Weight
4,960 lbs / 2,250 kg
Climb Rate to 6 km
In 10 minutes
Maximum Speed
317 mph / 510 km/h
Cruising speed
300 mph / 484 km/h
Range
715 miles / 1,150 km
Maximum Service Ceiling
31,170 ft / 9,500 m
Crew
1 pilot
Armament
Two 20 mm (1.8 in) cannons and two machine guns 8 mm (0.31 in) machine guns and 60 kg bombs
Credits
Article written by Marko P.
Edited by Henry H.
Ported by Marko P.
Illustrated By Godzilla
Illustrations
Source:
Duško N. (2008) Naoružanje Drugog Svetsko Rata-Nemаčaka. Beograd
G. Punka (1994) Hungarian Air Force, Squadron Publication
J. R. Smith and A. L. Kay (1990) German Aircraft of the Second World War, Putnam
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
D. Bernard (1996) Heinkel He 112 in Action, Signal Publication
R.S. Hirsch, U, Feist and H. J. Nowarra (1967) Heinkel 100, 112, Aero Publisher
C. Chants (2007) Aircraft of World War II, Grange Books
S. Renner. (2016) Broken Wings The Hungarian Air Force, 1918-45, Indiana University Press
In the later stages of the Second World War, it was becoming apparent to both the Luftwaffe (English German Air Force) and the German Government that the Allied air forces were gaining air superiority. This realization saw them turn to new and fantastical ideas in a desperate attempt to turn the tide of the war. Some of these represented new improvements to existing designs, the introduction of the newly developed turbojet engine, and even more esoteric and experimental methods. In many cases, these were pure fantasies, unrealistic or desperate designs with no hope of success. Few of them reached any significant development, and among them were the works of Alexander Martin Lippisch. While Lippisch helped develop the Me 163, the first rocket-powered interceptor, his other work remained mostly theoretical. One such project was the unusual P 13a, ramjet-powered aircraft that was to use coal as its main fuel source. While some work was carried out late in the war and soon faced insurmountable technical problems, thus nothing came of the project.
Artistic presentation of how the P 13a may have looked. Source: Luftwaffe Secret Jets of the Third Reich
History
Before the start of the Second World War, aviation enthusiast and engineer Alexander Martin Lippisch, was fascinated with tailless delta wing designs. Lippisch’s early work primarily involved the development of experimental gliders. Eventually, he made a breakthrough at the Deutsche Forschungsinstitut, where he worked as an engineer. His work at DFS would lead to the creation of the rocket-powered glider known as the DFS 194. As this design was a promising experiment in a new field, it was moved to Messerschmitt’s facility at Augsburg. After some time spent refining this design, it eventually led to the development of the Me 163 rocket-powered interceptor. While it was a relatively cheap aircraft, it could never be mass-produced, mostly due to difficulties associated with its highly volatile fuel. In 1942, Lippisch left Messerschmitt and ceased work on the Me 163 project. Instead, he joined the Luftfahrtforschungsanstalt Wien (English: Aeronautic Research Institute in Vienna) where he continued working on his delta-wing aircraft designs. In May 1943 he became director of this institution, and at that time the work on a supersonic aircraft was initiated.
In the later war years, among the many issues facing the Luftwaffe, was a chronic fuel shortage. Lippisch and his team wanted to overcome this problem by introducing alternative fuels for their aircraft. Luckily for his team, DFS was testing a new ramjet engine. They were designed to compress air which would be mixed with fuel to create thrust but without a mechanical compressor. While this is, at least in theory, much simpler to build than a standard jet engine, it can not function during take-off as it requires a high airflow through it to function. Thus, an auxiliary power plant was needed. It should, however, be noted that this was not new technology and had existed since 1913, when a French engineer by the name of Rene Lorin patented such an engine. Due to a lack of necessary materials, it was not possible to build a fully operational prototype at that time, and it would take decades before a proper ramjet could be completed. In Germany, work on such engines was mostly carried out by Hellmuth Walter during the 1930s. While his initial work was promising, he eventually gave up on its development and switched to a rocket engine instead. The first working prototype was built and tested by the German Research Center for Gliding in 1942. It was later tested by mounting the engine on a Dornier Do 17 and, later, a Dornier Do 217.
The Dornier Do 217 was equipped with experimental ramjets during trials. Source: tanks45.tripod.com
In October 1943, Lippisch won a contract to develop the experimental P 11 delta-wing aircraft. While developing this aircraft, Lippisch became interested in merging his new work with a ramjet engine. This would lead to the creation of a new project named the P 12. In the early stage of the project, Lippisch and his team were not completely sure what to use as fuel for their aircraft, but ramjets could be adapted to use other types of fuel beyond aviation gasoline.
Unfortunately for them, LFW’s facilities were heavily damaged in the Allied bombing raids in June 1944. In addition to the damage to the project itself, over 45 team members died during this raid. To further complicate matters, the scarcity of gasoline meant that Lippisch’s team was forced to seek other available resources, such as different forms of coal. This led to the creation of the slightly modified project named P 13. In contrast to the P 12, the cockpit was relocated from the fuselage into a large fin. This design provided better stability but also increased the aircraft’s aerodynamic properties. The overall designs of the P 12 and P 13 would change several times and were never fully finalized.
The P 12 and 13 small-scale models, in both configurations, were successfully tested at Spitzerberg Airfield near Vienna in May 1944. The project even received a green light from the Ministry of Armaments. In the early stages of the project, there were some concerns that the radical new design would require extensive retraining of pilots. However, the wind tunnel test showed that the design was aerodynamically feasible and that the aircraft controls had no major issues. Based on these tests, work on an experimental aircraft was ordered to begin as soon as possible.
A proposed P 12 aircraft. Its designs changed greatly over time, before being finally discarded in favor of the letter P 13. Source: The Delta Wing History and Development
The DM-1 Life Saver
While working on the P 12 and P 13, Lippish was approached with a request from a group of students from Darmstadt and Munich universities. They asked Lippisch to be somehow involved in the P 12 and 13 projects. Lippisch agreed to this and dispatched one of his assistants under the excuse that for his own project, a wooden glider was to be built and tested. The previously mentioned student’s and Lippisch’s assistant moved to a small warehouse in Prier and began working on the Darmstadt 33 (D 33) project. The name would be changed to DM 1 which stands for Darmstadt and Munich.
At this point of the war, all available manpower was recruited to serve the German war effort. For young people, this often meant mobilization into the Army. One way to avoid this was to be involved in some miracle project that offered the Army a potentially war-winning weapon. It is from this, that numerous aircraft designs with futuristic, and in most cases unrealistic, features were proposed. Many young engineers would go on to avoid military service by proposing projects that on paper offered extraordinary performance in combat.
The students and Lippisch managed to nearly complete their DM1 test glider when the war ended. Source: airandspace.si.edu
While it was under construction, preparations were made to prepare for its first test flight. As it was a glider it needed a towing aircraft that was to take it to the sky. A Sibel Si 204 twin-engine aircraft was chosen for the job. However, this was not to be done like any other glider, being towed behind the larger aircraft. Instead, the DM-1 was to be placed above the Si 201 in a frame, in a similar combination as the Mistel project. The estimated theoretical speeds that were to be reached were 560 km/h (350 mph).
Allegedly, there were four different proposals for the DM’s that were to be fully operational. The DM 2 version was estimated to be able to reach a speed of 800-1,200 km/h (500 – 745 mph). The DM 3’s theoretical maximum speed was to be 2,000 km/h (1,240 mph) while the fate of the DM 4 is unknown. Here it is important to note that these figures were purely theoretical, as there were no supersonic testing facilities to trial such a design. It is unclear in the sources if these additional DM projects even existed, even if in only written form. We must remember that the whole DM 1 glider idea was made to help the students avoid military conscription and that Lippisch himself never saw the DM 1 as any vital part of the P 13.
In any case, the glider was almost completed by the time the war ended and was later captured by the Western Allies. Under the US Army’s supervision, the glider was fully completed and sent to America for future evaluation. It would then be given to the Smithsonian Institution.
A DM 1 test glider being under construction. Source: hushkit.netThe Siebel Si 204 was to be used as a carrier for the DM 1 glider for the expected first-flight tests. Due to the end of the war, this was never achieved. Source: www.silverhawkauthor.com
Work on the P 13
As the work on the P 13 went on, the name was slightly changed. This was necessary as different variations of the P 13 were proposed. The original P 13 received the prefix ‘a’ while the later project’s designation continued alphabetically for example P 13b. After a brief period of examination of the best options, the P 12 project was discarded in favor of P 13. The decision was based on the fuel that the aircraft should use. What followed was a period of testing and evaluation of the most suitable forms of coal that could be used as fuel. Initial laboratory test runs were made using solid brown Bohemian coal in combination with oxygen to increase the burn rate. The fuel coal was tube-shaped, with an estimated weight of 1 kg, and encased in a mesh container through which the granulated coal could be ejected. The testing showed serious problems with this concept. While a fuel tube could provide a thrust that on average lasted 4 to 5 minutes, its output was totally unpredictable. During the testing, it was noted that due to the mineral inconsistency of the coal fuel, it was impossible to achieve even burning. Additionally, larger pieces of the coal fuel would be torn off and ejected into the jet stream. The final results of these tests are unknown but seem to have led nowhere, with the concept being abandoned. Given that Germany in the last few months of the war was in complete chaos, not much could be done regarding the Lippish projects including the P 13a.
As more alterations to the original design were proposed its name was charged to P 13a. Here is a drawing of a P 13b that was briefly considered but quickly discarded. Source: The Delta Wing History and Development
In May 1945, Lippish and his team had to flee toward the West to avoid being captured by the advancing Soviets. They went to Strobl in Western Austria, where they encountered the Western Allies. Lippisch was later transported to Paris in late May 1945 to be questioned about his delta wing designs. He was then moved to England, and then to America in 1946. The following year, American engineers tested the DM 1 glider at the wind tunnel facility of the Langley Field Aeronautical Laboratory. The test seems promising and it was suggested to begin preparation for a real flight. A redesign of the large rudder was requested. It was to be replaced with a much smaller one, where the cockpit would be separated from the fin and placed in the fuselage. Ironically Lippish was not mentioned in this report, as technically speaking he was not involved in the DM 1 project. Nevertheless, he was invited for further testing and evaluation of this glider. If this glider and the Lippish work had any real impact on the US designs is not quite clear.
Despite no aircraft being ever completed, one full-size replica of this unusual aircraft was built after the war. It was built by Holger Bull who is known for building other such aircraft. The replica can now be seen at the American Military Aviation Museum located in Virginia Beach.
An interesting full-size replica of the P 13 located at the American Military Aviation Museum. Source: Wiki
Technical characteristics
DM 1
The DM 1 glider was built using wooden materials. Given that it was constructed by a group of young students, its overall design was quite simple. It did not have a traditional fuselage, instead, its base consisted of a delta wing. On top, a large fin was placed. The cockpit was positioned in front of the aircraft within the large vertical stabilizer. To provide a better view of the lower parts of the nose, it was glazed. The landing gear consisted of three small landing wheels which retracted up into the wing fuselage. Given that it was to be used as a test glider, no operational engine was ever to be used on it.
The DM 1 side view. In contrast to the later P 13a design, the pilot’s cockpit position was placed above the wings. This was necessary as the engine was to be added. Source: airandspace.si.eduA DM 1 was captured by the Allies after the war. Its unique shape is quite evident in this photograph. Source: WikiA good example of DM 1 (to the right) and P 13a models that showed the difference between these two. The P 13a could be easily distinguished by its engine intake and the different position of the pilot cockpit. Source: Wiki
A good example of DM 1 (to the right) and P 13a models that showed the difference between these two. The P 13a could be easily distinguished by its engine intake and the different position of the pilot cockpit. Source: Wiki https://imgur.com/a/QW7XuO5
P 13a
The P 13 is visually similar but with some differences. The most obvious was the use of a ramjet. This means that the front, with its glazed nose, was replaced with an engine intake. Here, it is important to note, that much of the P 13a’s design is generally unknown, and much of the available information is sometimes wrongly portrayed in the sources. The P 13a never reached the prototype stage where an aircraft was fully completed. Even as the war ended, much of the aircraft’s design was still theoretical. Thus all the mentioned information and photographs may not fully represent how the P 13 may have looked or its precise characteristics, should it have been finished and built.
The exact ram engine type was never specified. It was positioned in the central fuselage with the air intake to the front and the exhaust to the back. As the main fuel, it was chosen to use small pieces of brown coal which were carried inside a cylindrical wire mesh container. The total fuel load was to be around 800 kg (1,760 lbs). Combustion was to be initiated by using small quintiles of liquid fuel or gas flames. The overall engine design was changed several times during the work on the P 13 without any real solution to the issues of output consistency. Given that the ramjets could not work without an air thrust, an auxiliary engine had to be used during take-off, though a more practical use would be to tow the P 13 until it could start its engine. A rocket takeoff ran the risk of the engine failing to ignite, leaving the pilot little time to search for a landing spot for his unpowered aircraft.
An illustration of the proposed P 13a engine interior. The use of coal as fuel may seem like a cheap alternative but given that this kind of technology was never employed may be an indication of its effectiveness. Source: theaviationgeekclub.com
The wing construction was to be quite robust and provided with deflectors that would prevent any potential damage to the rudders. The wing design also incorporated a sharp metal plate similar to those used for cutting enemy balloons cables. These proposed properties of the wings are another indicator that the P 13 was to be used as an aircraft rammer. Another plausible reason for this design was the fact that given it had no landing gear the aircraft design had to be robust enough as not to be torn apart during landing. The wings were swept back at an angle of 60 degrees. The precise construction method of the wings (and the whole P 13 a on that matter) are not much specified in the sources. Given the scarcity of resources in late 1944 it is likely that it would use a combination of metal and wood.
A drawing of the P 13a interior. Its overall construction was to be more or less standard in nature. This could not be said for the aircraft’s overall shape design. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
The fin had to be enlarged to provide good flight command characteristics. In addition, given that the position of the cockpit was in the fin, it had to be large. The fin was more or less a direct copy of one of the wings. So it is assumed that it too would share the overall design. The fin was connected to the aircraft by using four fittings.
The cockpit design was to be simple and cheap to build. The pilot was to have plenty of room inside the large fin. The cockpit was provided with a large glazed canopy that provided a good view of the front and sides. The seat and the instrument panel were bolted to the cockpit floor and walls. These could be easily detached for repairs. The instrument panel was to include an artificial horizon indicator, altimeter, compass, and radio equipment, Given that it was to operate at a high altitude oxygen tanks were to be provided too. Despite being intended to fly at high altitudes the cockpit was not to be pressurized. Another unusual fact was that initially the P 13 was to have a crew of two, but this was quickly discarded.
A possible example of how the inside of the pilot cockpit may have looked. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
Here it is important to note that the version of the P 13 with the large fin is often portrayed as the final version of this aircraft. However, Lippisch never fully decided whether he should go for this version or the second that used a smaller fin with the pilot cockpit placed above the engine intake. Depending on the proposed version they are drastically different from each other. Lippisch, for unknown reasons, presented the British intelligence officer with the version that used the smaller fin and the American with the second version.
During its development phase, many different alterations of the P 13 were proposed. Isource: D. Sharp Luftwaffe Secret Jets of the Third Reich
Landing operations were a bit unusual. To save weight no standard landing gear was to be used. Instead, Lippisch reused the Me 163 landing procedure. As the P 13 was immobile on its own, a small dolly would be used to move the aircraft. Once sufficient height was reached the dolly was to be jettisoned. In theory, this was an easy process, but in practice, this operation offered a good chance of failure and was much less safe than conventional landing gear. Sometimes the dolly either failed to eject or it bounced off the ground hitting the Me 163 in the process, with often fatal consequences.
The Me 163 which did not have traditional landing gear, had to be prior to the flight, transported to the airfield before launching into the sky. Source: warbirdphotographs.com
The aircraft was to land with the nose raised up from the ground. This limited the pilot’s view of the ground. In addition due to its small size and in order to save weight, nontraditional landing gear was provided, instead, it carried a landing blade skid. To help absorb the landing impact, additional torsion springs were to be used. This bar had to be activated prior to the landing, it would emerge from beneath the aircraft fuselage, with the rotation point located at the front. Once released it was to guide the aircraft toward the ground. After that, the torsion springs were to soften the landing. This whole contraption seems like a disaster just waiting to happen and it’s questionable how practical it would be.
A drawing that showed how the P 13a was to land using a guiding landing blade skid. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
One interesting feature of the P 13 was that it could be easily disassembled into smaller parts which would enable effortless transport. Another reason was that due to the engine’s position in order to make some repairs or replacement of the engine, the remaining parts of the wing and the large fin had to be removed.
Was it an aircraft rammer?
The precise purpose of the P 13a is not quite clear, even to this day. Despite being briefly considered for mass production, no official offensive armament is mentioned in the sources. So how would the P 13a engage the enemy? A possible solution was that it would be used as a ram aircraft that was supposed to hit enemy aircraft damaging them in the process. In an after-the-war interrogation by British officers, Lippisch was asked if the P 13 was to be used as an aerial ram aircraft. Lippisch responded the following “
“.. The possibilities of using the P.13 as a ramming aircraft had been considered but Dr Lippisch did not think that athodyd propulsion was very suitable for this purpose owing to the risk of pieces of the rammed aircraft entering the intake. This would be avoided with a rocket-propelled rammer…”
This statement contradicts the building description issued by the LFW issued in late 1944. In it was stated the following about this potential use. “…Due to tactical considerations, among other things, the speed difference of fighters and bombers, preferably when attacking from behind, though the thought was given to the installation of brakes .. and although ample room for weaponry is present, the task of ram fighter has been taken into account – so that the ramming attack will not lead to the loss of the aircraft, thanks to its shape and static structure.”
This meant that this concept may have been considered by Lippisch at some point of the project’s development. The P 13 overall shape resembles closely to aircraft that was intentionally designed for this role. That said, it does not necessarily mean that the P 13 was to ram enemy aircraft. The use of such tactics was considered but their use was discarded, as it was seen as a futile and flawed concept. The project itself never got far enough to have an armament decided for it.
The precise method of how to engage the enemy aircraft is not clear as the P13a was not provided with any armament. It is sometimes referred to in the sources as it was to be used as a ram aircraft. Source: theaviationgeekclub.com
Conclusion
The Lippisch P 13 is an unusual aircraft project in nearly all aspects. Starting from its shape, which proved, at least during wind tunnel tests, that the concept was feasible. On the other hand, its engine seems to have simply been abandoned after discouraging test results. It is unlikely that such a combination would have worked to the extent that the P 13 designer hoped it would. During the testing, they could not find a proper solution to providing a constant thrust with sufficient force to reach a speed that was expected of it. So the whole concept was likely to be doomed from the start.
The DM 1 however, while it was never seriously worked on by Lippisch himself, managed to save a group of young students who used the project to avoid being sent into combat.
DM-1 Specifications
Wingspans
5.92 m / 19 ft 5 in
Length
6.6 m / 21 ft 7 in
Height
3.18 m / 10 ft 5 in
Wing Area
20 m² / 215 ft²
Engine
None
Empty Weight
300 kg / 655 lbs
Maximum Takeoff Weight
460 kg / 1,015 lbs
Maximum Speed
560 km/h / 350 mph (gliding)
Landing speed
72 km/h / 45 mph
Release altitude
8,000 m (26,240 ft)
Crew
1 pilot
Armament
None
Theoretical Estimated Lippisch P 13 Specifications
Wingspans
5.92 m / 19 ft 5 in
Length
6.7 m / 21 ft 11 in
Height
3.18 m / 10 ft 5 in
Wing Area
20 m² / 215 ft²
Engine
Unspecified ramjet
Maximum Takeoff Weight
2,300 kg / 5,070 lbs
Maximum Speed
1,650 km/h / 1,025 mph
Flight endurance
45 minutes
Fuel load
800 kg / 1,760 lb
Crew
1 pilot
Armament
None mentioned
Illustrations
The Lippisch DM-1, unnecessary to the overall project, it none the less allowed a group of students to escape military service.
A possible silhouette of the P13.
Credits
Article written by Marko P.
Edited by Henry H.
Ported by Marko P.
Illustrated By Medicman11
Source:
A. Lippisch (1981) The Delta Wing History and Development, Iowa State University Press
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putham
B. Rose (2010) Secret Projects Flying Wings and Tailless Aircraft, Midland
D. Sharp (2015) Luftwaffe Secret Jets of the Third Reich, Mortons
A Ta 152H undergoing compass calibration. (flugrevue)
Introduction:
Throughout the Second World War, the job of the interceptor would become ever more challenging. Their targets, mostly bombers and photo reconnaissance aircraft, would fly ever higher and faster thanks to new advancements in turbo and supercharging. With Germany under a state of permanent siege and surveillance by aircraft like the Boeing B-17 and De Havilland Mosquito, it was clear the Luftwaffe needed a specialized interceptor to effectively reach these high flying threats and the multitude of new fighters that were appearing in growing numbers. After several failed attempts to develop the Fw 190 into such an interceptor, Kurt Tank designed the Ta 152H. The short lived design incorporated all of the available developments in high altitude flight available to German aviation in an attempt to create the ultimate high altitude fighter.
High altitude threats and Interceptors
In the summer of 1941, the Mosquito was making its first reconnaissance sorties and becoming one of the gravest threats to German aerial defenses. Operating above 7km and capable of reaching speeds upwards of 560 km/h, the aircraft was almost untouchable after it had reached its destination. Once they had taken their photos, they turned for home and entered a shallow dive that allowed them to accelerate to speeds beyond those of pursuing fighters who were not already chasing them from a higher altitude. With such a small interception window, they were a chief concern to the Luftwaffe. Doubly so were the bomber variants of the aircraft, which raided targets all over North Western Europe.
The following year saw the entrance of the United States into the Second World War, their air force possessing some of the most capable high altitude aircraft at the time. Investments in engine turbocharging allowed them to field a number of bombers and fighters with exceptional high altitude performance. B-17’s were conducting regular operations above 7 km. At first, they undertook operations at significantly lower altitudes, never straying too far from their air bases in southern England, but it was becoming clear that they would soon pose a threat that the Luftwaffe was ill equipped to combat.
The De Havilland Mosquito was quickly recognized as a serious threat not long after its introduction. Photorecon versions, like this later Mk XVI here, could surveil Germany with little fear of interception. (wikimedia)
The only two fighters of consequence employed by the Luftwaffe, the Bf 109 and Fw 190, were effective low to medium altitude fighters. However, through 1942, both were operating with engine power restrictions, and supercharger related performance bottlenecks. While inferior alloys and lubricants were causing a variety of issues, that was less of a concern than the engines themselves not being designed for use at high altitudes. The Bf 109G’s DB 605A, with its variable single stage blower, provided a full throttle height of roughly 6.5 km, depending on the variant. The Fw 190’s BMW 801, with its significantly simpler, single stage, double speed supercharger, was even worse off. Its critical altitude was only roughly 6 km, leaving it, and the 109, distinctly lacking in power at the over 7.5km B-17’s often flew at. Above these altitudes, neither engine could maintain the manifold pressure needed for combat power, putting them at a distinct disadvantage in trying to catch the Mosquito, or fighting American high altitude fighters which were soon making forays into German airspace. As the USAAF began its strategic bombing campaign against Germany proper, there were deep concerns within the Luftwaffe about the battle they were soon to fight, and for which they were clearly technically unprepared for. Even more concerning was the fear that the RAF would soon be operating the Vickers Wellington V bomber, which was reportedly capable of operating at an almost untouchable altitude of 12 km. They never entered service, but were the impetus for the creation of a specialized high altitude fighter with the Höhenjäger program.
With these anxieties building, the RLM convened a conference on the development of high altitude fighters on May 20, 1942 at Messerschmitt’s plant in Augsburg. In addition to the high altitude British bomber, further concerns were spelled out over the recent study of the new Merlin 61 engine, which, with its two stage, two speed supercharger, promised to make the Spitfire and Mosquito even more challenging opponents at high altitude. Of particularly grave concern was that the German aviation industry could not simply follow the same development path as the Allies. The poor qualities of their available alloys and the inadequate supplies of high octane fuels meant that even, if they had a factory furnished with all the tools to manufacture an engine like the Merlin 61, they simply could not build or operate it with the materials at hand.
As such, they had to pursue less conventional means of improving performance. Messerchmitt proposed a redesign of a former naval fighter proposal for high altitude use. The Me 155 carrier based fighter design, with its very long wingspan, was proposed to be converted for high altitude use, the work being done mostly at the S.N.C.A.N plant in Paris. The design would later be taken up and heavily altered by Blohm & Voss, who went on to design the Bv 155, with turbochargers and GM-1 nitrous boosting. Neither design came to fruition. A secondary design, the Bf 109H, would involve stretching the wingspan of a Bf 109F, and later G, and installing the high altitude GM-1 engine boost system. Likewise, this design was not pursued. In the end, Messerschmitt would go on to design a mass production, high altitude variant of their standard Bf 109G with a pressurized cockpit and nitrous boosting. While it would prove fairly adequate for the time, it was held back by the need for GM-1, which was difficult to transport in large quantities without a pipeline.
Focke-Wulf would face an even greater challenge with their program. While their Fw 190 was proving to be among the best medium altitude fighters of the war, its short wingspan and outdated supercharger meant it would take a considerable effort to make a high altitude fighter out of it.
The Höhenflieger Fw 190
Focke-Wulf first pursued turbocharging to get their fighter to reach the adequate level of performance for the Höhenjäger project. Almost immediately, they ran into the issue that it was almost impossible to fit a suitable turbocharger into a Fw 190A, though an externally mounted, and almost completely unwieldy unit was suggested. The first serious effort came with the proposal for the Fw 190B fighter, or Höhenjäger 1, in August of 1942. The design would take the then in production Fw 190A-3, increase its wingspan from 10.5 to 12.4 meters (increasing its area from 18.3 to 20.3 m^2), and install a pressurized canopy. The engine was initially unmodified and nitrous boosting was not pursued, in the hope a suitable turbocharger would be developed. The prototype, Fw 190V-12, began testing, but was abandoned in favor of using older, pre-production Fw 190A-0 prototypes before moving on to pre-production. The Fw 190B-0 received the new BMW 801 D-2 and several other modifications going into the new A-5 fighter. It began testing in December of 1942, and despite some faults with the pressurized canopy, which were later corrected, the aircraft had considerably better high altitude handling than the original A model. All four of the A-0’s were converted, but the program showed little promise. Despite the effort, the improvements were not enough and the aircraft was still too slow at high altitude. It was clear that the aircraft needed a heavily modified, or entirely different engine, in order to attain the level of performance needed.
Perhaps the most promising development for the next generation of the Fw 190, the C series, hoped to install a much more powerful DB 603 engine. Harsh teething issues and limited supplies for the engine doomed the project. (grafiq)
In parallel with the B-project, the decision was made to re-engine the aircraft with either the Junkers Jumo 213, or Daimler Benz’s DB 603. Both promised better high altitude performance over the BMW 801 along with a considerable overall increase in engine output. The DB 603 project would proceed with the designation Fw 190C, and the Jumo 213, Fw 190D. The first Fw 190C prototype, V13, had a DB 603 installed, with an annular radiator at the nose of the aircraft and its supercharger intake mounted between its two oil coolers, these modifications presenting a longer, but more streamlined profile. Little drag was added to the airframe with the modifications initially, but they would be forced to mount the supercharger scoop externally. The aircraft first flew in March of 1942, and overheating, along with general teething issues would be noted. Two more prototypes were converted, V15 and 16, receiving the longer wing from the B-project and GM-1 equipment. Turbocharging was also proposed, but not pursued until much later on. The program continued through May at a decent pace and they were achieving high speeds, one aircraft reaching 696 km/h at 6,950 m, but overheating and engine failure remained serious issues. Similar problems were likewise being experienced with the Jumo 213. The results, however, prompted Focke-Wulf to expand the program with six more prototypes, V13,15,16, 19, 20, 21, 25, 26, and 27 carrying the DB 603, and V22 and 23 using the Jumo 213. Despite the focus on the DB 603, the company was prepared to switch to the Jumo 213, which they could obtain a much larger supply of.
The large, drag inducing turbocharger scoop earned this aircraft the moniker ‘kangaroo’. Aerodynamically unsound, it proved unsatisfactory for service. (wwiiforum)
The final design for the Fw 190C featured the DB 603A with its supercharger intake mounted on the port engine cowling, with various provisions for an armament of MG 131 machineguns, MG 151/20, and MK 108 autocannons. Its highest tested speed was an impressive 722 km/h at 9 km, without armament or armor plates. Production was strongly considered, and then canceled. The DB 603, in its fighter configuration, was still proving troublesome, and V13 was written off after an engine failure forced the pilot to crash land. The engine itself had a comparatively small production run compared to the Jumo 213, and was being shared with a number of twin engine bombers and night fighters. As the older, and massive Jumo 211 production lines were transitioning to the more powerful Jumo 213, it was by far the better choice for a new mass production fighter.
The Fw 190D or ‘Dora’ project continued, though its development path did not lead to a mass produced, high altitude fighter. Rather, it became a project to facilitate getting the Jumo 213 into a fighter as fast as possible, as it was one of the few German engines capable of competing with Western Allied models in most areas. The only mass produced variant, the D-9, is often mislabeled as a high altitude fighter, though its engine was designed for low to medium altitude use. A small number of high altitude models, with the appropriate engines, were produced, but were nothing compared to the D-9’s production run of well over a thousand aircraft by the end of the war.
Shifting programs aside, Focke-Wulf would continue with the new Höhenjäger II project, now seeking to build a truly superb high altitude fighter by taking several of the Fw 190C prototypes and equipping them with Hirth TK 11 turbo-superchargers. With the Fw 190B improvements, the 2000 hp DB 603 S, and a pressurized cockpit, it was hoped that a number of exceptional high altitude fighters could be produced, even if they could never reach the production figures of the Dora. They attempted to solve the earlier issue with the unmanageable size of the turbosupercharger by installing it partially outside of the fuselage, with an air scoop at its front. V18 received the necessary modifications and flew in December of 1942, with serious cooling problems being noted. Further modifications were made after the first several flights, most notable being that a larger oil cooler was mounted, the tail was enlarged to improve high altitude control, and the next prototype, V30, was re-equipped with a four bladed Schwarz propellor. Their extreme high altitude performance was superior to the C, with the aircraft reaching a speed of 670 km/h at 11 km, though they were proving far more temperamental. Turbine and engine issues continued to cut test flights short, though more prototypes were constructed through early 1943, V29 to V33. However, turbine issues persisted, and the entire scoop set up was found to be aerodynamically poor, and the design was proving very disappointing in comparison to the fully recessed models in service with the USAAF. Its performance too was deemed inadequate, and the project was canceled.
Falling behind
Apart from expedient designs, like the GM-1 boosted Bf 109’s, German efforts to produce a high altitude fighter had largely stagnated during 1943, and by the beginning of 1944, they were at a distinct disadvantage. For the past two years, most of the aero engine industry was working hard to modify their existing models to run at their full power using the inferior materials and fuel that were available to them. Among the clearest problems this caused was with the Messerschmitt Bf 109 G, or ‘Gustav’ model, which was only finally cleared to run at its full combat power in the summer of 1943, almost two years after its introduction. Under such conditions, developing new engines was a mostly hopeless effort, and to make matters worse, Allied developments in this field were unfolding brilliantly. While Focke-Wulf and Messerschmitt had failed to deliver on their high altitude fighters, the RAF began to fully transition to the use of the two-stage Merlin in their Spitfires, while the even more powerful Griffin was in development. By the end of 1943, USAAF finally introduced the P-51B, using a licensed Packard Merlin engine, and the P-47 had seen significant performance improvements which gave it unparalleled performance above 9 km. The P-51 proved perhaps the most concerning, as it not only had the benefit of a significantly more advanced engine, but it had been designed with aerodynamic concepts that were not available to aircraft designers before the war. It was an altogether modern aircraft, whereas the German air force would remain dependent on modified versions of planes which had been flying before the war had begun. The Bf 109G had fallen behind its Western contemporaries in most areas of performance, while the Fw 190 still clung to a competitive edge in low to medium altitude engagements. At high altitudes, especially above 7.5 km, there were only a comparative handful of GM-1 boosted Bf 109G’s that could really challenge the Allies, and even then, not on equal terms.
Germany did not possess the materials needed for robust and reliable exhaust valves, bearings, or more efficient, high pressure, high temperature radiators like those on Western Allied planes. However, there were areas of hopeful improvement. Foremost was that, by the autumn of 1943, German engine manufacturers had developed nickel coatings for engine pistons to overcome corrosion problems, and had modified the DB 605’s oil scavenge system to allow it to run at its originally planned combat power. While they would not be able to produce engines as reliable as those in the service of the RAF and USAAF, it was clear that the performance disparity could be reduced. Just as crucially, improvements were being made in regards to radiator design, particularly the annular units which were being tested on the high altitude Focke-Wulf projects. The new AJA 180 on the Fw 190 series was both approaching the pressure and temperature tolerance of Allied models, and was very compact, allowing the Fw 190 to retain its aerodynamic sleekness even when it switched engines.
The Fw 190D project transitioned away from high altitude fighters when the demand for better general purpose fighters grew. Rushed into production, it had more than its fair share of blemishes but, nonetheless, was an effective successor to the earlier ‘Anton’. (worldwarphotos)
While Messerschmitt had already succeeded in producing an acceptable high altitude fighter in the GM-1 boosted Bf 109G, Focke-Wulf’s projects took a different turn. The high altitude Fw 190D project shifted focus to produce a medium altitude fighter, the Fw 190D-9, and another project would seek to build a successor to the Fw 190, the new plane being named Ta 153. The designation changed to reflect Kurt Tank’s role as the head designer at Focke-Wulf. With this new design, hopes for significant high altitude improvements were again stoked, but as had become clear by their earlier failures, such improvements could not come from any unfamiliar solutions or technically complex methods, like turbocharging.
The Successor
The Ta 153 was so designated as it was not a variant, but a successor to the original aircraft. It featured a new fuselage and wings and the occasionally troublesome electrically driven landing gear actuators were changed for hydraulically driven ones. Being almost entirely divorced from the Fw 190’s supply chain, it was thus denied for production in March of 1943, given the amount of labor and time it would take to set up tooling. A compromise model between the design and the Fw 190D was selected, designated the Ta 152.
The Ta 152C program attempted to replace the Fw 190 A&D and correct the faults of the Dora. In the end, it proved too similar to justify shifting production before the end of the war. (ta-152.de)
There were several types planned, namely Ta 152 A,B,C and H. These were standard fighters, heavy fighters for use against bombers, fighter bombers, and a high altitude interceptor. The A and B were designed to use the Jumo 213A & E, respectively, the C the DB 603, and the H, the Jumo 213E. To avoid impacting the production of the Fw 190D, the high altitude model was the first to be developed. These planes featured a hydraulic landing gear system as opposed to the electric actuators on the Fw 190, an improved vertical stabilizer from the Fw 190C program, larger wings, and a half meter fuselage extension in the rear fuselage, with the ensuing redistribution of weight helping to correct for an issue with the aircraft’s center of gravity.
While it may seem odd that they were essentially pursuing two fighter designs to succeed the Fw 190A, the Luftwaffe was desperately looking for higher performance fighters. Hopes were placed on the new Jumo 213 in the Fw 190D, and the new DB 605D in the Bf 109K, to keep pace with the Allies. The Dora was an expedient solution which could use the same supply chain as the original fighter, and the Ta 152 would be a more thoroughly improved model which would be transitioned to once the Dora’s supply chain was well established. In any case, only the high altitude Ta 152 variant was pursued with any substantial amount of resources, given it would be assigned a mission the Bf 109K and Fw 190D models were not suitable for. Jets were, of course, also quite promising, but they were still an immature technology, and it was clear that the leap from pistons to turbines could not be made in 1944.
The new fighter would be designed with both high altitude and low altitude performance in mind. To meet this challenging requirement, both the GM-1 high altitude, and MW 50 low altitude engine boost systems were to be installed aboard the aircraft. Kurt Tank selected several of the old Fw 190C prototypes to be converted for the new program, these being V18, 29, 30, 32, and 33. V33 was the first to undergo modification and was redesignated V33/U1, now featuring a three bladed VS 9 propeller, a forward fuselage lengthening of .5 meters, a rear fuselage lengthening of 0.772 m, a new high aspect wing with an area of 23.5m^2, a hydraulically actuated undercarriage, and two 20 mm MG 151/20’s mounted in the wing roots.
It first flew on July 13, 1944, and was lost after it crashed during its 36 minute test flight at Vechta. The second prototype, V30/U1, flew on August 6, and like the first, was again lost, though this time resulting in the death of its pilot, Alfted Thomas. More success was had with the third prototype, V29/U1, which flew on September 29, 1944, and the fourth, V18/U2, which flew shortly after. With pre-production beginning in November, this left them about a month to perform flight tests on their surviving prototypes. Serious trouble with the program was encountered as late as November, when test pilot Hans Sander had to crash land his aircraft after his engine seized due to fuel starvation. It was found a hydraulic valve had been installed in the fuel line, an accident most likely a result of the aircraft’s rushed development.
The losses and damages experienced at this point in testing were threatening to seriously interrupt the pace of the project, but in the end, they rushed through development with some of the stability issues unresolved. This effectively led to the aircraft entering production with only slight adjustments from the prototypes. However, the plane was achieving good high altitude performance, both in terms of speed and ceiling. Test pilot Friedrich Schnier would fly V29/U1 to an incredible height of 13.6 km on January 20th, 1945. Beyond this, the fourth and final converted aircraft was V32/U1, which was fitted with a four bladed Schwarz propeller and the new MG 213 revolver cannon. It first flew in January of 1945, though none of the equipment would be worked into any production aircraft.
The eccentric profile of the aircraft, with its high aspect ratio wings. (destination’s journey)
The H was unique among the Ta 152 series, with its long, high aspect wings designed for high altitude use, a pressurized cockpit, and the installation of both the GM-1 high altitude, and MW 50 low altitude boost systems. While together, they promised incredible performance at any height, GM-1 was never carried aboard any of the operational fighters due to its container’s adverse effects on stability. Eager to have this aircraft as soon as possible, Focke-Wulf sprinted through its development, and the Ta 152H entered pre-production in November of 1944. The extremely rapid pace of development was emblematic of the very desperate situation the German air force was in at the time. This resulted in the delivery of an aircraft that was effectively unfinished.
The Ta 152H-0 entered service without several of the key features that the plane was set to carry, lacking the outer wing fuel tanks, and the engine boost systems. As such, it was considerably lighter, and better handling than the planned production model, but without the boost systems, it was much slower. For the time being it judged necessary, as there were serious weight distribution issues with wing fuel tanks and boost systems aboard. While it was designed with wing tanks, GM-1, and MW 50, the production model of the aircraft would not be permitted to fly with all three. In the end only the MW 50 and the wing tanks were permitted to be used together, but the GM-1 system would prove more troublesome. A stop gap solution late in the war would allow for the use of GM-1, but only GM-1. By the time the war ended, there was still no solution on how all three pieces of equipment would be added to the plane without jeopardizing its flying characteristics.
It was in this rough state when it was delivered to the Luftwaffe for testing in December. Due to supply chain issues, production was slow and the aircraft were finally delivered to the Luftwaffe until January 27, 1945.
Operational History
Given their very late introduction during the war, the Ta 152H saw very little action and its combat record is extremely limited. The aircraft was only supplied to the Stab, the squadron staff group, and Gruppe III of JG 301, a dual night and day fighter squadron which transitioned to them from Fw 190A-8’s on January 27. The squadron had a good pool of experienced pilots already familiar with Focke-Wulf aircraft, though their mechanics would have a far more difficult task, as the Ta 152H-0 had been pushed into service without maintenance manuals. At the airfield at Alteno, they received 11 aircraft, with 16 others having been destroyed or damaged on the ground before they could reach the unit. Familiarization and training proceeded until the end of February and was not without incident. One aircraft (150037) was lost in a training incident, a second damaged but repaired, and serviceability fell from 75% to 30% after an incident with water contaminating fuel supplies. The squadron would go on to receive several more aircraft before rebasing to Sachau when Alteno was overrun. They would attempt to engage Allied bombers on March 2, but the 12 Ta 152H’s would fail to reach them, as they were attacked by the Bf 109s of another squadron which mistook their unfamiliar planes for the enemy. No aircraft were lost in the engagement. A second high altitude interception against a DeHavilland Mosquito was also attempted, though engine trouble forced the pilot to return to base before contact was made.
One of the only photographs of Ta 152H’s in operation with JG 301. (destination’s journey)
The unit rebased again to Stendal near Erfurt, where they joined JG 301’s Gruppe II, during which one aircraft was lost, and the pilot, Jonny Wiegeshoff, was killed on the landing approach. This was believed to be the result of the propeller reduction gear failing and becoming stuck in an almost feathered position. By March 14th, the understrength unit was supplied with several Fw 190A-9s. Outnumbered and with little security, the Ta 152H’s often flew top cover for the rest of the unit during what few operations were undertaken. On April 10, Erfurt was contested, and during the fighting, the eight serviceable Ta 152’s engaged a flight of fifteen P-47’s near Brunswick, resulting in one victory claim.
Gruppe III’s last actions were conducted from Neustadt-Glewe. On April 15th, the unit suffered its first combat loss. During operations that day, four Ta 152s sortied to attack a pair of RAF Hawker Tempests engaging in a low level sweep. According to Obfw. Willi Reschke, the Ta 152H in the number two position, flown by Obfw. Sepp Sattler, suddenly lost control and crashed before contact was made, seemingly suffering a fatal malfunction, while other accounts claim he was brought down by one of the RAF Tempests. The remaining two Ta 152’s engaged the Tempests of No. 486 Squadron. In the ensuing battle, Obfw. Willi Reschke entered an intense, low level dogfight with one of the Tempests. Near the beginning of the engagement, he fired on and struck the tail of a Hawker Tempest flown by Lt. Mitchell, his gun’s electrical circuit seemingly failing shortly after. However, when Mitchel attempted to turn away from his opponent, he lost control of his damaged aircraft and crashed. Reschke swore by the low speed maneuverability of the Ta 152, which he felt was critical in this engagement, and his survival through the last days of the war. The Ta 152H flown by the Schwarm leader, Oberstleuteneant Fritz Auffhammer, suffered an engine failure, though the pilot successfully restored power and returned to base with his supercharger broken. Sattler and Mitchel were both buried at a cemetery in Neustadt-Glewe.
The last actions of the squadron were in the last stages of the Battle for Berlin, and on April 24th, the Ta 152s and Fw 190As of the IInd and IIIrd Gruppe attacked Soviet positions and engaged Yak 9’s. The final mission was flown over Berlin in poor conditions, and during an engagement with a flight of four Yak 9’s, Hauptman Hermann Stahl was killed during the engagement, with the four Yak-9’s being claimed by the unit. After the surrender, the unit rebased to Leck in Schleswig-Holstein, where they were disbanded and one of the serviceable Ta 152H’s was transferred to England by the RAF so that it could be evaluated. A second Ta 152H was also claimed by the USAAF for evaluation purposes, the plane being another H-0 which likely belonged to a testing unit at Rechlin.
One of the only serviceable planes was taken to the UK for testing. The other was taken in hand by the US. (Alessandro Orseniga)
In all, the Ta 152H was never actually used for any high altitude combat operations and its service was restricted to a single under strength unit. With at most ten victories and four operational losses, it is difficult to give any appraisal for its performance from its brief career with JG 301. Obfw. Josel Keil, was the only pilot to qualify as an ace on the Ta 152H, and together with Willi Reschke, who had two credits in the Ta 152H, and 24 in other aircraft, held nearly all of the aircraft’s combat credits between them.
Handling and Flying Characteristics
While the Ta 152H’s combat record leaves a lot of questions left unanswered, most pilots who had the chance to get behind the controls of the aircraft can at least agree that the aircraft flew very well. Among its most famous advocates was Royal Navy Test pilot Eric Brown. He would praise its excellent climb performance, maneuverability at high altitude, stability, and good landing characteristics. His only negative remarks were that its roll rate was reduced over the older Fw 190A, that its stick forces were notably heavier, and that its wheel brakes were still awful and prone to fade after a few moments of use. He otherwise considered it an excellent aircraft and the best high altitude piston engined fighter he had flown, comparing it favorably to a Spitfire Mk IXX. It must be noted that he misidentifies the aircraft as an H-1 in his book, and not the substantially lighter H-0, which is visually identical.
Captain Brown’s remarks are matched by those of the pilots who assessed the aircraft in the Stab and III/JG 301. The Ta 152H-0 had the best evaluation received by a front line operator of a Focke-Wulf aircraft. The aircraft possessed most of the best qualities of the earlier Fw 1,0D-9 without having its poor accelerated stall characteristics. While still described as uncomfortable like the Fw 190D it was so similar to, it was much improved and less prone to the aggressive snap rolling. So, while the aircraft was less maneuverable, generally speaking, most pilots were more comfortable pulling harder turns. In tests at the unit, some new pilots in Ta 152H’s were able to turn with seasoned pilots in Fw 190A’s. Take off runs were short, and the landing approach could be conducted at low speeds. Generally speaking, it was a fairly forgiving aircraft. The only negative notes on the aircraft were from the findings of the Rechlin Test Center, which found the aircraft became seriously unstable in dives exceeding 600 km/h and that level flight required excessive trimming of the horizontal stabilizer.
The enlarged tail and redesigned wings helped give these aircraft better handling characteristics than the Fw 190D. (Grafiq)
The stick forces were notably fairly high, but they were harmonized well, and the push rod control system ensured inputs were very responsive. Stability about the vertical axis was poor, and there was a tendency to skid. This tendency grew worse at higher altitudes and motivated them to install a level flight autopilot. The aircraft possessed good visibility to the back, sides, and rear, with the view over the nose being mediocre to poor. The controls were placed conveniently, with the instrument panel layout being clean and easy to read.
Most of its good qualities were not found in the fully equipped H-1 production model of the aircraft. Numerous problems were encountered when the full set of engine boosting equipment and fuel tanks were installed and filled. The added weight of the boost systems and wing tanks was substantial, and asymmetric. The GM-1 system and the wing tanks were particularly problematic, and the aircraft was unstable if the GM-1 container and fuel tanks were filled. Stability with the GM-1 system was only possible with a ballast kit, empty wing tanks, the removal of the MW 50 system, and a set fuel limit for the rear fuselage fuel tank. These issues were not resolved by the time the war ended, and there was no way the aircraft could use any combination of these systems without seriously jeopardizing its flying characteristics. MW 50 was usable aboard only the H-1 production model, but it may not have been available to JG 301 in the field. The squadron was still mostly composed of BMW 801 equipped Fw 190A’s which did not use the system.
Mechanics generally found the aircraft easier to maintain than the Fw 190, however there were some issues. The new hydraulic system for the landing gear was experiencing teething and quality control issues. The position of the landing gear wheel well was also found to be at issue, as when launching from damp conditions, the propeller cast mud and water into the well, which made its way inside the wing. This caused issues with the hydraulic systems and the autocannons fitted in the wing root.
Comparisons with contemporary fighters
The Ta 152H represented a leap in Germany high altitude fighter design, though not necessarily one that took them beyond the competition. (flugrevue)
Aircraft (manifold pressure)
Speed at Sea Level (km/h)
Speed 3050 m (10,000 ft) (km/h)
Speed 6096 m (20,000 ft) (km/h)
Speed 9144 m (30,000 ft) (km/h)
Speed 9.5 km (31,168 ft) (km/h)
Ta 152H-1 (1.92 ata)
580
640
690
725
732
Fw 190D-9 (1.82 ata)
611
645
689
653
645
P-51B-15 (75″ Hg)
616
675
709
688
685
P-47N-5-RE (72″ Hg)
587
643
708
740
759
P-47M (72” Hg)
587
646
701
753
762
P-38L (60” Hg)
550
608
646
663
659
Spitfire Mk 21 (+21 lbs)
592
658
700
704
703
Me 262 A-1a
800
x
870
845
x
*The Ta 152H-1 could reach a maximum speed of 760 km/h at 12.5 km using the GM-1 boost system. While it was never cleared for operational use, on paper, it made the Ta 152H the fastest fighter at that altitude. The Fw 190D-9 represents a late model, having received an MW 50 boost system, as was available near the end of 1944.
The Ta 152 entered service on a battlefield where the Western Allies already had high altitude supremacy, and had a number of improved designs that had yet to make their debuts by the time the war in Europe was ending. By January of 1945, the German air force was no longer dealing just with long range escort fighters over its own soil, but virtually every fighter the Allies could throw at it, such as P-47’s, Spitfires of several marks, La-7’s, and Tempests, just to name a few.
Fw 190D-9 (Graphiq)
Against its contemporary Fw 190D-9 counterpart, it is clear that the Ta 152H did not represent a comprehensive upgrade. The Dora shared much of the same fuselage, though it retained the wings and tail sections of the older Anton series fighter, and it carried the Jumo 213A engine designed for use at lower altitudes. In regards to linear speed and acceleration below 6 km, the Dora roughly matched or exceeded the Ta 152H. This, however, was not the case at higher altitudes, where the high altitude specializations of the fighter showed their worth. The Ta 152H was known to be more maneuverable in flat turns and much more forgiving in most aggressive maneuvers, a result of its high aspect ratio wings which lacked the less than ideal tendency for snap rolling without much warning that the older Fw 190’s were known for. In a dive, the Dora was notably superior, as the aforementioned wings of the Ta 152H made it notably unstable at high speed. The H-1 carried, but was not cleared to use GM-1, nor does it seem they would have ever been supplied with the mixture. This is a discrepancy of several hundred kilograms, leaving the true climb performance of the aircraft somewhat ambiguous, with a claimed 20 m/s at sea level without MW 50.
The P-51B’s and D’s had marginal differences in performance They were among the most aerodynamically clean fighters of the war, boasting an extremely streamlined fuselage, laminar flow wings, and a radiator scoop which produced thrust that offset upwards of 90% of its own drag. To increase maneuverability in high speeds and in power dives, the control surfaces were internally sealed and used a diaphragm to reduce stick forces. The engine was a Packard Merlin V-1650-7 with an intercooled, two stage, two speed supercharger. Even though the engine was actually geared for lower altitude use than its predecessor, the combination of these features made the aircraft a very fast, maneuverable fighter which could boast of high performance at most altitude ranges.
Against the Ta 152H-1, the Mustang held to a higher top speed at low to medium altitude, better maneuverability at high speed, and far better dive performance. At extreme altitudes, the H-1 outstripped the Mustang in top speed, and across most altitudes would have had better low speed maneuverability. The high aspect ratio wings of the Ta 152 both gave it better handling at high altitude, and much improved stall characteristics over its predecessors down low. Curiously enough, both the Ta 152H and the Mustang were far more maneuverable than their wing loading would suggest, a result of high aspect ratio and laminar flow wing designs, respectively. However, in the Ta 152’s case, this came at the cost of a slower roll rate, and unstable high speed dive characteristics. While the Ta 152H could prove an exceptionally challenging high altitude opponent to all of the contemporary Allied fighters, it was a competitive, but not particularly impressive aircraft at lower altitudes. Performance wise, it could be said to fly like a more maneuverable, if slower, Fw 190D when at lower altitudes.
There is of course the story of Kurt Tank himself escaping a pair of P-51’s at low altitude in a Ta 152 prototype. Near the end of 1944, the designer himself was flying one of the prototypes to a conference in Cottbus, Germany, where he was happened upon by two P-51’s. Using the MW 50 boost system in the aircraft, Tank slipped away from his pursuers and arrived in Cottbus unscathed. Some laud this encounter a sign of the aircraft’s superiority, however, it is not a useful measure of the performance of any of the combat models of the aircraft. At Kurt Tank’s instruction, the prototype in question was unarmed and, more than likely, carrying no armor plate, which would have made the aircraft substantially lighter than any operational Ta 152H fighter.
The Spitfire Mk 21 represented the final evolution of the wartime Spitfire, by then nearing its tenth year in the air. A far echo from the Mk I, the 21 featured a vastly more powerful Griffin 61 engine. Much like its late Merlin powered predecessors, it possessed an intercooled, two stage, two speed supercharger. Unlike them, it was massive and much more powerful. After incorporating structural improvements and modifying controls for high speed, the Spitfire aged perhaps the best of any fighter of the war. Compared to the Ta 152H, it lacked the sheer distance in top speed performance of the P-51, but more than challenged the Focke-Wulf in linear speed and climb rate across most altitudes. However, at and above 7 km, the 152H had a confident advantage in speed and maneuverability.
The P-47N represented the final evolution of the Thunderbolt. Though not destined for Europe, it performed similarly to the P-47M which debuted in combat roughly the same time as the Ta 152H. (wikimedia)
Compared to the most modern Allied high altitude fighters, the Ta 152H lost most of its edge. The P-47N and M represented the final evolution of the American high altitude fighter, featuring a new 2800 hp, R-2800 turbocharged engine, and a variety of aerodynamic improvements to increase control at high speed. By the late Summer of 1944, the Western Allies had already gained air superiority over Europe, and so the new aircraft was stockpiled in the US for use in the Pacific, with the first deliveries being made in September of 1944. There was a similar performing model in Europe, the P-47M, though it was a limited production aircraft designed for chasing V-1 flying bombs and other high speed targets. Teething issues would keep it from entering service roughly until the Ta-125H did, in March of 1945. In the end though, the Luftwaffe had become so degraded that clearly no new updated models would be required and the performance increases would not justify the effort to refamiliarize pilots and maintenance personnel.
In terms of top speed, the P-47M&N handily outperformed the Ta 152H at all altitudes, the only exception being at extremely high altitudes when the Ta 152H employed GM-1. In contrast, the Focke-Wulf enjoyed a better climb rate and was likely the more maneuverable of the two, although it was certainly less capable in a dive. The late war Thunderbolts were certainly the fastest high altitude fighter which saw combat, the Ta 152H’s of JG 301 never having carried GM-1.
The P-38L was the last fighter variant of the Lightning fighter, the first model having been in service prior to the US entry to the war. With its turbo supercharged Allison engines, it was among the first fighters of the war that was designed for high altitude use. However, by the end of the war, it left something to be desired in terms of both its top speed, and like the Ta-152H, its high speed dive performance. Its low critical Mach number meant that the plane encountered compressibility at lower speeds than all of the fighters presented here. At high speeds and altitudes, the plane locked up and would remain uncontrollable until its high speed breaks were deployed, or it had descended into lower, denser air. Of all the Allied high altitude fighters, the Lightning compared fairly unfavorably with the Focke Wulf.
Most easily glossed over is the performance compared to jet fighters, which by the time the Ta 152H was introduced, could not exactly be called new. The Messerschmitt 262 had re-entered service in November of 1944 after earlier operational problems, and once training and maintenance programs were revised, the plane quickly proved itself. While it was slow to accelerate and climb, it was unapproachable in terms of top speed. Extreme high altitude use of the temperamental Jumo 004 turbojet engine was limited, though as a means of attacking high altitude formations of Allied bombers, it was by far the best equipped aircraft Germany possessed. Its slow acceleration meant that any energy-demanding maneuvers were largely off the table, but when flown by a pilot that understood its strengths, the plane was untouchable save for when it was taking off or landing. Though largely an issue post war, the Me 262 demonstrated the difficulty in justifying further piston engine fighter development at this point in aircraft development.
The Ta 152H began production after the Me 262 jet fighter had already entered service, so it, and many other programs, had to compete with it for resources. As the turbojet was already showing to be the future of fighter design, the Ta 152 was difficult to sell to the Luftwaffe. (I.PINIMG)
Overall, the Ta 152H certainly was not a Wunderwaffe by any means. At all but the highest altitudes, the aircraft was not a particularly better performer than its preceding, and much more numerous, Fw 190D counterpart. Even at extreme altitudes, it more than had competition in the form of the Thunderbolt N and M, which not only outstripped it in performance in a number of areas, but beat it into production by several months. It’s only truly exceptional performance was achieved using a high altitude engine boost system that was never made available to the unit carrying the aircraft, and in any case, it would have required a redesign of the aircraft to be used properly. Nevertheless, it represented a stark improvement in high altitude performance over previous German fighters. It too, could boast of extreme maneuverability at high altitudes, even if it didn’t lead the pack in pure speed. Top speed aside, its wings lent it a great degree of maneuverability at high altitude, and its overall performance at and above the altitudes Allied bombers flew at was considerable. This is also to say nothing of its trio of cannons; two 20mm MG151/20’s and its single 30mm MK108, which leant it incredible striking power. While the incorporation of the Jumo 213E, MW 50, and on paper, GM-1, did not produce the pinnacle of fighter design, the result was still a capable high altitude interceptor capable of engaging the highest flying targets of its day.
Construction
The construction of the Ta 152H’s fuselage was essentially that of a modified Fw 190A-8. The fuselage was largely the same with the following modifications: the forward fuselage was lengthened by 0.772 m in order to fit in a Mk 108 autocannon, the wing connecting section was moved forward 0.420 m to correct for the center of gravity, and the rear fuselage was lengthened by 0.5 m. The leading edge of the tail was exchanged for that on the Fw 190C, being considerably larger. Given the deteriorating situation near the end of the war, the new tail surfaces were wood, rather than metal skinned. The fin and rudder were enlarged for better control, with the new surface area of the tail stabilizers measuring 1.77 m2 for the vertical and 2.82 m2 for the horizontal. The changes to the fuselage necessitated strengthening, which saw some duralumin framing elements replaced with steel. In order to reduce the number of new assembly jigs they needed for the production line, the forward fuselage extension was bolted through the former Fw 190A engine attachment points.
The Ta 152H-1 featured all the fuel tanks pictured here, the preproduction H-0 had only those in the fuselage. (Deutchesluftwaffe.de)
The wings were entirely redesigned from the Anton and changed to a high aspect model which increased the wingspan to 14.4 m, and to an area of 23.3 m2. Structurally, it remained a monocoque structure, but its rear spar and leading edge were used to absorb transverse forces and it was structurally reinforced with additional stiffening ribs. The landing gear were the same as the Fw 190A-8’s, but they were hydraulically and not electrically operated. They mounted 740 mm by 210 mm wheels to accommodate the increased weight of the aircraft. The inboard section of the wing mounted an MG 151/20 autocannon with provisions for 175 rounds of ammunition each.
Clean instrumentation, a high level of engine automation, and good visibility made the Ta 152H a fairly straightforward aircraft to fly. (destination’s journey)
The aircraft possessed a pressurized canopy to reduce the physiological stresses of high altitude flight. It was a very rudimentary system, with the cockpit rivets being sealed with DHK 8800 paste, and the sliding hood being sealed by means of a cylindrical rubber tube liner. Pressurization was regulated by means of a 1 liter air bottle supplied by a Knorr 300/10 air compressor which was geared to the engine with no intermediate gearing. The system was engaged at 8 km and maintained a constant .36 atmospheres. To prevent windscreen fogging, it was double-paned, with silica packets installed in the gap. Quality control issues saw varying effectiveness at altitude. On the record setting flight, Friedrich Schnier reported the system leaked badly above 12 km and shortly after he suffered joint pain, impaired vision, and numbness in his extremities due to low air pressure.
The Ta 152H carried an armament of two MG 151/20 20 mm cannons in each wing root and a centerline MK 108 30 mm cannon which fired through the propeller hub. The 20 mm guns were supplied with 175 rounds per gun, and the 30 mm with 90. The gunsight was the standard Revi 16b sight, which was eventually supposed to be replaced by the new EZ 42 gyroscopic sight which, when properly used, gave the pilot an accurate gunsight lead against his target. The aircraft was well armored with two engine plates, and six to protect the pilot, with a combined weight of 150 kg. The 8 mm plate behind the pilot was judged inadequate, though plans to increase its thickness to 15 mm were not carried out. A single hardpoint could be attached to the underside of the aircraft to install a 300 liter drop tank, but there were no provisions for carrying bombs.
The engine was a 35 liter Jumo 213E inverted V-12. Originally developed from the Jumo 211, which saw heavy use in bombers much earlier in the war, the new Jumo 213 was what most of the Luftwaffe’s hopes were placed on to compete with newer, more powerful Allied engines. It featured a new AJA 180 streamlined annular radiator that supported the oil and engine coolant. Critically, it was able to operate at significantly higher temperatures and pressures than older models, though not quite at the standards of the Western Allies. However, unlike Allied models, the Jumo was heavily automated. The Bediengerat, or control device, was an electro-mechanical computer that managed the propeller RPM, mixture, supercharger speed, and radiator based on the pilot’s throttle inputs. This helped to relieve the pilot’s workload, as the similar Kommandogerat did on the BMW 801 powered models.
The Jumo 213E was the high altitude model which featured an intercooled, two stage, three speed supercharger. To further improve on high altitude performance, the aircraft would use a GM-1 nitrous boosting system. The system consisted of an 85 liter tank behind the pilot, which was fed into the supercharger by a pump when the system was activated. As an oxygen carrier, the job of the nitrous is to provide an oxygen rich mixture to the engine when the supercharger is operating at altitudes where it is unable to provide the compression, and thus enough oxygen, needed to maintain a high manifold pressure. For the Jumo 213E, this was above 11 km. The drawbacks of the system were its uselessness at lower altitudes, its poor compatibility with the third speed setting on the supercharger, and the bleed off of the evaporating liquid nitrous, which prevented it from being efficiently stored aboard the aircraft beyond several hours. Unlike its use on other aircraft, like Bf 109 and Ju 88, the position of the nitrous tank aboard the Ta 152H proved dangerous, as it severely impacted the plane’s stability. It is unlikely the system would have been very effective without a major redesign of the fuel and mixture tanks, as even with a ballast kit that stabilized a GM-1 carrying plane, the aircraft could not carry anywhere near its full fuel load or its MW 50 boost system. While, on paper, the system promised unparalleled performance at extreme altitudes, it was almost unusable given its unstable configuration.
The MW 50 system was the low altitude boost system. It consisted of a 70 liter tank in the port wing containing MW 50, being roughly 49% methanol and 49% water, with the remainder being an anti corrosion measure. When active, the solution was pumped into the supercharger. The system was designed to boost engine power and overcome the less than ideal quality of German aviation fuels. Poor detonation characteristics, especially of the lower octane B4 fuels, forced the Germans to run at lower manifold pressures and thus lower power to avoid damaging their engines. Methanol boosted the octane rating of the fuel-air mixture entering the manifold, and the water cooled the mixture, with both factoring to bring major improvements in engine power via their combined anti-detonation, or knock, effects. The system made its debut in the summer of 1944, and was essential in allowing the later Bf 109G and Fw 190D series aircraft to stay competitive with their Allied counterparts. However, it was not without its drawbacks. It could not be used effectively at altitudes where the supercharger’s boost began to fall, and it was highly corrosive, severely limiting the lifespans of corrosion prone German engines. Aboard the Ta 152, it was to be installed in either a 70 liter wing tank or a standard 115 liter tank behind the pilot.
The Jumo 213E Kraftei. The entire assembly was bolted to the front of the fuselage and streamlined engine swaps. (ta152.de)
The engine had a bore and stroke of 150 mm and 165 mm, a compression ratio of 6.5:1, and a dry weight of 1040 kg. It differed from the standard model in that it had a slightly smaller bore, and the larger supercharger assembly and the associated intercooler added some 300 kg. It used B4 fuels which had a minimum octane rating of 87. The engine drove a constant speed 3.6 m VS 9 wooden propeller with a reduction gear of 1:2.40, and produced a maximum of 1753 PS (1729 hp) at sea level and 1260 PS (1242hp) at an altitude of 10.7 km. The oil header tank sat atop the front of the engine, and the coolant tank sat at the rear. On the Jumo 213A, these had a capacity of 55 and 115 liters respectively. The entire engine assembly was a Kraftei, or power-egg, consolidated unit, allowing the engine and its associated coolant systems to be easily removed or added to the aircraft.
Its radio and navigation systems included the FuG 16ZY ground control transceiver to allow it to be tracked and directed from ground based stations, a FuG 25A erstling IFF, and a FuG 125 radio direction finder for beacon homing. Some aircraft were also fitted with a K 23 level autopilot to reduce fatigue when flying the aircraft at high altitudes and in poor weather. The autopilot was accompanied with a heated windscreen and a FuG 125 Hermine radio navigation system as part of the R11 Rüstzustand equipment package.
Production of the Ta 152H
The Ta 152H was introduced in an environment where all quality control measures had already been cut down for every aspect of production. The lack of skilled labor and poor materials meant that building a reliable aircraft engine in Germany had become almost impossible by the spring of 1944. Slave labor and foreign, drafted workers, had become the base of the labor pool, as most of Germany’s factory workers had been drafted to fight, resulting in a sharp decrease in quality. This was not only a result of poor working conditions and the inexperience of the workers, but sabotage became widespread, especially among those pulled to work from concentration camps. Even more desperate measures began to be instituted in the summer of 1944, as the re-use of parts from salvaged aircraft became more commonplace, and engine test runs were ever more limited to conserve dwindling fuel supplies.
The first Ta 152H-0 was completed in November of 1944 after considerable delays due to several sets of blueprints being found to be inaccurate, and sets of construction jigs had been lost in France the previous summer. The first planes were sent to the Rechlin test center in December of 1944, while Focke Wulf considered how to accelerate production. While doing so, they were hobbled when the Jagerstab, which managed strategic fighter production, shifted more and more resources to jet fighters and older, established piston engined fighters. Ta 152H production standards continued to decline in the midst of the widespread economic collapse of Germany. Near the end of January 1945, it became almost impossible to build any more Ta 152H’s, as the decentralized production system began to collapse, the rail system became unusable, and the wing and fuselage production center at Pozen was overrun by the Allies.
By the war’s end, approximately 60 Ta 152H fighters had been completed at the Focke Wulf facility at Cottbus. The series suffered extreme quality control issues in service with JG 301, which included supercharger surging and the failure of a propeller reduction unit, which resulted in the death of a pilot. In April of 1945, the plans were sold and shipped to Japan, where unsurprisingly, there was no new production of the aircraft.
Conclusion
The sole remaining Ta 152H is in storage at the Smithsonian Air and Space Museum, where it awaits restoration. (Smithsonian)
The Ta 152H is often seen as one of the great ‘what if’s’ of the Luftwaffe, but in reality, the aircraft was a good, rather than truly exceptional fighter. While on paper, the Ta 152H was to be an incredible aircraft at high altitude, it’s rushed development, and hasty introduction into service saw it fly without the GM-1 boost system that it needed to achieve these feats, and in a rather regrettable state in terms of build quality. It stacked up well against many of the older aircraft in the theaters it fought in, like the Yak-9, Spitfire Mk IX, or the P-38L, and against its contemporary Allied rivals, it was a competitive fighter at high altitudes.
Specification:
Specification
Ta 152H-0
H-1
Engine
Junkers Jumo 213E
Junkers Jumo 213E
Engine Output
1753 PS, 2050 PS w/ MW50
1753 PS, 2050 PS w/ MW50
Empty Weight
4031 kg
Loaded Weight
4730 kg
5220 kg
Maximum Range
2000 km
Maximum Endurance
3.3 hrs
Maximum Speed [At altitude]
approximately 720 km/h [10.9 km]
760 km/h w/GM-1 [12.5 km]
Service Ceiling
15 km w/ GM-1 (estimated)
Armament
1×30 mm MK 108, 2×20 mm MG 151/20
same
Crew
1x pilot
same
Length
10.82 m
10.82 m
Wingspan
14.44 m
14.44 m
Wing Area
23.3 m^2
23.3 m^2
Height
3.38 m
3.38 m
Variants:
Ta 152H-0: Pre-production model, no wing fuel tanks, no MW 50 provisions, GM-1 capability but never cleared for operational use.
Ta 152H-0/R11: Poor weather pre-production series with level autopilot. Most pre-production aircraft were built in this configuration.
Ta 152H-1: Production model, wing fuel tanks, 85 liter GM-1 provisions but not supplied due to operational concerns. 70 liter MW 50 low pressure system installed. Fuel tankage increased from 595 liters to 995 liters with unprotected bag tanks in wings.
Ta 152H-1/R11: Poor weather model, autopilot. Most production aircraft were built in this configuration.
Ta 152H-1/R21: Equipped with Jumo 213EB intercooled engine, high pressure MW 50 system installed. Not operational.
Ta 152H-1/R31: Jumo 213EB, ballast kit to allow GM-1 use. No MW 50 and fuel capacity restricted. Not operational.
Ta 152H-2: FuG 15 radio set instead of FuG 16. Canceled in December 1944.
Ta 152H-2/R11: Bad Weather model.
Ta 152H-10: Photoreconnaissance model based on H-0.
Ta 152H-11: Photoreconnaissance model based on H-1.
Ta 152H-12: Photoreconnaissance model based on H-2.
Illustrations
The unique paint scheme of this aircraft was an identification measure, as the plane was largely unknown to German Flak and fighter crews. It was flown in this state to a conference.
Credits
Article written by Henry H.
Edited by Henry H. & Stan L.
Ported by Henry H.
Illustrated by Hansclaw
Sources:
Primary:
Aeroplane and Armament Experimental Establishment Boscombe Down Spitfire F. Mk. 21 LA.187 (Griffon 61) Climb and Level Speed Trials. 10 October 1945.
Einmotorige Jäger: Leistungsdaten, 1.10.44
Ersatzteil-Liste TA 152. Konstruktionsgruppe 7 Triebwerksanlage. Focke-Wulf Flugzeugbau G.M.B.H. Bremen.
Fighter Offensive Performance at Altitude Model P-47N-5RE Engine P&W R-2800-73 GP=45:1 Propeller-4 Blades- 13’0” DIA. (Curtis 836) War Emergency- 2800/2800 S.L. to Critical Altitude G.W.=13962 LBS. Republic Aviation Corporation. Farmingdale L.I., New York.
Horizontalgeschwindigkeit über der Flughöhe mit Sonderleistung. Leistungsvergleich Fw 190 – Ta 152. Focke-Wulfe Flugzeugbau G.M.B.H. 3.1.45
P-51B-15-NA 43-24777 (Packard Merlin V-1650-7) Performance Tests on P-38J, P-47D and P-51B Airplanes Tested with 44-1 Fuel.(GRADE 104/150). 15 May, 1944.
Smith F., M.A. and Brotherton J. Note on the performance in flight of the German jet-propelled aircraft Messerschmitt 262, Heinkel 162, and Arado 234. Royal Aircraft Establishment, Farnborough. October 1945.
Secondary:
Brown, Eric Melrose. Wings of the Luftwaffe. Hikoki, 2010.
Douglas, Calum E. Secret Horsepower Race: Second World War Fighter Aircraft Engine Development on the Western Front. TEMPEST, 2020.
Green, William. The Warplanes of the Third Reich. Doubleday & Company. 1970.
Harmann, Dietmar. Focke-Wulf Ta 152 the Story of the Luftwaffe’s Late-war, High-Altitude Fighter. Schiffer Military History. 1999.
Smith, J. & Creek, Eddie. Focke-Wulf Fw 190, Vol. 3: 1944-1945. Specialty Pr Pub & Wholesalers. 2015.
Smith, J. & Creek, Eddie. Me 262 Volume Two. Crecy Publishing. 2007.
Weal, John. Focke-Wulf Fw 190 Aces of the Western Front. Osprey Publishing. 1996.
Model 299G as it appeared in a microfilm document from a private collection on the B-17C. Note this is a recreation. (Bill Stanczak)
Introduction
There are very few planes in military and aviation history that have garnered as much attention or popularity as the Boeing B-17 “Flying Fortress”. The aircraft has been called by some “the best bomber of the Second World War”, although there are other contenders for that title. Opinions aside, one cannot dismiss the impact of the B-17 on military history and the evolution of strategic bombing. The development of the B-17 initially started with Boeing Model 299, often incorrectly called the Boeing XB-17 in various sources. Surprisingly, the B-17 was initially not selected for production, as the Model 299 prototype was destroyed in an accident and the US Army Air Corps’ limited budget did not allow for the purchase of the more expensive bomber. As this is such a popular aircraft, one would assume that quite a good portion of what there is to know about the plane and its development has already been researched, and documented. However, as is often the case, there are always discoveries waiting to be found, such as one particular obscure variant of the B-17, the Boeing Model 299G
To say that there is little to no information on this Model 299G would be quite an understatement as, aside from a few drawings, there is nothing that indicates why this aircraft was designed and what its exact purpose was. However, after studying the documents as well as consulting with several well-known aviation experts, it has become somewhat clear that what the Model 299G represents is not just an attempt to create a new and more effective variant of the B-17 based on the already in-production B-17B but, in fact, was a design concept that proved extremely influential in the design of the B-29 “Superfortress”.
Boeing: The American giant and a leader in aircraft design
The Boeing Company exemplifies the idea of rising from small beginnings. It was founded in 1916 on the shores of Lake Washington by a young timber baron by the name of William Boeing, who had an interest in aircraft. The first Boeing aircraft, a seaplane, took off from the shores of Lake Washington in January 1916. However, the company did not really take off until the 1920s and 30s, when Boeing achieved many great and public feats, including designing and building the first all-steel tube fuselage with its then-innovative arc welding process and even becoming one of the first companies to build dedicated mail aircraft. It was also during this time that Boeing would design and build some of its most legendary aircraft, such as the P-26 Peashooter, which, when introduced, was considered to be one of the fastest fighter aircraft in existence.
The company would gain even more fame and recognition with its construction of the Boeing Model 247 in the early 1930s, which allowed Boeing to dominate the early modern airliner market until the introduction of the Douglas DC-2 and the later Douglas DC-3. The Model 247 was considered to be extremely technologically advanced for the time and represented Boeing’s shift to all-metal aircraft construction. Boeing received even greater fame with its development and construction of the Boeing Model 299, which later became the B-17 Flying Fortress, an aircraft that was very well-liked by the top staff of the US Army Air Corps. The B-17 design would also later allow Boeing to create several other highly influential and popular designs based on the Model 299. These designs included civilian aircraft, such as the Boeing Model 307 Starliner and the famed Boeing Model 314 Clipper, which saw great fame while flying for Pan-American Airways in the late 1930s and even saw service as a Presidential transport aircraft for Franklin Delano Roosevelt. The Model 314, while externally quite different, used the same wing structure and design as the Model 299. The Model 299 design also brought forth various military variants which would see various uses, including transport aircraft in the case of the C-108 and VB-17. The Model 299’s development would ultimately culminate with the so-called “ultimate B-17”, the B-17G, which went on to become one of the most popular and well-known variants.
The Birth of Boeing’s big bombers
The development of the Boeing B-17 began in February of 1934, with a US Army Air Corps request for proposals for a new bomber with a range of 5000 miles (8046 kilometers) and a bomb load of at least 2000 pounds (907 kilograms). This request, designated “Project A”, was only a feasibility study for a production aircraft to these requirements. Even with it being a proposal, there was a chance the aircraft would be built, and Boeing put its best designers and engineers on the project and was clearly interested in developing the design. These designers and engineers soon found success, as they were able to successfully design and later build a very good aircraft. Initially, Boeing submitted the XBLR-1 (Experimental Bomber Long Range) for this program, which was later re-designated XB-15 upon its construction. Their competitor, Martin, also submitted a project, the XB-16, but that was later canceled before it actually left the drawing board, nor was a final design for it completed. Because of this, the XB-15 would remain the only bomber built in the XBLR program and was the largest until the Douglas XB-19 was built. The XB-15, while never serving as a bomber as intended, would eventually see service as a transport under the designation XC-105 and would serve until its retirement in 1944. Following its retirement, the aircraft would be partially dismantled and dumped in the so-called “Diabalo Dump”, where it remains to this day.
The Boeing Model 299 and the B-17
Boeing Model 299, often incorrectly called XB-17. (National Museum of the USAF)
In May of 1934, the US Army Air Corps announced a second competition, this time for a multi-engine bomber capable of carrying a ton of bombs, having a range of 2000 miles (3219 kilometers), and capable of flying at over 200 miles per hour (173 knots or 321 km/h). Unlike the previous competition, however, this aircraft would be built and brought into limited service, with a potential for full production. For this competition, Boeing decided to design and build what, in essence, was a scaled-down Model 294 (XB-15) under the designation Model B-299. The Model B-299 took many of the base features of the Model 294 and improved on them while scaling down the aircraft. In this regard, it was much like the 294, a twin-wing monoplane with four engines, but it also combined elements of Boeing’s successful Model 247 passenger aircraft. The prototype Model 299 first flew on 28 July 1935 and was very quick to impress the US Army Air Corps as well as the assembled press, with one reporter describing it as a “Flying Fortress”, and the US War Department describing it as an “Aerial Battle Cruiser”. On August 20, the Model 299 was flown to Wright Field, where it would spend the next two months being tested against the Martin 146 and the Douglas DB-1 (B-18 Bolo), where it eventually performed above and beyond the base requirements. The 299 would eventually get the US Army’s stamp of approval as well as an order for 65 YB-17s. However, on 30 October 1935, disaster struck and the Model 299 crashed and burned on takeoff. While the official cause was deemed to be a pilot error, as the pilot had forgotten, due to the lack of a checklist, to unlock the control surfaces (it was this accident that introduced checklists as standard equipment on aircraft), the US Army would cut the order to only 13 planes, designated Y1B-17, and instead ordered the production of 133 Douglas B-18 Bolos. The reason for this decision was twofold. While the destruction of the Model 299 did impact this decision, it was ultimately the US Army’s limited budget and their lack of funding that led them to ultimately choose the B-18 Bolo, as it was the only aircraft they could really afford a large number of. Despite this setback, the US Army was still enthusiastic about the design and allowed Boeing to submit another prototype for evaluation, which they did in the form of a modified Y1B-17 with more powerful engines and a crew of 6 instead of 7.
Boeing Model 299, note the distinctive nose with a small turret. (National Museum of the USAF).
The Boeing Y1B-17 did not differ too much from the original Model 299, however, some improvements were made, including switching the engines to the more powerful Pratt and Whitney R-1820s and changing the design of the landing gear arms. It was this prototype that ultimately won Boeing the contract and would go on into production as the Boeing B-17B.
The Model 299G: A modified B-17 or Something More?
When looking at the B-17’s lineage, one will notice that the very first mass-produced variant of the bomber was the Boeing B-17B or, as the Boeing Company knew it, the Model 299E (later changed to 299M). The B-17B followed a long line of prior limited or prototype variants, including the base Model 299, later Y1B-17, and Y1B-17A. The production run of the B-17B only ran for a total of 39 aircraft before it was switched to the B-17C (Model 299H). According to the documentation and the drawings found, the Model 299G was considered to be a very heavily modified B-17B which was re-engined with the Pratt and Whitney R-2180 Twin Hornets instead of the Pratt and Whitney R-1820-51 Cyclone. Beyond this, unfortunately, the drawings give very little information on this aircraft or really what exactly it was supposed to be. However, according to historians such as Mike Lavelle, this variant may be a link in the greater chain of designs that led to the Model 345, better known as the B-29 Superfortress.
The Design of the Model 299G
Boeing model 322 study, this one lacking the forward gun position but otherwise closely related to the 299G. (Lavell)
The Model 299G is unique compared to other B-17 variants and designs based on the B-17. It shares very little similarity with the Model 299 and Model 299M (B-17B) designs it is based on. Outside of the tail section and some other components, such as the general design of the wings, the rest of the aircraft is almost a completely different design from the B-17B on which it is based. Among the interesting features is the tricycle landing gear arrangement (one wheelset in the front, two on the wings). The aircraft also features a cockpit section very similar to that of the Boeing Model 307, completely eliminating the turtle deck. It shares a similar fuselage to the Stratoliner as well, as it was designed to test the feasibility of pressurization for use in bombers. Another major aspect that stands out about the aircraft is that it appears to have been both wider and longer than the B-17, with a slightly larger wingspan. Also featured were 4 defensive weapon blisters that almost seem like a cross of those on the early B-17s and those featured on the later PB4Y-2 “Privateer”. These were situated on the dorsal and ventral sections of the waist, with the ventral one just behind the wings and the dorsal one farther aft and closer to the tail.
Boeing Model 307 Stratoliner on display at the National Air and Space Museum Udvar Hazy Center. This is the sole preserved complete example. (Smithsonian)
The Model 299G also did not feature an astrodome. Rather, it featured what appears to have been a dedicated observation area above the cockpit. Perhaps the only major similarity it shared with the B-17 was that the 299G was a monoplane and, the wheels still receded into the engine nacelles. The design, as such, does not really seem to have been that of a B-17, bearing the most similarity to Boeing’s Model 307 Stratoliner, which was later adopted into US Army Air Force service as the C-75 Stratoliner. It also more clearly resembles Boeing’s later bomber designs, such as the Model 322, which eventually led to the development of the Model 345, better known as the B-29 Superfortress.
Conclusion
Boeing Model 316, a later design study possibly derived from the Model 299G. These two, and several others would go on to influence the further development of the B-17 and B-29. (Lavell)
While, ultimately, the Model 299G never left the drawing board, it certainly represents an interesting insight into the developmental history of Boeing’s large bomber projects. Based on conversations with several Aviation historians, it has been presented as a possibility that this Model 299G could also have been a very early attempt to design a sort of “Superbomber” that members of the so-called “Bomber Mafia”, including Jimmy Doolittle and General Hap Arnold, had been searching for. This conclusion would indeed make sense, as many of the features of the Model 299G do seem to correspond with later Boeing bomber designs. It has also been suggested that the Model 299G might have been a link in the greater developmental chain of the Boeing Model 345, which eventually saw service as the B-29 Superfortess. Some, however, have also suggested that this aircraft instead represented a link between Boeing Airliner development and their Military Aviation development. However, as of this writing, there is no concrete information or documentation that directly links the Model 299G to the Model 345, though it and other projects were part of the B-29 program’s design studies. Aside from general appearance, there is also really nothing concrete to link the 299G to airliner development either. What is undeniable though is that Model 299G does offer deeper insight into the continued development of the B-17 Flying Fortress and the influence, if indirect, it had on future projects.
Variants
Model 299G – The Boeing Model 299G was designed by Boeing and based on the Boeing B-17B. It never went past the design stage and was not selected for production.
Operators (Projected)
United States of America
US Army Air Corps (Presumed) – The Model 299G was designed by Boeing but never made it past the design stage.
Illustration
Credits
Article written by J. Manuel
Edited by Henry H. & Stan L.
Ported by Henry H.
Illustrated by Ed Jackson
Sources
Baugher, J. (1999, July 25). Retrieved from http://www.joebaugher.com/usaf_bombers/b17_1.html
The Boeing Company (2020, December 20). Retrieved from
http://www.boeing.com/history/#/legacy
Harris, S. M., & Angelucci, E. (1983). The Rand McNally Encyclopedia of military aircraft: 1914-1980. New York: Military Press.
Model 299 Crash. (2009, June 25). Retrieved from https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/610002/model-299-crash/
Model 299 Press Release. (2009, June 25). Retrieved from https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/610003/AFmuseum/
Lavelle, Mike. War on the Home Front: Building the B-29 Superfortress. Chester River Press, 2011.
Lavelle, Mike, and Matzelle, Liz. “Fwd Boeing 299G.” Received by Jonathan Manuel, 21 Nov. 2021
Simons, Graham M. The Boeing B-29 Superfortress: The Giant Bomber of World War Two and Korea. Pen Et Sword Aviation, 2012.