Tag Archives: UK

Boulton Paul P.105 & P.107

Great Britain (1944)

Strike Fighter Concept

Side view of the Boulton Paul P.105C. This was the single-seat fighter version of the aircraft, armed with four 20mm cannons. (Boulton Paul Archive Photos)

The Boulton Paul P.105 was a concept for a multi-purpose, single-engine aircraft that was designed to fill a number of carrier based roles. To do so, the P.105 would utilize a unique and innovative method that would use interchangeable fuselage sections and cockpit modules that would allow the aircraft to perform different missions. These modules could be changed quickly to fill a needed role aboard carriers or airbases. The aircraft would not be chosen for production, and The P.105 would be developed further into the P.107, a land-based escort version. The P.107 would have a rear-facing turret and a twin boom tail design to allow greater traverse of the gun. This design wouldn’t be adopted either, and the program would conclude before the war’s end.

History

Late in the Second World War, the Royal Naval Air Arm began seeking out a new aircraft design that would be able to fill both the fighter and bomber roles aboard their carriers. Having one aircraft perform multiple roles would eliminate the need for specialized carrier-borne aircraft to fill the fighter, dive bomber, and torpedo bomber roles that were currently in operation. No official requirements were ever put out to build such an aircraft, but several companies had begun developing aircraft that would fit this role, which had become known as the “Strike Fighter”. Westland, Blackburn, Fairey and Boulton Paul would all develop designs that correspond to the strike fighter role. Boulton Paul’s aircraft design would be known as the P.105.

After the production of their Defiant turret fighter was finished, Boulton Paul began producing the Fairey Barracuda carrier bomber under license. After working extensively with a naval aircraft of this type, lead aircraft designer of Boulton Paul, John North, began to show interest in developing new aircraft to serve the Royal Navy’s carriers. The timing for this interest was beneficial too, as the Royal Air Arm began showing interest in new aircraft that were to be used in the Pacific Theater. He would first design a single engine fighter, dubbed the P.103 which would compete for the Navy’s Specification N.7/43 aircraft project. The P.103 was a heavily reworked Defiant with the turret removed and the design heavily cleaned up to make for a more effective fighter. Two designs existed for the P.103; the A and B, with the A using a Rolls Royce Griffon engine and the B using a Bristol Centaurus engine. The P.103 would utilize a number of innovative features, such as contra-rotating propellers, a low drag wing, specialized landing gear that became shorter when stowed, and elevators with automatic trim tabs. In addition, a more radical design was also submitted, the P.104, which was a twin-boom pusher. Despite both the P.103 and P.104 satisfying the specification, the Navy ultimately would find that a Hawker Tempest variant that was to be produced could easily be adapted to this role. This aircraft would become the Hawker Fury, and naval-ized into the Sea Fury.

While the P.103 wouldn’t be built, there were plans to test many of its design features on an existing aircraft. A Defiant was chosen to be extensively modified with most of the features found on the P.103, including the contra-rotating “dive-brake” propellers driven by a Centaurus engine, electric trim tabs, specialized shortening landing gear, and automatically closing landing gear doors. This aircraft, known as the Special Features Defiant, would also go unbuilt, with only a Defiant being modified with the elevator trim tabs. Boulton Paul wouldn’t yield any aircraft from this specification, but a new design would soon come from John North, who would continue working on Naval aircraft projects, looking to create an aircraft that would replace the Fairey Barracuda. Using design aspects intended for the P.103, and newer features found on the Special Features Defiant, he would design the P.105.

Static model of the standard P.105A. (British Secret Projects 1935-1950)

The P.105 was a small, high-performing aircraft that was meant to perform a number of duties aboard carriers. To achieve this the P.105 would have a unique design feature. To fill the variety of carrier-borne roles, the P.105 would have modular cockpit and bomb bay sections. Each of these modules would pertain to a particular role and would include necessary equipment to operate for the given task. The interchangeable modules included a two-seat torpedo-bomber with the necessary modifications to carry a torpedo (P.105A), a two-seat reconnaissance aircraft with an extended cockpit with changes to improve visibility (P.105B), a single-seat fighter armed with four 20mm cannons (P.105C) and a dive-bomber (P.105D). All aircraft aside from the C would be armed with four 12.7mm machine guns. With this system, it was thought more P.105 airframes could be stored inside hangars and carriers, while the unused modules could easily be stored and would take up less space, compared to having a number of different aircraft specified for specific roles, in theory, increasing the combat capacity of the carrier the P.105 would be stationed on. Boulton Paul expected the aircraft to be very high performance, and the P.105C fighter version, would be thought to serve as an excellent penetration fighter. Like its predecessors, the P.105 was originally going to utilize a Griffon 61 engine, but before performance predictions were done on the design, it would change to a Centaurus with counter-rotating propellers. The brochure on the details of the aircraft was submitted to the RNAA, but no order for production came about.While no particular reason was given for the design not being chosen, the modularity concept may have been less convenient in practice then on paper. Another reason could be that current aircraft at the time were deemed to have been performing adequately and didn’t need such an extensive replacement.

A side view plan drawing showing the layout of the Boulton Paul P.107. (Boulton Paul Archive Photos)

Although the P.105 wasn’t granted production, the design was further reworked into the Boulton Paul P.107. The P.107 was a return to basics for Boulton Paul, being a single-engine two-seat fighter with a turret. It can be assumed the P.107 began development during or shortly after the P.105 had been created. John North expressed many concerns with aircraft meant to operate in the Pacific War, with the biggest issue being the extreme range an aircraft would need in order to operate efficiently in this conflict. While details are sparse on its development, the P.107 extended range escort fighter appears to be his own attempt to create an aircraft meant to amend this issue. Overall, the P.107 shared many aspects of the P.105C, continuing to use the same overall design, Centaurus engine with contra-rotating propellers, and the same armament of four 20mm cannons. However, the P.107 wasn’t meant to operate from carriers, instead being designed as a land-based aircraft. Changes done to the design for this reason include the lack of folding wings and the removal of the torpedo blister. The aircraft would also benefit with the addition of a turret housing two 12.7mm machine guns. To improve the firing efficiency of the turret, the single fin of the P.105 was changed in favor of a twin fin design, which improved the firing range of the guns. The P.107 could also be configured for different roles, such as a dive bomber and for reconnaissance, but it is unknown if it used the same modular system the P.105 used. As was the case with his earlier designs, the P.107 wasn’t selected for production either.

Design

3-Way drawing of the P.105B. This was the reconnaissance version. (British Secret Projects 1935-1950)

The Boulton Paul P.105 had a conventional monoplane fighter layout. In the front, it would utilize a 6-bladed contra-rotating propeller that had reversible pitch. Originally, the design would have mounted a Griffon 61 V-12 inline engine but was changed in favor of the Centaurus 18-cylinder radial CE.12.SM engine instead. The wings on the P.105 were inverted gull wings, much like those on the Vought F4U Corsair or Junkers Ju 87 Stuka, which allowed the mounting of a larger propeller. To allow for easy storage aboard carriers, the wings were able to fold inwards. The fuselage had the most interesting aspect of the design overall, and that was its interchangeable cockpit and lower fuselage modules. Each variant of the P.105 would use different modules that would pertain to the intended role it served. The P.105A was a torpedo bomber and would use the torpedo blister present under the tail, and provisions for carrying another crewmember. The P.105B was a reconnaissance aircraft, and its cockpit would be lengthened to sit a pilot and observer. It would use a glass hull beneath the observer to assist in spotting. The P.105C was an escort fighter and would be a one-man aircraft. The last was a dive-bomber version, which only has very sparse details available. The dive bomber would carry up to two 1,000 lb (450 kg) bombs, most likely in an internal bomb bay module. The tail of the aircraft would be a conventional single rudder and tailplane arrangement. The armament of the P.105 was a standard two to four 12.7mm machine-guns in the wings of the aircraft, with the only deviation being the P.105C, which would use four 20mm cannons instead.

3-Way view of the P.107. Notice the turret and twin tail. (British Secret Projects 1935-1950)

The P.107 borrowed many aspects of the P.105 design, but changed some details to better fit its role. The engine and front sections would stay the same, keeping the contra-rotating propellers and Centaurus engine. Reference materials refer to the aircraft as being able to convert from an escort fighter to either a fighter-bomber, or photo reconnaissance aircraft. However, whether it was a conventional conversion, or via the module system the P.105 used is unknown, the latter being most likely. The wing design would stay the same, with the inverted gull wing style. Given its land-based nature, the wings no longer needed to be folded to conserve space, and the torpedo blister under the tail was removed. Behind the pilot, a gunner would sit and remotely control two 12.7mm machine guns. The machine-guns would be housed within the aircraft, with only the ends of the barrel protruding out. To give the gunner a better firing arc, the single tailfin was switched to a double tailfin. The turret and twin tail design are the most obvious differences between the P.107 and P.105. The aircraft’s fuel would be stored in a main tank beneath the crew members and two smaller drop tanks. The fuel amount was expected to give the aircraft a 3,000 mi (4,827 km) range, with up to 30 minutes of combat. The drop tanks could be switched for 2,000 Ib (900 Kg) of bombs. For offensive armament, the P.107 would use four 20m cannons mounted in the wings.

Conclusion

While no P.105 or P.107 would be constructed, the designs do attempt to amend issues that were present at the time. The Strike Fighter designation would eventually become a standard type of aircraft aboard carriers, and aircraft meant to fulfill multiple roles would also eventually be developed, but none would ever use such a unique system as the interchangeable fuselage of the P.105. It is interesting to note that the P.105 and P.107 appear to be the last military propeller aircraft that Boulton Paul would design before their switch to trainers and jet powered research aircraft, the aircraft themselves being distantly related to their Defiant fighter that they became known for during the war.

Variants

 

  • Boulton Paul P.105A– Two-seat torpedo bomber version of the P.105.
  • Boulton Paul P.105B– Two-seat reconnaissance version of the P.105. This version would have a glazed hull for the observer.
  • Boulton Paul P.105C– Single-seat Fighter version of the P.105.
  • Boulton Paul P.105 Dive bomber– Dive bomber version of the P.105. No designation was given to this design. (P.105D?)
  • Boulton Paul P.107– Land-based escort fighter derived from the P.105. The P.107 shared many design aspects with the P.105 but would remove features that would be needed for carrier use, such as the lack of folding wings. The P.107 would also have a turret and the tailplane would be switched to a double rudder design to accommodate the turret’s firing arc. Photo reconnaissance and fighter bomber versions of the P.107 are also mentioned.

Operators

 

  • Great Britain – Had they been built, the P.105 and P.107 would have been used by the Royal Fleet Air Arm, with a focus of being used in the Pacific Theatre aboard carriers and from land.

Boulton Paul P.105 Specifications

Wingspan 38 ft / 11.6 m
Length 34 ft 5 in / 10.5 m
Folded Width 15 ft 4 in / 4.67 m
Wing Area 250 ft² / 23.3 m²
Engine 3,000 hp ( 2,200 kW ) Centaurus CE.12.SM engine
Fuel Capacity 260 gal (1,180 lit)
Weights 12,285 Ib / 5,572 kg with torpedo

12,509 Ib / 5,674 kg with bombs

Climb Rate 3,660 ft/min / 1,110 m/min
Maximum Speed 469 mph / 755 km/h at 20,000 ft / 6,000 m
Cruising Speed 407 mph / 655 km/h
Range 1,300 mi / 2100 km – 3,320 mi / 5340 km
Crew Pilot

Other crew member (Depending on the variant)

Armament
  • 2-4 12.7mm machine guns (All versions)
  • 1x Torpedo (P.105A)
  • 2x 1,000 Ib (454 kg) bombs (Dive Bomber)
  • 4x 20mm cannons (P.105C)

Boulton Paul P.107 Specifications

Wingspan 38 ft / 11.6 m
Length 34 ft 8 in / 10.6 m
Wing Area 250 ft² / 23.3 m²
Engine 3,000 hp ( 2,200 kW ) Centaurus CE.12.SM engine
Fuel Capacity Main: 495 gal (2,250 lit)

Drop Tanks: 140 gal (640 lit)

Weight 15,900 Ib / 7,200 kg
Max Speed 470 mph / 755 km/h at 22,000 ft / 6,700 m
Range With Drop Tanks: 3,000 mi / 4,800 km

Without: 2,200 mi / 3,540 km

Fighter-Bomber: 700 mi / 1,120 km

Crew 1 Pilot

1 Gunner

Armament
  • 4x 20 mm guns
  • 2 x 12.7mm machine guns in rear facing turret
  • 2,000 Ib (907 kg) of bombs

Illustrations

Boulton-Paul P.107
Boulton-Paul P.105 Reconnaissance Variant

Credits

  • Article written by Medicman11
  • Edited by  Henry H.
  • Ported by Henry H.
  • Illustrated by Haryo Panji

Sources

Kennedy Giant

UK Union Jack United Kingdom (1917)
Heavy Bomber Prototype – 1 Built / 1 Incomplete

The completed Kennedy Giant (Flickr)

The Kennedy Giant was a very large heavy bomber prototype developed by the United Kingdom, and designed by Chessborough J. H. Mackenzie-Kennedy during World War I. The type was meant to be similar to the Russian Ilya Muromets series of heavy bombers. Development was plagued with issues due to the large size of the aircraft, and after a failed attempt at a first flight, the prototype was left to rot. A smaller redesign was in the works, but the program would be canceled in 1920.

The Man

Chessborough J H Mackenzie-Kennedy in front of the Kennedy Giant in 1917. (The Imperial War Musuem Footage)

In 1904, at the age of 18, Chessborough J. H. Mackenzie-Kennedy would leave his home country of Britain and move to Russia. The allure of developing his own aircraft firm in a place where very few firms were located was his main reason to move to the country. Only a few years after moving, Kennedy was able to design and build his own aircraft in 1908, and a year later would establish his own aircraft company, the Kennedy Aeronautic Firm, in 1909. In 1911, Kennedy would become acquainted with Igor Sikorsky, the premier aircraft designer of the Russian Empire. Kennedy would assist Sikorsky on several occasions with the design of several aircraft, but none of these would be as important as Kennedy’s work on the Sikorsky Russky Vityaz. The Russky Vityaz would be the world’s first 4-engined airplane and was one of the biggest aircraft built at the time. The aircraft would first fly in 1913. Kennedy would continue to help Sikorsky work on other aircraft, among them the successor to the Vityaz, the Ilya Muromets, until 1914.

On July 28th, 1914, Europe would be plunged into the First World War, with Britain entering the war on August 4th. After Britain entered the conflict, Kennedy would return to his home country to help with their war effort. Using the knowledge he gained while in Russia working with Sikorsky, Kennedy was confident Britain could use his expertise in aircraft design. Kennedy wanted to create a large bomber, akin to the Muromets. Upon his return to England, he would establish a design office at 102 Cromwell Road, South Kensington in London.

The Machine

Kennedy would begin talks with the British War Council discerning the creation of a large four engine bomber aircraft, similar to projects he had worked on with Sikorsky. Interestingly enough, Igor Sikorsky would convert the Ilya Muromets civilian aircraft Kennedy was familiar with into Russia’s first 4-engine strategic bomber. Kennedy was able to convince the War Council of his idea, and he was given funding to create his heavy bomber. The aircraft would become known as the Kennedy Giant.

The incomplete Giant being worked on. The wings are outside of the hangar while the tail is still inside. (The Imperial War Musuem Footage)

Construction of the Giant began soon afterwards at an unknown date. The manufacture of the components of the aircraft were undertaken by two companies, Gramophone Company Ltd and Fairey Aviation Co Ltd, both located in Hayes, Middlesex. When all of the components were finished, they were shipped to the Hendon Aerodrome for final construction of the massive aircraft. The sheer size of this aircraft would end up being the source of many problems during its development, and the first one would happen upon the arrival of the disassembled plane. Due to its large size, no hangar at the aerodrome was able to house the Giant, so the actual construction of the aircraft was done completely outdoors, on the airfield. The completed aircraft was impressive, possessing an 80ft (24.4m) fuselage and 142ft (43.3m) long wings. The Giant would heavily resemble the Russky Vityaz and Ilya Muromets that Kennedy had worked on in Russia. Due to the large size of the aircraft, the airplane was stored with its tail inside the hangar, whilst its wings and nose protruded outside. Moving the aircraft required two trucks and 70 men, and in one attempt, the fuselage was damaged from this action. The fuselage3 was redesigned to be 10ft (3m) shorter after this. Originally, Kennedy requested the aircraft to have 4 Sunbeam engines for power, but the engines requested were experiencing difficulties during testing, and wouldn’t be operational until after the war. Aside from testing, the War Council didn’t find the Giant important enough to warrant these new engines, and instead four Canton-Unne Salmson Z9 engines were given to the project instead. These engines would power two pusher and two puller propellers. With the engines finally in place, the completed Kennedy Giant was ready for its first flight.

The Kennedy Giant being constructed outside. (Jane’s All The Worlds Aircraft 1919)

The Giant’s first flight was in the later months of 1917. The aircraft would be set in the position for takeoff on the runway, with veteran test pilot Frank Courtney at the controls of the massive machine. The engines were set to full throttle, and as the aircraft gained speed, it only managed to make a short hop off the ground, being airborne for only a moment. It was found that the engines given to Kennedy were not able to take the Giant airborne. With the craft being so ungainly to move, and no desire to give the aircraft better engines, Kennedy’s giant aircraft was abandoned in the fields of the Hendon Aerodrome to rot, with a second attempt at a flight never materializing. Kennedy himself wasn’t discouraged by the failure of his aircraft and he began working on a smaller version that he hoped would achieve flight. Information on this version is sparse, but it was still in development after the war, and despite starting construction, the program was canceled in 1920. No photos or details on this smaller version are known. By 1920 the Giant project was going nowhere. With the war over, the War Council decided such a large aircraft was no longer a worthwhile investment.

A side view of the completed Kennedy Giant. (Jane’s All The Worlds Aircraft 1919)

In 1923, Kennedy would sue the War Council, now the Air Ministry, over a patent he had filed regarding the aircraft. During the war while he was working on the Giant, Kennedy would design a unique system for the tail gunner of the aircraft. The Air Ministry allegedly gave the design plans regarding the Giant to Handley Page in 1917, with the company applying for a patent on the tail gunner position on March 15th, 1918. Kennedy would file for the same patent for his Giant only a day later on the 16th. His case would be dismissed. The last time the Kennedy Giant would be mentioned regarding this case was in an aircraft magazine in 1923, which refers to the Giant still parked at the airfield at Hendon, most likely in poor condition from neglect. An some later date, the Giant was scrapped.

Design

Size comparison shot of the Giant next to a Bristol F.2 fighter. (Jane’s All The Worlds Aircraft 1919)

The Kennedy Giant was a large four engine heavy bomber built using experience gained from the development of the Russian Russky Vityaz and Ilya Muromets. The fuselage of the Giant was of wood construction and was entirely rectangular. All along the sides of the fuselage were celluloid covered windows. The cockpit had several large rectangular windows with good visibility for the pilot. Controls consisted of two large wheels connected to yokes that directed its control surfaces. Located in the upward slope of the nose, there was a window that assisted with bomb aiming. The wings of the aircraft were two bay, meaning a forward and aft row of struts between the upper and lower wings which were covered in fabric, with a wingspan of 142 feet (42.3m). The wings all had the same chord, but the upper wings were longer than the lower. Only the upper wings had ailerons. At the rear of the aircraft were the tail and elevators. Both of these were covered in fabric. The tailfin itself was rather small for the size of the aircraft and most likely would have negatively affected performance had the aircraft achieved sustained flight. The aircraft was powered by four 200 hp ( 149.1 kW ) Canton-Unne Salmson Z9 nine-cylinder water-cooled radial engines powering four wooden propellers. Two of these engines were to be used in a pusher configuration, while the other two were positioned in a tractor configuration.

Despite never being armed, plans for armament of the Giant exist. The aircraft would be armed defensively with 4 machine guns of unknown type. One of these would be located in the nose, one would be located behind the wings on top of the fuselage, and the last two would be in the tail. The tail gunner would have a unique seat option for the gunner, where it could act as either a seat or a kneepad depending on how the gun was being fired. This seat design would be the cause of the lawsuit in 1923. An unknown number and type of bomb would have been used. The bombs would have been held nose down by two arms. A selector gear would control which bombs were dropped while indicating how many were left.

Conclusion

The Kennedy Giant was an earnest attempt to create a heavy bomber using experience gained by Kennedy in Russia, but due to inadequate engines would never be truly realized to its fullest potential. What is interesting to note is the specifications listed for the Giant would actually make it larger than the Zeppelin Staaken R.VI, which is considered the largest production airplane of the World War I. Had it even flown, the Giant would likely have experienced maneuverability issues as its vertical stabilizer height was rather inadequate for the size of the aircraft. After the failure of the Giant, Kennedy would file for bankruptcy, as the program had personally cost him quite a lot of money. He would eventually move to America in the 1930s.

Variants

  • Kennedy Giant – Large, four engine heavy bomber prototype. One built but did not achieve sustained flight.
  • Postwar Kennedy Giant – Very little is known of this variant aside from it being a smaller version of the Kennedy Giant. It was under construction when the program ended.

Operators

  • United Kingdom – The Kennedy Giant was built for the British War Council as a prototype heavy bomber.

Kennedy Giant Specifications

Wingspan 142 ft / 43.3 m
Length 80 ft / 24.4 m
Height 23 ft 6 in / 7.2 m
Engine 4x 200 hp ( 149.1 kW ) Canton-Unne Salmson Z9 nine-cylinder water-cooled radial engines
Propeller 4x 2-blade wooden propellers
Empty Weight 19,000 Ib / 8618.3 kg
Crew 3
Armament

(planned)

  • 4x Machine Guns
  • Bomb Payload of Unknown Size

Gallery

The first version of the completed Kennedy Giant – by Ed Jackson
Closeup view of the cockpit of the Kennedy Giant. (The Imperial War Musuem Footage)
View of the tail of the Giant. (The Imperial War Musuem Footage)
The mid-section of the Giant. (The Imperial War Musuem Footage)
Kennedy demonstrating the controls of the Giant while in the cockpit. (The Imperial War Musuem Footage)
Kennedy walking down the interior of the Giant. (The Imperial War Musuem Footage)

Credits

  • Written by Medicman11
  • Edited by by Ed Jackson & Henry H.
  • Illustrations by Ed Jackson

Sources

  • Grey, C. G. Jane’s all the world’s aircraft, 1919 : a reprint of the 1919 edition of All the world’s aircraft. Newton Abbot: David & Charles, 1969. Print.
  • Mason, Francis K. The British bomber since 1914. London: Putnam, 1994. Print.
  • https://www.wikitree.com/wiki/Mackenzie-Kennedy-7

Macfie Monoplane, Empress, & Circuit

UK Union Jack United Kingdom (1909)
Sport Planes – 1 Each Built

Robert Macfie piloting the biplane ‘Circuit’ at Brooklands, 1911 [Flight Magazine]
Prime examples of early aeroplane designs, American Robert Macfie’s three handmade flying machines were designed and constructed from 1909 to 1911, a mere 6 years after the Wright brothers’ first flight. After studying under legendary French aviation pioneer Louis Bleriot, Macfie involved himself in the budding British aeroplane circuit competition scene and became one of the first licensed pilots in Britain. Despite his moderate success in the flying scene, he received no orders for the aircraft and any further developments were cut short by financial troubles and the looming threat of what would become World War I.

The Creator

Robert Francis Macfie pictured on 31st December 1910 on his Aviator’s Licence
Number 49. [Photo by kind permission of the Royal Aero Club of Great Britain]
Robert Francis Macfie was born on 11th November 1881 in San Francisco, California, USA. He was the son of Robert Andrew Macfie (1811 – 1893), a businessman in the sugar industry. His family business was connected with the sugar plantation at Kilauea, Hawaii which was managed from offices in California. Presumably, Robert’s birth in San Francisco was due to his family being located there at this time in connection with plantation management.

Macfie was of Scottish ancestry, despite not being born in Scotland (he had US Citizenship) and took some interest in the family sugar business which had connections in Hawaii and also a 250 acre (101 hectares) ‘Cocoanut’ plantation on the Island of Tobago (St. George Parish) in the Caribbean. By 1898, he was living in Great Britain, as he is recorded as having won a place as a Naval Engineering student at the Royal Naval Engineering College at Devonport. He studied as a Naval engineer for nearly five years, but following graduation did not go into the navy; travelling instead around the United States, Canada, West Indies, Central America, Australia, and South Africa. Presumably, some of this travel was connected in some way to the family’s sugar business. He had settled in Chicago by 1902 and between 1902 and 1904 he took a keen interest in the new field of aviation.

Back in Britain

By 1909, Robert Macfie was back in Great Britain and then went on to France in order to study the new field of aviation. Just six years after the flight by the Wright brothers, the field of aviation was brand new and one of the leading luminaries in the field was the Frenchman Louis Bleriot (1872 – 1936). Between about February and July, he studied under Bleriot and then returned to Britain.

By August 1909, Macfie was in Fambridge, Essex building his first aeroplane. Built around a wooden frame, the ‘Macfie Monoplane’ took just 6 weeks to build with the single largest delay being in obtaining an engine. Macfie had purchased a 35 hp Green engine from Green’s Motor Syndicate for £275, but it was delivered late and would not run. As a result, he switched to a different engine, a 220 lb V8 35 hp J.A.P. air-cooled petrol engine (38 hp at 1500 rpm). The engine had a bore of 85mm and a stroke of 95mm with a displacement of 263.68 cubic inches. When it was finished in September 1909, the ‘Macfie Monoplane’ was a single seater aircraft with a 28′ 6″ (8.7 meter) wingspan, made from canvas over wood.

Wooden frame with wire bracing formed the body of the Macfie Monoplane. [Flight Magazine]
Flown for the first time in September 1909, the Macfie Monoplane suffered a series of crashes which required the undercarriage to be rebuilt. The undercarriage was replaced with a Bleriot style undercarriage instead.

Macfie Monoplane seen at Fambridge with the original undercarriage. [Flight Magazine]
Abandoning Fambridge, Macfie went to Foulness Island instead for test flights. Due to bad weather though, he only got two flights. On 20th November 1909, Macfie narrowly avoided disaster when his plane had a hard landing on the sands at Foulness Island and broke a wheel. The car sent to tow the plane then got stuck, and if it was not for a team of horses coming from a nearby farm, both car and plane would have been lost to the merciless tides at that location. The rest of his tests at Foulness had to be abandoned when the War Office ordered him off the sands.

Macfie then found himself without anywhere for test flights and even took his plane to Paris to try there but was rebuffed. During the Paris floods between the 20th and 30th January 1910, the Macfie Monoplane was so badly damaged it was irreparable and Macfie returned to a workshop at Blackfriars in London.

Macfie Monoplane during testing on Maplin Sands with the rebuilt
‘Bleriot’ type undercarriage. [Flight Magazine]

Improved Plane – The Empress

Building a new and improved version of his monoplane meant a new engine and Macfie selected a 60-hp water-cooled J.A.P. engine. Assembly of the new plane took place in Huntingdon, but the new 60 hp J.A.P. engine had not been delivered by the 10th May, so the original 35 hp engine from the Macfie Monoplane was installed instead. This time, instead of facing forwards, the engine was turned backwards in order to push this new plane.

This new plane was christened the ‘Macfie Empress’, a single-seater once more made from canvas over wood but featuring a second tier of wings, creating a biplane. First flown on 12th May 1910, it was successful, although underpowered and unable to turn properly. The plane was sent to Wolverhampton by the end of June for tests, but when Macfie got it back in on 9th July, it was partially burnt and damaged by the weather to such an extent that it required reconstruction.

The New Empress – the ‘Circuit’

The damage to the Empress meant that Macfie was effectively building a new, third machine. Macfie wanted a better engine than the 35 hp J.A.P engine he had been using. The 60 hp version of the J.A.P. had still not materialised and, as a result, Macfie took a trip to Paris at the start of September 1910 to obtain a 50 hp Gnome engine for this new plane. The source of the engine was James Valentine, and Macfie went into partnership with him to complete the rebuilt Empress. Now rebuilt with a 50 hp engine, the plane was ready by the end of November 1910. Once finished though, it was known as the ‘Macfie Circuit’ and was intended for use in the 1911 Circuit of Britain contest. It had taken just three weeks to build.

By January 1911, Macfie had completed the test flights of the ‘Circuit’ for certification and he was one of the first qualified pilots in Britain. He gained his Aviator’s Certificate from the Royal Aero Club of the United Kingdom on 24th January 1911, the 49th such licence issued in the country.

This rebuilt Empress, now ‘Circuit’, design featured a distinctive triple tail and long sledge-like skids underneath. The 50 hp Gnome engine was considered temporary as a more powerful 100 hp A.B.C. engine was preferred. Even so, powered by this 50 hp engine, the plane successfully completed test flights in March 1911 piloted personally by Macfie before heading for the competitive circuit. Here, under the pilotage of Mr. Valentine, the Circuit took part in competitive trials at Brooklands in April and July 1911.

Macfie’s Monoplane with Bleriot style undercarriage

Disaster

Mr. Valentine piloting the Circuit at Brooklands 1911 [Flight Magazine]
Despite the technical success of the Circuit as a plane and the potential for significant improvement with a 100 hp engine, Macfie received no orders for planes. With no money coming in and with his funds now exhausted, he had no choice but to give up. Circuit was sold to another pioneer who would modify her once more with a new type of tail known as the ‘Farman’ tail. Equipped with the Farman Tail, the Circuit was flying around Brooklands in April 1912, but neither Macfie nor Valentine were there to see it.

With no plane orders and his funds exhausted, he returned to the family sugar business until the outbreak of war in 1914. When the war started, he returned to Great Britain with ideas for tracked armored vehicles. Despite joining the Royal Naval Air Service (R.N.A.S.) he never flew during the war and his ideas for tracked vehicles were equally unsuccessful.

Conclusion

The Macfie Monoplane, Empress, and Circuit all had potential in their own rights. At a time when aviation was in its infancy, it was not considered odd to switch from monoplane to biplane as an advance. Macfie had certainly encountered significant obstacles to his aircraft development from the lack of somewhere to test it, a lack of a powerful engine, and the intervention of fate like the Paris floods. It is perhaps remarkable that Macfie was quite so persistent in his aviation endeavours despite all the setbacks. Macfie’s life story is undoubtedly a sad one full of lost chances and missed opportunities. He died an unrecognised pioneer in both aviation and tracked vehicles in 1948. having lived to see the dawn of both tracked armored warfare as well as the jet age.

Gallery

Illustrations by Ed Jackson

Illustration of Macfie’s Monoplane (1909) by Ed Jackson

Credits

Short Skyvan

UK flag United Kingdom (1963)
Utility Aircraft – 153 Built

An Olympic Airways Skyvan at Athens Hellenikon airport in 1973

The Short SC.7 Skyvan, nicknamed the “Flying Shoebox” and “The Shed”, is a British-built general-purpose transport.

It features an odd, boxcar-like fuselage which FlightGlobal listed as “one of the twelve strangest-looking aircraft ever built”. Air Vice Marshal Ron Dick describes it in Air & Space Magazine as “Uncompromisingly chunky and angular, its freight container body hangs from wings which could have been shaped in a sawmill, and its twin fins were mere upright planks tacked on as if in afterthought.”

Despite this, the Skyvan did have its merits as a robust light transport aircraft. Originating from the Miles Aerovan and the failed Miles HDM-106 Caravan, it first took to the air in 1963, remaining in service to this day with militaries and civilian operators alike.

History

In 1958, Short (at the time Short Brothers & Harland Ltd) was approached by F.G. Miles Ltd., an offshoot of the bankrupt Miles Aircraft, looking for help to produce the H.D.M. 106 Caravan. The H.D.M. 106 was a development of the H.D.M. 105, a Hurel-Dubois extended-wing Miles Aerovan. Short, trying to diversify their line consisting of seaplanes, evaluated this offer, and refused it, finding it too advanced.

Invicta Aviation Skyvan taxiing down runway

In June of 1959, Short formed a Light Aircraft Division. The first project of this newly formed department was a privately funded venture, a “general purpose transport with van-type loading”. Using data obtained from the failed Miles HDM.106 Caravan, they began the design of what is now known as the Short SC.7 Skyvan.

By August of 1960, Short had released further detail on the aircraft, and named it the “Skyvan”. Construction of the prototype began in 1960 at Queens Island, Belfast. Manufacturing was slow, as production was focused on the SC.5 Belfast heavy freighter. Initially, two aircraft were built, and the first made its maiden flight on January 17, 1963. As of the time of writing in September 2018, the Skyvan is still in service with many nations around the globe.

There are two extended versions of the Skyvan, the Short 330 and 360.

Design

The Skyvan is a high-winged, twin-engine, fixed tricycle landing gear utility aircraft with twin rudders and a box-like fuselage. The box fuselage allows for a large rear door for loading and unloading freight. This also gives it a good efficiency, as it is capable of carrying over 1 ½ tons of payload. Although not a true STOL aircraft, it can take off from a half mile (804.67 m) field or strip. Simplicity and ruggedness are the primary features of the Short SC.7 Skyvan. It can be used for many purposes, including short-haul freight, passenger transport, skydiving, and much more.

With the prototypes being powered by 390 hp Continental piston engines and Turboméca Astazou 2 turboprops, and the initial production run being powered by the Turboméca Astazou XII turboprops, the Skyvan needed an upgrade. The Skyvan 3 was re-engined with Garrett AiResearch TPE331 in order to improve airfield performance in hot and high-altitude conditions. This was done as the previous engines were shown to be inadequate for Ansett-MALs New Guinea routes, as they only delivered 630 shp of the promised 690 shp. Ansett-MAL was a primary factor for this decision, being a key customer, but the upgrade also provided vastly improved engine handling for both the pilot and the aircraft mechanic.

Apart from the re-engining, various other improvements were made to the Skyvan. The increased power required larger trim tabs and a new out-of-trim compensator in the elevator. Larger fuel tanks for the increased fuel consumption (and the fact that installed consumption provided 5% better) resulted in an increased range. The increased weight of the engine resulted in a reappraisal of the airframe, a simplified design, and surprisingly, a lower empty weight. The cockpit layout was also cleaned up and a central warning system was added. All these upgrades were very well received by Short’s pilots, engineers, and customers alike.

Operational Service

The Skyvan has had a long history, serving around the world with various militaries. Of particular interest is the Skyvan’s service with the Prefectura Naval Argentina, the Argentine Coast Guard.

The Argentine Coast Guard operated 5 Skyvans out of Port Stanley and Pebble Island, where two were lost. The Coast Guard utilized their STOL capabilities for communication and light transport between the mainland and the occupied Falkland Islands.

A raid was mounted by SAS’s D Squadron to destroy the ground attack Pucaras planes based in the Falklands. On the night of the 10th, men of the Squadron’s Boat Troop were put ashore to provide reconnaissance. On Friday the 14th, HMS Hermes, her escort HMS Broadsword, and HMS Glamorgan separated from the carrier battle group, approaching Pebble Island by night. As Glamorgan approached to provide fire support, the 48 men of the SAS task force took off in Sea Kings. They landed, moving by foot to the airstrip, and by morning, all the aircraft there were disabled or destroyed with explosive charges. In the meantime, Glamorgan provided fire support, and the SAS withdrew. A brief Argentine counter-attack stopped when the officer in charge was shot and, with two men slightly wounded, the SAS escaped. The raid was successful, resulting in the loss of six Pucaras, four T-34C Mentors, and a single Coast Guard Skyvan (serial number PA-50), and halted the use of the airstrip. The remains of the Skyvan are still visible to this day.

The other destroyed Skyvan, PA-54, crashed in Stanley, Falkland Islands (then Puerto Argentino) on June 5th, from a failure of the nose landing gear during the landing at the racecourse of Puerto Argentino. Afterwards, sometime between the 12th and 13th of June, it was destroyed by 105mm British artillery fire and was written off.

Variants

  • Skyvan 1 – 2 built. Skyvan prototype powered by a pair of Continental GTSIO-520 piston engines.
  • Skyvan 1A – Single re-engined Skyvan 1 powered by a pair of Turboméca Astazou 2 turboprops.
  • Skyvan 2 – Initial production run Skyvan powered by a pair of Turboméca Astazou XII turboprops. 8 built for British European Airways until 1968.
  • Skyvan 3 – Improved Skyvan powered by Garrett AiResearch TPE331 turboprops.
  • Skyvan 3A – Skyvan 3 with increased Maximum Take-Off Weight (MTOW).
  • Skyvan 3M – Military transport variant.
  • Skyvan 3M-200 – Skyvan 3M with increased MTOW of 15,000 lbs / 6800 kg.
  • Skyvan 3M-400 – Modernized militarized Skyvan. There are many subvariants of the 3M-400, but it is unclear how they differ.
  • Skyvan 3 C1 – 10 built. British Army designation.
  • Skyliner – Luxury passenger transport variant.
  • Seavan – Maritime patrol Skyvan.

Operators

  • Civilian – Commercial use of the Skyvan includes: Questor Surveys, Olympic Airways, Pink Aviation Services, NASA, Aeralpi, StoLine Systems, Wein Consolidated Airlines, Summit Air, Northern Consolidated Aviation, GB AirLink, Air Forum, Gulf Air, Nomad Air, British European Airways Scottish Division, Laboratory of Space Technology, Invicta Aviation, Skylift, Bravo Partners Inc., North Star Air Cargo, Forrester Stephen Aviation, Skydive DeLand, British Air Services, Bougair, Skyhawk, Ansett-MAL, and more. As well, some are privately operated.
  • Argentina – The Argentine Coast Guard purchased 5 Skyvan 3M-400-7s, which saw service in the Falklands War. Two were lost, with one being damaged by naval gunfire at Stanley, Falkland Islands on the night of May 3rd, 1982, and not repaired. The other was destroyed during the Pebble Island raid, by D Squadron SAS on the morning of May 15th.
  • United States of America – 2 copies of the Skyvan 3, serial numbers 90-00042 and N430NA.
  • Austria – 2 copies of the Skyvan 3-400-1, serial numbers 5H-TA and 5H-TB delivered to the Austrian Air Force.
  • Oman – 16 copies for the Royal Air Force of Oman. These include the Skyvan 3M-400-23, 3M-400-22, 3M-400-II, 3M-400-4, and 3M.
  • Ecuador – Two Skyvan 3M-400-6 produced for the Aviacion del Ejercito Ecuatoriano (Air Force of the Ecuadorian Army).
  • Indonesia – 4 copies of Skyvan 3M-400-5s sold to the Indonesian Air Force
  • Nepal – 7 copies purchased for the Nepalese Air Force, consisting of 3 SC.7 3-100s and 4 3M-400-9s.
  • Thailand – 4 copies for the Thai Army and Police. Variants include the 3M-400-II and the 3M-400-17.
  • Mexico – The Mexican Air Force purchased 6 copies made up of 4 Skyvan 3M-400-IIs and 2 Skyvan 3Ms.
  • Singapore – 6 copies made for the Singapore Air Force, half of which are Skyvan 3M-400-16s, and the other half being 3M-400-15s.
  • Yemen – The Yemen Air Force operated 2 copies of the Skyvan 3M.
  • Ghana – 6 copies for the Ghana Air Force of Skyvan 3M-400s
  • Japan – 2 copies of Skyvan 3M-400-IIs are operated by the Japanese government.
  • Mauritania – 2 Skyavan 3Ms made for the Mauritania Islamic Air Force.
  • Venezuela – The Venezuelan government operated 6 Skyvan 3Ms.
  • Saudi Arabia – Purchased 4 Skyvan 3Ms.
  • Lesotho – Purchased 2 Skyvan 3s for the Lesotho Defence Force – Air Squadron
  • Panama – Bought a single Skyvan 3M for the National Air and Naval Service of Panama.
  • Botswana – The Botswana Defense Force – Air Wing purchased 2 Skyvan 3s.
  • Ciskei – Purchased two Skyvans, serial numbers ZS-LFG and ZS-KMX, relegated to civil use.
  • Guyana – Purchased 4 Skyvan 3s.
  • Malawi – Malawi purchased a single Skyvan 3M, serial number 7Q-YAY.
  • Maldives – The Maldives National Defense Force purchased one Skyvan 3.
  • United Arab Emirates – 3 Skyvan 3s were purchased by the United Arab Emirates Air Force.

Short SC.7 Skyvan Specifications

Wingspan 64 ft 11 in / 19.79 m
Length 40 ft 1 in / 12.22 m
Height 15 ft 1 in / 4.6 m
Wing Area 373 ft² / 34.65 m²
Engine 2x 690 hp ( 514.53 kW ) Garrett AiResearch TPE331-201 fixed-shaft turboprops
Propeller 2x 3-blade Hartzell HC-B3TN-5 feathering and reversing propellers
Fuel Capacity 1109.13 L
Weights
Empty (Cargo Configuration) 7,100 lb / 3220.51 kg
Empty (Passenger Configuration) 7,420 lb / 3,365.66 kg
Maximum Ramp Weight 12,524 lb / 5,680.79 kg
Maximum Landing 12,500 lb / 5,669.9 kg
Gross 12,500 lb / 5,669.9 kg
Wing Loading (Gross Weight) 33.5 lb/ft2 / 163.56 kg/m2
Power Loading 8.2 lb/h.p / 4.99 kg/kW
Climb Rate
Maximum Rate of Climb (Two Engines)l 1,500 ft / 457.2 m per minute at 100 kt
Maximum Rate of Climb (One Engine) 400 ft / 121.92 m per minute at 100 kt
Maximum Speed 207.14 mph / 333.36 kmh
Maximum Service Ceiling 21,000 ft / 6,400.8 m (two engines)

9,000 ft / 2,743.2 m (one engine)

Crew 1 pilot

1 co-pilot (optional)

Gallery

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Short SC.7 Skyvan in service with NASA
Short SC.7 Skyvan in service with the Austrian Air Force
Short SC.7 Skyvan in service with Invicta of the UK
Short SC.7 Skyvan in service with Argentina

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Skyvan PA-50 before it met its demise. [source]
The remains of the PA-50 are still scattered and viewable today [source]
Crashed Skyvan (serial PA-54) from collapsed nose landing gear [source]

Skyvan PA-54 destroyed by British naval bombardment [source]
Invicta Aviation Skyvan taxiing down runway [source]
USAF parachute test jumper tests a prototype parachute over Edwards AFB, California [source]

 

Sources