Tag Archives: Fighter

Official classification tag

Focke Wulf Fw 187

Nazi flag Nazi Germany (1937)
Twin Engined Fighter – 9 Built

The Fw 187 Falke was a twin engine fighter that was built by Focke-Wulf in 1936, at a time when the newly-formed Luftwaffe did not consider such an airplane type necessary. Despite receiving significant negative feedback, several prototypes were built and three pre-production versions were also constructed. The three pre-production types saw limited service defending the Focke-Wulf factory in Bremen against Allied bombing in 1940. Aside from that, they saw no other combat.

History

The first Fw 187 V1 shortly after being completed.

The twin-engined fighter was a concept few countries pursued in the early days of flight. The type only started serious development in the years directly preceding the outbreak of the Second World War, with planes such as the American Lockheed P-38 Lightning entering service. Most officials across the globe agreed that two-engine fighter aircraft would be rendered unnecessary by cheaper and lighter single-engine designs. In the early 1930s, Germany had no plans to develop such an aircraft either.

However, an aeronautical engineer by the name of Kurt Tank showed an interest. Kurt Tank was the main aircraft designer of the Focke-Wulf company, who developed most of the company’s most famous aircraft. During WWII, he would go on to create the iconic Fw 190 and would later have an aircraft designation named after him, with the Ta 152 and Ta 154. He began work on the new twin-engine project, despite there being no current requirement for such an aircraft. Tank had his first chance to reveal his design at a weapons exhibition held at a Henschel plant in 1936. Tank showed off his innovative design, claiming the twin-engine layout would offer a great speed of 348 mph (560 km/h) if the aircraft mounted the newly developed Daimler Benz DB 600 engines. One of the attendants of the event was Adolf Hitler himself, who found the design particularly interesting.

The Fw 187 on jackstands. This photo was taken during testing of the double-wheeled landing gear.

But to the Technischen Amt (Technical Research Office), the design was unnecessary, as it was believed single-engine designs could perform just as well as the twin-engined concept. Another pre-war doctrine was that the current bombers would be fast enough to outrun the fighters of the enemy, and escort fighters wouldn’t be needed. Tank, not happy with this response, took his design to Oberst (Colonel) Wolfram von Richthofen, the head of the Development section of the Technischen Amt. Tank persuaded him that technological advances would eventually allow the construction of more powerful fighters that would be able to catch up with the bombers which would thus require an escort fighter. Convinced by his claim, Richthofen agreed that it would be better to have a countermeasure now rather than later. Richthofen’s term as chief was short, but in this time he authorized three prototypes of Tank’s twin-engine design. The design was officially given the name of Fw 187.

Work began on the Fw 187 soon after, but, to Tank’s dismay, the requests for the DB 600 engine were turned down. Instead, he had to work with Junkers Jumo 210 engines, as DB 600s were only allocated to projects which were viewed as being highly important. The design work was handed over to Oberingenieur (Chief Engineer) Rudi Blaser, who was the one of the most experienced members onboard Focke-Wulf. Blaser had previously headed the design of the failed Fw 159 monoplane fighter, but he was ready to continue work and move on from his failure. Blaser wanted to achieve only one thing with this design: maximum speed.

The Fw 187 V2 on a test flight.

The first prototype Fw 187 was completed in early 1937. The Fw 187 V1 (designated D-AANA) was first flown by test pilot Hans Sander. In the initial flights, the aircraft reached speeds of up to 326 mph (524 km/h). The Luftwaffe was surprised to learn that despite weighing twice as much as the Bf 109, the Fw 187 was still able to go 50 mph (80 km/h) faster. They accused the team of having faulty instruments. Blaser was determined to prove them wrong and had a Pitot tube (a device that measures air speed using the total air pressure) installed on the nose of the V1, which would accurately tell the performance. Sander once again flew and confirmed the aircraft indeed had attained such a speed. Further flight trials showed the aircraft had superb maneuverability, climbing and diving. These great characteristics led Kurt Tank to name the aircraft his “Falke” or Falcon. This name became official as well, and wasn’t just a nickname the creator gave to his creation.

In the summer of 1937, the airframe had an impressive wing loading of 30.72 Ibs/sq ft (147.7 kg/m2), something no other fighter could equal at that point. Further tests by Sander put the airframe to the extremes to try the limitations of the aircraft in diving. The rudder, during dives, was predicted to begin fluttering after 620 mph (1000 km/h), but Blaser was more cautious, and thought it would start at a lower speed. To counteract this, a balance weight was attached to the rudder. Blaser assured Sander that the aircraft would perform better in dives as long as he didn’t exceed 460 mph (740 km/h). With the new weight attached, Sander took off to begin trials. Hitting 455 mph (730 km/h), Sander noticed the tail had begun violently shaking. With the tail not responding, Sander had started to bail when he reported a loud noise came from the rear. Sander’s control over the aircraft had returned and all vibrations had ceased. Upon landing, it was found that the weight itself had been the culprit of the vibrations and the sound Sander heard was the weight breaking off the rudder.

An aft view of the V6. The surface cooling system is visible in this shot.

Several modifications were made to the V1 during testing. The frontal landing gear was switched out for a dual wheeled design at some point, but was found it offered no benefit over the single wheel and thus was reverted. The propellers were also changed from Junkers-Hamilton to VDM built ones. Weapons were eventually added as well, but these were just two 7.92mm MG 17s. The 2nd prototype arrived in the summer of 1937. Visually, the V2 was identical to the V1, but had a smaller tailwheel, modified control surfaces, and Jumo 210G engines with enhanced fixed radiators.

However, in 1936, there was a change of leadership in the Technischen Amt. The supportive Richthofen was replaced by Ernst Udet. Udet was a fighter pilot, and his experience reflected upon his decisions. He made sure no more biplane designs were being built and all designs were now of monoplane construction. He had a major focus on fighters, and believed them to be the future. The modern fighter had to be efficient, with speed and maneuverability being the utmost importance. And, from this viewpoint, he saw twin engine fighters as not being as capable as single engine fighters. With this mindset, the Luftwaffe now saw no real reason to continue developing the Fw 187 as a single seat interceptor, but it could be developed as a Zerstörer (“Destroyer” heavy fighter), the same role the Bf 110 occupied. This required a crew of more than one and much heavier armament. Tank was reluctant, and felt his design was still as capable as single engine designs were, but he knew continuing to go against the Technischen Amt would result in his aircraft being terminated, so he regretfully obliged.

The V3 was in the middle of construction and changes had to be made as a result of this. The V1 and V2 had already been produced, and any drastic changes would further affect development, so no attempt to convert the two initial planes into two-seaters ever occured. To accommodate a radioman, the cockpit had to be lengthened. This worried Blaser, who was concerned these changes would affect the size and overall performance of the aircraft. Thus, he tried making the changes that affected the aircraft’s performance as little as possible. The fuselage was increased lengthwise, the tailfin was shortened, and increased cockpit volume demanded the fuel tank be moved farther back. Engine nacelles were also shortened to allow installation of landing flaps for when the aircraft carried larger ordnance. The 7.92mms were now complemented with two 20mm MG FF cannons, although V3 never mounted any actual weapons, only mock-ups.

The Fw 187 had good luck up until this point, but this good fortune ran out shortly after the V3 was produced. A few weeks after it was finished in early 1938, the V3 was doing a test flight when one of its engines caught on fire. The aircraft was able to safely land and the fire was extinguished, but the airframe had taken some damage and needed repairs. Tragedy struck once again not too long after, on May 14th. The V1 was lost and its pilot, Bauer, was killed during a landing accident. These two events happening so close together made the already negatively viewed Falke seem not only an unnecessary weapon, but now an unreliable one as well. Two more prototypes were built late in 1938, the V4 (D-OSNP) and V5 (D-OTGN). These two were mostly identical to the V3, but had several slight modifications, such as a modified windshield. Judging by photos, one obvious trait V4 and V5 had over V3 is the lack of the radio mast mounted on the cockpit of the V3. V4 and V5 were sent to the Echlin Erprobungsstelle, a major aircraft development and testing airfield for the RLM (Reichsluftfahrtministerium, German Ministry of Aviation). The trials at this site yielded favorable evaluations of the aircraft and three pre-production examples were ordered.

One of the A-0s flying overhead.

While all of this was going on, Tank was finally able to acquire two DB 600A engines for his Falke. The plane that mounted these engines would be the V6. Before the V6 was built, Tank had shown interest in surface evaporation cooling, a drag reducing novelty which had been researched and developed by Heinkel and was soon to be worked on by Messerschmitt. With the V6 now under construction, Tank drew plans to apply the feature into the prototype to give it peak performance. V6 (CI+NY) first flew in early 1939 and showed how well the new engines and surface cooling made the aircraft perform. On takeoff, the V6 had 1,000 HP from each engine, a 43% boost over the previously used Jumo 210s. During one test flight, the V6 was flying 395 mph (635 km/h) in level flight.

The three pre-production examples previously mentioned were designated Fw 197A-0. These were were fully armed. The A-0s added armored glass to the windshield and carried two more MG 17s. The A-0 planes also returned to using the Jumo 210 engines. Due to the additional weight, the performance of the A-0s was a bit lower than the prototypes. However, the RLM continued to argue against the Falke, claiming that, because it had no defensive armament, the Fw wouldn’t be as effective as the Bf 110 in the same role (despite it being able to outperform the 110 performance-wise). The final decision related to the Falke was an idea to turn it into a night-fighter in 1943. Nothing ever came out of this proposal.

The Factory Defender

Although the Bf 110 seemingly took the Falke’s place, its story continued. As the Royal Air Force (RAF) began its attacks over mainland Germany in 1940, aircraft firms scrambled to defend their valuable factories. Several firms formed a “Industrie Schutzstaffel”, which was an aerial defence program which would have aircraft company’s factories and testing sites be defended by aircraft piloted by test pilots and to be managed by on-site personnel. Focke-Wulf was one such firm and, luckily for them, three fully operational Fw187A-0s were ready and waiting to be used in combat. These examples were sent to the Focke-Wulf factory at Bremen and were sent on numerous missions to defend the plant from Allied bombing. Allegedly, Dipl.-Ing (Engineer’s degree) Melhorn claimed several kills while flying one of these aircraft. After the stint in Bremen, the three were put back into armament and equipment testing. In the winter of 1940 to early 1941, the three were sent to a Jagdstaffel unit in Norway, where they were evaluated by pilots. One of the three was sent to Værløse, Denmark in the summer of 1942 and temporarily assigned to Luftschiess-Schule. It is likely the remaining 3 and prototypes were either scrapped or destroyed by Allied bombing, as no examples are known to have survived the war. Some sources claim the aircraft Melhorn flew was the V6 converted into a single seater and armed for combat, but no proof supports this.

The Fw 187 was no secret weapon. After the fighting in France died down, the Propaganda Ministry began producing film and photos of the Fw 187 in 1940-1941 to persuade the Allies into thinking the Falke was fully operational and replacing the Bf 110 as the Luftwaffe’s all new Zerstörer. In reality, the latter was taking over the role of the former. The campaign sort of worked, as the Fw 187 was now a part of the rogue’s gallery that the Allies expected to fight. Identification cards, models and even movies were made to train pilots in the event they should encounter the two engine terror in combat. One such film denotes that the Fw 187 is “a rare bird” and that they should comically “make it extinct”. This shows that the Allies didn’t completely fall for the propaganda that claimed it was being produced in mass quantity.

Design

The Fw 187 had a twin engine design. The airframe was of all light metal construction. To reduce drag, the airframe was actually narrower at its widest point than other fighters of the time. The wings were of metal construction and divided into three sections. The connected segments carried the fuel and the outer segments had the flaps installed. The first and second prototypes had a single seat cockpit. The cockpit was covered by a canopy that slid aft. The cockpit itself wasn’t built for comfort, as it was built for an average sized pilot. The cramped cockpit lacked the necessary space to mount certain instruments and had these mounted outside on the engine cowlings. V1 had tail sitting landing gear, with all three wheels being able to retract into the hull. V2 was similar to V1, but had modified control surfaces. Beginning after the first two, all examples of the Fw 187 had an extended greenhouse cockpit to accommodate the radioman. The cockpit now opened up in two sections, one to the front and one to the rear. The fuselage was lengthened to some degree as well. The extended cockpit required the fuel tank to be moved down the fuselage. The engine nacelles were shortened to allow landing flaps to be added. V3 also had a radio mast mounted on the rear part of the cockpit. V4 and V5 had this removed.

For engines, the majority of the Falke’s used the Jumo 210 engine. V1 mounted the 210Da, V2-V5 using the 210G, V6 using the powerful DB 600A engines and the A-0 reverting back to 210Gs. The aircraft performance stayed the same overall, with the V6 having peak performance speedwise.

For armament, V1 mounted two MG 17 machine guns. V3 had accommodations for two more MG FF cannons but only mockups were added. When the A-0s were rolled out, an additional two MG 17s were added to fill the Zerstorer role. The extra two had their ammunition mounted in front of the radioman’s seat.

Variants

  • Fw 187 V1 – First prototype. Mounted two Junkers Jumo 210Da engines. Originally mounted Junkers-Hamilton propellers but was changed to VDM airscrews. Originally had two wheeled forward landing gear which was switched to single during development. Fitted with two MG 17 machine guns.
  • Fw 187 V2 – Second prototype, had different rudders and a semi-retractable tail-wheel. Had fuel-injection Jumo 210G engines.
  • Fw 187 V3 – Third prototype. Two seat version, the cockpit was lengthened to accommodate the radioman. The engine nacelles were shortened some degree to allow new landing flaps.V-3 also mounted two MG 17 machine guns and two MG FF cannons.
  • Fw 187 V4/Fw 187 V5 – Fourth and fifth prototypes. Nearly identical to V-3, aside from several small modifications, such as having different windscreens.
  • Fw 187 V-6 – Sixth prototype. High speed version that mounted Daimler Benz DB 600A engines.
  • Fw 187A-0 – Pre-production version. Three were constructed. Armed with two MG FF cannons and four MG 17 machine guns. Frontal armored windshields were added. These three were tested and sent to various locations for trial and defensive purposes.

Operators

  • Nazi Germany – The sole operator was Nazi Germany, which reportedly used the Falke during the air defense of Bremen in 1940.

Focke Wulf Fw 187A-0 Specifications

Wingspan 50 ft 2 in / 15.3 m
Length 36 ft 6 in / 11.1 m
Height 12 ft 7 in / 3.8 m
Wing Area 327.2 ft² / 99.7 m²
Engine 2x 700 hp (522 kW) Junkers Jumo 210Ga 12-cylinder liquid cooled inline engines
Propeller 2x 3-blade VDM airscrews
Powerplant Ratings
Horsepower output Altitude
Take Off 700 hp Sea Level
Normal 730 hp 3,280 ft
Weights
Empty 8,150 lbs / 3,700 kg
Loaded 11,000 lbs / 5,000 kg
Climb Rate
Rate of Climb at Sea Level 3,450 ft / 1050 m per minute
Time to 6,560 ft / 1999.4 m 1.9 minutes
Time to 19,700 ft / 6000 m 5.8 minutes
Speed 329 mph / 530 km/h at 13,780 ft / 4,200 m

322 mph / 518 km/h at Sea Level

Range 560 mi / 900 km
Maximum Service Ceiling 32,810 ft / 10940 m
Crew 1 Pilot

1 Radio Operator

Armament
  • 2x 20mm MG FF cannons
  • 4x 7.92mm MG 17 machine guns

Gallery

llustrations by Ed Jackson www.artbyedo.com

Fw 187V2 – The second single-seat prototype with a large curved canopy
Fw 187V3 – Two seat cockpit and canopy design were established along with new engines and nacelles
Fw 187V4 – Curved windscreen was fitted, however this change would not last
Fw 187V5 – Two more MG-17 added below the canopy
Fw 187A-0 – The A series was the first and only production batch
The V5 on standby. A visual difference between the V3 and the V4/V5 is the absence of a radio mast mounted on the cockpit.
Side view of the V6.
A period 3-way illustration of the Fw 187 A-0
The Fw 187 V3 after it’s engine fire. Notice it’s greenhouse cockpit and the way it opens.
A cockpit view of one of the A-0s. Note the glass floor.
The V4 taking off. The V4 and V5 were slightly modified versions of the V3.
Three pre-production Fw 187 A-0s on standby.
An aft view of the V6. The surface cooling system is visible in this shot.

Sources

EF-18 Hornet in Spanish Service

Spanish flag Spain (1985)
Multirole Fighter Aircraft – 96 Built

The first European customer for the F/A-18 Hornet multirole fighter was the Spanish Air Force, the Ejercito del Aire Espanol (EdA). Spain did not join NATO until May of 1982, but even before that date the Spanish government had issued a requirement for a new fighter/attack aircraft that would replace its fleet of F-4C Phantoms, F-5 Freedom Fighters, and Mirages. In response to the announced requirement, the US government initially offered Spain an interim loan of 42 ex-USAF F-4E Phantoms, followed by the sale of 72 F-16s. However, the F-18 entered the competition in 1980, offering the benefit of a twin-engine safety margin.

History

In December of 1982, Spain announced that they had selected the Hornet and made plans to order 72 single-seaters (F/A-18A) and 12 two-seat (F/A-18B) versions. However, this proved more than the Spanish government could afford, and the order was reduced to only 60 A variants and 12 B variants on May 31, 1983. An option was put aside for 12 additional Hornets, but due to budgetary restrictions, they were not taken up.

As part of an offset agreement reached with Spain, Construcciones Aeronauticas SA (CASA) at Gefale is responsible for the maintenance of the EdA Hornets. CASA is also responsible for major overhauls of Canadian Hornets based in Europe, as well as the Hornets of the US 6th Fleet in the Mediterranean.

EF-18 on takeoff at exercise Anatolian Eagle, Turkey (USAF)

The Spanish Hornets are sometimes referred to as EF-18A and EF-18B, the “E” standing for “España” (Spain) rather than for “Electronic” as would normally be the case for an official Department of Defense designation. They have local EdA designations C.15 and CE.15 respectively. Serial numbers are C.15-13 through C.15-72 and CE.15-01 through CE.15-12 respectively.

The first EdA Hornet, EF-18B CE.15-01, was presented in a formal ceremony at St Louis on November 22, 1985, and made its first flight on December 4. The first few two-seaters were sent to Whiteman AFB in Missouri, where McDonnell Douglas personnel assisted in the training of the first few Spanish instructors. The first two-seater was flown to Spain on July 10, 1986. By early 1987, all 12 two-seaters had been delivered to Spain, after which the single-seaters were delivered. A total of 60 EF-18As and 12 EF-18Bs were delivered to Spain, the last planes being delivered in July of 1990.

The Hornet serves with Escuadron (Squadron) 151 and Escuadron 152 of Ala de Caza (Fighter Wing) 15 at Zaragoza-Valenzuela and with Escuadron 121 and Escuadron 122 of Ala de Caza 12 at Torrejon de Ardoz. Escuadron 151 was established first and declared combat-ready in September of 1988. In EdA service, the Hornet operates as an all-weather interceptor sixty percent of the time and as a night and day fighter-bomber for the remainder. In case of war, each of the four front-line squadrons is assigned a primary role. 121 is tasked with tactical air support for maritime operations, 151 and 122 are assigned the all-weather interception role, and 152 is assigned the suppression of enemy air defenses (SEAD) mission.

Spain has ordered 80 Texas Instruments AGM-88 HARM antiradiation missiles and 20 McDonnell Douglas AGM-84 Harpoon anti-shipping missiles. The Spanish Hornets carry the Sanders AN/ALQ-126B deception jammer and, on the last 36 aircraft, Northrop AN/ALQ-162(V) countermeasure systems. For air-to-ground work, EdA Hornets carry low-drag BR and Mk 80 series bombs, Rockeye II cluster bombs, BME-300 anti-airfield cluster bombs, BEAC fuel-air explosive bombs, GBU-10 and GBU-16 Paveway II laser bombs, AGM-65G Maverick air-to-surface missiles, and AGM-88 HARM antiradiation missiles. In the air-to-air missions, EdA Hornets carry a 20-mm M61A1 cannon, AIM-9L/M Sidewinders and AIM-7F/M Sparrows. The Sparrows were supplemented from late 1995 onward by AIM-120 AMRAAMs. Spanish Hornets can also carry AN/ALE-39 chaff/flare dispensers, ALR-167 radar homing and warning systems and ALQ-126B Jammers which have been supplanted in most of the aircraft by the more advanced ALQ-162. EdA Hornets can carry the AN/AAS-38 Nite Hawk FLIR/laser designator pod on the port fuselage stores station. Air refueling for the Spanish Hornets is provided by KC-130Hs from Grupo (Group) 31 and Boeing 707TTs from Grupo 45.

In 1993, plans were announced for the EdA’s fleet of EF-18A/B Hornets to be upgraded to F/A-18C/D standards. McDonnell Douglas reworked 46 of these planes, with the remainder being upgraded by CASA. Most of the changes involved computer improvements and new software, although some changes were required to the weapons delivery pylons. Following the rework, the planes were redesignated EF-18A+ and EF-18B+.

Worried about a “fighter gap” opening up early in the next century because of delays in the Eurofighter 2000 program, Spain searched for additional fighter aircraft, acquiring some additional Mirage F1s from Qatar and France. The USAF offered Spain 50 surplus F-16A/B Fighting Falcons and the US Navy offered about 30 F/A-18As. These F/A-18s had the advantage in the contest, since Spain already operated the Hornet, and in late 1995 the Spanish government approved the purchase of 24 US Navy surplus F/A-18A/Bs. This marked the first sale of US Navy surplus Hornets. There was a separate deal for new F404-GE-400 engines, which were being contracted directly from General Electric.

The US Navy surplus Hornets were intended to equip the 211 Escuadron of Grupo 21 based at Moron. Escuadron 211 had been operating the F/RF-5A fighter, but these planes had been phased out of front-line service and transferred to Ala 21, while the Moron-based unit was temporarily equipped with CASA C-101 Aviojets. The first six were delivered in late 1995. They bore EdA serials C.15-73 to C-15-78 (being ex-US Navy BuNos 161936, 162415, 162416, 162426, 162446, and 162471 respectively). The remainder would follow at a rate of six per year until 1998. After a period of service, they were retrofitted in Spain and later subjected to a mid-life update.

With the withdrawal of USAFE and Canadian squadrons from Europe, Spanish F-18s (and Mirage F1s) have been in demand for NATO exercises and are frequent visitors to air bases in Europe and the UK. In 1994, eight EF-18s participated in a Red Flag exercise at Nellis AFB in Nevada. Eight EF-18s participated in Deny Flight operations out of Aviano, Italy beginning in December of 1994. On May 25, they received their first taste of combat when they participated in an attack against a Serb ammunition depot near Pale (currently in Bosnia and Herzegovina).

The Hornet is extremely popular with its EdA crews and is reportedly a pure joy to fly, stable and yet highly maneuverable and with good acceleration. By 2002, only six Spanish Hornets had been lost in accidents. This is the best safety record of any EdA fighter that ever served, and as good, if not better, than that of any other F/A-18 operator.

Active Service

Spanish Hornet at a NATO Tiger Meet exercise (FloxPapa)

After the Bosnian War began in 1992, the UN Security Council passed a resolution prohibiting military flights in Bosnian Airspace. Despite this no-fly order, hundreds of violations were committed. As a result, enforcement of the UN no-fly zone over Bosnia and Herzegovina by NATO began in 1993 as Operation Deny Flight, which was successful in denying unauthorized airplane access over Bosnia, but was ineffective with regards to helicopters. However, Operation Deny Flight was extended beyond the enforcement of the no-fly-zone, with ground air strikes in support of UN forces being made in the operation. As a NATO member state, the Spanish Air Force was involved and flew missions jointly with the U.S. Air Force, with eight EF-18s, two KC-130s and one CASA 212 participating in 23,000 fighter sorties, 27,000 close air support missions, 21,000 training sorties and 29,000 SEAD and other types of sorties.

The next military operation of the Spanish Forces was Operation Deliberate Force, aimed at weakening the military power of the Bosnian Serb Army which had perpetrated the Srebrenica massacre in July 1995, in which 8300 Bosnians were murdered. The air campaign lasted for three weeks, with eight EF-18s and several other Spanish aircraft involved in operations flying over 3500 sorties.

Spanish Air Force EF-18 Hornets have also flown Ground Attack, SEAD, and combat air patrol (CAP) combat missions in Kosovo, under NATO command, in the Aviano detachment (Italy). They shared the base with Canadian and USMC F/A-18s. Over Yugoslavia, eight EF-18s, based at Aviano AB, participated in bombing raids in Operation Allied Force in 1999, a NATO military campaign directed against the Federal Republic of Yugoslavia as part of the Kosovo War. The operation was carried out without UN approval due to China and Russia vetoing it. The end of the campaign lead to the withdrawal of Yugoslav forces from Kosovo and end to the Kosovo War.

During the 2011 Libyan Civil War, a coalition of nations imposed a no-fly zone over the country in order to prevent Muammar Ghadaffi’s Lybian Armed Forces from using the air force to bomb the rebels, along with an arms embargo. Six Spanish Hornets, along with a few other Spanish planes, participated in enforcing the no-fly zone. Spain also allowed the use of its Rota, Morón and Torrejón bases by the coalition. The total costs for Spain over the 7-month operation ammounted to more than 50 million euros.

Variants

  • EF-18A – Single seat version, locally designated C.15
  • EF-18B – Two seat version, locally designated C.15E
  • EF-18A+ – Single seat version upgraded to F-18C standard
  • EF-18B+ – Two seat version upgraded to F-18D standard*Note: The “E” in “EF-18” stands for “España” rather than “Electronic [warfare]” as typically designated by the U.S. Department of Defense

EF-18A Specifications

Wingspan 40 ft 5 in / 13.5 m
Length 56 ft 0 in / 16.8 m
Height 15 ft 4 in / 4.6 m
Engine 2x General Electric F404-GE-402 turbofan engines
Maximum Takeoff Weight 51,900 lbs / 23,540 kg
Climb Rate 833 fps / 254 m/s
Maximum Speed Mach 1.7+
Range 1250 mi / 2,000 km
Maximum Service Ceiling 50,000 ft / 15,240 m
Crew 1 pilot
Armament
  • One M61A1/A2 Vulcan 20mm cannon
  • AIM 9 Sidewinder, AIM 7 Sparrow, AIM-120 AMRAAM
  • Harpoon, Harm, SLAM, SLAM-ER, Maverick missiles
  • Joint Stand-Off Weapon (JSOW)
  • Joint Direct Attack Munition (JDAM)
  • various general purpose bombs, mines and rockets

Gallery

llustrations by Haryo Panji https://www.deviantart.com/haryopanji

Two Hornets prepare for takeoff at exercise Anatolian Eagle, Turkey (USAF)
Armed EF-18, with laser guided GBU-10 Paveway II bombs and and AIM-9 Air to Air missiles (USAF)

Sources

 

Nakajima Ki-43 Hayabusa in Communist Chinese Service

PRC flag People’s Republic of China (1945-1952)
Fighter – 8+ Operated

An illustration depicting a Hayabusa in Communist service flying. (Encyclopedia of Chinese Aircraft: Volume 2)

Widely known as one of Japan’s most iconic aircraft of the Pacific War, the Nakajima Ki-43 Hayabusa’s service life was not limited to the Second World War. Shortly after the Japanese capitulation, Nationalist and Communist Chinese forces were able to capture stockpiles of firearms, tanks and planes left over by the fleeing Japanese forces. Among these were various models of the Nakajima Ki-43 Hayabusa. These were pressed into service with the Communist Chinese as an advanced combat trainer and fighter. One of the rather obscure chapters of the Hayabusa’s service life was that it was the first plane used by the Communist Chinese in aerial combat.

History

Developed in the late 1930s, the Nakajima Ki-43 Hayabusa (Type 1 Fighter) enjoyed a relatively successful service record in the Second Sino-Japanese War once introduced in 1941. The Japanese 59th and 64th Sentai (Squadrons) were the first two squadrons to receive the new Ki-43-I fighter. With barely any resistance by the Republic of China Air Force (ROCAF), the Ki-43-I helped reinforce Japanese aerial superiority over China, French Indochina, Malaya, and parts of India until the arrival of lend-lease Allied warplanes for China. Throughout the service of the Hayabusa, three major variants were issued to units: the Ki-43-I, Ki-43-II, and Ki-43-III. The Japanese also provided some of these variants to the Manchukuo Imperial Air Force in the Northeast region of China. With the end of the Second Sino-Japanese War, stockpiles of Japanese equipment was up for grabs between the Soviets, Nationalist Chinese, and the Communist Chinese. The Nationalist Chinese forces reoccupied Shanghai near the end of 1945 and captured warplanes formerly belonging to the Japanese. Among these were various models of the Hayabusa which were used to equip the 18th and 19th Squadrons of the ROCAF’s 6th Fighter Group. These Hayabusas were stationed at Shandong in preparation for the Chinese Civil War. Due to a lack of spare parts and adequate mechanics, the two squadrons were disbanded the following May.

The Communist Chinese forces were by no means idle during the immediate few postwar months. Countless guns were captured, with a considerable amount of tanks and planes as well. In October of 1945, the Communist Chinese forces captured their first five Hayabusas during the liberation of Shenyang during the Liaoshen Campaign from the Nationalists. These five captured Nationalist Hayabusas were Ki-43-II models that formerly belonged to the Japanese 4th Training Regiment. The exact model of the planes is unknown. (It is unknown if they are kō, otsu, hei, etc. variants). These five planes would be sent to the recently established Northeast Old Aviation School (东北老航校) after some refurbishing and repairs. In December of the same year, two of these planes were repaired and were planned to be ferried to the Northeast Old Aviation School. Two Japanese ferry pilots now loyal to the Communist Chinese took off from Fengjibao (奉集堡) to fly to Tonghua (通化), one of their destinations. The two Hayabusas and their pilots never made it to Tonghua however, and it is widely speculated that these Japanese pilots were unfamiliar with the geography and ended up getting lost. This is indeed a possibility but there are many other theories. It’s conceivable that the planes suffered from mechanical failure and crashed. Another possibility may be that the pilots were intercepted by ROCAF planes, but there is no proof of this.

Artwork Depicting a Ki-43 flying over Japanese trainers in the Northeast Aviation School. (Illustration by Chen Yingming / 陈应明)

The rest of the Hayabusas were eventually delivered to the Northeast Old Aviation School, where they were used as advanced trainers for fighter pilots. In April of 1948, men belonging to the Northeast Old Aviation school were able to capture an unspecified amount of Hayabusa fighters in the Chaoyang (朝阳镇) Town airport located in Jilin. This was followed by another unspecified batch of Hayabusas captured in Sunjia (孙家) Airport located near Harbin in the Heilongjiang province sometime in June of the same year. Four Hayabusas were recorded to have been repaired by the school from 1947 to 1948. Under the guidance of former Japanese and Manchukuo pilots, many of the Communist Chinese air cadets were soon able to graduate from flying in the two-seater Tachikawa Ki-55 trainer to flying solo in the Hayabusa.

In March of 1948, a number of experienced pilots and instructors were pulled from the school to form a “Combat Flying Wing” (战斗飞行大队). The 1st Squadron would use bombers and transport aircraft while 2nd Squadron would use fighters. Among these would be six Ki-43-II models. The intent of this formation was to combat Nationalist planes, but this wing never saw any combat action.

Considerations were made to use the Hayabusa in the Establishment of the People’s Republic of China parade on October 1st of 1949, but this did not happen. Despite what one may think, the Japanese planes were not withheld from the parade due to political and racial issues, but rather fear of them experiencing mechanical problems during the parade.

Communist Chinese service members standing in front of a captured Hayabusa. (Encyclopedia of Chinese Aircraft: Volume 2)

As such, these worn out Hayabusas were grounded. By November of 1949, there were only five examples of the Hayabusa that were still in use. These final five fighters were used by the 7th Aviation School as trainers and teaching aids. By 1952, all of the Hayabusas were finally retired from service. There are no surviving examples of the Communist Chinese Hayabusa, but there is one known photo of the Communist Hayabusa in service.

First Air-to Air Combat of the Communist Chinese Air Force

In the afternoon of October 15th 1947, four Nationalist Chinese P-51D Mustangs belonging to the Shenyang Beiling airfield took off under the leadership of Xu Jizhen (徐吉骧), the co-captain of the squadron. They were tasked with the mission of patrolling the airspace of Harbin (哈尔滨), Jiamusi (佳木斯) and the Sino-Soviet border. Upon crossing the mountains near Mishan (密山), the Mustangs squadron noticed a Tachikawa Ki-55 trainer with Communist Chinese markings belonging to the Northeast Old Aviation School preparing to land at the nearby Tangyuan (汤原) airport. This Ki-55 was piloted by Lu Liping (吕黎平) and an unnamed Japanese instructor. Xu Jizhen immediately dove for the trainer and began firing. The area immediately behind the instructor’s compartment was hit, which resulted in a fire. Watching the attack from the ground, Fang Hua (方华), a veteran Communist soldier, scrambled for a nearby parked Nakajima Ki-43-II Hayabusa and took off. Unfortunately for him, the Hayabusa was not loaded with ammunition so he was unable to engage the Mustangs. However, he was able to lead the Mustangs away from the airfield and evaded their shots until they ran out of ammo. This unfortunate skirmish was the first air-to-air combat experience the Communist Chinese had.

Debunking the Numbers Operated

According to many Western sources, the Communist Chinese Forces only operated five Hayabusas. This is however incorrect. The author believes the reason that these sources mention only five models captured was due to translation errors or simply by overlooking facts. The most likely cause of the misconception is likely due to two facts:

  1. By the end of the Liaoshen Campaign, the Communist Chinese forces had captured five models.
  2. By the time the PLAAF was officially established, there were five models still in service.

What these Western sources may have overlooked however, was the fact that two of the first five models captured crashed during a ferry flight in December of 1945. This leaves only three models operational.

However, a commonly overlooked fact is that the Northeast Old Aviation School was able to capture an unspecified amount of Hayabusas in the Chaoyang (朝阳镇) Town airport located in Jilin sometime in April of 1946. Another unspecified batch of Hayabusas were also captured in Sunjia (孙家) Airport located near Harbin in the Heilongjiang province in June. Due to the unspecified nature of the amount of Hayabusas captured in these two places, it only adds to the difficulty of determining how much Hayabusas were truly captured and operated. But on an inventory check done in April of 1948, a total of six Hayabusas were accounted for serving with the 2nd Squadron. According to this record, that should mean three or more Hayabusas were captured in those two airfields. That should make a total of eight or more Hayabusas when accounting for the two crashed ones. In conclusion, the author believes that a potential total of eight or more Hayabusas were captured, and operated by the Communist Chinese forces to some extent until the retirement of all models in 1952.

Gallery

Communist Chinese Ki-43-II in the colors of the Northeast Old Aviation School by Brendan Matsuyama

Sources

Gang, W., Ming, C. Y., & Wei, Z. (2012). 中国飞机全书 (Vol. 1). Beijing: 航空工业出版社., Gang, W., Ming, C. Y., & Wei, Z. (2009). 中国飞机全书 (Vol. 2). Beijing: 航空工业出版社., Allen, K. (n.d.). PEOPLE’S LIBERATION ARMY AIR FORCE ORGANIZATION., 网易军事. (2016, May 24). 老航校70周年:“鬼子飞行员”在中国当教官., Zhang, X. (2003). Red Wings over the Yalu: China, the Soviet Union, and the Air War in Korea. College Station: Texas A & M University Press., Side Profile Views by Brendan Matsuyama

North American P-51 Mustang in Communist Chinese Service

PRC flag People’s Republic of China (1948-1953)
Fighter – 39 Operated

The North American P-51 Mustang is considered one of the world’s most iconic warplanes from the Second World War, seeing action in nearly all theaters, as well as the Korean War and many other conflicts thereafter. However, one of the lesser known stories of the Mustang is its service with the Communist Chinese forces who would go on to form the People’s Republic of China shortly after. A total of 39 Mustangs were obtained from the Chinese Nationalist forces either by capture or defection. These Mustangs were used in various roles with the Communists, and nine of them even had the honor of flying over Beijing on October 1st 1949 for a parade to commemorate the establishment of the People’s Republic of China. Although never seeing combat, the Mustangs still had served with the Communist Chinese forces as one of their most advanced fighters until the arrival of Soviet aid.

A photo displaying the rather impressive cache of captured Nationalist planes now in Communist service. In this photo, there are around nineteen P-51 Mustangs visible. (Encyclopedia of Chinese Aircraft: Volume 2)

History

The Republic of China (i.e, Chinese Nationalists under Generalissimo Chiang Kai-shek) was a notable operator of the North American P-51 Mustang during the Second Sino-Japanese War (1937-1945). Since the United States entered the Second World War, plans were made to provide the Republic of China China with modern American warplanes to replace the worn and outdated planes that the Republic of China Air Force (ROCAF) were using. The Mustangs were initially flown by pilots of the Chinese-American Composite Wing (CACW) starting from November 1944. The models they operated were P-51B and P-51C, but later in February 1945, P-51D and P-51K variants were delivered and put to use against the Japanese along with the P-51B and P-51C. At the end of the Second World War, the ROCAF received 278 Mustangs from the USAAF, most of which were P-51D and P-51K models, but also with some F-6D and F-6K photo reconnaissance models. Soon after, the uneasy relationship between the Communist Party of China under the leadership of Mao Zedong and the Nationalist government under the leadership of Jiang Jieshi (Chiang Kai-shek) disintegrated. As such, the civil war between the two parties resumed after nearly nine years of truce. This time however, the Communist forces were more prepared to fight the Nationalist forces. As time went on, the Nationalist forces began losing their hold on mainland China and were forced to retreat to Formosa (Taiwan), but not before many of their soldiers, officers and generals defected, leaving a substantial amount of equipment behind.

The People’s Liberation Army obtained their first Mustang on September 23rd 1948 when Captain Yang Peiguang (杨培光) from the Nationalist 4th Fighter Wing based in Beiping (Beijing) defected with his P-51D to the Communist forces at Siping, Jilin Province. The bulk of the Mustangs which would be captured by the Communist forces were, however, from the Liaoshen Campaign which lasted from September 12th – November 2nd, 1948. With the Communist victory at the Battle of Jinzhou on October 15th, a considerable amount of Nationalist equipment was captured; among these were thirty one Mustangs in various states of repair at the Jinzhou Airfield. Though now with thirty four Mustangs in total, the People’s Liberation Army was not able to press any into service due to many factors; the most important two being the lack of able pilots and the varying states of disrepair that the Mustangs were in.

The city of Shenyang was finally captured by the People’s Liberation Army on October 30th 1948, and on the second day of the city’s capture on October 31st, the Northeast People’s Liberation Army Aviation School sent men to secure the Shenyang Beiling airport, factories, warehouses, personnel, and various other assets formerly belonging to the Nationalists. In November, the Shenyang Beiling airport was officially established as the People’s Liberation Army Air Force Repair Factory Number 5 (中国人民解放军空军第五修理厂). With the establishment of this repair factory, the first machines to be repaired were the Mustangs. The repairs took top priority and the first Mustang was ready for service on December 30th. Since then, thirty six Mustangs were repaired within a span of eighteen to twenty months lasting until 1950.

On December 10th 1948, the People’s Liberation Army was able to capture the Nationalist-held Beiping (Beijing) Nanyuan Airport as part of the Pingjin Campaign. Three Mustangs were found in relatively good condition, and a total of 128 Packard-built V-1650 Merlin engines were captured as well. This boosted the total amount of Mustangs in the People’s Liberation Army to thirty seven, and provided plenty of replacement engines for maintenance. After this, two more Mustangs would fall in the hands of the Communist forces.

On December 29th, Lieutenant Tan Hanzhou (谭汉洲) of the Nationalist 4th Fighter Group defected with his Mustang from Qingdao to Communist held Shenyang. The last Mustang to fall into the People’s Liberation Army’s hands occured on January 14th of 1949 when Lieutenant Yan Chengyin* (阎承荫) from the Nationalist 3rd Fighter Group’s 28th Squadron defected from his home base of Nanjing to Communist held Jinan.

Lieutenant Tan Hanzhou with his Mustang shortly after his defection. (blog.163.com)

 

Now with thirty nine Mustangs in total, the People’s Liberation Army began to put them to use. Starting from late January 1949, a large number of Mustangs were presented to the Northeast Old Aviation School’s (东北老航校) 2nd Squadron of the 1st Air Group with the purpose of training pilots. On August 15th 1949, the People’s Liberation Army formed their first flying squadron named at the Beiping Nanyuan airfield. The squadron consisted of two Fairchild PT-19 trainers, two de Havilland Mosquito fighter-bombers and six Mustangs. Shortly after the formation on September 5th, this squadron was assigned the task of defending Beiping’s airspace from Nationalist forces. At some point before October, eleven more Mustangs were assigned to this squadron. The squadron saw no combat.

* Mr. Yan later changed his name to Yan Lei (阎磊) after his defection.

Perhaps the most notable use of the Mustangs in Communist Chinese service was on October 1st 1949. By then, the bulk of the Nationalist forces were in discord and in the process of retreating to Formosa (Taiwan). With the Communist victory inevitable, Mao Zedong proclaimed the establishment of the People’s Republic of China. A Soviet-style military parade was held in newly-renamed Beijing’s (Beiping) Tiananmen Square which included sixteen thousand and four hundred soldiers, one hundred and fifty two tanks, two hundred and twenty two cars and seventeen planes were displayed to the public. Of these seventeen planes, nine were Mustangs. The Mustangs flew in groups of threes in a V formation and led the aerial convoy. Once over Tiananmen square, these Mustangs increased their speed and flew past the square and out of sight, they made a turn and reentered Tiananmen square for the back just in time to link up with the two Fairchild PT-19A trainers flying last. Because they re-entered the square so quickly, the spectators were led to believe these were nine different Mustangs, with a total of twenty six planes appearing over Tiananmen square instead of the actual seventeen. This was mentioned in a government made propaganda newsreel. Of these nine Mustangs, at least one was a P-51K model.

After the parade, the Mustangs were once again deployed in a defensive state awaiting possible Nationalist intrusions in Beijing. By November 1949, the People’s Liberation Army Air Force was officially established and a total of twenty two airworthy Mustangs were in service, with nine more awaiting repair. This meant that thirty one Mustangs still survived, with eight written off. It is unknown what precisely happened to these Mustangs but the author speculates that they could have been cannibalized for parts, destroyed in training flights, disassembled to study the structure, or simply scrapped.

One of the only known photos of the two seat P-51D trainer. The canopy seemed to have been removed to make space. (js.voc.com.cn)

On July 26th 1950, the Beijing defense squadron was renamed the “Air Force 1st Independent Fighter Brigade” (空军独立第一歼击机大队). By then, the Soviet Union was supplying the Chinese with more modern equipment and by mid-August, the brigade’s Mustangs were replaced by Soviet Lavochkin La-9 fighters. Once replaced, all Mustangs scattered across the country were collected and given to Aviation School No.7 to train new pilots. With this, Aviation School No.7 modified thirteen Mustangs to be two-seat trainers. This was done perhaps to speed up the training process, and to prevent accidents by rookie pilots without guidance. There is currently one known photo of the two seat trainer.

By September 1953, most Mustangs were retired from training service due to cracks in the landing gear. However, eight of them remained in service with Aviation School No.7 to train Ilyushin IL-10 pilots how to taxi their planes. A few more examples were used as teaching tools to train pilots on identifying plane parts. It is unknown when precisely the Mustang was retired once and for all.

An illustration showing three P-51 Mustangs flying over Beijing on October 1st of 1949. (thepaper.cn)

Surviving PLAAF Mustangs

To this day, only two Mustangs formerly in PLAAF service survive in museums. The first one is a P-51K-10-NT “Red 3032” with the serial number 44-12458. This P-51K is on public display at the Chinese Aviation Museum (中国航空博物馆), sometimes also known as the Datangshan Aviation Museum located in Datangshan, Beijing. It remains in relatively pristine condition as it was in an indoors display and sheltered from the elements. Bomb hardpoints are visible under each of the wings which signifies that this Mustang perhaps once served as a fighter/bomber for the ROCAF.

P-51K-10-NT “Red 3032” on display. It is in rather good condition due to being stored indoors. (George Trussell)

The other surviving PLAAF Mustang is a P-51D-25-NA “Red 3” with the serial number 44-73920. This Mustang can be seen at the China People’s Revolution Military Museum (中国人民革命军事博物馆) in the Haidian District of Beijing. What is notable about this specific plane is that it was one of the nine Mustangs that flew over Beijing on October 1st of 1949 for the Founding of the People’s Republic of China parade. This Mustang was displayed outdoors exposed to nature for the majority of its life until the museum went under renovation when it was finally moved indoors. The Mustang has gone through minimal restoration, as it looks considerably cleaner than when it was displayed outdoors. This Mustang also had bomb hardpoints under its wings.

The P-51D-25-NA “Red 3” in its new indoor display after the museum renovation. It looks considerably cleaner than when it was displayed outdoors. (Wikimedia Commons)
The P-51D-25-NA “Red 3” in its old outdoors display, dust and slight rust can be seen on the machine. (Wikimedia Commons)

Variants Operated

A total of 39 North American P-51D Mustangs were operated by the Communist Chinese forces, and later the People’s Republic of China. Within these Mustangs, an unknown amount were P-51D and P-51K models.

  • P-51D – An unspecified amount of P-51D Mustangs of various block numbers were operated by the People’s Republic of China. A P-51D-25-NA is confirmed to have been in service as it flew over Beijing as part of the establishment of the People’s Republic of China parade and is now in the China People’s Revolution Military Museum (中国人民革命军事博物馆) in the Beijing.
  • P-51K – An unspecified amount of P-51K Mustangs of various block numbers were operated by the People’s Republic of China. A P-51K-10-NT is confirmed to have been in service as it is in the Chinese Aviation Museum (中国航空博物馆) in Beijing.
  • P-51 Trainer – A total of thirteen Mustangs were modified by Aviation School No.7 in 1951 to be two-seat trainers. The instructor sat in the rear while the student pilot was at the front. No surviving examples are preserved to this day.

Note

The author would like to extend his thanks to Mr. Hemmatyar for restoring some of the photos used in this article.

Gallery

P-51K-10-NT “Red 3032” displayed in the Chinese Aviation Museum in Datangshan, Beijing. Illustration by Brendan Matsuyama
P-51D-25-NA “Red 3” displayed in the China People’s Revolution Military Museum in the Haidian District of Beijing. Illustration by Brendan Matsuyama
A PLAAF P-51D/K with a blue rudder. The unit and serial number is unknown. Illustration by Brendan Matsuyama
A rare photograph of a mini P-51 Mustang model with PLAAF markings dated some time in the early 1950s. Two little boys accompany the cutout. This shows how impactful the Mustang was to the initial years of the People’s Republic of China. (eBay)
22 year old Lin Hu (林虎) with his P-51K before taking off to partake in the parade. (gogonews.cc)
A still frame showing three P-51 Mustangs flying over Beijing. (Establishment of the People’s Republic of China Parade)
A line of P-51 Mustangs awaiting inspection with their respective pilots standing at ease. (sohu.com)
A PLAAF Mustang taking off. Note the rocket rails. (Encyclopedia of Chinese Aircraft: Volume 2)
Mechanics and ground crew doing engine work on a Mustang. (Encyclopedia of Chinese Aircraft: Volume 2)
Four Mustangs line up on the Beijing Nanyuan Airfield awaiting to take off for the participation in the 1949 parade. Two Curtiss C-46 Commandos can also be seen in the background. (windsor8.com)

Sources

Gang, W., Ming, C. Y., & Wei, Z. (2009). 中国飞机全书 (Vol. 2). Beijing: 航空工业出版社., 八一战鹰大全(一)—— P-51“野马”战斗机. (n.d.). , Armstrong. (n.d.). 天马行空: 纪念 P-51 野马战斗机升空六十年., 肖邦振, & 李冰梅. (2010). 新中国成立前后 国民党空军飞行人员驾机起义探析. 军事史资料., Allen, K. (n.d.). PEOPLE’S LIBERATION ARMY AIR FORCE ORGANIZATION., (2016, December 19).开国大典——1949国庆大阅兵, Side Profile Views by Brendan Matsuyama

Saab J 21R - 21463 w/ Gun Pod Side Profile View

Saab 21 / 21R

sweden flag Sweden (1945)
Fighter / Attack Plane – 298 Built

The Saab J 21 is a peculiar airplane, not only because of its advanced features. This fighter in particular is one of the only two airplanes that were initially powered with a piston-propelled engine, then later modified to incorporate a jet engine using the same airframe and implementing very few modifications. This airplane is also the product of Swedish defence concerns and resourcefulness, as Sweden wanted to keep its neutrality and territorial integrity during WWII, electing to develop a domestic fighter program as access to foreign advanced technology was restricted.

Saab J 21A-3 in a Hangar
Saab J 21A-3

A single-seat, single-engine airplane that later became one of the first-generation jet fighters. Its design is a twin-boom tail pusher configuration. It had two longitudinal booms, attached to the main wing but extending backwards from the middle section of each wing, with the main body placed in the middle. Similar to the Lockheed P-38. This design also implements a rear mounted piston engine, otherwise known as a pusher configuration, which made engine modifications easy.

The piston-propelled version, the J 21 – had the engine, a licensed Daimler-Benz DB 605B, simply fitted at the rear of the main body, behind the cockpit and between the longitudinal booms. The jet version – J 21R – was fitted with air in-takes at both sides of the fuselage, having the engine (a De Havilland Goblin 2 and later a Swedish-licensed version, a Flygmotor RM1) located on the same area as the piston-propelled version and elongating the main body. The fuselage section harbouring the engine was also widened. Another modification was that the elevator was placed at the upper area of the double tail plane. The wing in both configurations was a low-wing, being straight until it met the longitudinal booms, changing into a slightly swept wing from the longitudinal boom to the wing tip. It also received wingtip fuel tanks.

The J 21 could develop speeds up to 645 km/h (400,78 mph), while the jet propelled version could develop speeds up to 800 km/h (497 mph), being a fast aircraft in both configurations. Its firepower (J 21) was equally powerful, as it was armed with a 20 mm cannon, either a Bofors or a Hispano-Suiza HS.404, and 2X 13,2mm Bofors machineguns at the nose, with 2X 13,2mm Bofors machineguns in the wings. The J 21R received an even much more considerable firepower, as it featured a 20mm Bofors cannon, 4X 13.2mm M/39A heavy machine guns, a centreline pod with 8X 13.2mm M/39 machineguns, and wing racks for 10X 100mm, 5X 180mm, or 10X 80mm anti-armour rockets.

Saab J 21 Prototype
Prototype in Service

The J 21 was initially developed with the aim of providing Sweden with good air assets to defend its air space and neutrality, and also with the aim of replacing many of the existing airplanes development. The development began in 1939, under the lead of Frid Wänström, having as basis a Bristol Taurus as an engine, yet it fell into a momentary freeze until 1941, when it was resumed. This freeze was due to Saab’s concentration in the Saab B 17 and B 18 bombers. As the configuration resulted problematic for the pilot’s safety when bailing out, many proposed solutions came, such as blowing the propeller, blowing the entire engine or using a “bomb crutch” to throw the pilot away from the airframe. The solution came with the development and implementation of a Bofors ejection seat, which was tested first on ground and in-flight on a SAAB B 17. The nose landing gear wheel was tested on a steel platform attaching the three undercarriage components, with the structure being towed by a truck during the test programme. In 1943 the first flight of the prototype took place, with units entering in service with the Flygvapnet in 1945. Three prototypes were built during the development process. In 1947 the J 21 evolved into de J 21R when it received the De Havilland Goblin jet engine, but as the J 29 Tunnan was introduced, it replaced the J 21 as the main fighter, performing the J 21 instead ground attack missions, thus designated A 21R.

The J 21 was in service with the Flygvapnet from 1945 until 1954, with 298 fighters built from 1945 to 1949. The J 21R was in service with the Flygvapnet from 1950 until 1956, with 60 units built from 1950 to 1952. Three J 21 are preserved as static displays in museums.

Design

Saab 21 R
The jet powered Saab 21 R in flight

The basic design of the J 21/J 21R was a twin-boom tail pusher propeller, making it one of the most radical operational designs of those times. This scheme proved to be beneficial for two important aspects. First, it benefited both pilot view forward and allowed the armament to be concentrated on the nose, meaning that such combination provided a good firing scope and sight, let alone a good firepower and making maintenance services rather easy. Second, it made possible for the aircraft to be updated thus being able to install a jet engine using the same airframe of the piston-propeller engine version, which was basically the basic airframe.

The only drawback of this layout – mainly with the J 21 piston-propelled engine version – was the risk for the pilot to hit the blades when bailing out, as the engine was placed right behind the cockpit. The solution came with one of the first ejection seats in the world, developed by Saab in 1943, being tested on the ground and on-flight and being a SAAB B 17 the testing platform. Another drawback was that, similar as the earlier versions of the Mustang P 51, the rearward view was rather poor, which could be problematic in a dog-fight. The J 21 featured a characteristic wing, as it was roughly strait from the main fuselage to the tail twin-booms, then being slightly swept back from the tail booms to the wingtips.

The wing was purposed with acquiring laminar flow as far as possible. In regards to the aerodynamics, it was required the airframe to reduce minimum drag and engine cooling drag, so the oil and liquid coolers, along with the duct system for the engine, inside the airfoil contour between the fuselage and the tail booms. Considering the tail boom design, the horizontal elevator was placed between the tail sections, connecting them. The landing gear, meanwhile, was of tricycle configuration and long, which made the J 21 to be a tall aircraft so to keep the propeller away from the ground. The rear gear retracted into the tail booms behind the rear wing spar, but this forced the fuel tank to be placed in the wing centre section. The frontal wheel was located at the nose.

The engine was a Daimler-Benz DB 605B inverted V12 of 1475 hp, which gave the airplane speeds of maximum 645 km/h (400,78 mph), but as the engines were received in poor conditions, improvements and overhauling were required. As a result of the power provided by this engine and the aerodynamic characteristics, the J 21 was deemed good, as it had excellent handling, benign stall characteristics and tight turning circle. The armament also gave this fighter good firing power, with the Swedish pilots being able to compare it with the Mustang P 51D (Sweden received a good number of them) and considering they were a good match for it. But the main drawbacks were that at medium and high altitudes performance tended to decrease, the rearward view was poor, and the controls were heavy to operate, increasing tiring during combat.

The armament of the J 21 consisted of a 20 mm cannon, either a Bofors or a Hispano-Suiza HS.404, and 2X 13,2mm Bofors machineguns at the nose, with 2X 13,2mm Bofors machineguns in the wings. The J 21A-3 was able of carrying unguided rockets (2X 180mm or 8X 80/145mm) and bombs (600kg, 500kg, 250kg or 4X 50Kg).

Saab 21 Cockpit

After World War II, the jet engine technology was becoming the mainstream propulsion system, and the Flygvapnet wanted to catch up and incorporate such technology into its assets. As the development of a new jet propelled fighter would take some time, the J 21 was chosen to be the platform for using an airframe in use with the new technologies back then. As a result, the J 21R was developed and introduced, with the first prototype taking flight in 1947 and then entering service in 1950. This ‘new’ fighter required some structural changes so to cope with the new power plant, like up to 50% of its airframe. First, the main body was slightly prolonged ant widened, so to allow the De Havilland Goblin 2/Flygmotor RM1 engine (that allowed speeds of 800 km/h) and the air intakes, located at each side of the fuselage. In addition, the stabilizer was moved upwards top to the fin, so to allow the engine flow, requiring the tails to be redesigned. The wing leading edge was mover forward and made sharper. Airbrakes were introduced, one upward and other downward flaps placed on the outer wing’s trailing edge. Given the increased speed, the ejection seats were properly modified so to enable ejections at subsonic speeds. And as the propeller was removed, the landing gear was shortened in turn, reducing the height of the airplane. Fuel tanks were fitted in the middle wing and the wingtips, which increased the fuel volume.

The J 21R received an enhanced firing power, as the standard 20mm cannon/4X 13,2mm M/39A heavy machineguns set was added with a centreline external pod carrying 8 additional 13,2mm M/39 heavy machineguns. In addition, the J 21R was fitted with wing racks allowing the airplane to carry 10X 100mm or 5X 180 Bofors rockets, or 10X 80mm anti-armour rockets.

Materializing ‘Armed Neutrality’

The J 21 is, like the J 29 Tunnan, the product of Sweden’s concerns about its own security during WWII, especially in the light of Germany’s invasions of Norway and Denmark in 1940, which were neutral nations by the time. As Sweden considered that its existing air assets wouldn’t be able to successfully contribute to the defence, given their obsolete condition, it considered that new aircraft were necessary. As with the J 29, Sweden faced some problems when trying to acquire some technology due to the restrictions imposed by the conflict, although by sheer luck it was able to receive the Daimler-Benz DB 605B engine, as Germany was trying to hamper the delivery. These circumstances decided the Swedish government to undertake a local rearmament programme and implement a policy of ‘armed neutrality’ to secure the nation’s neutrality. The focus was placed on the development and fabrication of advanced aircraft. As the same concerns prevailed after World War II and into the very earlier days of the Cold War, it was deemed that the resulting technologies from the War needed to be exploited and incorporated, having in mind Sweden to catch up with the newly developed technologies, especially in regards of propulsion. The Saab J 21 became the platform for the Flygvapnet to make the transition from piston-propeller engine to jet engine, while at the same time providing the country with a locally built jet engine fighter, while newer and more advanced aircraft were put into service.

A feat of Swedish Nytänkande

The fact that the J 21 was used as a basis for an almost new jet powered engine fighter is a product of Sweden’s innovative thinking and also of its capacities – out of need, in part – of working with existing resources at the point of maximizing them. While the J 29 Tunnan has the honour of being the first jet fighter exclusively built for that purpose, it is the J 21 the very first jet engine fighter the Flygvapnet operated with, being amongst the very few designs, if not the only one, in being successfully modified as it received two different types of power plants. And while the J 29 Tunnan displaced the J 21 as a fighter, it was able to operate as a good ground attack aircraft until 1956, making this airplane born in the World War II, an early Cold Warrior and the basis for Sweden’s jet fighter industry and operationalization. It simply meant a huge step for the Swedish Air Industry, let alone its Air Force.

Variants of the J 21

  • J 21A-1 – Fighter version and the very first production series of the J 21. It featured the armament configuration of the 20mm Hispano-Suiza HS.404 cannon and the 13,2mm Bofors/Colt heavy machine guns. In service until 1949. 54 delivered.
  • J 21A-2 – Fighter version and the second and third production series, featuring enhanced avionics and incorporating a Bofors 20mm gun, with the other armament being the same. It was also equipped with further direction horizon instruments. In service until 1953-1954. 124 delivered.
  • J/A 21A-3 – Fighter/fighter-bomber version based from modified J 21A-2 airframes. It was equipped with a SAAB BT9 bomb aiming sight and two RATO (Rocket-Assisted Take-off) devices, armed with unguided rockets (2X 180mm or 8X 80/145mm) and bombs (600kg, 500kg, 250kg or 4X 50Kg). 119 delivered.
  • J 21B – A planned version to be armed with 3X 20mm guns at the nose, a radar in the starboard room, improved aerodynamics and better engines (A Daimler-Benz DB 605E/Rolls-Royce Griffon). It was also intended to feature a pressurized cockpit and a bubble canopy. Cancelled

Variants of the J 21R

  • J 21RA / A 21RA – First production series powered by a De Havilland Goblin engine. Later reconfigured into ground attack airplanes (A 21RA). Fitted with wingtip fuel tanks to increase the operational range and endurance. Operated until 1953. 30 delivered.
  • J 21RB / A 21RB – Second production series powered by a Swedish-license made De Havilland Goblin (RM1). It was also reconfigured later into a ground attack airplane (A 21RB), with the nose heavy machineguns changed to a 12.7mm caliber. Fitted with wingtip fuel tanks to increase the operational range and endurance. Operated until 1956. 30 delivered.

Operators

  • Sweden -The Flygvapnet operated the J21 a time roughly after the end of World War II. It operated with 54 fighters of the J 21A-1 version, 124 The J 21 fighters of the J 21A-2 version, and 119 fighter/bombers of the J 21A-3 version. The J 21 was in service between 1945 and 1954, with X units: F9 Goteborg, F15 Soderhamn, F12 Kalmar, F6 Karlsborg and F7 Såtenäs. In addition, the Flygvapnet operated with 30 fighters of the J 21RA version, and 30 fighters of the J 21RB version. Both were later on modified into ground attack airplanes, being denominated as a result A 21RA and A 21RB. The J 21R was in service from 1950 to 1956, with three units: The F10 Ängelholm, the F7 Såtenäs, and the F17 Kallinge. Three J 21 remain today as museum exhibitions in Sweden.

 

 

21 Specifications

Wingspan  11,6 m / 38 ft 0 in
Length  10,44 m / 34 ft 3,02 in
Height  3,97 m / 13 ft 0 in
Wing Area  22.2 m² / 238,87 ft²
Engine  1 Daimler-Benz (SFA) DB 605B inverted V12 of 1475 hp
Maximum Take-Off Weight  4431 Kg / 9,768.6 lb
Empty Weight  3250 kg / 7,165 lb
Loaded Weight  4150 kg / 9,149 lb
Maximum Speed  645 km/h / 400,78 mph
Range  750 Km / 466 miles
Maximum Service Ceiling  11000 m /36,090 ft
Climb Rate  15 m/s (2,950 ft/min)
Crew 1 (pilot)
Armament
  • 1 X 20 mm Hispano-Suiza HS.404 or a Bofors cannon located at the nose.
  • 2 X 13,2 mm Bofors (Colt) heavy machine guns located at the nose.
  • 2 X 13,2 mm Bofors (Colt) heavy machine guns located at the wings.
  • The J 21A-3 fighter/bomber version could carry also 2 X 180mm, or 8X 80/145mm rockets; and 600kg, 500kg, 250kg or 4X 50Kg bombs

 

21R Specifications

Wingspan  11,37 m / 37 ft 4 in
Length  10,45 m / 34 ft 3 in
Height  2,90 m / 9 ft 8 in
Wing Area  22.3 m² / 260,0 ft²
Engine  1 De Havilland Goblin 2 Turbojet (Svenska Flygmotor RM2B Turbojet)
Maximum Take-Off Weight  5000 Kg / 1,0230 lb
Empty Weight  3200 kg / 7,055 lb
Loaded Weight  N/A
Maximum Speed  800 km/h / 497 mph
Range  720 Km / 450 miles
Maximum Service Ceiling  12000 m /39,400 ft
Climb Rate  17.1 m/s (3,366.1 ft/min)
Crew  1 (pilot)
Armament
  • 1 X 20 mm Bofors cannon located at the nose.
  • 4 X 13,2 mm M/39 heavy machine guns located at the nose, later changed to 12.7mm caliber.
  • 8 X 13,2 mm M/39 heavy machine guns on a centreline pod.
  • Wing racks allowing 10X 100mm, 5X 180mm, or 10X 80mm anti-armour rockets.

Gallery

Saab J 21A-1 - Prototype
Saab J 21A-1 – Prototype
Saab A 21A-3 - 21364
Saab A 21A-3 – 21364
J 21R - Prototype
Saab J 21R – Prototype
Saab A 21R Trainer - 21455 Side Profile View
Saab A 21R Trainer – 21455
Saab J 21R - 21463 w/ Gun Pod Side Profile View
Saab J 21R – 21463 w/ Gun Pod

Saab A 21A-3 Converted J21R Converted J21R 2

Saab 21 R
The jet powered Saab 21 R in flight
Saab J 21 in Service
Saab J 21 in Service
Saab J 21 Prototype
Prototype in Service
Saab J 21A-3 in a Hangar
Saab J 21A-3
Saab 21 Cockpit
Saab 21 Cockpit
Saab 21R - Flightline
Saab 21R – Flightline

Sources

Chant, C. (2001). Aviones de la Segunda Guerra Mundial [Aircraft of World War II, Fabian Remo Tamayo & Fernando Tamayo, trans.]. Madrid, Spain: Editorial LIBSASharpe, M. (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSAGoebel, G. (2014). The SAAB J 21 & J 21R. Air Vectors.Frederiksson, U. (2000). Saab J 21/A 21/A 21R. x-plane.org,  Aviastar.org (n.d.). Aircraft Profile #138. Saab J.21A & R.Aviastar.org (n.d.). Saab 21R. 1947.NGO valka.cz. (2015). Saab J 21R.Saab. (n.d.). 1940’s.SAAB 21. (2016, June 23). In Wikipedia, The Free Encyclopedia.Saab 21R. (2016, June 8). In Wikipedia, The Free Encyclopedia., Images: Converted J 21R, Converted J 21R 2Saab A 21A-3 – Alan Wilson / CC BY-SA 2.0, Side Profile Views by Ed Jackson – Artbyedo.com