Tag Archives: Fighter

Official classification tag

Avia S-199 in Israeli Service

Israeli flag Israel (1948-1949)
Fighter – 25 Purchased 

The Avia S-199 was a post Second World War fighter produced in Czechoslovakia. A total of 532 airplanes of different versions were built and used by the Czechoslovenské letectvo (Czechoslovak Air Force) from 1947 to 1955, and 25 planes were used by the Israeli Air Force (IAF) of the newly formed State of Israel between 1948 and 1949.

An Avia S-199 of the Israeli Air Force. Source: m.calcalist.co.il

After the Second World War, the fate of many European Jewish survivors of the Holocaust was bleak. Some returned to their homes across war-ravaged Europe, starting their lives from scratch. Others, who had lost entire families in the concentration camps or had lost everything for the war, decided to move to Palestine to establish the State of Israel.

Many of these, however, were blocked at the border of Palestine by the British, who were worried that the thousands of Jewish migrants could overrun the region. Others still ended up in British camps for displaced persons in Cyprus.

Some World War II veterans of different nationalities, Jewish or not, decided to take matters into their own hands. One such person was Lou Lenart ,who had lost 14 relatives in concentration camps, who wanted to retaliate and help displaced persons by joining the Haganah, an Israeli military organization, and becoming a so-called ‘Mahal’ ,Mitnadvei Hutz LaAretz’ or “volunteer from abroad”. During the Independence War, the Mahal numbered about 3,500 persons from 58 different countries. At the start of the hostilities, of the 18 fighter pilots of the Haganah, 15 were Mahal.

Czechoslovakian Necessity

After World War Two, Czechoslovakia had a shaky democracy dominated by communists, many of whom were of Jewish descent and pro-Zionist, despite discrimination and oppresion of Jewish people by the Soviets.

Czechoslovakia had found itself in possession of a large quantity of German weapons, many of which had been produced under occupation within its borders. Some types remained in production after the war ended with raw materials left in warehouses and factories or surrendered by the Anglo-Americans.
The Czechoslovakian arms stockpile would continue to grow as its soldiers returned, often with foreign supplied weapons.

Czechoslovakia was looking for a way to restore its economy, which was at an all-time low after the German occupation and the destruction caused by the war. Selling weapons was an excellent way to do this.

Mutual Aid

The Czech delegation to the UN voted for a Jewish state only a few months before a communist coup turned Czechoslovakia into a Soviet satellite state. Czechoslovakia then became one of the most important partners in helping arm the Jewish people.

Surplus German and Czech arms from World War II were purchased by the Czechoslovakian government and shipped to Palestine. Not only did they provide light weapons, but the country became a center for all forms of material aid.

While light weapons were important, the Israelis needed tanks and an air force to counter neighbouring Arab armies. All of this aid incurred a huge financial burden for the Czechs. Joseph Stalin allowed support to continue after the Czechoslovak communist coup, not so much as to support the Israelis, but to undermine the British Empire. The first contract was signed on January 14th, 1948 by Jan Masaryk, the Czech foreign minister.

The contract included 200 MG 34 machine guns, 4,500 K98 rifles, and 50,400,000 7.92 x 57 mm Mauser rounds for these rifles and machine guns.

Syria also purchased a quantity of weapons from Czechoslovakia for the Arab Liberation Army, but the shipment arrived in Israel due to the intervention of the Haganah.

After the communist coup in Czechoslovakia in February 1948, military support for the nascent state of Israel increased temporarily. However, Stalin’s brief policy of support for the state of Israel soon faded, and in the wake of the Tito-Stalin split, all Communist parties had to put their foreign policy on par with that of the Kremlin in order to prove their loyalty. In this context, the Czechoslovakian communists put an end to arms sales to Israel.

The first shipment of 200 rifles, 40 MG 34 machine guns and rounds landed secretly on the night of March 31st-April 1st 1948 at an improvised airport in Beit Daras on an American Douglas C-54 Skymaster cargo plane. The second larger shipment, covered with onions and potatoes, consisting of 450 rifles, 200 machine guns and rounds, arrived at the port of Tel Aviv aboard the merchant ship Nora on April 2nd, while a third shipment of ten thousand rifles, 1,415 machine guns and rounds reached Israel by sea on April 28th. Finally, the Haganah command had a stockpile of thousands of small arms on hand, but, as mentioned, other equipment was also needed to create an air force and armored units.

The Aircraft

In the final phase of the Second World War, it was decided that the factory of the Avia company located in Prague-Cakovice would assemble the Messerschmitt Bf109G-6, Bf109G-14 fighters and the Bf109G-12 two-seater trainer aircraft for the needs of the Luftwaffe. This production was based around components supplied by German factories.

After the war, a large stock of remaining spare parts was left and it was studied, along with the original blueprints, by the new authorities in order to begin local production of the aircraft. With the remaining spare parts, some aircraft were assembled, but there was a shortage of engines.

On 31st July 1945, at about 15:30, the ammunition depot at Krásný Březno exploded, killing 27 people and injuring several dozen more. The explosion and subsequent fire destroyed the depot, including the chemical plant buildings. The explosion was interpreted as being a result of sabotage carried out by the local Germans. In retaliation, the locals carried out the Ústí Massacre, killing about 80-100 ethnic Germans.

In addition to munitions, the warehouses that exploded also contained almost all Daimler-Benz DB 605 engines available in Czechoslovakia.

As a result, the Czechoslovak Air Force had to equip the aircraft with the Junkers Jumo 211 F-12 engine ,produced in Czechoslovakia as M-211F, of which there were several left after the war.

The Jumo 211 was not very suitable for installation on fighters, as it was originally intended only for bombers, such as the Heinkel He 111, Focke-Wulf Ta 154 and Junkers Ju 87. It was less powerful and heavier than the Daimler-Benz DB 605 engine, at 720 kg and 1,350 hp versus the DB 605AM’s 700 kg and 1,775 hp (on the Bf109G-14 variant).

Engine maintenance on a Czechoslovakian Avia S-199. The enormous propeller is clearly visible. Source: valka.cz

In addition, the Junkers engines did not provide for the installation of synchronizers, so it was necessary for the Avia engineers to modify them to synchronize the turn of the propellers with the aircraft’s guns, and create a new propeller. The first Avia S-199 fighter ,C-210, took off on April 25th, 1947 from Prague-Kakovice airport, flown by test pilot Petr Široký. After solving some mechanical problems, the series production of the machine began almost immediately.

The Avia fighter differed from the original Messerschmitt Bf.109 only in terms of propulsion and armament. Because of the new engine, the engine cowling, propeller, and spinner were modified.

The armament of the S-199 consisted of two 13 mm Mauser MG 131 machine guns with 600 rounds above the engine, and either two 7.92 mm machine guns in the wings or two 20 mm MG 151 cannons mounted under the wings in gunpods.

Because of the new engine, the Czechoslovakian aircraft was inferior to the German Bf 109 G-10. The maximum speed of the S-199 was 590 km/h compared to 690 km/h of the Messerschmitt. The maximum altitude was 9,000 m compared to 11,000 m. The worst problem was the change in the center of gravity of the aircraft, which greatly complicated takeoff and landing.

An Avia S-199 of the Czechoslovenské letectvo. Source: smartage.pl

The S-199 had another serious defect: the machine guns placed under the engine hood were not always synchronized with the propeller, which led to serious accidents.

Several plants were set up for the production and assembly of the Avia S-199, the Prague Automobile Plant, Plant No. 2 of Avia, and the plants of the Aero company where they assembled the aircraft. Rudders and ailerons were supplied by Letecké Závody in Letňany. The Letov company in Malešice produced the M-211 engines and the propellers and spinners were manufactured in Jinonice.

A total of 450 S-199 single-seaters and 82 CS-199 two-seaters were produced for training purposes, of which 24 were later converted from single-seater fighters.

First Aircrafts

The Czechoslovaks helped create the Israeli Air Force by selling the nascent Israeli state 25 Avia S-199 fighter planes in 1948.

The agreed cost was 180,000 USD (~2 million USD adjusted for inflation) per aircraft, including armament, ammunition, spare parts, pilot training and support equipment. This was a disproportionate price for what was, by now, a mediocre aircraft. At that time, an American surplus P-51D Mustang was sold second hand for only 4,000 USD (~44,000 USD adjusted for inflation).

Unfortunately, due to the embargoes imposed on Israel, it would have taken weeks or months to find other offers, time that Israel did not have given the conflict with the neighboring Arab states. A few weeks could make the difference between destruction and survival for the new state.

David Ben Gurion, the Prime Minister of Israel, did not hesitate and gave the order to buy the planes and to send the pilots to training as quickly as possible. A contract was signed for 25 Avia S-199 at a total cost of 4.5 million USD (~50 million adjusted for inflation).

Pilot Training

The first 10 Israeli pilots departed from Sde Dov on 6th May 1948 and arrived at the Czechoslovakian air base in České Budějovice on May 11th, 1948. Of the 10 pilots, 2 were US volunteers and one was South African, these last three were veteran pilots of the Second World War, having served with the US Army Air Force and Royal South African Air Force respectively. The other seven were British or Palestinian Jews, some of which were World War II veterans, while others had only completed Royal Air Force training in Rhodesia in early 1945, failing to actively participate in World War II.

The first to fly the Czechoslovakian fighter was former Marine Corps pilot Lou Lenart. As soon as he started to gain speed, due to the larger propeller, the aircraft started to yaw to the left. He was aware of this problem but he was likely unable to do anything about it.

When he returned to the runway, he managed to take off after several attempts, having to fight against the plane to avoid going off the runway. After a few minutes, he returned to the airfield and the pilot again had to fight to keep the plane straight during landing.

When all 10 pilots made their first flights, they gave their impressions of the plane. None were positive. The landing gear was narrow and made the S-199 difficult to keep straight during take off due to the huge torque of the propeller. The plane was unwieldy and very hard to handle, the cockpit was cramped and the canopy was hard to open.

The Jewish volunteers discovered that the Czech pilots called the S-199 ‘Mezec’, which means “mule,” and they quickly understood why.

The Jewish volunteers were accustomed to spacious, agile and fast Allied fighters, such as the Spitfire, P-51D Mustang and P-47 Thunderbolt. The shock of flying an aircraft with completely different characteristics upset them, but the Avia was all they had and they had to make do.

IAF foreign pilots on an Avia S-199 in Israel. Some of them are US, British, Canadian and South African, Jewish and non-Jewish. Source: asisbiz.com

After only 4 days from the beginning of the training, on May 15th, the pilots of the Sherut Avir, Air Service in Hebrew, the ancestor of the Israeli Air Force, were recalled to Israel.

During training in Czechoslovakia, only five of the volunteers, those with World War II experience, had qualified to fly the Avia and none had flown it more than twice. The first S-199s were disassembled and loaded, along with other equipment, onto a Douglas C-54 Skymaster named Black-5. This plane landed on May 20th, 1948 at Be’er Tuvia, 40 km south of Tel Aviv, with the first disassembled Avia S-199, some bombs, Avia’s machine-gun rounds for the aircraft’s guns, artillery spare parts, and five fighter pilots who had “completed” their training in Czechoslovakia, American Lou Lanart, American Milton Rubenfeld (former RAF and USAF), South African Eddie Cohen (former RAF), Israeli Ezer Weizmann (former RAF) and Israeli Mordecai ‘Modi’ Alon (former RAF).

On the night between 23rd and 24th May 1948, one of the Douglas C-54 Skymasters carrying the fifth Avia for the fifth pilot crashed during landing due to poor visibility. The navigator, Moses Rosenbaum, died crushed by the fuselage of the Avia S-199 they were carrying, while the other three crew members were only injured.

Some sources report that the number of Avia S-199s that arrived in Israel was only 24. This could be a simple error or it could mean that Czechoslovakia delivered all the Avia but that the one that crashed on the night of May 23rd, perhaps because of the damage suffered, could not fly anymore and was used for spare parts.

Operational Use

The Israeli Air Force gave the Czechoslovakian fighter the nickname “סכין”, meaning “knife” in Hebrew. After being reassembled, the aircraft received the Israeli air force’s coat of arms and a number ranging from 100 to 125 for identification.

Aviator Rudy Augarten on board a Willys Jeep. In the background is the Avia S-199 D. 123 (123 .ד‎). Source: asisbiz.com

After the outbreak of hostilities, the war was going badly for the State of Israel, which had been invaded by anArab force composed of Egyptians, Syrians and Iraqis with the support of other nations such as Jordan and Lebanon. The Egyptian Army was advancing north along the Mediterranean coast, arriving less than 30 km from Tel Aviv.

Despite the fact that the Israeli engineers of the Givati Brigade had blown up the bridge over the Lachish river, the Egyptians continued to amass along the south bank of the river. It would take them a few hours to repair the bridge and they could arrive in Tel Aviv during the next day.

That evening, the last phases of the assembly of the first four aircraft had been completed in a hangar. An attack was being organized for the following days against the Royal Egyptian Air Force airport in El Arish, in order to take the REAF by surprise and announce in a very daring way the existence of the IAF.

Due to the proximity of the Egyptians to Tel Aviv, the Israeli pilots were ordered to take off with the only four S-199s that had arrived from Czechoslovakia. The planes had not yet been tested in flight, not all four had radios and those that had them did not work. The guns had never been tested, not even during the training of the pilots, who had flown on these fighters only twice.

Lou Lenart watches the ground crew during the final assembly of one of the four Avia S-199s, May 29th, 1948. Source: wikipedia.org

The four S-199s, piloted by Lou Lenart, Ezer Weizman, Modi Alon and Leonard Cohen, took off one hour before dark. Lenart, who commanded the unit, had never flown in Israel before, and he did not know where Ashdod, which was less than 15 km away from their airport, was located.

Anachronistically, he gestured to the other pilots the direction to go. Having clarified the direction to go, there was another problem, as the villages along the coast looked similar. Fortunately, columns of smoke were seen and, shortly afterwards, a column of Egyptian trucks and light armored vehicles was spotted stretching for more than a mile south of the Ashdod bridge. These belonged to engineering units trying to repair the bridge for the forces that were to take Tel Aviv the next day.

The pilots of the four planes attacked the column, which immediately dispersed. The Egyptians were not aware of the existence of an Israeli air force, lacked sufficient anti-aircraft weapons and, in some cases, had never seen an aircraft before.

The fighters swooped down on the Arabs, dropped the two 70 kg bombs they had and started to strafe the scattering soldiers. After a few shots, the guns jammed. In reality, the bombs and the following machine gun strafing did little damage. However, the psychological impact on the Egyptian troops was so devastating that, the next day, the order to attack Tel Aviv was cancelled. After that, the Egyptian offensive strategy became purely defensive.

During the attack, South African Leonard ‘Eddie’ Cohen’s Red Four plane was shot down by anti-aircraft fire. Cohen was the first loss of the Israeli Air Force. During landing, Modi Alon’s Red Two aircraft went off the runway and was damaged.

At 0530 hrs on May 30th, in order to take advantage of the surprise appearance of the IAF, the two remaining S-199s, piloted by Weizman ,Red 1, and Milt Rubenfeld,Red 3, attacked the village of Tulkarm in northern Israel, which controlled by a Jordanian-Iraqi force.

In this case as well, the real damage was insignificant but the psychological effect was devastating. A bomb had hit the police station where the Arabs were hiding themselves and 4 tanks were machine-gunned.

Rubenfeld’s plane was hit, probably by two anti-aircraft cannon shots, one in the wing and one in the fuselage. Due to the damage sustained by the aircraft, he could only return to the territory controlled by the Israeli Defense Force and then bail out at low altitude into the sea. He jumped from about 370 meters, but the parachute did not open properly and he fell into the water and was injured. He swam towards the shore, andafter two hours, he realized that the water in which he was swimming was very shallow and he had reached land.

He became the target of rifle shots from a nearby kibbutz, being mistaken for an Arab pilot ,the Israeli Air Force had remained a secret until the day before. He was then rescued and, after treatment, brought back by cab to Tel Aviv and then returned to the United States.

Ezer Weizmann sitting on the wheel of the landing gear of an Avia S-199 with the 101st Squadron’s coat of arms. Weizmann would become the seventh president of Israel some year after. Source: wikipedia.org

On May 30th, the unit was officially named the 101st Squadron or First Fighter Squadron, a name that was very impressive for a unit that had two fighters, one of which was operational, and four pilots, one of which was wounded.

On June 3rd, 1948, two Douglas C-47 Dakotas, escorted by two Egyptian Supermarine Spitfires, arrived from over the sea to bomb Tel Aviv. This practice had been ongoing for a long time and had cost the lives of hundreds of civilians in the city. The Egyptian tactic was to drop bombs out the back door onto the city below.

That day, late in the afternoon, 101st Squadron was alarmed that the Egyptian bombers were again on their way to Tel Aviv. Modi Alon took the only available S-199 and took off.
Arriving in the skies over the city, he spotted the two C-47s with two Spitfires escorting them.

Modi Alon first flew west over the Mediterranean Sea, thus being able to approach with the sun behind him. The enemy aircraft would thus have a hard time seeing him, a tactic RAF instructors in Rhodesia had taught him.

Arriving behind the first C-47, he hit it with a long burst of cannons and machine guns and sent it crashing to the ground. With a very risky maneuver, he passed in front of a Supermarine Spitfire and then turned around again to attack the second C-47 head-on.

The slow and clumsy Douglas tried to turn around to get rid of the attacker while the two Spitfires tried to line up the Avia, trying to hit it to defend the bomber.

Alon’s S-199 shots hit the second C-47, which crashed into the Mediterranean shortly after. Alon then pushed the throttle to full and sped away at top speed, without the Spitfires being able to hit it.

Alon’s Avia S-199 attack on the first C-47 in Tel Aviv’s sky on 3rd June 1948. Source: fly.historicwings.com

On June 8th, 1948, during his first mission aboard an S-199, Gideon Lichtman, who had trained for only 35 minutes aboard the Avia, flew the first dogfight of the war against an Egyptian Spitfire that was strafing civilians in Tel Aviv.

Lichtman didn’t even know which trigger to fire, so he kept pressing buttons, levers and switches until he found the right one, and chasing one of the Spitfires, he opened fire, shooting it down. The U.S. pilot was forced to land without fuel because he had only 40 minutes of fuel when he intercepted the enemy plane.

Gideon Lichtman left, Modi Alone (center) and Defence Minister Ben Gurion (right) in front of an Avia S-199. Photo taken the day when Gurion visited the 101 Squadron during the Independence War. Source: pinterest.com

Exactly one month later, on July 8, (some other sources claim 18 July) Modi Alon left with other 2 Avias to attack an Egyptian reinforcement column at Bir Asluj in the Negev Desert.
After the successful attack, on their way back Alon noticed two Egyptian Spitfires Mark VCs in flight, attacked them and managed to shoot down one of them which was the one of the Wing Commander Said Afifi al-Janzuri.

Although the career of the few Israeli Avias seemed good, due to its poor handling characteristics on the ground, no more than four planes were operational together, recalled pilot Mitchell Flint, veteran of the Pacific Campaign.
On the morning of July 9 Lou Lenart was ordered to attack the Egyptian air base of El Arish with four fighters. The fuel was low and the tanks could not be filled to capacity.
During takeoff the Avia S-199 number two piloted by ex-USAF aviator Stan Andrews swerved to the left during takeoff, flipped over and blocked the runway for 15 minutes causing the other fighters to consume fuel.

An Israeli Avia D. 107 (107 .ד‎). overturned on an airstrip side. Source: asisbiz.com

The three remaining operational S-199s running out of fuel hit the much closer Egyptian-controlled Gaza port.

Only two S-199s returned to base while the third, piloted by former USAF Bob Vickman, had not returned. Despite efforts Vickman was never found again.

The next day there was a similar situation, a pair of S-199s attacked two Syrian bombers near the Sea of Galilee. Ex-RAF pilot Maury Mann, shot down one of the two bombers within seconds while his South African ex-RAF wingman Lionel Bloch , in aircraft 108 .ד‎, attacked the second one chasing it as it retreated into Syria.That was the last time Bloch was seen, neither he nor his S-199 returned to base.

The next morning Sydney ‘Syd’ Cohen, a former South African medical student, member of 101 Squadron and future leader of the squadron, took off to search for Bloch or the remains of his plane.

Syd had spent more time training in Czechoslovakia so he realized that there was something wrong with the disappearance of two planes in two days, he acted on instinct and fired a very short burst with the machine guns mounted in the engine cowling.

When he landed, everyone noticed that all three propeller blades had bullet holes in them. The synchronizer was faulty, Vickman, Bloch and some thought also Leonard Cohen had all likely shot their own propellers while firing their guns.

On October 16, 1948, Airman Rudy Augarten, a former USAF pilot who had shot down two Messerschmitt Bf.109s during World War II, was on a reconnaissance mission over El Arish Air Base, which had been attacked the previous day. As he flew south toward the coast in the distance, he saw two Spitfires flying in formation.

Augarten followed the two Egyptian planes, trying not to be detected.
Augarten lined up with one of the Spitfires and fired a burst, sending the Egyptian plane plunging toward the Israeli lines. The other Spitfire, pursued by Augarten’s wingman Leon Frankel, fled the battle.

Rudy Augarten on the doorstep of the Airbase. Note the coat of arms probably cutted from the Spitfire he shooted down. He had the possibility to visit the site where its victim landed some days after it’s victory. Source: pinterest.com

That same day Alon and Weizmann departed at 1658 hrs for a mission near Ashdod where both had done the first IAF mission. After the success of the mission Alon had returned and during the approach to the runway he reported by radio that he had a problem with the landing gear, a common problem on Avias that was never solved. One or both of the pistons that lowered the struts would not extend fully. The Israeli pilots learned the hard way that they had to pull the nose of the fighter up and down to get the landing gear fully retracted into the wing.

While Alon was working out his problem, observers on the ground noticed something more troubling. A trail of gray smoke was coming out of his fighter’s nose.
Alon was told over the radio to check the temperatures of the plane’s various gauges. “They were fine” Alon replied seconds before his fighter crashed in flames next to the runway, killing him. His daughter born 6 months later could not meet him but served in the same squadron as her father.

From that moment on, the Avia S-199 were more and more rarely used by the Israelis.
Very few of them were still operational and, starting from September 25, 1948, about fifty ex-Czech Supermarine Spitfires IX were arriving in Israel, which would have been much more reliable.
The S-199 fighters flew with the Coat of Arms of the Israeli Air Force until June 1949.

The last surviving examples of Avia S-199 in Israel in the Isaeli Air Force Museum, the 120 .ד‎. during a takeoff in 1948 and today. Source: m.calcalist.co.il and asisbiz.com

The aircraft maintained the Czechoslovakian sand coloration but the Israeli Air Force coat of arms (Stars of David) were applied in light blue on a white circular background on the sides of the fuselage and on the wings, top and bottom.

Two views of the Avia numbered 106 .ד‎. The Israeli letter was written behind the David’s Star. Sources: asisbiz.com

During the first missions the Stars of David were painted without paying attention to size, but later they were painted in standard size. Behind the David’s Star there were three bends white-light blue-white and the Israeli identification number, from 100 .ד‎ to 125 .ד‎.

The Avia S-199 numbered 107 .ד‎ with a non standard dimensions David’s Star in the first weeks of war. Note that the star was painted between the number and the Hebrew letter ד‎. Source: asisbiz.com

In front of the propeller nosepiece (which was painted red or blue in some cases) was painted the 101 Squadron coat of arms, a skull with wings inscribed in a red circle.

From September 1948 the rudders were painted with red and white oblique lines but photographic evidence shows that not all aircraft received them, at least until December 1948.

At least one aircraft, towards the end of the war, was painted in two-tone camouflage, dark brown and sand yellow with the underside of the aircraft in Mediterranean blue.

The 123 .ד‎ at the Tel Mid airfield. Note the two tone camouflage and the identification number now painted bigger and in white. Source: asisbiz.com

Conclusion

The Avia S-199, although an extremely unreliable aircraft, was the first aircraft of the Israeli Air Force, the only one that at that time they could acquire due to UN embargoes.
During the 13 months of IAF service the Israeli pilots shot down a total of 8 Arab aircraft without losing a single Avia to Arab aircraft.
The major losses were due to mechanical problems of the aircraft leading to the conclusion that the Avia S-199s were more dangerous for the Israeli pilots than for the Arab pilots.

Avia S-199 Specifications

Wingspans 32 ft 6.5 in / 9,92 m
Length 29 ft 2 in / 8,98 m
Height 8 ft 5.9 in /2,59 m
Wing Area 54134 ft² / 16,500 m²
Engine 1x 1350 hp ( 790 kW ) M-211F V-12 inverted liquid-cooled piston engine
Empty Weight 6305 lb / 2,860 kg
Climb Rate 44.9 ft/s / 13.7 m/s
Maximum Speed 371 mph at 19685 ft / 598 km/h at 6,000 m
Range 534 mi / 860 km
Maximum Service Ceiling 37729 ft/ 11,500 m
Crew One Pilot
Armament
  • 2x 13 mm MG 131 machine guns
  • 2x 20mm MG 151/20 cannons

Gallery

Avia S-199 D. 115 (115 .ד‎) 101 Squadron (Tajeset) IDF Herzliya Sep 1948
Avia S-199 D. 107 (107 .ד‎) 101 Squadron (Tajeset) IDF Herzliya Jun 1948
Avia S-199 D. 123 (123 .ד‎) 101 Squadron (Tajeset) IDF Herzliya Sep 1948

Credits

  • Written by Arturo Giusti
  • Edited by Stan L. & Henry H.
  • Illustrations by Ed Jackson
  • airspacemag.com
  • fly.historicwings.com
  • miamiherald.com
  • tabletmag.com
  • machal.org.il
  • valka.cz
  • Avia S-199 – Miroslav Khol
  • vhu.cz
  • iaf.org.il
  • m.calcalist.co.il

Macchi M.C. 200 Saetta

italian flag Italy (1939 – 1945)
Fighter – 1,153 built

Macchi M.C. 200 of the 272ª Squadriglia of the 153° Gruppo Autonomo ‘Asso di Bastoni’. This aircraft was part of the middle production run of the SAI Ambrosini plant. Soure: pinterest.com

The Macchi M.C. 200 ‘Saetta’ (Lightning) was a fighter aircraft developed by Aeronautica Macchi (AerMacchi) of Italy around the mid-1930s, resulting in one of the most produced and used aircraft of the Regia Aeronautica (Italian Royal Air Force) during the Second World War. It yielded good results on all fronts where the Italian forces operated, from the hot and dusty desert of North Africa, to the cold and snowy Russian steppes.

After 8th September 1943, both the Luftwaffe and Aeronautica Nazionale Repubblicana (Eng: Italian National Air Force) on the Axis side, and the Aeronautica Cobaelligerante Italiana (Eng: Italian Co-belligerent Air Force) on the Allied side used the surviving aircraft.
After the war, the Aeronautica Militare (Eng: Italian Military Air Force) used the few Macchi 200 that were still functioning for another two years, until 1947, for training tasks.

Development

Before the Macchi 200, the Regia Aeronautica was equipped with fighter biplanes, such as the FIAT C.R. 30 and C.R. 32, which were considered among the best biplanes produced in Europe at the time.

During the early 1930s the Regia Aeronautica had in service some of the best biplanes of the world, not for nothing it was considered one of the best air forces in the world, with records in both civilian and military spheres.

In the mid-30s it became clear to the Italians that the biplane configuration was more than outdated and they needed new, state-of-the-art, low-wing, all-metal monoplane aircraft, and, only one year after the biplane FIAT C.R. 32 appeared in 1935, the leaders of the Royal Air Force issued a request for a new aircraft.

On 10th February 1936, the Direzione Generale Costruzioni Aeronautiche or DGCA ( General Directorate of Aeronautical Construction) requested the development of a low-wing monoplane ground interceptor fighter with retractable landing gear. The maximum speed was to be 500 km/h (310 mph), with a range of 2 hours, and a climb rate of 6,000 meters (19,685 ft) in 5 minutes. The requested armament was to be composed of one or two 12.7 mm (.50 in) machine guns, the engine had to be the FIAT A.74 radial with an entirely metal fuselage.

The largest aeronautical companies in Italy responded to this order. Aeronautica Macchi presented the Macchi M.C. 200, FIAT Aeronautica, a subsidiary of FIAT, had the FIAT G.50, Aeronautica Umbra S.A. (AUSA) had the AUSA AUT 18, Caproni the Caproni Vizzola F.5 and Industrie Meccaniche Aeronautiche Meridionali (IMAM) had the IMAM Ro. 51.

In 1938, Officine Meccaniche Reggiane also responded to the request by presenting the Reggiane Re. 2000 which did not see great success, however it was used to develop the more powerful Re. 2001 and Re. 2002.

The FIAT G. 50 prototype. Photo taken prior to its first test flight. Source: warfly.ru

Two winning projects were chosen. The Macchi M.C. 200 was found to have excellent flying characteristics, meeting most requirements that were stipulated in the original request. The FIAT G.50 was not as highly praised, but still accepted into service. The prototypes of both aircraft first flew in 1937, and both would enter service in 1939.

The Macchi MC 200 was designed by a team of engineers led by Mario Castoldi (1888-1968), a successful designer who had already worked on the Macchi M. 39 and M.C. 72, the latter still holding the speed record for a seaplane powered by a non-standard engine.
The initials M.C. stood for Macchi-Castoldi to emphasize the prestige that the company gave to its chief engineer.

Prototypes

Hastily produced, the prototype, with serial number MM. 336 (Matricola Militare; Military Serial Number), flew for the first time on 24th December 1937 from the Lonate Pozzolo runway, piloted by test pilot Giuseppe Burei that I judge the driving of the aircraft positively. Due to Burei’s untimely death during a flight test of the seaplane Macchi M.C.94, the subsequent test flights of the first prototype were conducted by Ambrogio Colombo.

First prototype during assembly in the Varese plant. Source: Aer.Macchi C. 200

On March 1st, 1938, Colombo was asked to impress the ministerial commission composed of General Ferdinando Raffaelli, Lieutenant Colonel Torre and Major Lippi. The reason for this request was simple. Macchi was late with developing the aircraft. FIAT and IMAM had already completed test flights months before, and there was a risk that the Macchi fighter would not be taken into consideration by the Regia Aeronautica.

During the exhibition flight for the commission, Ambrogio Colombo performed 38 exercises with the prototype fully loaded and at an altitude of 3,300 meters (10,827 ft).

There were no major differences between the first and second prototypes apart from a few small details, such as a one-piece rear canopy, anti-rollover structure and shorter exhaust pipes.

The second prototype, serial number MM. 337, during its first flight test. Note the full size landing gear gear cover. Source: Aer.Macchi C. 200

On 11th June 1938, during the test flights at the Guidonia runway with the 1° Centro Sperimentale Aviazione (1st Experimental Aviation Center), the body responsible for evaluating aircraft for the Regia Aeronautica, it was found that the aircraft tended to flipping if turns were too tight, with consequent loss of control (in 1940, two pilots of the 1st Wing, Lieutenant Tinti and Sergeant Major De Bernardinis, were killed during training on 1st March and in May due to this problem).

Mario Castoldi immediately began to design new wings to solve the problem (which was common to all the monoplanes presented for the competition), a solution that would take an excessive amount of time to design and implement.

Engineer Sergio Stefanutti of the Società Aeronautica Italiana Ambrosini (another Italian aeronautical company), was commissioned by the Experimental Aviation Center to find the cause of the Macchi’s control problems, solved the problem more simply, by gluing layers of balsa wood on the center and ends of the wings. Castoldi did not waste time, and the new wings were then mounted on the successor of the ‘Saetta’, the Macchi M.C. 202.

Around 1941, some Seattas of the 1st Fighter Wing, belonging to the first production series, were withdrawn from first line service due to the problems with the defective wing profile.

Engineer Mario Castoldi with MM. 337 piloted by Giuseppe Burei. Photo taken during the first test flight of the second prototype: Source: Aer.Macchi C. 200

With this problem corrected, the Macchi M.C. 200 proved to be a reliable, manageable aircraft. Despite the radial engine, it still had enough speed to compete with the Hawker Hurricane, which it bested in combat maneuverability, but was outmatched in firepower. As the war went on, the Saetta’s maneuverability, sturdy construction, and the reliability of the radial engine were the fighter’s only remaining strengths.. Primarily thanks to the experience of the pilots did the type manage to obtain some aerial victories.

The prototype serial number MM 336 remained in the Breda factory for a period of time, and was then returned to Macchi on 23rd August 1940, where it was left in disrepair. Due to the lack of engines caused by the war, at an unknown date, the MM 336’s engine was disassembled and mounted on the Macchi M.C. 200 serial number MM 8836. The prototype, without the engine, returned to Varese in September 1942 and from there, nothing more is known about it.

The second prototype was used for camouflage tests after the conclusion of flight tests, before being overhauled and sent to Rimini.

Structure

The structure of the MC 200 was entirely metal, a big step forward for the Italian aircraft industry at the time. The only other Italian aircraft with an all-metal structure before the MC 200 was the Breda Ba. 27, of which only 14 units were produced and otherwise remained at the prototype stage, along with the competing FIAT G. 50.

Structure of the Macchi MC 200’s fuselage. Source: cmpr.it

The new fuselage turned out to be quite robust, but was heavier, and let to longer production times It was made of molded duralumin and was covered with super avional plates (a special duralumin alloy) riveted with countersunk-head rivets, reducing aerodynamic drag.

Structure of the Macchi MC 200 seen from inside. Source: cmpr.it

Like the fuselage, the wings, mounted on the lower part of the fuselage, were also a single structure consisting of two spars with ailerons and ventral flaps. The whole wing structure was made of duralumin, apart from the ailerons, which retained the doped and painted canvas.

The prototype Macchi prototypes were equipped with a constant airfoil that increased the speed by a few kilometers per hour but caused autorotation problems which risked making the aircraft impossible to maneuver with the risk that the pilot could not even parachute out. On the production models, this was replaced by a variable airfoil.

The wing structure. Source: cmpr.it

Cockpit

The Macchi M.C. 200 cockpit. Source: cmpr.it

The cockpit had a single hand-control column. On the left side was the throttle, along with the controls for take-off and the flaps controls. The instrument panel had a gyroscope, speedometer, altimeter and other basic instruments for flight and an onboard ammunition gauge that ran up to 650 rounds per weapon. In the center of the instrument panel was the compass with a San Giorgio collimator located just above, for aiming the onboard armament.

On the first series of the Macchi MC 200, the windshield was a 5 centimeter (1.96 in) thick piece of glass, and the steel pilot’s seat had a thickness of about 3 centimeters (1.18 in) to protect the pilot. Behind the seat were oxygen cylinders, and those of the fire extinguishing system. The ARC 1 radio system and its batteries were located in front of the cockpit.

From the 26th Macchi MC 200 produced onward, a new tubular roll bar was introduced behind the armored seat. This was meant to protect the pilot if the plane landed inverted. It is not clear whether this was introduced after an accident or as a precaution. However, from the 3rd Series onward, this feature was again eliminated, the cockpit was open and unpressurized, and the rear canopy, no longer made of glass, was reinforced to act as the anti-roll structure.

The semi enclosed cockpit was introduced in August 1941, starting from the 12th aircraft of the 5th production series of Macchi and starting from the 65th aircraft of the 1st production series of Breda.

Macchi M.C. 200 of the 2nd Series. The anti-roll structure behind the pilot and the retractable tail wheel are visible. This aircraft was part of the 371ª Squadriglia of the 22º Gruppo Autonomo Caccia Terrestre during the Greek Campaign. Source: Macchi MC 200 Saetta

In the late production versions, an antenna fixed to the back of the canopy was added. This reduced the reception problems of the onboard radio.

Landing Gear

The landing gear with the third type of wheel covers. Source: cmpr.it

There were several types of landing gear covers used on the Macchi MC 200. On the first prototypes, the landing gear door completely covered the strut and the wheel. During landing, the lowest part was raised to avoid hitting the ground. This version was very complex to manage, and in case of malfunction the landing gear would break. Often the planes were forced to take off on makeshift runways on lawns, in case of malfunction the cover, due to the speed, would be stuck in the ground causing the breakage of the strut or worse, that the plane would fall on one side leading to the total destruction of the fuselage and wings.

The outer landing gear cover of the prototype. The lowest part is raised in the photo. Source: Macchi MC 200 Saetta

The models of the first series adopted a different type of outer landing gear doors, with a small inner gear door at the wing attachment points.

The 1st series Macchi MC 200 with the 2nd type of running gear cover. Source: Source: pinterest.com
The standard Macchi M.C. 200 outer running gear cover with the 372ª Squadriglia. Source: pinterest.com

The rear wheel on the first 146 examples was retractable, which slightly increased top speed but slowed production. In addition, during firefights, enemy fire could damage the mechanism that lowered and raised the wheel, leading to the risk that it would not come out during landing.

The rear retractable wheel of the landing gear of the Macchi M.C. 200. Source: cmpr.it

The tires were of the FAST type, produced by Pirelli of Milan. The dimensions of the front ones were 236 x 85 x 79 inches, while the rear wheel model had the Spiga type, also made by Pirelli, which was 82 x 31 inches.

Engine

The M.C.200 engine was the radial two-row FIAT Aeronautica 74 RC 38 ‘Ciclone’ ( Cyclone). It had 14 cylinders and was air-cooled, with a displacement of 31.25 liters (1,907 in³).
It had been developed by Engineer Tranquillo Zerbi and Professor Antonio Fessia based on the American Pratt & Whitney R-1535. The 600 kg (1,322 lbs) engine delivered a take-off power of 870 hp at 2,500 rpm, 840 hp at 2,400 rpm at an altitude of 3,800 meters (12,467 ft), and a maximum power of 960 hp at 3,000 rpm, which could only be maintained for short periods.

Photo of the FIAT A.74 RC 38 ‘Ciclone’. Source: Centro Storico FIAT

This engine guaranteed a maximum speed of 503 km/h (313 m/h) at 4,500 meters (14,763 ft). Its low fuel consumption also guaranteed a range of 570 km (354 miles) with two fuel tanks, one in the wings and the other under the cockpit, and a third auxiliary tank behind the pilot’s seat. In total, there were 313 liters (82.6 US gallons) of fuel. This could be extended to 870 km (540 miles) with an external tank of 450 liters (118 US gallon), at an average speed of 465 km/h (288 m/h) at an average height of 6,000 meters (16,685 ft) . Its climb rate was 6,000 meters in 7 minutes and 33 seconds.

FIAT A.74 RC 38 schematic. Source: svppbellum.blogspot.com

This engine, despite being outdated in performance and power compared to the most contemporary modern in-line engines of the war, was appreciated by pilots and technicians for its simplicity, ease of maintenance and ease of operation. This was true even in unsuitable climates, such as the deserts of North Africa and the freezing Russian steppes. However, there were problems with the carburetors that had quality issues in addition to not being suitable for such extreme climates.

A FIAT A.74 Engine mounted on a FIAT C.R. 42 biplane during maintenance. Source: stormomagazine.com

The engine cowling featured “bubbles” that protected the rocker arms of the cylinders.
This allowed a decrease of the diameter of the cowling, increasing visibility compared to the G. 50, which was equipped with the same engine.

In June 1940, all Fiat A.74 engines, produced under license by Reggiane, were replaced due to failures that brought oil temperatures to dangerous levels after an inspection by a captain of the Aeronautical Engineers and an engineer of the company.

In the first series, the cockpit was equipped with a fully enclosed canopy, which was prone to several problems. Over time, the glass became opaque which affected visibility, and it was also difficult to open above a certain airspeed, so it was opted to go for an open cockpit with only frontal protection.

The new fighters were required to have variable pitch propellers. On the two prototypes, and on the first 25 specimens produced, the propeller was the three-blade FIAT-Hamilton 34D-1. The first 25 production planes were equipped with an aerodynamic spinner to protect the propeller hub but. From the 26th plane onwards, the Piaggio P. 1001 propeller, designed by Castoldi himself, was mounted with the spinner removed. In both cases, the propellers had a diameter of 3.05 meters.

One of the first 25 planes produced with the FIAT-Hamilton 34D-1 propeller with a cap. pinterest.com

Armament

The machine guns are visible through the open inspection doors. Source: cmpr.it
The Breda-SAFAT machine guns without flash hiders. Source: cmpr.it

The armament consisted of two 12.7 mm (.50 in) Breda-SAFAT machine guns positioned on the engine cowling and synchronized with the propeller. They weighed 29 kg (64 lbs) each and were fed with two 370-round 12.7 x 81 mm SR Breda belts. This ammunition developed from British Vickers .5 V/565 Semi-Rimmed round.

There were various types of bullets produced by the Società Italiana Ernesto Breda per Costruzioni Meccaniche and by the Società Anonima Fabbrica Armi Torino (SAFAT). In addition to the classic full metal jacket bullet, the weapon could fire ammunition produced in Italy of the following types: tracer, perforating, explosive-incendiary, and explosive-incendiary-tracer (or multi-effect).

On average, these bullets weighed 34 grams each, for a total of 25.160 kilograms (55.46 lbs) of ammunition. The machine-gun firing rate was 700 rpm, but this was decreased to 574 rpm when synchronized with the propeller.

Ammunition resupply of a Macchi MC 200 of the 160ª Squadriglia of the Regia Aeronautica. Source: kitshow.net

Although quite powerful, these machine guns proved insufficient to deal with enemy threats as the war continued. Another big problem encountered was the small number of rounds on board. Only 740 rounds guaranteed just over a minute of continuous fire.

After the 25th plane, the machine guns were equipped with a flash hider so as to not blind the pilot when firing. The ammunition reserve was also increased to 740 rounds, as it consisted of only 600 rounds in total on the first planes. The spent cartridges, after being shot, were not ejected from the plane but stored onboard, so that they could be reused.

In 1937, engineer Castoldi proposed the adoption of two 7.7 mm (.303 in) Breda-SAFAT machine guns in the wings to the Regia Aeronautica. This required a consequent strengthening of the wing structure, and subsequent loss of speed, but the proposal was ignored.

On the Macchi MC 200CB, or Cacciabombardiere (fighter-bomber), version, the aircraft was equipped with two 3 kg (1.86 lbs) underwing pylons, capable of carrying bombs weighing up to 160 kg (353 lbs) each.

The bombs were used for infantry support missions. Although the maximum load was 320 kg (705 lbs), four 15 kg bombs (33 lbs) per pylon were commonly carried .

The aircraft could also carry two bombs up to a maximum of 160 kg (353 lbs) each or two 150-liter (40 US gallons) auxiliary tanks, increasing the range. The two 150-liter tanks could also be equipped together with the 450-liter centerline tank, effectively doubling the aircraft’s maximum range.

Schematic representation of the Italian aeronautical bombs used during the Second World War. The 50, 100 and 160 kg ones were the used on the Macchi MC 200CB. Source: talpo.it

In Italy

The first M.C. 200s were ready in the spring of 1939 and were delivered to the Regia Aeronautica during the same year. As of September 1st, 1939, 29 Macchi M.C. 200s had been delivered, of which 25 were allocated to front-line units, with the others given to flight training schools. In comparison, the Regia Aeronautica had 19 FIAT G. 50s and 143 FIAT C.R. 42s.

At the time of the Kingdom of Italy’s entry into the war on the 10th of June 1940, the number of M.C.200s in the Regia Aeronautica was 156. Of these, only 103 were in the front-line units and not all were combat ready. Similarly, there was in increase in other fighters on hand with 118 FIAT G. 50s and 300 FIAT CR 42s.

A Macchi M.C. 200 of the 81ª Squadriglia, 6º Gruppo of the 1º Stormo in Sicily. This aircraft belonged to the 1st SAI Ambrosini series. It had a fixed rear landing wheel but an enclosed cockpit. Source: Aer.Macchi C. 200

These 156 aircraft were split between different units, such as the 16º Gruppo Autonomo da Caccia Terrestre (16th Autonomous Land Fighter Group) of the XVI° Gruppo (16th Group) and the 181ª Squadriglia (181st Squadron) of the 6° Gruppo Caccia (6th Fighter Group) of the 1º Stormo Caccia Terrestre (1st Ground Fighter Wing), based at an unknown airport in Sicily.

7 Saetta had gone to the 369ª Squadriglia, 6 to the 370ª Squadriglia and 6 to the 371ª Squadriglia of the 152º Gruppo commanded by Lieutenant Colonel Giovanni Melotti, based at Vergiate airport in Lombardy. Another 7 Macchi MC 200 were in service with the 372ª Squadriglia, 6 with the 373ª Squadriglia and 6 with the 374ª Squadriglia of the 153º Gruppo of Captain Alberto Benefonti at the Caselle airport. The 152º Gruppo and 153º Gruppo were under the command of the 54º Stormo of Colonel Enrico Guglielmotti, with headquarters in Airasca.

The very first Macchi aircraft were delivered to the 91ª Squadriglia of the 10º Gruppo of the 4º Stormo, which was considered an elite unit. The 4th Wing received the MC 200 shortly before entering the war, but preferred to go to battle in Libya with the old FIAT CR 42 biplanes in late June 1940.

The reason for this downgrade was that the pilots of the 4° Stormo were all veterans of the Spanish Civil War, or possessed years of experience in aerobatic performances around the world, and were far more accustomed to their FIAT C.R. 32 and C.R. 42 biplanes. While they received the latest generation monoplane fighters, they did not have enough time to properly train on them, and subsequently turned down the opportunity to fly the Macchi M.C. 200.

It should also be emphasized that the pilots of the 4th Wing were the only ones not to appreciate the Macchi initially. On October 23rd, 1939, a few weeks after delivery, General Velardi, commander of another air unit, wrote to the General Staff of the Italian Royal Army that his pilots were more than satisfied with the new plane, and that within a few weeks of training they could use the new Macchi for aerobatic performances.

A Macchi M.C. 200 of the 54° Stormo with Italian pilots finishing a pre-mission briefing. Source: pinterest.com

The first victim of the new Macchi MC 200 was a British Short S.25 Sunderland four-engined seaplane on a reconnaissance mission on 1st November 1940, near Augusta in Sicily.

In the last weeks of December 1940, the pilots of the 181st Squadron of the 6th Fighter Group of the 1st Ground Fighter Wing had the task of escorting the Junkers Ju 87 ‘Stuka’ dive bombers of the I/StG.1 and II/StG.2 of the X Fliegerkorps. The Messerschmitt Bf 109 of 7./JG 26, which were supposed to escort the Stukas on their missions to Malta, had not yet arrived in Sicily.

During this mission, the Saettas proved effective and without any particular defects in dogfighting against the Hawker Hurricane. They were able to outclass the old Gloster Gladiator biplanes without much difficulty.

A Macchi M.C. 200AS produced by SAI Ambrosini takes off from a runway in Sicily. Source: pinterest.com

In Sicily, two Saettas of the 70th Squadron of the 23rd Autonomous Fighter Group based at Boccadifalco airport were used for night missions. Lieutenant Colonel Tito Falconi, commander of the group and Captain Claudio Solaro, commander of the squadron, were, according to documents, the only ones to fly the two Macchi at night.

According to the documents, between September and December 1941, these two fighters flew dozens of missions over Palermo, also participating in several engagements against British aircraft, but without managing to shoot any down. By the end of the year, the 23rd Group was sent back to the Turin Mirafiori airport to be reorganized.

After the North African Campaign, in July 1943, Allied troops invaded Sicily. At that time, the Regia Aeronautica had 81 Macchi M.C. 200, 41 with the 2nd Wing, 3 in the 22nd Group, 13 in the 157th Group, 4 in the 161st Group and 20 aircraft in the 82nd and 392nd Squadrons.

A Macchi M.C. 200 produced by Macchi with the 73ª Squadriglia in Sicily. Source: pinterest.com

One of the last battles occurred a few days before the Armistice of Cassibile in September 1943. On 2nd September 1943, while on patrol around the naval base at the port of La Spezia, Lieutenant Petrosellini of the 92nd Squadron of the 8th Group intercepted a group of 24 American Boeing B-17 Flying Fortresses that were approaching to bomb the port facilities and industrial areas of the city. Petrosellini carried out two attacks on the behemoth US bombers alone, managing to shoot down one and damage a second. He then performed an emergency landing on Sarzana airport due to damage sustained from heavy defensive fire.

As of the 8th of September 1943, 33 Macchi M.C. 200 were in the ranks of the Regia Aeronautica.
Until September 1943, the ‘Saetta’ was the most widely used Italian fighter on all fronts. The first examples of its successor, the Macchi M.C. 202, entered front-line service in late September 1941, with the first examples of Macchi M.C. 205V appearing in February 1943.

Malta

Malta, or “L’Isola Maledetta” (The Damned Island), a British stronghold in the Mediterranean, was the setting for dozens of air battles in which the Macchi M.C. 200 took part.

Just above the Island of Malta, the first loss of an M.C. 200, a casualty of the Royal Air Force, was recorded on 23rd June, 1940. Nine Macchi M.C. 200s of the 79th Squadron, eight of the 88th Squadron, and one of the 81st Squadron, all belonging to the 6th Group, escorted ten Savoia Marchetti SM.79s of the 11th Bomber Wing to the island.

Immediately, the British launched two Gloster Gladiators to intercept them. Sergeant Major Molinelli of the 71st Squadron attacked one of the two British planes that were, in turn, attacking a bomber off Sliema. The ‘Saetta’ was hit and fell into the sea. It is not clear whether Major Molinelli survived.

Franco Lucchini, an Italian ace of the 90th Squadron of the 10th Fighter Group of the 4th Wing with 26 kills, took off on 27th June 1941 from Trapani Airport in Sicily. He was on an attack mission during which he shot down a Hawker Hurricane. Afterward, he shared many other victories with his companions of the 4th Wing.

Another loss recorded occurred on the morning of 25th July 1941, when about 40 Macchi M.C. 200s of the 54th Wing and were tasked with escorting a CANT Z.1007bis of the 30th Wing for photographic reconnaissance on Valletta. The mission was meant to photograph an English naval convoy that had been attacked the day before by torpedo bombers.

Above the island, about 30 Hurricanes descended upon the formation, causing the CANT Z. 1007 bis to fall into flames. The Saetta of second Lieutenant Liberti was shot down, with the loss of the pilot, as was that of Lieutenant De Giorgi, whose fate is unknown. The Italian fighter pilots declared the downing of four Hurricanes, two by Sergeant Major Magnaghi, one by Captain Gostini and one by Sergeant Omiccioli of the 98th Squadron.

On 27th of October 1940, Carlo Poggio Suasa of the 81st Squadron, 6th Group, assigned to the 1st Terrestrial Fighter Wing stationed at Catania-Fontanarossa airport, shot down a Hawker Hurricane over Malta.

On July 11th, 1941, during an attack on the Maltese airbase of Micabba, three Italian Aces, belonging to the 10th Group of the 4th Wing were engaged by seven or eight enemy Hurricanes. They were Leonardo Ferrulli (with 21 kills between the war), Carlo Romagnoli (11 kills and 6 probable) and Franco Lucchini (22 kills). After a grueling dog fight, the three MC 200s managed to disengage and were pursued for 40 km before the British gave up the chase and, with their aircraft damaged but still able to fly, they were able to return to Sicily safely.

On June 27th, 1941, the same units of the 10th Group, 4th Wing, commanded by Ace Carlo Romagnoli, took off from Catania-Fontanarossa airport in Sicily to escort a Savoia-Marchetti S.M. 79 on a reconnaissance mission.
Arriving at Malta, they were immediately intercepted by a group of Hawker Hurricane Mark I of RAF No. 46 Squadron that forced them to abort the mission and return to Sicily.

On September 4th, Romagnoli led a reconnaissance mission over Malta with a formation of 17 M.C. 200 ‘Saetta’. Their goal was to confirm the sinking of a merchant ship that had been hit that night by a Junkers Ju.87B Picchiatello of the 101st Autonomous Dive Bombardment Group piloted by Sergeant Major Valentino Zagnoli, in the vicinity of Kalafrana.

Once in Valletta, the Macchi carried out a reconnaissance of the port at 6,000 meters and, having found nothing, returned to Sicily. At this point, 21 Hawker Hurricane Mark II fighters of No.126 and No.185 Squadrons were waiting for them (thanks to Maltese radars) at about 7,500 meters. After the furious battle that followed, Second Lieutenant Andrea Della Pasqua of the 91st Squadron was missing after being seen bailing out with a parachute. He was never found.

The 76th Squadron of the 7th Group of the 5th Terrestrial Fighter Wing took part in the Battle of Pantelleria between 12th and 15th June 1942. There, the Axis forces, with 92 aircraft of the Regia Aeronautica and 48 of the Luftwaffe, destroyed two, and damaged four merchant ships at the cost of 29 lost aircraft and 12 dead pilots.

Due to the three-engined reconnaissance aircraft flying over Malta being easy targets, some mechanics modified about ten Macchi MC 200 with an Avia RB 20/75/30 camera positioned behind the pilot’s seat. This strategy decreased the fighter’s maximum speed, but made the reconnaissance aircraft unrecognizable to the enemy, as well as being far more agile and faster than the three-engined aircraft they replaced.

Greece

For air combat during the Greek Campaign, which started on October 28th, 1940, the 54th Wing was employed. Its 372nd Squadron had 12 Macchi MC 200, based at the Brindisi-Casale Airport in southern Italy.

Between November and December, the 373rd Squadron, with 11 MC 200s, also arrived at the Bari-Palese Airport, the 374th Squadron with 12 MC 200s at the Taranto-Grottaglie Airport and the 370th, with 8 MC 200, at Foggia Airport, all in Southern Italy.

These squadrons mainly carried out escort missions for Italian FIAT B.R. 20 and Savoia-Marchetti S.M. 79 bombers used against Greek strategic targets.

Sergeant Luigi Gorrini of the 85th Squadron of the 18th Fighter Group of the 3rd Ground Fighter Wing, an Italian ace with 19 confirmed and 9 presumed kills, took training courses to learn how to fly the Macchi M.C. 200 and FIAT G. 50 held at Caselle Torinese and Torino Mirafiori airports between August 29th and December 10th, 1940. After this, he and his squadron were transferred to Araxos airport in Greece, where he flew escort flights for naval convoys and aircraft from Italy to Greece and vice versa.
On December 17th, 1940 during a patrol over the island of Cephalonia, Gorrini spotted two Bristol Blenheims, hitting one of them (which he considered probably shot down) and damaging the second.

In March 1941, the 22nd Autonomous Land Fighter Group was sent to Greece. Its 371st Squadron went to Vlora, while the rest of the group, with 36 Macchi MC 200s and an unknown number of FIAT CR42s, moved to the airport of Tirana, both cities of occupied Albania. During their first fights, they went up against the Hawker Hurricanes and Gloster Gladiators of the RAF.

Macchi M.C. 200 of the 372ª Squadriglia. These planes were produced by Breda. The 153° Gruppo coat of arms is visible. Source: asisbiz.com

Thanks to reinforcements that arrived in Albania in April, the 18th Group was sent back to Italy to train on the Macchi MC 200CB. The training lasted until mid-July, by which time the Greek Campaign was over. The Group was subsequently transferred to North Africa.

During the Greek campaign, which lasted until April 1941, Royal Italian Air Force fighters claimed to have shot down 77 Hellenic Air Force (HAF) aircraft (plus another 24 presumed), of which 52 were shot down and 25 destroyed on the ground, at a loss of 64 Italian aircraft. During engagements against the RAF, the British claimed to have destroyed 93 Italian aircraft (and another 26 probable) for just 10 aircraft lost. However, at the end of the campaign, the British losses amounted to 150 pilots (dead or prisoners) and 209 aircraft lost, 72 shot down by Italian fighters, 55 destroyed on the ground and 82 destroyed or abandoned during the evacuation.

Yugoslavia

At the outbreak of hostilities against Yugoslavia, the only air units assigned to the sector were the 4th Wing, equipped with 96 Macchi MC 200, the 7th Group in Treviso, and the 16th Group in Ravenna, which had 22 each, the 9th Group in Gorizia and the 10th Group in Altura di Pola, which had 23 each, and, finally, 6 that were in service with the 256th Squadron in Bari.
At dawn on April 6th, 1941, before the Declaration of War, four M.C.200s of the 73rd Squadron took off without an exact mission, flew over the port of Pula and then arrived at the island of Cres, attacking a tanker and setting it on fire.

Macchi M.C. 200 of the 73ª Squadriglia after a landing accident. The pilot, Sub Lieutenant Albano Carraro, came out unscathed. The plane was repaired and put back into service. Source: asso4stormo.it

There were no noteworthy actions for the rest of the brief Yugoslavian campaign. The Macchi of the 4th Wing flew against Yugoslavia for the last time on April 14th, when 20 Saetta of the 10th Group patrolled the airspace 100 km south of Karlovac, but without encountering enemy aircraft.

In March 1941, in order to counter the new British Hawker Hurricanes, the Regia Aeronautica was forced to withdraw the FIAT CR 42 of the 150th Group from Albania, replacing them with 36 Macchi MC 200s of the 22nd Group based at Tirana airport and the 371st Squadron, which moved from the Rome-Ciampino Airport to Valona.
Despite its lower top speed compared to the Hurricane, in the hands of experienced Italian pilots who were well trained in aerobatic flight, the Macchi MC 200 proved to be a tough adversary for the British pilots.
Ground operations on the Yugoslav front ended on April 17th. According to the official report of the 4th Wing, in eleven days there were no losses, 4 enemy aircraft were shot down and 45 Yugoslav aircraft were destroyed on the ground, damaging another ten.
Other victories were achieved by destroying an oil tanker, a tanker truck and an unspecified number of mechanized vehicles, as well as destroying airport facilities.
Another 5 Yugoslav aircraft, Dornier Do 17Ks, were destroyed on the ground at a Greek airport where they had taken refuge during an Italian attack.

North Africa

The North African desert was the most important theater of operations for the Italian pilots and their Macchi M.C. 200 ‘Saetta’.
At the end of the operations in Yugoslavia, the 153rd Group returned to Italy. It was based at Grottaglie airport, in southern Italy, with the task of defending the Port of Taranto against RAF attacks.
One of its squadrons, however, was ordered to go to North Africa to support Rommel’s offensive in Cyrenaica.
The first eleven M.C.200s of the 374th Squadron, under Captain Andrea Favini (later to become Wing Chief), arrived on April 19th, 1941 at Castel Benito airfield, 35 km south of Tripoli. Until the end of June 9th, the Macchi aircraft remained under Favini’s command. During the period of activity, the squadron never reached more than 7 operable Macchi at the same time.
An interesting fact is that Captain Andrea Favini was still using a pre-production Macchi MC 200 with a FIAT-Hamilton 34D-1 spinner and propellers. This is very strange, as all the pre-production aircraft and the very first production series should have been modified by that point.
Given the continuation of operations, on July 2nd, 1941, Macchi M.C. 200 of the 372nd Squadron of the famous 153º Gruppo ‘Asso di Bastoni’ (Eng: 153rd Group ‘Ace of Wands’) arrived in North Africa. Later, the 373rd Squadron from Greece, together with the 157th Group, also arrived.
The 76th Squadron of the 7° Gruppo Autonomo Caccia Terrestre, commanded by Major Marcello Fossetta, also arrived with 22 Macchi M.C. 200. However, they lost almost all of their fighters during a British air attack on the Benina base 19 km east of Benghazi, where the unit was stationed.
The data of both Italian and British units report some skirmishes between Macchi and British aircraft.
On December 8th, 1941, a Macchi MC.200 of the 153rd Group clashed with Hawker Hurricanes of the British 974th Squadron. During a fight, a Macchi engaged a Hurricane. After a succession of very tight turns, the Macchi struck the Hawker’s cockpit, which then flipped over and plummeted in a dive, killing New Zealand RAF Flight Lieutenant Owen Vincent Tracey, who had 6 kills credited to his name.
The 153rd Group, in its July-December report, claimed to have flown 359 missions for a total of 4,686 flight hours by its pilots, and 19 enemy aircraft destroyed in flight, plus 12 probable, in addition to 35 aircraft destroyed on the ground.
In December 1941, the Macchi M.C. 200 began to be accompanied by Macchi M.C. 202 of the 8th and 150th Groups based at El-Nofilia airport.
In the early months of 1942, the 8th, 13th and 150th Groups were mainly used on escort missions for FIAT CR 42s in the ground attack configuration.
On July 20th, 1942 the 18th Group of the 3rd Wing arrived in Tripoli with the 83rd, 85th and 95th squadrons, with a total of about 40 MC 200s, of which 21 in the M.C. 200CB configuration. These new arrivals, which were positioned at the Abu-Aggag airbase, 370 km from Cairo, meaning that the Macchi 200 was still the most numerous Italian fighter in North Africa, with 76 units (of which about three quarters were operational), 37 of which were in the 2nd Wing.
The Macchi M.C. 200CB of the 18th Group carried out dozens of ground attack missions. One of the most famous was stopping the British attempt to recapture Tobruk by sea in July 1942, sinking the destroyer Zulu and seriously damaging two troop carrier ships.
On April 18th 1942, between 1725 hrs and 1830 hrs, five Macchi M.C. 200CBs attacked a column of tanks of the 1st Armored Division of the British 8th Army at Sidi Bou Ali, in the governorate of Susa, in Tunisia. 22 M.C. 202s of the 54th Wing escorting the ‘Saetta’ clashed with a formation of P-40s and Spitfires that had arrived to support the armored units. Captain Sergio Maurer, Lieutenant Giuseppe Robetto and Sergeant Mauri each shot down a Spitfire, while Sergeant Rodoz brought down a P-40.

Macchi M.C. 200 of the 373ª Squadriglia of the 153º Gruppo ‘Asso di Bastoni’ (with the playing card symbol on the frame) on an airstrip in North Africa. Source: pinterest.com

Despite the Regia Aeronautica’s gradual transition to the Macchi MC 202, the ‘Saetta’ remained the most widely used fighter aircraft. It was widely used as a secondary fighter by pilots when their MC 202s were undergoing repairs.
The 364th Squadron of the 150th Fighter Group, 52nd Wing, equipped with the Macchi M.C. 200 ‘Saetta’, operating from the airports of El Agheila, Benghazi and Martuba, participated intensively in intercept operations, surveillance flights, strafing ground targets, and escorting bombers.
The Macchi MC 200s were also able to successfully deal with Allied four-engined aircraft, despite their armament. On 14th August, Lieutenant Vallauri of the 2nd Wing intercepted four Consolidated B-24 Liberators during a reconnaissance mission in the skies above Tobruk. Instead of waiting for support from other fighters, he attacked them alone, managing to shoot down one of them.
A few days later, on 23rd August 1942, three M.C.200s intercepted and attacked a group of B-24 Liberators en route to Tobruk. Sergeant Zanarini and Second Lieutenant Zuccarini shot down one Liberator while the third pilot damaged another. The entirety of the 2nd Wing was 198 aircraft in August 1942 (including Macchi M.C. 200 and M.C. 202,) which flew an unspecified number of missions that lasted a total of 394 hours of missions over Tobruk and 1,482 hours escorting 77 Axis convoys from Southern Italy to the North African coast.
The Allied air superiority was becoming more and more overwhelming. Unfortunately, precise data for the actions of the following months is not available. In October, ten Macchi 200 were lost by the 2nd Wing.

Macchi M.C. 200 of the 372ª Squadriglia while refueling before take-off. The pilots discuss the mission. Source: pinterest.com

At the beginning of November 1942, there were only 15 ‘Saetta’ on the front line in the 2nd and 3rd Wings (there is no data on the losses of the 54th Wing during the period). This was a very limited number. In July, there had been 76, meaning an average loss rate of about 12 aircraft per month.
The M.C. 200s were now outclassed in speed and armament by the latest versions of the Hawker Hurricane, Curtiss P-40s, and the more powerful Supermarine Spitfires. Despite this, the Macchi still managed to score a few victories.
In November, Lieutenant Savoia and Sergeant Major Baldi shot down two Bristol Beaufighters, while Sergeant Turchetti managed to shoot down two aircraft.
During the same month, some replacements arrived but they were not enough. On the 1st of December, the 2nd Wing had only 42 ‘Saetta’, of which 19 were in flying condition, while the others were under repair.

A Macchi abandoned on the side of a runway after a botched landing. Source: pinterest.com

After the Battle of El Alamein, the Macchi were used to cover the retreat of the Italian-German troops. However, the lack of spare parts, fuel and the overwhelming technological and numerical Allied superiority meant that many aircraft were lost.
In October 1942, the 18th Group received the Macchi MC 202 of the 4th Wing, which, after months of actions, had been repatriated for reorganization.
On 11 January 1943, units of the 3rd Wing were used in the attack against some British airbases in the Wadi Tamet area.
The Macchi MC 202 escorted the Macchi MC 200CB fighter-bombers in bombing operations. Luigi Gorrini managed to shoot down the Spitfire Mark V of Flying Officer Neville Duke of the 92nd Squadron, as reported by the British pilot himself in one of his books.
In January 1943, all non-operational units were repatriated, with very few Macchi MC 200s remaining in North Africa as part of the 384th Squadron in Tunis and the 13th and 18th Groups in El Hamma.
The last group to be equipped with MC 200s was the 18th Group of Major Mario Becich, which fought with the ‘Saetta’ until the end of the campaign. The last major air battle of the Macchi MC 200 in North Africa was on 29th March 1943. Then, in the Gabès sector, 15 M.C.200s of various units intercepted an unknown number of P-40s and Spitfires, shooting down 4 enemy aircraft at the cost of one damaged aircraft forced to land on the way back.

The remains of three Macchi M.C. 200 and a FIAT C.R. 42 abandoned at the Castel Benito airport in late 1942. Source: pinterest.com

Soviet Union

A contingent of Macchi M.C. 200s was sent to the front in the Soviet Union, despite the fact that they had an open cockpit.
The Comando Aviazione del Corpo di spedizione italiano in Russia (Aviation Command of the Italian Expeditionary Corps in Russia) was officially constituted on July 29th, 1941 at the Tudora airport. Major Giovanni Borzoni Group landed at this airport on 12th August with the 359th Squadron of Captain Vittorio Minguzzi, which had 11 other pilots, including Captain Carlo Miani and Lieutenant Giovanni Bonet. The 362nd Squadron of Captain Germano La Ferla also arrived with 11 other pilots. The 369th Squadron, commanded by Captain Giorgio Jannicelli, which had 13 pilots, and, finally, the 371st Squadron of Captain Enrico Meille, which had 11 pilots, completed the setup, all belonging to the 22nd Autonomous Land Fighter Group.
On August 16th, the 61st Aerial Observation Group arrived with 32 Caproni Ca.311 (34th, 119th, and 128th Squadrons) and a Savoia-Marchetti S.M.82 for support.

Macchi M.C. 200 ‘Saetta’ of the 22º Gruppo Autonomo Caccia Terrestre, 359ª Squadriglia in Krivoi Rog, Soviet Union, 1941. Note the tarpaulins covering the cockpits to prevent rain or dirt intrusion. Source: asisbiz.com

The 22nd Autonomous Land Fighter Group had a total of 51 MC 200s, two Savoia Marchetti S.M. 81 and three Caproni Ca. 133s. It was sent to the Eastern front from the Tirana Airport ( where they were located after March 1941). For its first missions, starting from August 27th, 1941, it was stationed at the Krivoi Rog airport.

On the same day, some aircraft of the 22nd Autonomous Group and some others of the 6th Group assigned to the 1st Ground Fighter Wing arrived in the Soviet Union. In total, eight Soviet aircraft, two Poliakov I-16s and six Tupolev SB-2s. were shot down.

Carlo Poggio Suasa, of the 81st Squadron of the 6th Group, shot down two Poliakov I-16s in a single day.

Due to the lightning advance of Axis troops in the Soviet Union, at the end of August, the unit had to move to the Kryvyi Rih airport and to Zaporižžja by the end of September. On 9th November, the 371st Squadron moved to the Donetsk sector, breaking away from the rest of the group.

Between August and the beginning of December, the 22nd Autonomous Fighter Group shot down another 8 Soviet fighters and bombers, apparently without suffering any losses. 4 more Soviets were downed in December.

Macchi M.C.200 of the 53° Stormo, 22° Gruppo Autonomo Caccia Terrestri, 362ª Squadriglia near a Bf 109 in Novo Orlovka, Soviet Union, 1941. Source: pinterest.com

During the Soviet Christmas ground offensive against Italian troops at Novo Orlovka, Italian pilots attacked Soviet troops in the Burlova sector. During these actions, they also shot down five Soviet fighters without any losses.

During one of these missions on December 28th, the ‘Saetta’ of the 359th Squadron shot down nine Soviet aircraft in the Timofeyevka and Polskaya areas, including six Polikarpov I-16 fighters and three bombers, without suffering losses.

On December 29th, 1941 the 369th Squadron lost its commander, Captain Giorgio Jannicelli. During a solo reconnaissance mission, he was intercepted by more than ten I-16 and Mikoyan-Gurevich MiG-3 fighters and, after a grueling air battle, he was shot down. For his bravery, he was awarded the posthumous Gold Medal.

The Italian Macchis in the Soviet Union were unable to carry out any missions throughout January, and the first few days of February 1942 due to bad weather. On February 4th and 5th, the Regia Aeronautica launched an operation to destroy Soviet air bases. The first was at Kranyi Liman, where the MC 200 destroyed 21 Soviet aircraft on the ground and another 5 fighters were shot down during dogfights over the airport.

Between March and April, the airports of Luskotova and Leninsklij Bomdardir were also attacked.

By the end of March 1942, the 22nd Gruppo Autonomo Caccia Terrestre had scored a further 21 aerial victories against the Soviet Air Force.

On May 4th, 1942, the 22nd Autonomous Land Fighter Group, which still had a few operational aircraft, was replaced by the 21st Autonomous Land Fighter Group, consisting of the 356th, 382nd, 361st and 386th Squadrons. The 21st Group, commanded by Major Ettore Foschini, brought with it 12 new Macchi M.C. 202 fighters and 18 new Macchi M.C. 200s, probably the fighter-bomber version.

During the second battle of Kharkov, fought between May 12th to 30th 1942, Italian pilots carried out escort missions for German scouts and bombers. They earned the admiration of the commander of the German 17th Army, in particular for their daring and effective attacks in the Slavyansk area on Soviet fighters trying to shoot down German bombers.

In the summer of 1942, following the German advance, the 21st Group moved first to the Makeyevka airfield, and, later, to those of Tazinskaya, Voroshilovgrad and Oblivskaya.
The group shoots down 5 enemy aircraft in May, 5 in June and 11 in July.

Macchi M.C. 200 ‘Saetta’ of the 369ª Squadriglia, Soviet Union, 1942. Source: ww2aircraft.net

Increasingly, Italian pilots were asked to escort German planes, but the Macchi aircraft wore out very quickly because of the lack of spare parts. On July 25th and 26th, five M.C.200s were shot down during aerial combat with the Soviets.

In the summer, 17 Macchi 202 ‘Folgore’ arrived from Italy to reinforce the line-up of ‘Saette’, by then worn out by incessant use. At the beginning of December, the Macchi MC 200s still on the line numbered 32 plus 11 Macchi MC 202s. The losses suffered became more and more consistent due to the technological advancement of the Soviet aircraft.

On 6th August 1942, some MC 200CBs carried out a bombing mission east of the Don, hitting Soviet artillery and infantry with their 50 kg bombs.

In December, only 32 Macchi M.C. 200s and 11 Macchi M.C. 202s were available. The Soviet Air Force, which was starting to become better combat trained, as well as the increasing prevalence of anti-aircraft fire also caused additional losses. In fact, over half of the missions that the Macchi were requested to carry out were ground attacks against Soviet tanks and infantry.

The last Italian action that employed a large number of aircraft was on 17th January 1943, when 25 Macchi MC 200 and MC 202 machine-gunned troops on the ground in the Millerovo sector.

Macchi M.C. 200 ‘Saetta’ of the 21 Gruppo. Pilot Elis Bartoli shows the damage that resulted from Soviet anti-aircraft fire. Source: asisbiz.com

On January 18th, 1943, commander Ettore Foschini received the order to withdraw, first to the airport of Stalino in Donetsk, and from there to Zaporižžja. On February 20th, 1943, the Group was at Odessa airbase, waiting to return to Italy. On 15th April, the Group left Odessa and, after four stops, arrived at the Florentine airport of Peretola at the end of the month.

Thirty Macchi M.C. 200s and nine M.C. 202s returned to Italy, while 15 damaged aircraft were dismantled and used for spare parts, abandoning them at airfields during the retreat.
A total of 66 Italian fighter planes had been lost on the Eastern Front for various reasons, but they managed to shoot down 88 enemy aircraft during 17 months of operation in the theater of war.

In a postwar document written in Italy, it is stated that, in 17 months, the fighters of the Regia Aeronautica on the Eastern Front carried out 3,759 actions against the Soviets, 511 in support of the infantry by dropping bombs, 1,310 machine-gun attacks on ground targets, 1,938 escorts to bombers or scouts. 88 enemy planes were destroyed at the expense of the loss of 15 Macchi M.C. 200 lost in combat. The best Italian unit in the Soviet Union was Captain Germano La Ferla’s 362nd Squadron, which destroyed 13 Soviet aircraft on the ground and shot down 30 fighters and bombers in air engagements.

Luftwaffe

After the armistice of September 8th, 1943, the German Army managed to recover a small number of Macchi M.C. 200s from Italian airports and put them in service with the Luftwaffe, mostly as training aircraft.

As far as known, these never took part in actions against Allied targets.

A destroyed Macchi M.C. 200 which was in service with the Luftwaffe. Source: british-eevee.tumblr.com

Aeronautica Nazionale Repubblicana

After the Armistice of 1943, of the 33 Macchi MC 200s operational at the time, 10 remained in the German-occupied territories. Not much is known about these 10 units, but it can be assumed that almost all of them were confiscated by the Luftwaffe.

Several Macchi M.C. 200s remained in service with the Aeronautica Nazionale Repubblicana (Eng: National Republican Air Force) for training purposes. Some of these vehicles had probably been recovered from depots or hangars and returned to service after an overhaul period.

Aeronautica Cobelligerante Italiana

Macchi M.C. 200AS with sand filters and Aeronautica Cobelligerante Italiana coats of arms and the Savoia cross on the vertical stabilizer. The registration number looks like MM 4337. Source: pinterest.com

As many as 23 Macchi MC 200s managed to reach the south of Italy after the Armistice of September 8th, 1943. Almost all of these belonged to the 8th Group, which had escorted the Regia Marina fleet (Eng: Italian Royal Navy) from La Spezia to Malta. In the summer of 1944, the 23 Macchi were assigned to the Fighter School of Leverano, where they were used for training until they could no longer be maintained.

Two Macchi M.C. 200 of the Aeronautica Cobelligerante Italiana in South Italy. The one in the foreground was equipped with wing pylons and a sand filter. The registration number was removed. Source: pinterest.com

Aeronautica Militare

Unfortunately, not much is known about the Macchi M.C. 200 in service with the Aeronautica Militare (Italian Air Force) after the war. A number of these, probably the surviving aircraft from the 23 Saettas used by the Aeronautica Cobelligerante Italiana, were kept in service using spare parts found all over the Italian peninsula, some with new parts that were produced after the war. They were used until 1947.

Being obsolete by the war’s end, the Macchi MC 200s were used in the 2ª Squadriglia of the Scuola Caccia (Fighter School) of Lecce for the training of a new generation of Italian fighter pilots.

Others

The MM337 prototype was presented at the Yugoslavian Belgrade Air Show in June 1938 and immediately attracted worldwide interest.

The MM. 337 exhibited at the Belgrade Air Show in June 1938. Source: Aer.Macchi C. 200

Spain, Finland, Sweden and Romania asked to evaluate the aircraft but, due to political problems and the Italian government’s ban on exports, these negotiations did not move forward.
Only the request of the Royal Danish Navy for 12 Macchi M.C. 200 to replace their old Hawker Nimrods was accepted. However, when Germany invaded Denmark in 1940, the delivery was canceled and the aircraft remained in Italy.

Switzerland also requested 36 examples. Italy responded by offering the first batch of 24 and the second one of 12. All examples would have been without radios and would have cost 58,000 USD (equivalent to about 1.1 million USD today) each without ammunition. Due to the imminent entry into the war, the General Staff of the Royal Army blocked the negotiations before Switzerland allocated the funds.

The USAAF 86th Fighter Squadron of the 79th Fighter Group of the 9th Air Force Division came into possession of a Macchi MC 200 at Grottaglie. This one had belonged to the 357th Squadron, from where it was later transferred to Gerbini in Sicily. It was piloted by Captain Jack H. Kauffman, who used it to train his fellow soldiers to fight against Italian aircraft.

The Macchi M.C. 200 of the 357ª Squadriglia used by USAAF pilots. Source: pinterest.com

British Evaluation on the Macchi M.C. 200

Former Squadron Leader D. H. Clarke wrote in 1955 in one of his books that, in Sorman, North Africa, he came into possession of a Macchi M.C. 200, serial no. MM 5285. After three days of overhaul, the British officer boarded the Macchi and took it to their base at El Assa.

Clarke stated that the Macchi had excellent visibility, a spacious cockpit with an open cabin (which he regarded very positively), was rustic but simple and had comfortable controls. The engine was quiet and easy to maintain and the vehicle was very maneuverable.

During simulated combat against a Hawker Hurricane II, a Curtiss P-40 and a Spitfire V, it could outturn all three. The downsides that Clarke pointed out were the poor armament (although he considered the ammunition reserve adequate) and the flipping problem.

The RAF captured more aircraft during the war. Another one was captured in North Africa and was shipped to the USA, while other aircraft were captured intact in Sicily and used for training British pilots, to familiarize them with enemy aircraft.

A Macchi MC 200AS captured by British troops with RAF coats of arms at an airport in Sicily. The identification number was MM. 5815. Behind it is a Savoia Marchetti SM 79. Source: pinterest.com

Camouflages and Coat of Arms

Being one of the most long-lived and most produced aircraft of the Regia Aeronautica during the Second World War, it is easy to understand that the Macchi M.C. 200 had many camouflage schemes during its operational life on the various fronts on which it operated.

The prototypes, at the time of their test flights and their presentation to the Army Staff in Guidonia, had no camouflage or paint applied, with the natural aluminum being exposed. On the rudder, there was the Italian Tricolour with the Savoia symbol in the middle. This was the flag of the Kingdom of Italy until 1947. On the side of the cockpit, there was the Fascio Littorio painted inside a round frame with a blue background.

The Fascio Littorio was the symbol of the Partito Fascista Italiano (Eng: Italian Fascist Party) which, after Benito Mussolini’s rise to power, became the symbol of the dictatorship, like the swastika for Adolf Hitler’s Nazi Party.

On both sides of the wings, there were also the “Fasci Littori Alari” (Eng: Wing Fasci Littori), circular rosettes 96 cm in diameter with a black outline and white background inside which were painted 3 stylized Fasci Littori. As the war progressed, the Fasci Littori Alari were slightly modified. The ones on the underside were painted white, with a black background.

Various italian coat of arms, 1 is the Fasci Littori Alari, 2 the Fascio Littorio painted on the fuselage, 3 the Croce di Savoia and 4 the Cockade of the Aeronautica Cobelligerante Italiana. Source: wikipedia.it and author collage

The first examples produced by Macchi and then used in Italy and those used in the Soviet Union were painted in dark green (Verde Mimetico 2; Eng: Green Camouflage 2) with dark brown spots (Bruno Mimetico; Eng: Brown Camouflage) with yellow outlines (Giallo Mimetico 4; Eng: Yellow Camouflage 4).

Some variations existed.. For example, the brown spots could be covered by small yellow mottling or, as in the case of the 79th Squadron of the 6th Group of the 1st Wing, the dark green background was covered with yellow spots and brown spots.

Starting from June 1940, the planes of the Regia Aeronautica received a new feature. In order to avoid incidents of friendly fire, the Italian Tricolor, which could be confused with the tricolor of French planes, was replaced by the Croce di Savoia (the Italian Savoia royal family symbol), a white cross by ministerial order.

However, the dispatch did not specify the exact dimensions of the cross and the units painted different types before a standard model of the Croce di Savoia was chosen.

Also, the Macchi, Breda and, later, SIA Ambrosini production plants painted the crosses differently. Macchi painted a cross with longer vertical arms, while Breda painted a Greek cross (all arms of equal length) and SIA Ambrosini painted the cross on the whole height of the rudder.
The white band on the fuselage was introduced at the beginning of 1941 with the same purpose.

The Croce di Savoia of different origins, the 1st is from Macchi, the 2nd from Breda, the 3rd is from SAI Ambrosini and finally, the 4th is an example made by a unit. Source: Macchi MC 200 Saetta and author collage

Between the spring and summer of 1941, a rule issued by the Ministry of War ordered that all Regia Aeronautica fighters be painted with a yellow nose to avoid incidents of friendly fire.
The order lasted only a few months, but many pictures show Italian aircraft with a characteristic yellow nose.

Also, in this case, the dispatch was misunderstood and some units (especially in the Soviet Union) painted the fuselage line and the wingtips in yellow.

The two planes of the 70th Squadron of the 23rd Autonomous Group were repainted by the unit completely in pitch black. They also covered all the markings.

SIA Ambrosini painted its M.C. 200 in dark green (Verde Oliva 2; Eng: Olive Green 2) and only in rare cases did the units repaint them. In North Africa, there were many camouflages, all on a khaki base (Nocciola Chiaro 4; Eng: Light Hazelnut 4 or Giallo Mimetico 4; Eng: Yellow Camouflage 4) with dark green spots (Verde Mimetico 2; Eng: Camouflage Green 2).

Three examples of camouflage used in North Africa. The first is a Macchi M.C. 200AS produced by SAI Ambrosini. It belonged to the Brigadier General, aircraft number 9 of the 373ª Squadriglia of the 153° Gruppo Autonomo. The second was a Macchi M.C. 200AS produced by Macchi. The third Macchi M.C. 200AS was the 2nd aircraft of the 363ª Squadriglia of the 150° Gruppo of the 53° Stormo Caccia Terrestre produced by Breda. Source: pinterest.com with author’s collage

After the fall of Fascism in Italy, on July 25th, 1943, pilots were ordered to obscure the Fascio Littorio, which were covered with the paint the units had available.

After the Armistice of 8th September, a number of Macchi MC 200s remained in the hands of Italian pilots who fought for the Aeronautica Cobelligerante Italiana. They were ordered to cover the tricolor coat of arms on the wings and on the fuselage, and to obscure all previous insignia, such as the white band on the fuselage, the coat of arms of the unit and the Croce di Savoia (although some were retained). The Aeronautica Cobelligerante Italiana used Macchi MC 200 with both dark green monochrome camouflage and that used in North Africa, khaki with dark green irregular spots.

After the war, the few surviving examples were used in aluminum color with tricolor cockades on the fuselage and wings.

The specimens captured by the British and the Americans had Allied coat of arms to cover the Italian ones. For example, the US specimen retained squadron identification numbers, but all other symbols were obscured or covered with US symbols.
The upper right wing and lower left wing beams were covered with paint while the upper left and lower right wing were covered with the United States Army Air Forces insignia.
The fuselage fascia was repainted yellow and received another USAAF insignia and the tail received a British tricolor.

Production

A Macchi M.C. 200, serial number MM. 5192, at the Bresso plant of the Società Italiana Ernesto Breda per Costruzioni Meccaniche. Source: pinterest.com

In total, 1,153 examples of Macchi M.C. 200 ‘Saetta’ were produced between May 1939 and October 1942 ,including the two prototypes and 12 different production series.

It is difficult to classify the production of MC 200 fighters based on “series” because the plane was produced by 3 different companies. Different “series” have to be defined per company.

With the slow rate of production, some updates were initiated by one company in one production series, and by another company in another production series. Some series had substantial differences, others only small changes to speed up production or to try to keep the aircraft up to date with the most modern Allied fighters.

The companies that produced them were Aeronautica Macchi, which produced 395 planes plus the two prototypes starting from May 1939 in the Varese plant, the Società Italiana Ernesto Breda per Costruzioni Meccaniche, which produced 556 planes, and the Società Aeronautica Italiana Ambrosini, which produced a total of 200 planes.

In late 1939, it was proposed thay FIAT should produce the Macchi M.C. 200 in their factories in Turin. Needless to say, FIAT refused, criticizing the Macchi as too complex to produce.

Production line of Macchi M.C. 200 at the Bresso Plant of Breda. Source: Aer.Macchi C. 200

In 1939, 62 Macchi 200 were produced, 10 between May and July, 26 between August and October and another 26 between November and December. An interesting fact is that these aircraft were ‘produced’ but not ‘tested’ or ‘delivered’ to the Regia Aeronautica.

In fact, as in many other cases with the Italian war industry of that period, small components were missing that forced the aircraft to be kept in depots for weeks. There were also problems with a lack of test pilots or, even worse, a lack of air force pilots to deliver the new aircraft.

Finished Macchi M.C. 200 at the Bresso Plant of Breda, ready for the delivery to the units. Source: Aer.Macchi C. 200


Variants

  • Macchi M.C. 200 prototype – With fully retractable landing gear and closed cabin, 2 planes were produced by Macchi. Their first flight was on 24th December 1937.
  • Macchi M.C. 200 Pre-series – Serial numbers MM. 4495 to MM. 4520. Like the prototypes, it had retractable landing gear and a closed cabin, solved the overturning problems, and had a FIAT-Hamilton 34D-1 propeller with a hub cap.
  • Macchi M.C. 200 – Serial numbers MM. 4520 to MM. 4641. After the 146th model, the rear wheel of the landing gear was fixed.
  • Macchi M.C. 200 – Serial numbers from MM. 4641 to MM. 4736. After the 241st model, the cabin was left open.
  • Macchi M.C. 200 A2 – Equipped with wings and retractable landing gear taken from the successor, Macchi M.C. 202. The wings, redesigned by Mario Castoldi, no longer needed to be ballasted and solved the problem of overturning.
    Standardized in 1942 to speed up production at Breda and SIAI, which were producing the Macchi M.C. 202 simultaneously. It also simplified the logistic line of front-line units.
  • Macchi M.C. 200 B2 – This version received only the wing attachment of the M.C. 202, the rest of the wing was of the Macchi MC 200. Like the A2 version, it was produced to speed up production and simplify the logistic line.
  • Macchi M.C. 200 AS – AS stands for Africa Settentrionale (Eng: North Africa). It was equipped with a sand filter for the carburetor.
  • Macchi M.C. 200CB – CacciaBombardiere or CB (Eng: Fighter-Bomber). With two wing pilons for bombs up to 160 kg or 150-liter auxiliary tanks.

Proposal

  • Better armed Macchi M.C. 200 – Proposal by engineer Castoldi to equip the M.C. 200 with two 7.7 mm Breda-SAFAT machine guns in the wings.
    The idea was not approved by the Regia Aeronautica.

Macchi M.C. 200 Bis

Designation of a prototype produced by Breda (MM. 8191) with a 14-cylinder Piaggio P. XIX engine delivering a maximum power of 1,175 hp. It was derived from the Gnome-Rhône 14K Mistral Major and used on the Reggiane Re. 2002. It was tested during April-May 1942 by test pilot Acerbi. Castoldi was very annoyed because he did not approve the project.

The Macchi M.C. 200 Bis. Source: pinterest.com

Macchi M.C. 201

Two prototypes were built, with serial numbers MM 437 and MM 438. Given the availability of other, more powerful engines, Castoldi and Macchi spent very few resources on this project.

It was planned to equip the aircraft with the 1,000 hp FIAT A.76 RC.40 14-cylinder radial engine and some aerodynamic improvements, such as a more streamlined fuselage and a pressurized cabin.

Since the engine was not yet available, the prototypes were equipped with the 840 hp FIAT A.74 RC.38. The first prototype was flown for the first time on August 25th, 1941, by test pilot Guido Carestiato. It reached a speed of 512 km/h, while the second prototype was flown in September of the same year.

The two homologated vehicles, MM 8616 and MM 8617, were flown to Guidonia by Marshal Gori and Sergeant Staube on June 28th, 1942. The aircraft was not pursued because the expected engine was not available until 1943, by which time Italy had already started producing German inline engines under license for more than a year.

The Macchi M.C. 201. Source: wikipedia.com

Surviving Macchi M.C. 200

Given the large production numbers, there are still three MC 200s exhibited in museums.

A destroyed fuselage and radial engine are exhibited at the Museo dell’Aeronautica Gianni Caproni in Trento, North-East Italy. Serial number unknown.

An example is exhibited at the Museo Storico dell’Aeronautica Militare in Vigna di Valle near Rome. Original serial number MM.8307, serial number exhibited MM.7707.

The last surviving example is on display at the National Museum of the United States Air Force in Riverside, Ohio. This aircraft belonged to the 372ª Squadriglia of the Regia Aeronautica. In order to replace losses, the plane was transferred in November 1942 to the 165ª Squadriglia in North Africa.

Due to the Battle of El Alamein and the hasty retreat from the Benghazi airport, the plane was abandoned with the coat of arms of the 372nd Squadron and did not receive the 165th Squadron coat of arms. It was captured by British troops and was subsequently shipped to the United States, where it was displayed around the country to sell war bonds.

It was later sold to the New England Air Museum, where it remained on display until 1989, when it was purchased by a private owner who had it restored in Italy by a team from Aermacchi (the new name of the company) and then sold to the US museum. Fortunately, the aircraft is displayed with the original coat of arms of the 372nd Squadron of the Regia Aeronautica and MM. 8146 serial number.

Conclusion

The Macchi M.C. 200 was one of the most produced fighters in Italy during the Second World War. It proved to be a reliable fighter, easy to produce and fly, with adequate power and speed and served on all fronts where the Regia Aeronautica was employed.

As the war progressed, it became increasingly obsolete against newer, more powerful types, but still saw service until the end of the war and even after.

Macchi M.C. 200 Specifications

Wingspan: 10,580 m
Length: 8,196 m
Height: 3,510 m
Wing Area: 16,800 m²
Engine: Fiat A.74 RC.38 radial engine, 14-cylinders, 870 hp, 31,250 cm³
Empty Weight: 1,910 kg
Maximum Takeoff Weight: 2,340 kg
Fuel Capacity: 313 liters
Maximum Speed: 503 km/h at 4,500 m
Range: 570 km
Maximum Service Ceiling: 10,700 meters
Climb speed: Climb to 6,000 m in 7 minutes and 33 seconds
Crew: One pilot
Armament: 2 Breda-SAFAT 12,7 mm with 370 rounds each

Gallery

Illustrations by Carpaticus

Macchi M.C. 200 Serial Number M.M. 336, December 24, 1937
Macci M.C. 200 1st Series 91st Squadron, 10th Squadron. Gorizia 1939
Macchi M.C. 200 1st Series of the 88th Squadron, 6th Group. Catania, winter 1940
Macchi M.C. 200 23th Series of the 362th Squadron, 22th Autonomus group. August 1941, Krigoriov, Soviet Union
Macchi M.C. 200AS of the 373th Squadron, 153th Autonomus Group, North Africa, Summer 1941
Macchi M.C. 200 of the first series produced by Breda in Milan before its delivery to units
Macchi MC 200AS captured by British troops in Sicily, September 1943
Macchi M.C. 200AS of the 93th Squadron, 8th Autonomus Group piloted by Marshal Bruno Batazzi of the Aeronautica Cobelligerante Italiana in Gerbini, October 1, 1943
Macchi M.C. 200 of the Italian Air Force of the 2nd Fighter Squadron of the Fighter School in Lecce, 1946

Credits

  • Written by Arturo Giusti
  • Edited by Ed J. & Stan L.
  • Illustrations by Carpaticus
  • Aermacchi C.200 – La Bancarella Aeronautica Torino, Gianni Cattaneo
  • Macchi MC 200 Saetta – Maurizio Di Terlizzi
  • Macchi MC. 200/FIAT CR. 32 – Italo De Marchi and Pietro Tonizzo
  • Macchi MC 200 Saetta, pt. 1 (Aviolibri Special 5) – Maurizio Di Terlizzi
  • Macchi MC 200 Saetta, pt. 2 (Aviolibri Special 9) – Maurizio Di Terlizzi
  • Aermacchi, Bagliori di guerra (Macchi MC.200 – MC.202 – MC.205/V) – Nicola Malizia
  • The Macchi-Castoldi Series, Famous Fighters of the Second World War-2 – William Green
  • I brutti Anatroccoli della Regia – Daniele Lembo
  • The Macchi MC.200 (Aircraft in Profile number 64) – Gianni Cattaneo

Arsenal de l’Aéronautique VG.33

French flag France (1936-1940)
Fighter – 25 Built & ~200 Incomplete [Destroyed]

The VG.33 on an airfield. Colorized by Amazing Ace

Arsenal de l’Aéronautique was one of the more peculiar plane manufacturers of interwar France, though it is also one of the somewhat more obscure ones. Arsenal was a state company which was created towards the end of 1934. Its goal at the time was to provide a way to train aviation engineers employed by the French state, and to help them evaluate design proposals. It would also be tasked with studying aircraft designs without the profitability constraints of a private company, meaning Arsenal de l’Aéronautique would typically be used to study experimental projects not necessarily meant to see mass-production. Following the mass nationalization of France’s aircraft industry ,which began in August 1936 under the Popular Front’s government, Arsenal was given eight hangars built by Bréguet in Villacoublay, near Paris, to install its design bureau and production facilities.

Roots in Tandem-Engine Fighter Designs

The timeline of the VG 33’s predecessors tends to be somewhat unclear. It is generally considered that the fighters hold their roots in tandem-engine designs, which were being studied at the request of the French state in the mid to late 1930s. The VB10, which would be manufactured postwar, was one result of these studies. However, orders to design such tandem designs appear to date from 1937 according to some sources, while a mockup of the VG 33’s direct predecessor, the VG 30, appeared in November of 1936.

The Arsenal VG.30 mockup, the beginning of the VG.3X series of fighters, at the Paris air show of November 1936. [arsenalvg33.free.fr ]
In any case, the engineers of Arsenal, led by lead engineer Michel Vernisse, presented their new plane at the 15th Paris Air Show in November 1936. The design they had worked on appears to date from early 1936, and was an attempt to compete with contemporary fighter designs, such as the MS.405 or LN 161 . This aircraft would be designated the Arsenal de L’aéronautique VG.30.

The VG.30: An Impressive First Draft

The VG.30 mockup which was first presented at the Paris air show was a low cantilever-wing monoplane powered ,originally, by the Potez 12dc 610 hp in-line engine. The plane was to use an almost exclusively wooden construction, which would save on cost and strategic resources (though this would prove less so the case than expected when it was found France lacked the spruce wood reserves to build the aircraft and had to purchase large quantities abroad to compensate for this issue). It had a capable armament of one 20 mm HS-404 firing through the propelled hub, and four wing-mounted 7.5 mm MAC 34 machine-guns. The wings had a surface of 14 m². When first unveiled, the VG.30 had a very modern appearance and drew considerable interest from France’s air ministry. So much so that, in early 1937, the Air Ministry set requirements for a competition, the “A.23”, for French aircraft designers to offer light fighter aircraft designs. This opened up some competition to the VG.30, which would materialize in several prototypes, such as the (Bloch MB.700, SNCAO CAO.200, Roussel R.30).one design, Caudron’s C.714, would enter production (Caudron’s very light C.714)

Arsenal worked on adapting their VG.30 to these requirements and then manufactured a prototype. Manufacturing of the prototype started during the summer of 1937, and faced some considerable delays. Notably, the Potez engine could not be delivered, which pushed the Arsenal designers to switch to another engine, Hispano-Suiza’s 12Xcrs, which would provide a considerable power increase up to 690 hp. This change would start the association between Arsenal’s VG.3X series fighters and Hispano-Suiza in-line engines.

A small but nonetheless rare view of the VG.30 prototype during flight. [Internet Movie Plane Database]
The first prototype of the VG.30 had its first flight on the 15th of October 1938. It would still have to wait several months for official state trials, in which some subsequent modifications were made to the aircraft. in July of 1939 were the state trials undertaken. The VG.30 proved to have decent performance for a light fighter with a Hispano-Suiza powerplant that was not the most powerful of these available; up to 485 km/h in level flight. In a dive, the VG.30 was found to reach 805 km/h.

The VG.30 prototype on the ground during trials. [arsenalvg33.free.fr ]

Improving Upon the VG.30

The VG.30 had been found to be a rather capable design, but it had room for improvement. This was done by designing the VG.31. An issue with the VG.30 was that the radiator was fairly far forward. Being further in front than the cockpit, it was found not to be ideal for the plane’s aerodynamic profile. The VG.31 had its radiator moved back by two meters, and also had the wing surface reduced by two square meters. A more powerful engine was fitted in the form of the Hispano-Suiza 12Y-31 860 hp, which did not however feature a 20 mm gun firing through the propeller hub. Two of the wing machine-guns were also removed, with only two 7.5 mm MAC 34s remaining as armament.

The VG.31 was never flown. It appears a fuselage was built, but was then converted to a VG.33 which was also never flown, but used as a model to base production upon.

The VG.33: First Production Model

Wind tunnel trials of the VG.31 showed that its reduced wingspan resulted in aerodynamic instability. Its reduced armament was also a major issue. However, its radiator, pushed back to the rear, appeared to be a good design choice in order to reduce drag and improve the aerodynamic profile of the series.

In designing a more advanced version, the best parts of the VG.30 and VG.31 were combined. The new fighter, the VG.33, would combine the wingspan and armament of the VG.30, with the fuselage and engine of the VG.31 – modified to mount a 20 mm HS-404 firing through the propeller hub.

Production of the VG.33 prototype started in 1938, and the prototype took flight for the first time on the 25th of April 1939. The official trials would last from July of 1939 to March of 1940, and were generally very positive.

Design: The Structure of the VG.33

A photo of the first VG.33 prototype during production in late 1938, showing the wooden structure of the aircraft before the plywood cover was applied. [Le Fana de l’Aviation n°199]
Schematics of the wing structure of the VG.33, which was mostly made using spruce. [Le Fana de l’Aviation n°199]
The VG.33 was designed using a largely wooden construction, made mostly of spruce. Almost all of the plane’s internal structure was wooden, and then given a plywood skin. The VG.33 used a semi-monocoque fuselage and a one-piece wing structure. The plane had a wingspan of 10.80 m, with each wing having a surface of 14 m². The plane was 8.55 m long, and 3.35 m high. Empty, it would weigh around 2,050 kg. When loaded, it would be between 2,450 and 2,896 kg (the second prototype would be weighed at 2,680 kg in seemingly standard configuration, with guns, fuel and pilot). The VG.33’s landing gear deployed outward.

The mounting of the Hispano-Suiza 12Y-31 engine onto a VG.33. [Le Fana de l’Aviation n°199]
The VG.33 used a Hispano-Suiza 12Y-31. This was a V12 engine producing 860 hp maximum at a critical altitude of 3,320 m, and at 2,400 rpm. This engine was fitted with a three-bladed Chauvière variable pitch propeller with a diameter of 2.95 m. This propeller would rotate at up 1,600 rpm. The water radiator was located below the cockpit,and was recessed into the fuselage as a way to reduce drag as much as possible. Upon take-off, a VG.33 would weigh 2,680 kg.

Firing through the propeller hub was the plane’s heaviest armament: a 20 mm HS-404 autocannon. Found on most French fighters of the era, this cannon fired 250 grams projectiles at a muzzle velocity of 880 m/s. It was fed by a 60-round drum magazine, which would typically be expended quite quickly considering the weapon typically fired at 570 to 700 rpm. Additionally, two MAC34M39 machine-guns were located in each wing. The M39 was the belt-fed version of the original MAC34 aircraft machine-gun, which initially used drum magazines. The 9 gram 7.5 mm projectiles were fired at 830 m/s, and 1,200 to 1,450 rpm. With a larger ammunition provision of 850 rounds per gun, the machine-guns could be kept firing much longer than the cannon.

The VG.33 featured the standard radio of the French air force at the time, the RI 537.

Performance

The VG.33 on an airfield, giving a good angle on the plane’s sleek profile and radiator. [Pinterest]
The trials undertaken from July of 1939 to March of 1940 gave a very good impression of the Arsenal VG.33, which could reasonably be considered the best French single-engine fighter of the era.

At its optimal altitude of 5,200 m, the VG.33 could reach a maximum speed of 558 km/h. This was faster than the newest French fighter of the time, the D.520, by about 20 km/h. The take-off speed would be of about 135 km/h, with a take-off distance of about 550 m. The landing speed was 125 km/h. The plane’s climb-rate was also a strength of the design. It would reach 1,000 m in 1.17 minutes, 2,000 in 2.34, 5,000 in 6.26 and 8,000 in 13.26. The plane had an operational ceiling of roughly 9,500 m.

The VG.33 had a maximum range of 1,060 km with its full fuel load of 400 litres. At an altitude of 5,000 m, it had an endurance of two hours and forty minutes There were trials for additional fuel tanks on the VG.30, which could perhaps have been applied to the VG.33 as well. The plane would then have a fuel load of 600 litres, and it was expected a VG.33 could cross up to 1,560 km, or fly for four hours and twenty minutes.

A view of the instrument board in the VG.33’s cockpit. [Pinterest]
Posessing superb performance, forgiving flight characteristics, and good maneuverability, the VG.33 was a great fighter for its day . The first report made by the CEMA, the French Air Force’s evaluation service, in September in 1939, found the plane had excellent and well-balanced control surfaces which were effective at all speeds. Even at low speed, the plane remained very controllable all the way down to the stall speed, which made it easy to perform landings with. Furthermore, there was no particular imbalance and no risk of the plane losing control and nosing over. Taking-off was also not hard on the VG.33. The plane had no issues keeping a straight trajectory on the runway,and was considered very controllable even on the ground. The landing gear was found to be reliable and safe. The only somewhat lacking element was found to be the plane’s brakes, which were perhaps not as powerful as would be appreciated.

In comparison to the D.520 – which was already a decent fighter – the VG.33 compared favorably in pretty much all areas. This was even more of an achievement when taking into account the weights and powerplants of the two planes. The D.520’s weight was about equal to the VG.33 (2,050 kg empty, 2,740 kg fully loaded), however, it used a more powerful version of the same series of Hispano-Suiza 12Y engine, the 12Y-49. In comparison to the VG.33’s 12Y-31, the 12Y-49 producded 90 hp more, with a maximum output of 950 hp. This did not prevent the VG.33 from being faster than the D.520, climbing at a higher rate, and being more manoeuvrable, while featuring the exact same armament. In other words, the VG.33 would be, by the standards of 1939 and1940, a stellar fighter, very much able to compete with the newest designs from Germany or Great-Britain, the likes of the Bf109E and Spitfire. The plane would also have enough evolutionary potential to birth a series of fighters lasting potentially well into the war

A view of the uncovered 12Y-31 engine of a likely unfinished VG.33, the photo likely being of German origin. The 12Y-31 was not the most powerful version of the 12Y engine available by 1940, yet it was sufficient for the VG.33 to outclass fighters such as the D.520 powered by more powerful models of the same engine family. [hisaviation.com]

Production Orders and Setting Up the VG.33’s production

The outbreak of the Second World War in September of 1939 led to Arsenal’s fighter,which had been undertaking trials for several months at this point, being ordered into production. A first order was placed on the 12th of September, for 220 VG.33s.

Arsenal de L’Aéronautique lacked any facilities suited for mass-production. As such, production of the VG.33 would be undertaken by the SNCAN factory of Sartrouville, South-West of Paris. Five days after the first order, an additional 200 VG.33s were ordered, with the fighter being thought of as a good potential replacement for the aging Morane-Saulnier MS.406.

In the following months, orders and scheduled production of the VG.33 would evolve considerably, with the type quickly being seen as a future mainstay fighter for the French air force. By late September 1939, it was planned that the first 10 serial-production VG.33s were to be delivered in April of 1940, with production gradually rising to 150 planes a month by the autumn. The schedule was revised in November, with the 10 examples then being scheduled for February, and production to be set at 50 planes a month from April onward at the SCAN factory. It was already understood that a second assembly line would be required at this point. It was planned to open an assembly line in Michelin’s factories of Clermont-Ferrand, in the region of Auvergne in Southern France. This facility would not produce the VG.33, but one of its derivatives, the VG.32, of which the first were to be completed in December of 1940. There were also plans to set up a VG.33 production chain in Vendée, Western France.

VG.33 fuselages (top) and wing structures (bottom) during production. [Le Fana de l’Aviation n°199]
The flap of a VG.33 during production in a workshop. [arsenalvg33.free.fr ]
Production of the VG.33 required a large number of small producers. The aircraft’s largely wooden construction meant that a lot of parts could be supplied by cottage industry sources. Nonetheless, the production of the plane was quite consuming in terms of resources. To produce a single VG.33, 1,166 kg of spruce, 110 kg of plywood, 880 kg of steel, 436 kg of aluminum and duralumin and 125 kg of magnesium was required. Even if mostly wooden, a large quantity of steel was still consumed in the aircraft’s production. The most significant efforts in providing the materials needed to produce the VG.33 were not spent in acquiring any of the steel though, but rather the spruce wood. The French Air Force only had a reserve of 750 tonnes, and the wood was also used to manufacture some reconnaissance or training aircraft, meaning this available reserve would only be sufficient to provide for about 500 VG.33s. France had to start a scramble to acquire spruce from foreign sources. In November, the acquisition of 500 m3 of spruce from Great-Britain was negotiated. In the meantime, France also bought spruce not only from its traditional suppliers, the USA and Canada, but also from an additional source, Romania. Romanian spruce was soon found to be lacking in comparison to the North American-sourced material. However, it would still be sufficient for less strategically important reconnaissance or training aircraft, freeing up better quality spruce for the VG.33, which had become an absolute priority of the French air ministry by the spring of 1940. In terms of cost, the airframe of the VG.33, without engine or armament, cost 630,000 French francs to produce. This was less than the D.520 (700,000) or MB.152 (800,000), and the VG.33 could be considered to be a fairly economical fighter – though not as much as the much lighter, and less capable, Caudron C.714, born from the same specifications .

Too Little, Too Late

The first production schedule for the VG.33 evolved considerably over the months.At the outbreak of the war, it was expected that the first VG.33s would be delivered in April 1940. In November 1939, the date for the first expected deliveries was changed to February 1940. In January of 1940, it appeared obvious this schedule would not be met and the new set date for the first VG.33 deliveries was March. Finally, in March, the first VG.33 were not yet completed, and the schedule was moved again to April of 1940, where it originally was at the start of the war. Finally, the first production aircraft would take flight on the 21st of April 1940. The next two production aircraft followed in early May. Eventually, 7 production aircraft would be taken into the French Air Force’s registry. The aircraft’s production and service was cut short by the German invasion of the Low Countries and France, with the production facilities at Sartrouville being occupied by German troops around the 14-15th of June 1940.

Side view of a VG.33. Taken in Toulouse, Southern France, in 1942, this photo shows one of the few production aircraft which could be evacuated to Southern France in time. [Le Fana de l’Aviation n°199]
The first squadron the VG.33 was supposed to enter service with was the GC ½, which previously operated the MS.406, far outclassed by the D.520 or Bf.109E. This squadron was allocated its two first aircraft, the 2nd and 4th production VG.33s, on the 10th of June 1940. The squadron, already engaged in the campaign, could not allocate any pilots to recover the aircraft. In the end, pilots of a reconnaissance group, GR 1/55, took them and relocated them from the under threat airport of Villacoublay, near Paris, to the far-away Toulouse-Francazal, deep in Southern France. Production planes n°1 and n°7 were moved to Clermont-Ferrant, where they were supposed to serve as models for the future VG.32 assembly chain. A fifth aircraft was moved to Southern France, n°7, in uncertain conditions.

Two VG.33s were reportedly part of an ad-hoc defensive squadron created in Bordeaux in June, GC I/55 active from the 17th to the 24th. According to some scaint claims, they may have been engaged in a few combat missions in the last days of the campaign of France. Two VG.33s are known to have been captured by German forces on Mérignac airfield, in Gironde, the same region as Bordeaux. These may have been the same aircraft.

Two production VG.33s captured intact by the Germans in Mérignac, Gironde. [Le Fana de l’Aviation n°199]
Outside of these 7 aircraft taken in by the French air force, production at SCAN’s facilities in Sartrouville had been starting to pick up steam, and a number of aircraft were at various stages of production. It appears a total of 19 fighters had been completed. 20 more lacked only their landing gear and were near completion. Seemingly, at least 120 more fuselages were at various stages of production. The vast majority of these were sabotaged in extremis to prevent advancing German troops from capturing them. Notably, the completed fighters, that had yet to be taken in by the French air force were destroyed by the crew of a Potez 540 reconnaissance bomber on the 14th of June using sledgehammers, mere hours before German troops would seize the facilities. This did not prevent the Germans from getting their hands on a few VG.33s. Two VG.33s were seemingly captured in Mérignac airfield. Located near Bordeaux, these two planes may have been those part of an ad-hoc defensive squadron. At least one aircraft would be repainted in German colors and tested extensively, likely at Rechlin airfield, Germany, and given the registration number “3+5”. According to some sources, the Germans would capture a total of five serial production VG 33s as well as the original prototype.

An uncompleted VG.33, likely photographed by the picture services of Germany’s armed forces in Sartrouville. [Le Fana de l’Aviation n°199]
The VG.33 which would be tested by German pilots at the Rechlin airfield. [Armedconflicts.com]
Another photograph of the VG.33 which was captured by the Germans [Armedconflicts.com]

A Series of Derivatives, France’s Potentially Mainstay World War Two fighter

Though the VG.33 was already a very potent fighter by 1940, there were already plans to improve upon it, generally by improving its powerplant. A variety of prototypes, mostly based on VG.33 airframes and given alternative designations as VG.33 prototypes, were flown in the Spring of 1940 and would have given Arsenal’s new series of fighters a more promising fate, were it not for the German occupation of France.

The VG.32, developed before the VG 33, but never flown, replaced the 12Y-31 engine with an American-sourced Allison V-1710-C15 1,150 hp engine. A model from the same series of engines would be fitted into the American P-40 Warhawk fighter. While also being more powerful than the Hispano-Suiza 12Y, the most significant advantage of the Allison engine was that it would relieve France’s strained engine industry. By producing the relatively easy to build VG.33 airframe and giving it an engine which would not strain the local industry, France would have a fighter that would require comparatively few work hours. The fifth VG.33 prototype airframe, VG.33-05, was supposed to receive the Allison engine and be the VG.32 prototype. However, the engine was not delivered before the armistice and, as such, the prototype was never flown. Nonetheless, the VG.32 had been ordered for serial production. Production was to be set-up in Michelin’s facilities of Clermont-Ferrant. It was hoped the first dozen would be delivered in December of 1940, with 25 to be manufactured in January of 1941, 40 in February, 70 in March, 100 in April, and 150 monthly from May 1941 onward. This obviously never materialized. As it was never flown, there is no good way to estimate the VG.32’s performance. The Allison engine reportedly required lengthening the engine cover by 42 cm and may have made the plane somewhat heavier, but its significantly higher power output may still have resulted in the VG.32 being at least comparable, if not somewhat superior to the VG.33.

A rear view of the first VG.33 derivative to take flight, the VG.34, parked aside a LeO 451 bomber on a French airfield. [Aviafrance]
The first VG.33 derivative to take flight would be the VG.34. Built using the second VG.33 prototype airframe (VG.33-02), the VG.34 mounted a more powerful version of the Hispano-Suiza 12Y engine, the 12Y-45. Producing 960 hp, this was enough to give the VG.34 a maximum speed of 576 km/h at 6,000 m, and likely improve upon its climb rate as well. The VG.34 had its first flight on the 20th of January 1940. It appears to have been at an airfield near Toulouse by the armistice, with its further fate unknown.

The VG.35, made from VG.33-04, received a Hispano-Suiza 12Y-51 engine producing 1,000 hp. Sadly, it is a lot more elusive than the VG.34. Its recorded performances do not appear to be known, nor do any photo survive, despite the VG.35 having its first flight on the 25th of February 1940. The plane was known to be in Orléans by the point German forces captured the city. Its further fate is unknown.

A front view of the fairly impressive-looking VG.36 prototype. [Old Machine Press]
The VG.36 could be said to be a more mature version of the VG.35. Using the same 12Y-51 engine, the VG.36 was not built from a converted VG.33 airframe, but instead had a new one, incorporating a number of changes. Its radiator was wider but presented a smaller profile, and was more integrated into the fuselage in an effort to reduce drag. Taking its first flight on the 14th of May 1940, the VG.39 could reach 590 km/h at 7,000 m. Very satisfying in terms of its performance, it appears to have been scheduled to replace the VG.33 on the production lines at some point. As for the prototype, it was reportedly withdrawn to an airfield in La-Roche-Sur-Yon during the campaign, before being destroyed to avoid capture.

The VG.37 was never built; a further development of the VG.36, it was to feature a supercharger and be modified for long-range operations. The VG.38 was never built either, and was to feature an improved version of the 12Y engine – the exact model being unknown.

The sleek and impressive looking VG.39, often considered to be the most brilliant example of the future of French fighter design to have reached prototype stage by 1940, parked in front of a LeO 451 bomber. [ww2.sas1946.com]
The VG.39 was the most advanced model which took flight. Its main improvement was in terms of its powerplant. It received the advanced Hispano-Suiza 12Y-89 ter, with an output of 1,200 hp. It appears this engine did not allow for a cannon firing through the propeller hub in this version. To somewhat compensate for this, the wings were redesigned, keeping the same surface area but having a vastly modified structure which enabled for the mounting of one additional MAC34 machine-gun in each wing. Taking its first flight on the 3rd of May 1940, it could reach an impressive 625 km/h at 5,750 m. A very well performing plane for the time, the VG.39 was, as the VG.36, intended to enter production. This would, however, likely have been in the form of an improved version still on the drawing board by 1940. Designated as the VG.39bis, this improved VG.39 would feature an even more powerful Hispano-Suiza 12Z-17 engine producing 1,600 hp and allow for a 20 mm HS-404 to fire through the propeller hub, with the 6 wing machine-guns being retained. The VG.39bis would also incorporate a lower and widened radiator design similar to the one found in the VG.36. It would likely have been a very high performing aircraft, but it stayed on the drawing board due to the German occupation of France. As for the VG.39 prototype, its eventual fate is unknown.

The Undying Shadow of a Promising Fighter: Vichy Regime Studies

As can be seen, the VG.33 was an aircraft with promising performance, and an already well-developed series of variants which would have guaranteed the aircraft good evolutionary potential. Had France not been knocked out of the war by 1940, it is likely the Arsenal VG.3X series would have become for France what the Spitfire was to Britain or the Bf.109 to Germany: a mainstay able to continue to evolve and remain relevant for pretty much the entirety of the conflict.

This promising future was cut short by German wings, tracks and feet occupying France in 1940. Nonetheless, the armistice regime known as Vichy continued some studies upon the base of the VG.33. A few of the fighters, seemingly five production models as well as the original prototype, were indeed re-located in the unoccupied part of France at the end of the 1940 campaign. Though they were not put into service, they appear to have been taken as a basis to continue working on future fighters.

A series of profile views of Arsenal’s series of fighters. There is little in common to be found between the original VG.30 or VG.33 and the later VG.50 or VG.70 projects undertaken by the Vichy regime. [le Fana de l’Aviation n°199]
Under the Vichy regime, studies would continue, leading to the VG.40, 50 and then VG.60. The definitive aircraft designed by 1942 would have featured larger 16.25 m² wings, and a completely redesigned fuselage which had little to do with the old VG.33. It would feature a new version of the Hispano-Suiza 12Z engine. Studies stopped after the occupation of the unoccupied part of France in November of 1942, but would resume after the liberation of France, with a VG.60 fitted with a German Jumo 213E 1,750 hp engine being considered. This would have been a fighter vastly different from the original VG.33. Armed with eight wing-mounted M2 Browning 12.7 mm machine-guns and a cannon of unknown model firing through the propeller hub, it would have weighed up to around five tons and was expected to reach over 700 km/h. This would never materialize, as Arsenal would end up manufacturing a version of a pre-war project in the form of the tandem engine VB.10. The design bureau would also design some jet fighters in the form of the VG.70 and VG.90, though these would not result in any Arsenal aircraft being adopted by France before the bureau was absorbed into the larger SNCAN in December of 1954.

A Fighter Mystified and Fantasized-About, Cut Short by France’s Defeat

The Arsenal VG.33 was a particularly interesting French piece of equipment. Having its roots in a venture by Arsenal de L’Aéronautique to design the VG. 30 light fighter, the type would evolve into a solid fighter by 1939-1940. Having both promising performance and evolutionary potential, the VG.33’s future was cut short by the German invasion which happened right as the very first production aircraft were taking their first flights. Even more so than the D.520, often described by this sentence, the VG.33 arrived too few and too late, and couldn’t provide the French air force an aircraft able to compete with Germany’s Bf.109 . It has since become a fairly mystified piece of French engineering. An elegant fighter with a sleek design, it has become a sort of ambassador for the large variety of advanced military equipment which France was to field by 1940, but never got the chance. In this fashion, it is not too different from the Somua S40 and B1 Ter tanks or MAS 40 rifle in the psyche of French military enthusiasts.

Two production VG.33s on a French airfield. The majestic and sleek fighter design that is the VG.33 has attracted the eyes of many French military enthusiasts for decades. Though the reality is somewhat more complex, it is certain the VG.33 would have provided the French air force with a better performing asset than the MS.406, MB.152, and even D.520 and H.75. [Old Machine Press]

Replica Construction

This heavily mystified status of the VG.33 likely played a role in the creation of a project to produce a replica of the French fighter aircraft. An association, Arsenal Sud Restoration, was created with the goal of building a replica. With the original plans unavailable, the team had to recreate them using new tools. As of November 2020, while far from complete, the shape of the replica’s fuselage is starting to take shape, while the rudder has been painted and given its markings.

A view of the state of the project in October of 2020 [Facebook]

Variants

VG.30: Original light fighter prototype

VG.31: Planned modified variant of the VG.30, with Hispano-Suiza 12Y-31 860 hp engine, radiator moved to the back, and only two 7.5mm machine-guns. Never flown, a fuselage built and converted to a VG.33 prototype

VG.32: Planned variant fitted with Allison V-1710-C15 1,150 hp engine. A VG.33 prototype fuselage was set aside to receive the engine and serve as the VG.32 prototype, but it had not yet been mounted in June of 1940. Production was scheduled to begin in December 1940.

VG.33: Main production variant, using the Hispano-Suiza 12Y-31 860 hp engine and armed with one 20mm HS-404 autocannon and four 7.5mm MAC 34 machine-guns.

VG.34: Prototype converted from the second VG.33 prototype airframe, using the Hispano-Suiza 12Y-45 engine producing 960hp.

VG.35: Prototype converted from the fourth VG.33 prototype airframe, fitted with the Hispano-Suiza 12Y-51 1,000hp engine.

VG.36: Prototype, an improved iteration of the VG.30 series with the 12Y-51 engine in a modified airframe, with a radiator designed to reduce drag and significant other changes. Was to replace the VG.33 on the production lines at some point

VG.37:Planned variant of the VG.36 fitted with a supercharger and optimized for longer-range operations, never built

VG.38: Fighter design with an unknown iteration of the 12Y family of engines, never built.

VG.39: Prototype using the Hispano-Suiza 12Y-89 ter, producing 1,200hp but not fitted with an engine cannon, and instead using six 7.5mm machine-guns instead of four.

VG.39bis: Further evolution of the VG.39, powered by the Hispano-Suiza 12Z-17 1,600hp engine which would allow for a 20mm firing through the engine, while retaining six 7.5mm machine-guns. Never built

VG.40: First variant studied under the Vichy regime, using a Roll-Royces Merlin III 1,030hp engine on an airframe based on the VG.39bis. Never built

VG.50: Variant studied under the Vichy regime, using the Allison V-1710-39 engine. Never built

VG.60: Variant studied under the Vichy regime, with a new version of the Hispano-Suiza 12Z series of engines. Never built.

Arsenal VG.33 Specifications

Wingspan 10.8 m / 35 ft 6 in
Length 8.55 m / 28 ft 1 in
Height 3.55 m / 11 ft 8 in
Wing Area 14 m² / 46 ft² (One Wing)
28 m² / 92 ft² (Total)
Engine Hispano-Suiza 12Y-31
Engine Output Take Off – 760 hp
Optimal Altitude – 860 hp at 5,200 m / 17,000 ftMax RPM –  ~1,850 Standard
Propeller Three-bladed Chauvière Variable Pitch Propeller (2.95 m diameter) 
Empty Weight 2,050 kg / 4,519 lb
Takeoff Weight 2,450 to 2,896 kg (2,680 kg standard)
5,400 to 6,385 lb (5,908 lb standard)
Wing Loading 95.7 kg/m²  /  19.6 lb/ft² (at standard 2,680 kg weight)
Fuel Capacity 400 liters / 105 US gallons           
600 liters / 158 US gallons with proposed additional non-droppable fuel tanks
Maximum Speed  558 km/h / 347 mph
Cruising Speed 385 km/h / 239 mph
Cruising Range 1,060 km / 620 mi with Standard 400 liter fuel load

1,560 km / 970 mi with Extended 600 liter fuel load

Endurance 2h40 at 5,000m with 400 liter fuel load

4h20 at 5,000m with 600 liter fuel load

Maximum Service Ceiling 9,500 m / 31,000 ft
Time to Altitude 1.17 minutes to 1,000 m

2.34 minutes to 2,000 m

3.51 minutes to 3,000 m

5.07 minutes to 4,000 m

6.26 minutes to 5,000 m

8.02 minutes to 6,000 m

10.11 minutes to 7,000 m

13.26 minutes to 8,000 m

Crew One Pilot
Armament
  • 20 mm HS-404 firing through the propeller hub center with 60 rounds
  • 4x MAC34M39 machine-guns with 850 rounds per gun in the wings
Production
  • 1 prototype + 4 completed derivative prototype
  • Around 20 production aircraft fully completed of which 7 were taken in by the French Air Force
  • 40 airframes very close to completion
  • About 200 aircraft in various stages of production in total by June of 1940 

Gallery

Arsenal VG.30 Prototype
Arsenal VG.33 Prototype
Arsenal VG.33 in Standard Camouflage for 1940
German Captured VG.33 – Depicted as seen in testing at Rechlin

Sources

  • Written by Marisa Belhote
  • Edited by Stan and Henry H.
  • Illustrations by Ed Jackson
  • Le Fana de l’Aviation, Jean Cuny & Raymond Danel, 1986:
  • N°197 : “Les Chasseurs Arsenal VG 30 à VG 70” (I)
  • N°198 : “Les Chasseurs Arsenal VG 30 à VG 70” (II)
  • N°199 : “Les Chasseurs Arsenal VG 30 à VG 70” (III)
  • L’Aviation Française, chasse, bombardement, reconnaissance et observation 1939-1942, Dominique Breffort, Histoire & Collection Editions, 2011
  • L’Arsenal de L’Aéronautique, Gérard Hartmann for hydroretro.net, February 2007
  • William Pearce for old.machinepress.com: https://oldmachinepress.com/2019/03/05/arsenal-vg-30-series-vg-33-fighter-aircraft/
  • https://www.facebook.com/ArsenalVG33/

Reggiane Re.2002 Ariete

italian flag Italy (1940)
Fighter Bomber – 48 Built

An Re.2002 belonging to the 239 Squadriglia stationed at Tarquinia airfield in Italy during June 1943. [vvsregiaavions.com]
Following the failure of the Re.2000, the engineers from Reggiane tried to design a new aircraft to fill the role of ground attack aircraft. This would lead to the development of the improved Re.2002 aircraft. While the Regia Aeronautica (Italian Air Force) ordered 500 of this version, due to problems with production, only about half of that number were ever built.

History

In the late 1930s, Italian aircraft manufacturer Reggiane was attempting to gain attention from the Reggia Aeronautica with its Re.2000. While this aircraft initially showed good flying performance, it was not adopted for service. For this reason, Reggiane’s chief engineer, Roberto Longhi, set out to develop a new aircraft that would fulfill the role of a fighter-bomber aircraft, which the Italian Air Force was in desperate need of. Roberto Longhi made sure to address the shortcomings of the Re.2000’s fuel tanks when designing the new aircraft. These were prone to leaks, so he replaced them with conventional fuel tanks. For this new aircraft, that would later be known as the Re.2002 Ariete (Ram), a large 1,175 hp Piaggio P.XIX R.C.45 Turbine (Whirlwind) – D 14 cylinder air-cooled radial engine was chosen. The Piaggio P.XIX R. engine was still in the development phase at that time and not yet ready for service. The choice of using an engine still in the development phase would have a great negative impact on the later production of the aircraft. A radial engine was preferred over an inline liquid-cooled engine due to the fact that it was durable and less vulnerable to ground anti-aircraft fire. The new aircraft had a number of similarities to Reggiane’s earlier designs, possessing the overall shape of the Re.2000, and the Re.2001’s internal construction.

First Test Flight

The maiden flight of the Re.2002 (M.M. or MM 454) prototype took place in October 1940. It was flown by test pilot Mario de Bernardi. After the first flight, the pilot noted that the Re.2002 had good general flying performance, but there were problems with the engine overheating. After several more test flights, constant engine overheating problems forced further flights to be halted, and the aircraft was returned to Reggiane for necessary engine modifications. After a number of upgrades to the engine were completed in March 1941, the test flights continued. During these tests, the Re.2002 managed to achieve a top speed of 417 km/h (260 mph).

The first prototype, ready to take to the sky. The picture was taken at the Guidonia airfield in April 1941. [vvsregiaavions.com]
Front view of the prototype. While it was chosen for production by the Italian Air Force, the production aircraft received some modifications. These included the use of a Re.2001 canopy and the addition of a fixed rear landing wheel. [vvsregiaavions.com]

Technical Characteristics

The Re.2000 was designed as a low wing, all-metal construction single-seat ground attack plane. The fuselage consisted of a metal frame covered with aluminum sheets held in place by using flush-riveting. The elliptical wings were built using a metal frame covered with a stressed skin duralumin structure. One fuel tank was located in each wing, with an additional third one placed just behind the pilot. If needed, additional auxiliary fuel tanks could be added under the fuselage or the wings.

Side view of the Re.2002 prototype. The most obvious change compared to later production planes was the removal of the rear glazed part of the canopy. [vvsregiaavions.com]
The landing gear system was unusual, but standard for Reggiane aircraft. When it retracted backward, the wheel rotated 90° before it retracted into the wheel bay. For better landing, the landing gear was provided with hydraulic shock absorbers and pneumatic brakes. The smaller rear wheel was initially retractable, but was changed to a fixed type at the start of production. The Re.2002 was powered by a 1,175 hp Piaggio P.XIX R.C.45 Turbine-D 14 cylinder air-cooled radial engine derived from the french Gnome-Rhône 14K Mistral Major. This engine was equipped with a three-blade variable pitch Piaggio P. 1001 propeller made by Piaggio.

The initial cockpit canopy was unchanged from the Re.2000 and opened to the rear. The production version had a canopy taken from the Re.2001. This canopy opened to the side.

Rear view of the Re.2002. [vvsregiaavions.com]
The Re.2002 possessed the same offensive capabilities as its Re.2001 cousin. It consisted of two Breda-SAFAT 12.7 mm heavy machine guns mounted in the engine cowling. The ammunition load for the left machine gun was 390 rounds, with 450 rounds for the right. Two additional 7.7 mm Breda-SAFAT machine guns were placed in each wing. The ammunition load for the right machine gun was 350 rounds and 290 rounds for the left.

Being designed to act as a ground attack plane, the Re.2002 was equipped with one bomb rack placed under the fuselage with an additional rack placed under each wing. The central bomb rack could carry up to 650 kg (1,430 lb). The smaller wing racks could each carry up to 160 kg (350 lb) of payload.

The Reggiane family tree line. While the Re.2002 shared many visual similarities with the Re.2000, its construction was more similar to that of the Re.2001. [Reggiane Fighters in Action]

Production for the Italian Air Force

The first production aircraft, which was built in October 1941.[vvsregiaavions.com]
Following the completion of test flights, the Italian Air Ministry (Ministerio dell’Aeronautica) gave an order for 200 Re.2002s to be produced. The first production aircraft were completed in October 1941. Due to engine production difficulties, the distribution of new aircraft to front line units was only possible in late 1942. While the initial order of 200 was increased to 300, only between 48 to 147 (depending on the source) were built for the Italian Air Force by September 1943. Initially a production order of 200 was placed in March 1942, which would be increased to 300 later in 1943. The sources unfortunately disagree about the number of produced aircraft. For example, sources like J. F. Bridlay (Caproni Reggiane Re 2001 Falco II, Re 2002 Ariete and Re 2005 Sagittario) listed a production number of 147 aircraft, which is the highest number listed in the sources. Other like Duško Nešić (Naoružanje Drugog Svetsko Rata-Italija) and David Monday, (The Hamlyn Concise Guide To Axis Aircraft OF World War II) gives us a number of 50 aircraft. While George Punka (Reggiane Fighters In Action) gives us a number of 48 aircraft. All previous numbers do not include later aircraft, especially built for the Germans which is often listed as around 60 or so. The lower production numbers were due to many reasons, lack of production capabilities, scarce resources, supply problems with engines, among others. The disagreement among sources may be the consequence of confusing the number of produced versus actually delivered aircraft.

 

Further Development

With only a small number of aircraft ever built, there were only a few known modifications and proposals for the Re.2002. One was an experimental version created by combining the Re.2002’s fuselage with the Re.2005’s wings. This aircraft was known as Re.2002 bis, but was never truly completed. The second version was to be used on two Italian aircraft carriers, the Aquila and Sparviero. While catapult launch tests were conducted on at least one Re.2002, due to the cancellation of the Italian aircraft carriers, construction of this version was never pursued. One Re.2002 was tested in the Re.2003 two-seater reconnaissance aircraft configuration. As the Re.2003 was not adopted for service, only one prototype was built. The last proposal included a torpedo carrier version, but this was never implemented. The majority of these do not appear to have received any special designation.

In Italian Service

After the introduction of the Re.2002 into service, some additional changes were made in comparison to the prototype. These include: improvements to the engine cowling, introducing a fixed rear tail wheel, and changing the canopy with a new one based on the Re.2001. The improved engine cowling actually caused some issues during dive-bombing runs, as the engine would sometimes simply stall. From the 17th aircraft onward, a new lower engine mount was tested with a different cowling type.

Delivery of the first operational Re.2002 for military  use was only possible in November 1942. The Re.2002s were allocated to the 102º Gruppo, with its 209ª and 239ª Squadriglia, stationed at Lonate Pozzolo. This unit had experience operating ground attack aircraft, previously operating German-supplied Ju-87 dive bombers. The next month, the 101º Gruppo, with its 208ª and 238ª Squadriglia, also began to receive their first Re.2002s to replace their outdated FIAT C.R. 42 biplanes.

During the Allied invasion of Sicily in July of 1943, the Italian Air Force stationed there had only 165 operational aircraft. Two groups, equipped with some 32 Re.2002 in total, were also present as part of the 5º Stormo. The first combat action was on the day of the invasion on the 10th of July, when Re.2002s managed to sink an Allied transport vessel called Talamba. Four aircraft and the commander of the 5º Stormo Colonel Guido Nobili were lost during this action. The next day, a group of 11 Re.2002s began a new attack on the Allied ships stationed near Augusta-Syracuse. The British battleship HMS Nelson was damaged with a 250 kg (551 lbs) bomb, with the mission resulting in the loss of two Re.2002s. In retaliation, the Allies bombed the Re.2002 airfields a few hours later. Due to losses, the surviving Re.2002s were repositioned to Manduria. After receiving reinforcements, the Re.2002s attempted another attack on July 19th, but lost six aircraft in the process. On 20th and 26th July, transport ships Pelly and Fishpool were sunk.

An Re.2002 during its short operational life with the Italian forces in Sicily. [vvsregiaavions.com]
In early September 1943, Allied forces landed in Southern Italy. The Italian command, in despair, dispatched a small group of aircraft supported by 15 Re.2002s in an attempt to drive them back. On 8th September, 1943, due to immense Allied pressure and rising military losses, the Italians surrendered. By this time, the 101º and 102º groups had only 24 Re.2002s, but only half were combat ready. During the two months of fighting, some 32 aircraft were lost. While 19 were lost in direct combat, the remaining were destroyed in Allied bombing actions or accidents.

In early September 1943, the 50º Stormo, with its 158º and 159º Groups, was undergoing the process of conversion to the Re.2002. But, due to Italian capitulation, only the 159º Group received Re.2002s which were not used operationally.

In German Hands

The Germans operated around 60 Re.2002 aircraft. These were mainly used against the French resistance movement. [vvsregiaavions.com]
Following the Italian capitulation, Germany launched Operation Achse (Axis) with the aim of capturing a large portion of the territory of their former ally. This included a number of production facilities, such as the Reggiane factories. The Germans seized some 14 fully completed aircraft, and around 10 more which were under construction. As there was sufficient material available, the production of the Re.2002 continued for some time under German supervision. Due to the same persistent engine delivery problems, Reggiane officials proposed mounting the 1,600 hp BMW 801 engine in the Re.2002, along with other modifications such as an updated wing design. One engine mount was tested in Germany, which led to a production order of some 500 new aircraft in late 1943. However, as the Reggiane factories were destroyed in early 1944 by an Allied bombing raid, the delivery of this modified version was impossible. In the meantime, some 60 aircraft were produced by Caproni under German supervision. Reggiane was actually owned by Caproni, thus all the necessary tooling and equipment for the continued production of this aircraft was available. Not all 60 were accepted for service by the Germans. Due to the Allied advance in April 1945, around 25 were seized by the Germans, while the remaining airframes were destroyed. Additionally, two aircraft were built at Biella. Unfortunately, the exact use of these aircraft by the Germans is not well documented. For example, it is unknown if they were ever used against the Allies in Italy. It is known that these were used by Geschwader Bongart against French resistance around Limoges, Vercors, and Aisne in 1943 and 1944.

Former Italian Re.2002 that was seized or produced for the Germans received the standard German markings, including a Balkenkreuz and a Swastika. [vvsregiaavions.com]

On the Allied Side

Smaller groups of around 40 Re.2002s, that were previously used by 5º Stormo, were operated by the new Aeronautica Cobelligerante Italiana (Italian Co-belligerent Air Force) in cooperation with  the Allies. In October 1943, these were used to form the Gruppo Tuffatori, a dive-bombing group. In 1943, they saw action in supporting the Italian Resistance Movement in Northern Italy, an area which was controlled by the Germans. In 1944, they were also employed in attack operations across the Adriatic Sea, towards the Yugoslavian coastline. One of the last combat missions of the Re.2002 was a bombing run against Axis targets in Dubrovnik on 29th March, 1944. While the Co-belligerent Army lost 9 aircraft in combat, further combat missions had to be aborted due to a general lack of spare parts, their operational life lasted less than 12 months. The surviving aircraft were reallocated to the Fighter Training School at Lecce-Leverano in June 1944. There, they were used for pilot training for a few months, before they had to be discarded, once again due to a lack of parts and poor mechanical condition. 

The Esercito Cobelligerante Italiano had close to 40 Re.2002 aircraft in its inventory. These would be used sometimes to support Italian Partisans in Northern Italy and on the Yugoslavian coastline. [vvsregiaavions.com]

Production Versions

  • Re.2002 (MM 454) – Prototype aircraft
  • Re. 2002 – Production version

Prototypes and Proposed Versions

  • Re. 2002 bis – An experimental version created by combining the Re.2002’s fuselage with the Re.2005’s wings. One built, but never used operationally.
  • Re. 2002 Aircraft Carrier Version possibly one modified for this role
  • Re. 2002 – Proposed torpedo carrier version
  • Re. 2002 – Powered by a 1,600 hp BMW 801 engine. While the engine mount was tested and a production order was given, no aircraft were ever fully completed
  • Re.2002 – One aircraft modified and tested as Re.2003

Operators

  • Kingdom of Italy – 147 aircrafts were delivered to Regia Aeronautica
  • Germany – After the Italian surrender to the Allies, Germany seized around 60 aircraft.
  • Esercito Cobelligerante Italiano – Operated some 40 Re.2002 aircraft

Surviving Aircraft

Today, there are only two surviving Re.2002 aircraft. One was located at the Italian Air Force Museum. The second incomplete Re.2002 can be seen at the French Musée de la Résistance et de la Déportation of Limoges.

The only fully surviving Re.2002, located at the Italian Air Force Museum. [Wiki]
The partly complete Re.2002 located at the French Musée de la Résistance et de la Déportation of Limoges. [Musée de la Résistance]

Conclusion

While the Re.2002 proved to be able to fulfill the role of fighter-bomber that the Italians were lacking. Due to a number of factors, its production was severely hindered. While work on the Re.2002 began in 1940, the production could not start before late 1942. Due to engine delivery problems, only a small number of aircraft were ever delivered to the Italian Force. Its first action against the Allies in Sicily ironically proved to be their last under the Fascist regime. While some would be used up to the war’s end, due to a lack of spare parts, most would be used as training aircraft until finally being discarded.

Re.2002 Specifications

Wingspans 36 ft 1 in / 11 m
Length 26 ft 9 in / 8.16 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One 1,175 hp Piaggio P.XIX R.C.45 Turbine (Whirlwind)-D 14 cylinder air cooled radial engine
Empty Weight 5,270 lbs / 2,390 kg
Maximum Takeoff Weight 7,140 lbs / 3,240 kg
Climb Rate to 6 km In 8 minute 48 seconds
Maximum Speed 267 mph / 430 km/h
Cruising speed 250 mph / 400km/h
Range 683 miles / 1,100 km
Maximum Service Ceiling 36,090 ft / 11,000 m
Crew 1 pilot
Armament
  • Two 0.5 in (12.7 mm) heavy machine guns and two 0.31 in (7.7 mm) machine guns
  • One 1430 lb (650 kg) and two 350 lb (160 kg) bombs

Gallery

Illustrations by Carpaticus

Re.2002 in the Italian Royal Air Force (Regia Aeronautica Italiana)
Re.2002 from Esercito Cobelligerante Italiano (Italian Co-belligerent Army)
Re.2002 in German Luftwaffe Service

Credits

  • Written by Marko P.
  • Edited by Stan Lucian & Ed Jackson
  • Illustrations by Carpaticus
  • Duško N. (2008) Naoružanje Drugog Svetsko Rata-Italija. Beograd.
  • M. Di Terlizzi (2002) Reggiane RE 2000 Falco, Heja, J.20, Instituto Bibliografico Napoleone.
  • G. Cattaneo (1966) The Reggiane Re.2000, Profile Publication Ltd.
  • J. W. Thompson (1963) Italian Civil And Military Aircraft 1930-1945, Aero Publisher
  • G. Punka (2001) Reggiane Fighters In Action. Signal Publication.
  • Re.2002 Photographic Reference Manual
  • C. Shores (1979) Regia Aeronautica Vol. I, Signal publication.
  • J. F. Bridlay (1972) Caproni Reggiane Re 2001 Falco II, Re 2002 Ariete and Re 2005 Sagittario, Profile Publications
  • David. M, (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
  • Images: Rod’s Warbirds Reggiane Re-2002 Ariete II –  http://www.vvsregiaavions.com/RegiaHTML/rre20021.htm

 

Re.2000 “Héja”

Hungarian Flag Kingdom of Hungary (1939)
Fighter aircraft – Number used: 70 brought and 185 to 203 built under license

The Italian Re.2000 was known in Hungary as the Héja (Hawk). Source: -: https://forum.warthunder.com/index.php?/topic/273562-reggiane-re2000-falco-and-h%C3%A9ja-ii-hungarian-version/

Despite not being adopted by the Italian Air Force, the Re.2000 would see some export success. Hungary bought a production license and 70 new aircraft for its Air Force. These would be supplemented by locally produced planes, both of which would see action during the Second World War. In Hungarian service, the Re.2000 would be known under the ‘Héja’ (Hawk) nickname.

Hungarian-Italian cooperation

During 1939, Hungarian Air Force (Magyar Királyi Honvéd Légierő) military officials were concerned with the need of acquiring more modern aircraft designs. As, during the 1930s, Hungary was a regular customer of Italian aviation equipment and planes (like the Fiat CR.32, for example), it was logical for the Hungarian Air Force military officials to turn to Italy for the acquisition of new aircraft.

By the end of 1939, Hungary sent a military delegation to purchase 70 fighter and 70 bomber planes. The Italians presented a number of different designs to this delegation, which included the Re.2000, Savoia-Marchetti S.M.79, and Ca.135bis. After a demonstration, the Hungarians were satisfied with the Re.2000’s performance. On 27th December 1939, a contract for the purchase of 70 new aircraft of this type was signed. This contract also included weapons, spare parts, onboard equipment, and a small number of airframes. Radios were not bought, as the Hungarians planned to equip them with domestically built R-13 ones. In addition, a license for domestic production was also obtained. The domestic production of the Re.2000 was to be carried out by MAVAG (Magyar Állami Vas, Acél és Gépgyárak/ Hungarian State Iron and Steel Works). The Re.2000s built-in Hungary were to be powered by domestically produced W.M. (Weiss Manfred) K-14 engines. The Italians were to deliver the first specimens by 15th January 1940.

As there were delays with the shipment of the first planes, the Hungarian Air Force sent a new delegation in April 1940 to Italy to determine what the problem was. To their astonishment, only one Re.2000 had been completed by this time. The Reggiane factory could not produce more planes due to a constant lack of raw materials. This single plane was flown to Hungary in May 1940. In Hungarian service, the first Héja received the serial number V-401 or V.401 (the V stands for Vadász/fighter). The remaining Héjas supplied by the Italians received the serial numbers V-402 to 470.

By the end of 1940, only 7 Héjas had been delivered to Hungary. The slow delivery rate was due to the shortage of materials, but also due to the fact that the Italian Air Force confiscated 9 planes for their own use. These would later be replaced by 9 newly built aircraft. The sources are not clear when the last aircraft arrived in Hungary. According to Gianni C., this happened at the end of 1941, but according to George P., this was on 29th May 1943!

The name

As already mentioned, the Re.2000 was known in Hungary under the Héja nickname. The origin of this name can be traced back to the Italian name given to this plane, “Falco”. In some sources, possibly in order to distinguish between the Italian and Hungarian built planes, the first were marked as Héja I and those built-in Hungary as Héja II. This article will use these two designations (when the precise model is noted by sources) but, for the sake of simplicity, the Héja I will be simply called Héja.

In Hungary

As the first Italian built Héja planes began to arrive in Hungary, they were intended to be given to different pilot training schools. Immediately after the arrival of the Héjas, the Hungarians noted a number of technical or structural problems with these planes. A great issue was the poor state and design of the throttles. These faulty throttles caused a number of accidents, with one Héja being lost in a fire during a landing accident. This issue with the throttles, despite efforts from Hungarian engineers, could not be solved until the end of 1941. Other issues with the Héjas were the poor state of the machine guns, which often jammed during firing or were misaligned, the instability of the canopy panels, and the lower quality of the wing skin. All this caused the Hungarians to make many modifications to the Héja in order to put them into service.

The Hungarian Héja II

With the contract to purchase 70 new fighters, the Hungarians also bought a license for production. The production of new planes was to be done by MAVAG. In order to avoid being dependent on Italian engines and to lower the overall price of the Re.2000, the Hungarians decided to upgrade this fighter with a domestically built engine. The initially planned new engine was a radial 14-cylinder air-cooled WMK-14 giving out 950 hp (or 930 hp, depending on the source). This engine was, in fact, a license-built version of the Gnome-Rhône Mistral Major K 14. One WMK-14 engine was sent to Reggiane to be installed in a Re.2000 in order to see if this modification was possible, but also to test its performance. The Italians, on the other hand, were never interested in this idea and preferred to sell the Re.2000 with its original engine. Due to the low interest and slow production rate of the Re.2000, nothing came from the Hungarian proposal. For this reason, the Hungarians decided that MAVAG should make these modifications.

Side view of the Hungarian Héja II. Source: https://www.sas1946.com/main/index.php?topic=28944.0

In order to improve the potential flight performance of the plane, the Hungarian Ministry of Defence decided to use the stronger WMK-14B 1085 hp engine. For this reason, the manufacturer, Weiss Manfred, was to produce 329 new WMK-14B engines, of which 247 were to be used on Héja’s and the other 82 as spare engines.

The first plane to be powered with this engine was the Héja (V-401) supplied by the Italians. It was modified by MAVAG and then tested. The tests were successful and the order for 100 Héja II was given. The production was to be divided into two batches, a first one of 25 planes and a second with 75 planes after the first one was completed.

The Italians sent the needed documents for the production of the Re.2000 to Hungary in October 1940, which caused some delays for the Héja II production run. The first operational Héja II was built in June 1941 and was successfully tested the same month. By this time, the Hungarians also obtained a license production for the German Me-109 fighter. This plane was much better than the Héja II, but it was estimated that the production of Me-109s in any larger numbers could not be achieved until 1943. For this reason, it was decided to continue Héja II production as a temporary solution.

The preparations for the production of the first 25 Héja IIs began in November 1941. Despite the extra spare parts and airframes supplied by the Italians, the start of production could take place immediately. The reason for this was the lack of proper machine tools and production capacities of MAVAG, but also due to various testing and modifications. The second Héja (V-402) was reequipped with the stronger engine for testing purposes. It was flight tested at the Experimental Institute near Csepel. After a series of test flights, some modifications were required, like improving throttle controls and modifying the rear tailwheel.

Production of the Héja II began only in July 1942. Immediately at the start of production, problems with the Reggiane fuel tank seal were noted. The Hungarian engineers simply replaced it with 22 smaller 20-25 l fuel tanks. To their surprise, this modification actually improved the Héja II’s stability during flight, as it reduced fuel sloshing in the tank. The production of the first 25 planes (with the modified fuel tanks) was completed by October 1942. Before the start of the second series of 75 aircraft, an order for 100 additional Héja IIs was placed. The last Héja II would be built in early March 1944. Officially, the Héja II was accepted for service in late September 1942 by the Hungarian Air Force.

A Héja II (V-495) from the first batch was tested by test pilot Tibor T. in March of 1943. The production of the later series was slowed down due to difficulties with obtaining necessary parts from abroad (due to the Italian capitulation and the desperate state of the German economy). In addition, the WM factory was bombed in early April 1944. The factory was almost completely destroyed, with the loss of nearly all equipment and spare parts. For this reason, the Hungarians were forced to stop the production of the WMK-14 engine. WM was finally destroyed in another bombing raid in July 1944. For this reason, the production of a group of nearly 30 new Héja IIs could not be completed.

Technical characteristics

The Héja I was a regular Re 2000, the characteristics of which will not be repeated.
The Héja II was a low wing, metal construction, single-seat fighter plane. The fuselage consisted of a round frame covered with metal sheets held in place by using flush-riveting. The Héja II wings had a semi-elliptical design, with five spars covered with stress skin. The original Re.2000 fuel tanks, placed in the central part of the wing, were replaced with 22 smaller 20-25 l fuel tanks. The wings were equipped with fabric-covered Frise type ailerons. The rear tail had a metal construction with the controls covered with fabric.

The landing gear system was unusual. When it retracted backward, it rotated 90° before it fell into the wheel bays. For better landing, the landing gear was provided with hydraulic shock absorbers and pneumatic brakes. The smaller rear wheel was also retractable and could be steered if needed.
The Héja II was powered by one WMK-14B 1085 hp engine. With the stronger engine, the Héja II could achieve a maximum speed of 323 mph (520 km/h). A larger 10.5 ft (3.2 m) Weiss Manfred three-bladed and hydraulically controlled variable pitch propeller were used. Due to the installation of the new engine, the front fuselage design had to be changed and extended by 1.3 ft (40 cm). As the new engine had a somewhat smaller diameter, the pilot front field of view was increased. In addition, the engine cowling design was changed.

The pilot cockpit canopy opened to the rear and gave a good overall view of the surroundings. The Hungarian Héja II was not originally provided with the 0.3 in (8 mm) thick armor plate placed behind the pilot seat. The Hungarians tested domestically built ones, but the results of these tests are not clear. Most interior equipment, except the radio, was provided by the Italians.

The two 0.5 in (12.7 mm) Breda-SAFAT heavy machine guns were replaced with Hungarian Gebauer MGs of the same caliber. The Gebauer gun had a firing rate of 1000 rounds per minute. The ammunition for each machine gun was 300 rounds stored in a box magazine. With the installation of these machine guns, the upper part of the front fuselage had to be redesigned.

During the war

With the German attack on the Soviet Union in June 1941, Hungary, together with other Axis allies, joined this offensive. For the attack on the Soviet Union in early August 1941, the Hungarians dispatched the Independent Fighter Group, which consisted of two fighter squadrons equipped with CR.42 planes. The first Héja fighter squadron with seven (or six, depending on the source) planes was formed on 7th August 1941. It was stationed at Sutyska airfield near Vinnytsia, in Ukraine. A few days later, it was moved to Pervomayks and was put in a fighter escort role for Hungarian bombers. The first operational mission was to escort a group of Ca.135 bombers in attacking Nikolayev on the 11th of August. The first air victories were achieved in late August when three Héja fighters engaged a group of five Soviet I-16 fighters near Dniepropetrovsk. The Hungarian fighters managed to shoot down three I-16s with no losses. By the end of August, the Héja fighters had made in 151 sorties with five achieved victories. The Héja would see action on the Eastern front up to late October 1941, when they were recalled to Hungary. One aircraft was lost during the flight back to Hungary when it crashed somewhere over the Carpathian mountains. During its first year of service, the Héja’s were mostly used in bomber escort and occasional ground attack missions. As most of the Soviet Air Force was destroyed early on, there were few air encounters with enemy planes. In total, three Héja were lost, with one additional being damaged.

A side view of a column of three Héja II somewhere in Hungary. Source: https://www.sas1946.com/main/index.php?topic=28944.0
This Héja (V-409) was sent to the Eastern Front in the second half of 1941. Source: http://themodelingunderdog.blogspot.com/2011/04/training-hawk-mavag-heja-ii-in-service.html

In preparation for the new German campaign on the Eastern Front in 1942, the Hungarian Air Force formed the 1st Fighter Group. This Fighter Group had a Squadron equipped with 12 Héja fighter planes commanded by Colonel K Csukas. This Squadron was combat-ready by 5th July 1942. As there were cases of Germans mistaking the Héja for Soviets planes, one Héja and also a CR.42 were sent to several German airfields in order to familiarize German pilots with these planes. Initially, the Germans gave the Hungarian fighters the task of patrolling and escorting reconnaissance and bomber planes near the front. On 13th July, the Héjas were tasked with defending the ground forces concentrating for the attack on Soviet positions.
By the end of July 1942, a second unit equipped with 11 Héja was deployed to the front. Both Héja units were moved to Ilosvoskoye in early August. The first squadron was tasked with a bomber escort mission, while the second with a reconnaissance escort mission. The 1st Fighter Group was in really bad shape due to maintenance problems, with only four Héja being operational by the 8th of August. This forced the Hungarians to ask the Germans for fighter cover for their troops.

In early August 1942, the Héja fighters were hard-pressed to stop the increasing number of Soviet bombing raids into Axis lines. On 7th August, a Soviet IL-2 managed to shoot down a Héja fighter which crashed into the ground. On the same date, Héja fighters intercepted a group of three German He-111 bombers which were accidentally bombing Hungarian lines and managed to shoot down one.

On 20th August, while making a take-off from an airfield near Ilosvoskoye, István Horthy (son of Miklós Horthy) lost his life in an accident. Author Maurizio D. T. notes that the accident was possibly caused due to the installation of a 0.98 in (25 mm) thick armor plate behind the pilot seat. There are also claims that the plane was sabotaged by the Germans due the Miklós Horthy allegedly showing sympathy for the English people, but this is improbable. The Germans were in no position to sacrifice trained fighter pilots or planes. Horthy probably simply crashed due to a pilot error or miscalculation.

This is the plane piloted by István Horthy (the son of Miklós Horthy). It is easily distinguished by the small star and two revolver insignia painted on the front part of the fuselage. István Horthy was killed in an accident during take-off in late August 1942. Source: https://forum.warthunder.com/index.php?/topic/273562-reggiane-re2000-falco-and-h%C3%A9ja-ii-hungarian-version/

By late August, the 1st Fighter Group lost four planes either due to enemy action or accidents and six more were damaged but in a state that could be repaired. By the end of August, Héja pilots managed to shoot down five enemy aircraft, with three more in September. By October 1942, most Héja pilots were recalled to Hungary to begin training on the new Me-109 planes. The remaining 13 Héjas were used on the Eastern Front up to late December, with only six still being operational.

During the Soviet attack on Axis positions around Stalingrad, the Hungarians sent all available planes, including the few working Héja fighters, to stop these attacks. The following days, a pair of Héja fighters sent to escort German bombers were attacked by Soviet fighters but managed to escape. By 15th January, the Héja performed mostly escort missions. The surviving Héjas met their fate when they were destroyed by their crew in order to avoid being captured, as they could not make an escape due to the harsh Russian winter.

No improved Héja IIs were used on the Eastern Front, as these were kept in reserve. As a shipment of more advanced Me-109G arrived in Hungary from Germany in late 1943, the Héja was mostly used for training. But, due to the increase of Allied bombing runs, they were put into action for the defense of Hungary skies.

By March 1944, Germans sent forces to occupy Hungary, as there was information that Hungarian politicians were negotiating with the Soviets for an armistice. During this occupation, the Germans prevented any further work or training on the Héja II. In April, the Allies made major bombing raids against Hungarian factories. This affected the supply of new spare parts, but, despite this, a group of 30 newly built Héja II was tested in April.

This Héja II (serial number V-479) was used mostly for training, as it was obsolete by 1944 war standards. Source: http://themodelingunderdog.blogspot.com/2011/04/training-hawk-mavag-heja-ii-in-service.html

During the Allied Bombing raid by the 15th Air Force on Budapest (13th April 1944), the P-38 escort fighters were attacked by a group of Héja II fighters. During this engagement, one Héja II was damaged. Another group of 8 Héja II was sent to support the defense of Budapest. Four of these attacked Allied bombers but, due to heavy defensive fire, the attack had to be aborted. Two Héja II fighters were damaged and one had to make an emergency landing. The second group of four fighters failed to reach the bombers but ran into a group of P-47s. After a short engagement, one Héja II was shot down and one was damaged.

This was one of the Héja II (piloted by Ferenc Kass) which engaged Allied P-47s during the defense of Budapest in April 1944. Despite being hit several times, the pilot managed to escape and land it without any problems. Source: https://forum.warthunder.com/index.php?/topic/273562-reggiane-re2000-falco-and-h%C3%A9ja-ii-hungarian-version/
Rearview of Ferenc Kass’ Héja II fighter plane. The damaged rear tail is evident here. Source: http://themodelingunderdog.blogspot.com/2011/04/training-hawk-mavag-heja-ii-in-service.html

Due to the lack of spare parts, some 30 Héja II fighters could not be completed. The Hungarians tried to salvage any parts from damaged aircraft, but this was insufficient. In December 1944, there were six operational planes with the training unit ‘Puma’ Fighter Wing. The last Héja II was lost in early 1945 in an accident.

Héja wartime improvements and modifications

Based on the front line experience, in order to provide the pilots with better protection, the Hungarians asked the Italians for the design blueprints of the Re.2000 and Re.2001 0.3 in (8 mm) armored plates. The Re.2001 version was preferred, as it was much lighter at 110 lbs (50 kg), while the Re.2000 one was heavier, at 200 lbs (90 kg). The Italians, for some reason, did not agree to give these blueprints, so the Hungarians were forced to develop their own design. Author Maurizio D. T. mentions that a 0.98 in (25 mm) armor plate was added behind the pilot seat, which affected plane performance.
An additional fuel tank with 100 l was added into the fuselage in order to increase the operational range. It was equipped with a self-sealing coating in order to avoid any fuel leaks which could lead to a fire accident.

In the late part of the war, two planes were modified and equipped with dive brakes and bomb racks for 550 lbs (250 kg) or 1100 lbs (500 kg), in order to be tested for use as dive bombers. For further testing, one additional Héja II was modified for this. The tests appear to have been unsuccessful, as no production order followed for this modification.

By the end of 1942, there were plans to form a Night Fighter Squadron equipped with German radio equipment. As the promised equipment never arrived, no such unit was ever formed.

Production

The production of the first Héja II began in July 1942, with the first 25 completed by October 1942. Before the start of the second series of 75 aircraft, an order for 100 additional Héja IIs was placed. The last Héja II would be built in early March 1944. Depending on the sources used, the production numbers are different. The numbers go from 185, 192 to 203 planes. The difference in number may be caused by the fact that some sources include also the last 30 unfinished airframes.

  • Héja I – 70 planes were purchased from the Italians
  • Héja II – Hungarian built version
  • Prototypes
  • Héja II dive bomber – Three Héja IIs were modified for the role of dive bombers but were not accepted for service
  • Héja II night fighter – There were plans to use the Héja II as a night fighter but due to the lack of necessary equipment no plane was ever used in this role.

Conclusion

The Héja provided the Hungarians with a much needed modern fighter plane. While it did see service, it was never used in any larger numbers due to problems with the delivery of new planes from Italy. Even when the improved Héja II was produced in Hungary, it was also plagued with slow production and distribution to combat units. By the time the Héja II was built in larger numbers, it was already outdated by late-war standards.

Héja II Specifications

Wingspans 36 ft 1 in / 11 m
Length 26 ft 6 in / 8.4 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One WMK-14B 1085 hp engine
Empty Weight 4560 lbs / 2.070 kg
Maximum Takeoff Weight 5550 lbs / 2,520 kg
Fuel Capacity 500 + 100 l
Climb to 6 km (19,700 ft) 6 minutes 10 seconds
Maximum Speed 323 mph / 520 km/h
Cruising speed 255 mph / 410 km/h
Range 560 mile / 900 km
Maximum Service Ceiling 25.700 ft / 8.140 m
Crew 1 pilot
Armament
  • Two 0.5 in (12.7 mm) heavy machine guns

Gallery

Heja, Illustration by Pavel Alexe

Heja II, Illustration by Pavel Alexe

Source

  • Nešić, D. (2008). Naoružanje Drugog Svetsko Rata-Italija. Beograd
  • David M. (2006). The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
  • Maurizio D.T. (2002). Reggiane RE 2000 Falco, Heja, J.20, Instituto Bibliografico Napoleone
  • G. Punka (1994), Hungarian Air Force, Signal Publications
  • George P. Reggiane Fighters In Action. Signal Publication
  • Jonathan T. (1963) Italian Civil And Military Aircraft 1930-1945, Aero Publisher
  • Gianni C. (1966) The Reggiane Re.2000, Profile Publication Ltd.
  • John F.B. (1972) Caproni Reggiane Re 2001 Falco II, Re 2002 Ariete and Re 2005 Sagittario, Profile Publications
  • https://www.valka.cz/HUN-MAVAG-Heja-II-t6986

Re.2005 “Sagittario”

Kingdom of Italy flag Kingdom of Italy (1941)
Fighter Aircraft – 32 ~ 48 Built

The Re.2005 was one of the better and more modern Italian WWII fighter designs. It was developed by Reggiane in 1941. Due to the lack of DB.605 engines, the development and production process of the aircraft was too slow and, by the time of the Italian surrender to the Allies, less than 50 had been built.

Re. 2005 Source: Pinterest

History

Officine Meccaniche Reggiane SA (hailing from Reggio Emilia in Northern Italy) was a WWI era aircraft manufacturer. However, following the First World War, it was not involved in any large aircraft production or design work. Rather as a company, it focused primarily on the Rail and Agriculture sectors primarily building locomotives and agricultural equipment. Its production efforts only returned to aircraft during the thirties when Reggiane became a subsidiary of the much larger Caproni aircraft manufacturer, which was led by the well-known Engineer Gianni Caproni. Thanks to this, Reggiane was aided by Caproni with a larger and more qualified aircraft design department. Reggiane and Caproni were involved with several experimental pre-war designs, like the Ca.405 Procellaria and P.32bis version, in addition to their license production of the S.M.79.

By 1941, the Italian Air Force was in a very desperate state, as it lacked an effective fighter design that could engage the increasing Allied bombing actions against Italian cities. The only modern design, the Macchi C.202, could not be produced in sufficient numbers to make a difference. For this reason, the Italian Air Force initiated the development of the so-called Serie 5 fighter designs that would eventually lead to the Fiat G.55, Macchi C.205, and the Reggiane Re.2005.

One of the greatest problems that the Italian aircraft designers and manufacturers had was the lack of sufficiently strong engines. In 1938, the development of a 1200 hp Fiat A.38 engine began, but many problems appeared and the engine could not be produced in time nor in any great numbers. For this reason, the license for the production of the German DB.601 was obtained. The problem was that Alfa Romeo’s, the manufacturer of this licensed engine, production output of this engine was only around 50 to 60 per month. Due to the lack of an adequate engine, Italian General Francesco Pricolo proposed creating new designs using the German 1475 hp DB.605 engine, which was to be produced by Fiat from 1942 on. The first planes chosen to be equipped with this engine were the Re.2001 and C.202. On 23rd July 1941, a decision was made to save the entire production of the DB.601 engine for the C.202. In addition, around 1000 new DB.605 engines were ordered to be produced by Fiat. Reggiane officials, seeing a new business opportunity, devoted all their available resources in the development of the new Re.2005 model.

The name

In various sources, this plane is marked by different but similar designations. These include RE 2005, Re 2005, or Re.2005. This article has and will use the Re.2005 designation. In early January 1943, the Re.2005 received its ‘Sagittario’ (name of the Constellation Archer) nickname, which is very well known today.

Re.2005 beginnings

In order to design the future Re.2005, a team was chosen under the leadership of Giuseppe Maraschini. His team decided that, instead of simply improving earlier models, they would design and build a brand new aircraft prototype. Carryovers from previous vehicles included the wings, which were similar to previous models but were made of a single piece. The armament was increased to two 0.5 in (12.7 mm) machine-guns and one 0.78 in (20 mm) cannon firing through the propeller hub, with two additional 0.5 in (12.7 mm) machine guns to be placed in the wings. A new outward retracting landing gear was to be installed. The radiators were placed under the fuselage. The building of the wooden fuselage mock-up was completed by the end of October 1941. The wings were completed by early November 1941. Preparation for the construction of two working prototypes (MM.494 and 495) began soon after.

However, there were delays due to the lack of promised DB.605 engines, that were not ready for license production yet. There was also a possibility that all future produced DB.605 engines would be delivered to Fiat and Macchi designs only. Despite these setbacks, the work on an operational prototype continued and, in February 1942, the factory was visited by the High Technical-Military Inspectorate commission. This commission gave good remarks for the Re.2005 design but asked to move the wing-mounted machine guns into the fuselage. As this would cause many technical problems and delays, nothing was done on this matter and the machine guns remained in the wings. By this time, the required shipments containing the armament (Mauser 0.78 in/20 mm MG 151 cannons), canopies, and windscreens (same as on the MC.205) were yet to arrive, as there were constant delays.

Once completed, the first test flight of the MM.494 prototype was made on 9th (or 7th, depending on the source) May 1942. For the main test, pilot Major Tullio De Pranto was hired by Reggiane, for the payment of 140.000 lire. This flight lasted around 5 minutes and was without problems. The following day, Major De Pranto made another flight with the MM.494 prototype. At first, it was fine but then the landing gear mechanism on the right leg broke down, which forced the pilot to make an emergency landing. The prototype was damaged but repaired and the flight tests continued during June and July 1942. By this time, over 6 hours of flight were achieved. In late July, the plane was transported to the Guidonia test center for further testing. There, during dive testing, a maximum speed of some 560 mph (900 km/h) was achieved. But there were again problems with the landing gear and also with the cockpit design and, for these reasons, it was returned to Reggiane for modifications. During August, modifications on the cockpit were made, mostly on the design of glass surfaces and the length of the windscreen, which was considered to be too long for the pilot. In September, the flight tests continued, but there were some issues with the engine malfunctioning and the MM.494 pilot was forced to make an emergency landing. By late September, many pilots had the opportunity to fly on the Re.2005 prototype.

The first prototype, MM.494, in preparation for a series of test flights. Source: Pinterest

At the start of October 1942, the second prototype was moved to the Guidonia test center for testing. There, the problem with the landing gear persisted, in addition to problems with fuselage vibrations that were also noted. By the end of October, the Re.2005 was used in a mock fight with the Fiat G.55. During the firing of its 0.78 in (20 mm) cannons, there were ammunition feed problems. For these reasons, in combination with the previous notes, the MM.495 prototype was returned to Reggiane for further modifications. In late December 1942, an Air Force Commission was formed to examine the Re.2005 prototype overall flying performance, armament, production speed, etc. The Re.2005 was noted to be inferior to the MC.205 but better than the Fiat G.55. While the final decision was not clear, the development of the Re.2005 continued on.

 

The second MM.495 prototype stationed at Reggio Emilia. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

The next step in Re.2005 testing was the addition of bomb loads. During these tests, no major problem was recorded, but the take-off run was increased by some 657 ft (200 m) due to the extra weight. While piloted by Captain Enzo Sant’andrea, instead of releasing the 1410 lb (640 kg) bomb, the release harness mechanism failed and the bomb remained stuck to the plane. He was forced to land with the bomb, but luckily it did not explode and the landing was successful. Various tests were carried out with the original German engine and equipment from April to June 1943.

The Re.2005 prototype was used to supplement a mixed unit in the defense of Rome on 27th May 1943. During this flight, the Re.2005 was piloted by Lieutenant Giorgio Berolaso. While no enemy aircraft were detected, he managed to test the main armament. He later wrote, “ … It was a terrific experience! Such was the recoil that I had the impression that the entire aircraft slowed down…”.

Reggiane fights for production orders

In January 1942. Italian Air Force Officials decided to adopt the Macchi C.202, C.205, and the Fiat G.55 for mass production. The fate of the Re.2005 was, for some time, uncertain. Only in August 1942 did Reggiane receive orders to prepare machine tooling for the possible production of the Re.2005. In October, Reggiane petitioned for the production of 16 Series-0 Re.2005 aircraft. This petition was accepted by Italian Air Force officials and an order for 16 Series-0 (MM.092343-092358) planes was placed in November. Engineer Roberto Longhi was tasked with the construction of the first Series-0 aircraft. As numerous modifications were required, he immediately began working to improve the Re.2005’s performance. The fuselage skin was reinforced, along with the wing spar caps, skins, and internal structure.

As Engineer Roberto Longhi was working to improve the Re.2005, a special Air Force committee rejected it for serial production. Instead, the Re.2005’s improved wings were to be applied to the Re.2002 to serve either as an advanced fighter or as a fighter-bomber. It was also proposed to reequip the Re.2005 with the weaker DB.601 due to a lack of DB.605 engines. For some time, there were fierce discussions between Reggiane officials and the Italian Air Force about the Re.2005. The Reggiane officials even managed to involve Benito Mussolini in this discussion. Eventually, Reggiane managed to obtain a production order for 100 Re.2005 in January 1943, with an additional 18 of the Series-0. In late January 1943, it was increased to 600 aircraft with a monthly production of 70. In order to achieve such high production orders, other manufacturers were to be included in Re.2005 production, like Breda, Caproni, and Aerfer. Eventually, an order for 1000 aircraft was sent with Reggiane, but these numbers were never achieved due to a lack of engines and the war ending for the Italians.

When the production began in early March 1943, it was decided that, from the 24th produced plane onward, bomb racks would be added and the planes were to be used solely as fighter-bomber aircraft.

Technical characteristics

The Re.2005 was designed as a single-engined, low wing, all-metal fighter plane. The fuselage was made using a reinforced sheet metal construction covered with an aluminum alloy skin. The fuselage around the cockpit was additionally strengthened in case of a crash landing.

The landing gear had a simpler design than previous Reggiane designs. It consisted of two outward retracting wheels which were operated hydraulically. The rear tail wheel retracted into the fuselage and was enclosed by two small metal doors. The rear tail wheel could also be steered by the pilot if needed.

To speed up and ease production, the wings were made of one semi-elliptical piece. The wings were made using light alloy materials. They consisted of three double ‘T’ shape spars connected with sheet metal ribs. The split flaps made of metal were extended to under the fuselage. The ailerons (Frise type) were made using a combination of fabric and light alloy materials.

The cockpit had a canopy that could be opened to the right side. For better pilot protection, his seat was made using an 8 mm steel plate. The cockpit was provided with standard Italian equipment, like an Allocchio-Bacchini 30 radio, San Giorgio reflector collimator, Patin telecompass, etc.

Close lock of the Re.2005 cockpit interior. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

The engine used was the German Daimler Benz DB.605A-1 1.475 hp that was being produced under license in Italy as the R.A.1050 RC.58 Tifone (Typhoon). A Piaggio P.2001 three-bladed, mechanically controlled metal propeller was used. The engine was placed in a specially designed mount that was connected to the rest of the fuselage. The Re.2005 oil radiators and coolant were placed on the sides.

The total fuel load was 580 l (or 536 l, depending on the source) stored in four fuel tanks placed in the wings. Access to the fuel tanks was done by removing metal plate panels held in place by screws. Three additional external fuel tanks could be added if needed, one larger with 240 l under the fuselage and two 100 l tanks under the wings.

For Italian standards, the Re.2005 was heavily armed with German supplied cannons. Its armament consisted of one 0.78 in (20 mm) MG 151 cannon firing through the propeller center and two 0.45 in (12.7 mm) Breda SAFAT machine-guns were placed in the front fuselage. Depending on the availability, two 0.45 in or two 0.78 in cannons could be placed in the wings. The total ammunition load was 550-600 (for all three) rounds for the cannon and 700 rounds for the two machine guns. Different bomb load combinations were tested, with a maximum load under the fuselage of 1410 lb (640 kg) and 350 lb (160 kg) under each wing.

 

The center of the propeller has an opening for the internal 0.78 in (20 mm) MG 151 cannon. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

In Operational service

Due to the small number built, the Re.2005 saw only a limited number of actions with the Italian Air Force. All surviving Re.2005 were captured by the Germans, who put them to use. The last operator was the Aeronautica Nazionale Repubblicana, which had only a few Re.2005, but if any were ever used operationally is not known. There were attempts to sell the Re.2005 to Sweden, but nothing came from this.

In Italian Service

The delivery of the Re.2005 to operational units was slow, maximally up to four planes per month. The first unit to be supplied with this aircraft was the 362° Squadriglia which was part of the XXII Gruppo Caccia commanded by Captain Germano La Ferla. The first prototype, MM.494, was given to this unit in early 1943. At the start of April 1943, a group of 20 Italian fighters attacked an Allied B-24 bomber formation and managed to shoot down two bombers. One kill was credited to Re.2005. On 10th April, another attack on an Allied bomber formation was made and the Re.2005 again managed to shoot down one bomber. The next day, two more B-24 were shot down at the cost of one Re.2005. The pilot managed to survive using a parachute. On 28th April, another attack was made by a group of four Re.2005, eleven Macchi C.202 and one French captured D.520. In this action, the Re.2005 pilots shot down two more bombers. By this time, it was apparent to the pilots that the Re.2005 was far superior to the C.200 and C.202. The greatest strength of the Re.2005 was its strong firepower of up to three 0.78 in (20 mm) cannons. From May to June, there were several more flights but without any success.

A group of four Re.2005 belonging to the 362° Squadriglia. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

The 362° Squadriglia was moved to Latina in June 1943. By this time, the 362° Squadriglia had only 8 Re.2005 with 7 operational. On 25th June, this position was attacked by Allied aircraft and four fighters were damaged.

In early July 1943, the 362° Squadriglia, with around 8 Re.2005, was relocated to Sicily in an attempt to stop the Allied advance. In the following days, the Re.2005 managed to shoot down several British Spitfires with the loss of a few aircraft. With the inevitable Axis defeat in Sicily, the Re.2005 crews were moved to Italy. The last two operational Re.2005 were lost in an air raid on the positions of the 371° Squadriglia to which they were temporarily attached.

This Re.2005 (MM.092352) was part of the 362° Squadriglia defending Rome in June 1943. Source: Pinterest

In mid-July, the 362° Squadriglia was operated from Naples with newly supplied Re.2005. By 20th July, this unit had only six Re.2005 but, in the following days two, were lost during bad landings, including the second prototype. Other units were also supplied with the Re.2005 but, in most cases, they were supplied in very limited numbers, for example to 369° Squadriglia. Through August, there were several unsuccessful flight attempts against Allied aircraft. A number of Re.2005 were lost either to Allied action or to other circumstances. By early September, due to the Italian surrender, all available Re.2005 stationed in Naples were destroyed by their crews.

The maximum number of Re.2005 ever operated by 363° Squadriglia was around 9 operational planes. By the time of the Italian surrender, in total, 19 Re.2005 were supplied for operational use to front line pilots. During the period in which XXII Gruppo Caccia was equipped with the Re.2005, it claimed to have shot down some 24 enemy aircraft, with 17 more labeled as possible. In addition, 8 to 13 aircraft were reported to be damaged by this unit. The total losses of Re.2005 amounted to 12 planes, with the deaths of 3 pilots and 4 wounded. While in service, the Re.2005 landing gear proved to be problematic and thus the ground repair crews made several field modifications in order to solve this problem.

The Re.2005 had the best firepower of nearly all Italian fighter designs. With its three 0.78 in (20 mm) cannons, its pilots managed to shoot down many Allied planes during its short operational life. Source. Wiki

In German hands

After the Italian defeat, the Germans rushed to capture any available military equipment and factories they could find. This included the Reggiane factory, along with all surviving Re.2005 in September 1943. Once in German hands, 8 Re.2005 that were under construction were completed. The Germans seemed to be satisfied with its performance and allocated them to the Luftwaffe Luftdienst Kommando Italien in October 1943. At the start of 1944, two additional Re.2005 were completed and given to the Luftwaffe.

The Germans were impressed with the Re.2005’s performance and put to use any surviving aircraft they could find. Source: http://xoomer.virgilio.it/f5avipatches/re2005%20page.html

The use of the Re.2005 by Germans is somewhat confusing, as some authors suggest that they were used in defense of Berlin up to the war’s end ( like D. Mondey). Author M. Di Terlizzi mentions that the MM.495 prototype along with MM.096105 were sent to Germany for evaluation, but what their fate was is not known. Author G. Punka even writes that the second prototype was used in defense of Bucharest. Both cases seem highly unlikely if we take into account the cost of transport, lack of spare parts which would force it to operate close to the Reggiane factory, and the small numbers of captured planes. Even if the Re.2005 were repositioned to defend Berlin, they would have made no difference due to the small number built.
In an Allied bombing raid in March 1944, three Re.2005 were lost. From March to June 1944, three more were damaged, mostly due to accidents, and were returned to Reggiane for repair. By the end of July, five Re.2005 were still operational and used by the Fliger Ziel Staffel 20. This unit was active from June to December 1944. The final fate of the German-operated Re.2005 is not clear but, by the end of 1944, all were probably lost.

Aeronautica Nazionale Repubblicana

The Aeronautica Nazionale Repubblicana had two operational Re.2005 captured at Castiglione del Lago in October 1943. It is highly unlikely that they ever saw any operational service.

Offer to Sweden

In 1942, the Chief of the Caproni commercial company (Compagnia Commerciale) made an attempt to sell the license and 50 incomplete airframes to Sweden. His offer was based on the fact that Italy had sold older Re.2000 and that Sweden had obtained a license for the production of the German DB.605 engine. By the time the Air Ministry and Mussolini allowed this arrangement, in June 1943, it was too late and the whole deal was never achieved.

Proposals and modifications

During the Re.2005’s development process, there were few attempts to overcome the problem of the lack of an adequate engine. Other different modifications were also tested, but with little to no success.

Re.2005 SF/R

In late November 1942, there were proposals to mount an additional jet engine on the Re.2005 which could help it reach a speed up to 466 mph (750 km/h), at least in theory. Due to the extra weight of some 1000 lb (310 kg) and complications with the installation, no Re.2005 was ever fitted with this engine. This proposal is often marked by Re.2005 SF, after the names of the main proponents of this project, Marcello Sarracino and Antonio Ferri. It is also marked simply as Re.2005 R, Reazione (Reaction), by some sources.

Re.2005 wooden version

Luigi Nardi made a proposal to build the Re.2005 aircraft using mostly wood. This would make the production of Re.2005 cheaper. Nardi was involved in building the first wooden wings in March, following with a fuselage in June 1943. Reggiane officials hired Nardi in late 1942 ( officially in early 1943) and gave him a team of 39 men to complete a wooden model. Little to no progress was made by 1943 and, in the end, it appears that no working prototype was ever built.

Twin fuselage Re.2005 version

There was a paper proposal in late 1942 to build a twin-fuselage heavy fighter version of the Re.2005. It was to be powered by two DB.605 engines and the pilot was to be positioned in the left fuselage. This project remains on paper only and no mock-up or working model was ever built. In 1943, Nardi proposed a similar all-wood project, but nothing came of this. If these two projects were related, it is not known. It is unknown if this version received any official designation.

Re.2005 aircraft carrier version

Due to Reggiane’s experience with shipboard aircraft designs, the Re.2005 was chosen to be used for the Aquila aircraft carrier. No progress was ever made for this version and, in the end, nothing came from it.

Re.2004

Due to the lack of DB.605 engines and the priority given to the G.55 and C.205 aircraft, Italian Air Force officials proposed in late 1941 that Reggiane adopt another solution. This included the use of the new Isotta Fraschini Zeta 1.250 hp engine still in development. This new aircraft project was named Re.2004. The development process of the Re.2004 was slow and, by late June 1943, only two prototypes were ordered to be built. The main engine was never successfully completed nor used due to huge problems with the cooling system. It is likely that only wooden mock-ups were ever built of the Re.2004. Some authors, like John F.B, note that the Re.2004 was actually based on the Reggiane Re.2001 fighter design.

Re.2006

In March 1943, the Italians managed to obtain a number of German 1750 hp DB.603 engines. Immediately, there were plans to equip the existing fighter designs with this engine, including the Re.2005. In May 1943, the Italian Air Force ordered Reggiane to construct two new prototypes (MM.540-541) using this engine. By the time of the Italian surrender, only one incomplete (or complete, depending on the source) prototype was built. After the Germans captured the Reggiane factory, they continued work on the Re.2006 by using some components taken from the Re.2005 (the fuselage). The work on it was never finished by the Germans. It was captured by the Allies, who showed no interest in it, and the incomplete Re.2006 was scrapped in April 1946.

Production

Despite promising performance and an official production order for more than 740 aircraft, only small numbers were actually ever built. The number of production aircraft depends on the sources: According to author Christ C. 37 were built, while D. Mondey and Nešić, D claim 48 being built.
Author John F.B. gives information that 2 prototypes, 16 Series-0 and 18 pre-production aircraft were built, in total 36. Author Gregory A. notes that, by September 1943, 32 Re.2005 were built. These include 2 prototypes, 29 Series-0 and a single Series-I aircraft. He also notes that an additional one was under construction but never finished.

  • Re.2005 Prototype – two prototypes (MM.494 and 495) built
  • Re.2005 Series-0 – 16 to 29 were built and used for testing and in combat.
  • Re.2005 Series-I – 1 to 18 built with some structural modifications.

Proposals and modifications

  • Re.2005 SF – Proposed version equipped with an extra jet engine, none built.
  • Re.2005 wooden version – Proposed version to be built using wood, only limited progress made.
  • Twin fuselage Re.2005 – Paper project only.
  • Re.2005 carrier version – Proposed version to be used on the Aquila aircraft carrier, no prototype was ever built.
  • Re.2004 – Experimental fighter project equipped with the Isotta Fraschini Zeta 1.250 hp engine, possibly only a mock-up built.
  • Re.2006 – Proposed fighter plane powered with Daimler Benz DB 603 and to be built using Re.2005 components, only one incomplete model built.

Operators
Italian Regia Aeronautica – Operated less than 22 aircraft during the war.
Aeronautica Nazionale Repubblicana – Operated two Re.2005.
Germany – Rebuild 10 Re.2005 which were used by the Luftwaffe.
Sweden – There were proposals to negotiate a deal with Sweden for license production. Nothing came from this.

Surviving Re.2005

One Re.2005 captured in Sicily was allegedly put on display in the American National Aircraft Show in November 1946. There is little to no evidence that proves that this ever happened. Today, only a part of a Re.2005 is the rear fuselage and tail of  MM.092352362-2,  restored by GAVS Milan. It can be seen at the Gianni Caproni Museum of Aeronautics near Milan.

Conclusion

While the Re.2005 had the potential to be a good fighter design, its development process was plagued by the lack of engines, problems with vibrations, and the indifference of the Italian Air Force officials. While it was used in combat, it was built in small numbers and too late to have any influence on the war.

Re.2005 Specifications

Wingspans 36 ft 1 in / 11 m
Length 28 ft 7 in / 8,7 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One Fiat R.A.1050 RC.58 12-cylinder 1475 hp engine
Empty Weight 5732 lbs / 2.600 kg
Maximum Takeoff Weight 7.960 lbs / 3.610 kg
Fuel Capacity 580 + 440 l
Climb to 8 km (19,700 ft) 7 minutes 50 seconds
Maximum Speed 390 mph / 630 km/h
Cruising speed 319 mph / 515 km/h
Range 776 mile / 1.250 km
Maximum Service Ceiling 39.370 ft / 12,000 m
Crew 1 pilot
Armament
  • Three 0.78 in (20 mm) cannons and two 0.5 in (12.7 mm) heavy machine guns
  • One 1,410 lb (630 kg) bomb, and two 252 lb (160 kg)

Gallery

Re. 2005, Illustration by Pavel Alexe

Source:

  • D. Nešić. (2008). Naoružanje Drugog Svetsko Rata-Italija. Beograd.
  • D. Mondey (2006). The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
  • G. Punka, Reggiane Fighters In Action. Signal Publication.
  • J. W. Thomson (1963) Italian Civil And Military Aircraft 1930-1945, Aero Publisher
  • G. Alegi. (2001) Reggiane RE 2005, SATE Zingonia.
  • M. Di Terlizzi (2001) Reggiane RE 2005 Sagittario, IBN Editore
  • John F.B. (1972) Caproni Reggiane Re 2001 Falco II, Re 2002 Ariete and Re 2005
  • Sagittario, Profile Publications
  • N. Sgarlato (1979) Italian Aircraft OF World War II, Squadron Signal Publication.
  • C. Dunning (1998) Courage Alone The Italian Air Force 1940-1943, Hikoki Publication

Arado Ar 240

Nazi flag Nazi Germany (1938)
Multi-role Fighter – 12 ~ 18 Built

Rear Quarter Drawing of the 240 [Luftnachrichtenhelferin]
The Ar 240 was designed as a possible replacement of the Me 110. While initially it seemed to have great potential, problems with handling and mechanical breakdowns proved to be too much for this aircraft. As it would not be accepted for service, only a small number were actually built. While a few were used by the Luftwaffe, their operational usage was limited.

History of Arado

Werft Warnemünde, later known as Arado, was an aircraft manufacturer that was founded during the Great War, in 1917, as a subsidiary of Flugzeugbau Friedrichshafen. In 1921, this company was purchased by an engineer, Heinrich Lübbe, who was more interested in designing and building ships. In 1924, it was once again engaged in development of aircraft designs, mainly intended for foreign markets. For the position of chief designer, Walter Rethel, who previously had worked for Fokker was chosen.

Werft Warnemünde would be renamed in 1925 to Arado Handelsgesellschaft and renamed again in March 1933 to Arado Flugzeugwerke GmbH. At this time, Walter Blume was appointed as the new chief designer. During his supervision, several projects that were later used by the Luftwaffe were built, including the Ar 66 trainer and the Ar 65 and Ar 68 fighter aircraft.

At the start of the Second World War, Arado was mostly engaged in licenced aircraft production for the Luftwaffe. But work on its own aircraft designs was not discarded. The most important of these upcoming designs were the Ar 96 trainer, Ar 196 reconnaissance plane and the Ar 234, which would become the first operational jet bomber in the world. While these proved a huge contribution to the German war efforts, the Ar 240 design proved to be a failure.

Development of the Ar 240

During 1938, the German Ministry of Aviation (Reichsluftfahrtministerium, RLM) was interested in the development of a new multi-purpose twin engine aircraft that would replace the Me 110. Besides Messerschmitt, which began development of the Me-210, the Arado company would also be involved. In early April 1939 or 1938, depending on the source, the Arado company received a contract for the construction of three prototypes of the new multi-purpose plane initially called E-240. The development of this new aircraft was carried out by an Arado team of designers and engineers led by Walther Blume and by Dipl.-Ing. Wilhelm van Nes.

Interestly, possibly for reasons such as good connections with the Nazi Party or Arado’s good reputation as an aircraft manufacturer, even before the completion of the first prototype, an order for 10 additional prototypes was given by the RLM. While these would be built, a number of problems were identified which would prove to be the downfall of the aircraft.

Technical Characteristics

Front view of the Arado Ar 240 V3 prototype. [Luftwaffe Resource Center]
Close up of the extended flap system [Luftnachrichtenhelferin]
The Arado 240 was designed as a two seater, twin-engined, mid wing monoplane. The fuselage had a monocoque design and stressed-skin. The fuselage was oval-shaped, with the rear part being more round shaped. The rear tail of the Ar 240 consisted of two fins and rudders, but also had dive brakes installed.

The central parts of the wings were rectangular, while the outer part was trapezoidal in shape. The wings were constructed using a two-part spar structure. The Ar 240 used Fowler type flaps, which covered the entire trailing edge. What is interesting is that the Ar 240 flaps were integrated with the ailerons and that this configuration was previously tested on the Ar 198. Another innovation was the use of automatic leading edge slats, but this system was used only on the first few prototypes and abandoned later on. The wings also housed four fuel tanks on each side, which had a total fuel load of 2,300 liters (600 US gallons). The fuel tanks were built using a new self-sealing system that used thinner tank liners, which enabled the aircraft to have a much increased fuel load.

Ar 240 front view. This picture was taken during March 1944. [WarBirds Photos]
The Ar 240’s cockpit interior. [WarBirds Photos]
The cockpit was initially positioned directly over the place where the wing root. After the third prototype, the cockpit was moved forward. The cockpit used a back to back seat configuration, with the pilot positioned on the front seat and the radio operator, who was also acting as the rear gunner, being positioned in the rear seat. The Ar 240 cockpit was completely pressurized. The cockpit was directly connected to the fuselage, but was provided with a jettisonable canopy in case of emergency. The well designed glazed canopy provided the pilot and crewman with an excellent all-around view.

The Ar 240 used a conventional retractable landing gear which consisted of two front wheels and one smaller tail wheel. The two front wheels retracted outward into the engine nacelles, while the third wheel retracted into the rear tail fuselage section.

The Ar 240 was tested with a number of different engine types, as the designer had problems in finding an adequate one. The prototype series was powered by Daimler Benz DB 601A and DB 603 A. The later built A series would also be tested with a number of different engines, including the DB 601 A-1 and DB 603, BMW 801 TJ etc..

Different armaments were proposed for the AR 240, including a pair of remotely controlled defence turrets. The control of these turrets was hydraulic and they were equipped with periscope aiming sights. The bomb load would consist of around 1 to 1.8 tons, placed under the fuselage.

Development and Usage of the Ar 240 Prototype Series

Another view of the V3 prototype. [WarBirds Photos]
Note: Due to differing information depending on the author, the following information was mostly taken from G. Lang. (1996), Arado Ar 240, A Schiffer Military History Book.

The first operational Ar 240 V1 prototype (markings DD+QL), powered by two 1,157 hp DB 601 engines, was completed in early 1940 and was flight tested on the 10th of May the same year. The next flight tests were made on 25th June and 17th July 1940. In May 1941, the engines were replaced with two DB 603 E. More tests were carried out until October 1941, when the prototype was removed from service for unknown reasons. According to M. Griehl, it was destroyed on the 18th April 1941. The test results of the Ar 240 V1 showed that this aircraft had huge problems with the controls and was difficult to fly, a trend which will be inherited on all Ar 240 planes.

The second prototype, V2, is somewhat shrouded in mystery, as the date of its first operational test flight is unknown. A possible date for the first test flight is 15th September 1940. While it is not clear, the V2 prototype probably received the DD+CE markings. Arado test pilots made several flight trials during September 1940. By the end of February 1941, the Ar 240 V2 prototype was relocated to Rechlin for future tests. By May 1941, the V2 prototype received new DB 603 engines. At the same time, it was also fitted with two 7.92 mm (0.311 in) MG 17 and two 20 mm (0.78 in) MG 151/20 cannons. In November 1941, this plane was modified to be used in dive bombing trials. An additional change was the installation of two DB 601 E engines. The final fate of the V2 prototype is not known precisely, but it was probably scrapped.

The Ar 240 V3 (KK+CD) prototype was first flight tested on 9th May 1941. In comparison to the earlier two prototypes, this model had the cockpit moved forward. The rear tail-positioned dive brakes were replaced with a cone and ventral fins. Numerous engines were tested on this aircraft, including two Jumo 203 and DB 601 E. In early 1942, a number of pressure cabin tests were conducted on the V3 prototype. This aircraft also served as a test bed for the new FA-9 remote controlled system developed in cooperation between Arado and the DVL (aviation research institute), but proved to be problematic. V3 would be used operationally as a reconnaissance aircraft over England. It was piloted by Oberst Siegfried Knemeyer, and while his plane was unarmed, thanks to its high speed, he managed to avoid any confrontation with British planes. The fate of this aircraft is not known, as (depending on the sources) it could have been lost in either April 1944 or May 1942.

Row of three Ar 240 prototypes. [Luftwaffe Resource Center]
The V4 prototype was to be tested as a dive-bomber variant. The first test flight was made on 19th June 1941. It was powered by two 1,750 hp DB 603 A engines. It was modified with added dive brakes and was capable of carrying up to eight 50 kg (110 lb) bombs under the fuselage. Its fuselage was also elongated to 13.05 m (42 ft 9 ¾ inches). Many detailed tests with the V4 were carried out in France and in the Mediterranean. The V4 prototype was lost in August 1941 in an air accident.

The V5 (GL+QA or T5+MH) prototype made its maiden flight test in September 1941. What is interesting is that it was not built by Arado but by AGO Flugzeugwerken from Oschersleben. It was powered by two 1,175 hp DB 601 E engines and was provided with a tail cone. It was armed with two wing root MG 17 machine guns and two same caliber MG 81 machine guns placed into two (one above and under the fuselage) FA-13 type remotely controlled turrets. In late March 1942, this aircraft was given to the Aufklärungsgruppe Oberbefehlshaber der Luftwaffe (reconnaissance unit/group belonging to the Commander in Chief of the Luftwaffe). It was then, possibly in late 1942, allocated to Versuchsstelle für Höhenflüge VfH (research station for high-altitude flight).

Ar 240 with tow ropes attached in the Soviet Union during the winter of 1942/1943 [Luftnachrichtenhelferin]
Ar 240 A-01 used around Kharkov in late 1942. [Luftnachrichtenhelferin]
The V6 (GL+QA or T5+KH) prototype was also built by AGO, and while most parts were ready during November 1941, the aircraft was only completed in early 1942. It was flight tested in January 1942, but if this was its first test flight is not clear. It was given to the Luftwaffe in early March 1942 and moved to Oranienburg for future tests. It was similar in appearance and equipment with the previous V5 aircraft. While it was used mostly for testing, it saw front line service during the winter of 1942/43 around the Kharkov area. The plane is listed as destroyed but under which circumstances is not known.

The V7 (DM+ZU) prototype made its first test flight in October or December 1942. It was designed to be used as the basis for the Ar 240 B high-altitude reconnaissance aircraft. It was to be provided with a pressurized cockpit and a heating system. V7 was powered by two 1,475 hp DB 605 A engines, which were specially designed to use a methanol-water injection in order to increase the engine overall performance and output. Armament consisted of two wing mounted MG 17s and a rear mounted remotely-controlled turret armed with the MG 151/20, and two 50 kg (110 lb) bombs. Operational range was 1,900 km (1,180 mi) and it a was capable of climbing to 6 km (19,685 ft) in 10 minutes and 6 seconds.

The V8 prototype was a direct copy of the V7 and possibly made its first test flight in December 1942 or March 1943 depending on the sources. The final fate of this and the previous aircraft is not known.

The V9 (BO+RC) prototype was designed as a Zerstörer (heavy fighter) aircraft. It was to be used as a test base for the planned Ar 240 C version. The V9 had redesigned longer wings and fuselage. It was powered by two DB 603 A engines which were also equipped with a methanol-water injection system. The main armament consisted of four forward and two rear MG 151/20. While this version had a great priority and was even considered for acceptance for production. This was never achieved, mostly due to a lack of necessary equipment and parts. The final fate of this aircraft is not clear, as it was possibly never even fully completed, but some sources also mention that it was lost in a landing accident.

The V10 prototype was designed as a night fighter aircraft, powered by two Jumo 213 engines. The first test flight was made in September of 1943, while more tests would be carried out up to late 1944. Arado reused this aircraft for the new improved version called Ar 440.

The V11 prototype was tested as a heavy fighter-bomber and was to be used as the base of the Ar 240 F aircraft. Due to many delays, it was actually never fully completed. It had the heaviest armament, which included a mix of MG 151 and 30 mm (1.18 inch) MK 103 cannons forward mounted, rear mounted MG 151 and 13 mm (0.5 inch) MG 131 and a bomb load of 1,800 kg (3,970 lbs). V12 was a direct copy of V11 and, as these two aircraft were never completed, both were scrapped. V13 was to be used as a test base of the Ar 240 D equipped with two 2,020 hp DB 614 engines, but none were built.

V14 was probably never fully constructed. It was to be used as a base for the Ar 240 E project and powered by two DB 627 engines. V15 was to be used in a reconnaissance role and equipped with the FuG 202 Lichtenstein radar. The V15 prototype was probably never built.

An Ar 240 during its short operational life in the Soviet Union during the winter of 1942/1943. [WarBirds Photos]
There are two more Ar 240 aircraft only known by their serial numbers (240009 and 2400010). While the usage and fate of the first aircraft is generally unknown, the second was used by the Luftwaffe operationally in the Soviet Union during 1943. It was damaged during a landing in August the same year. Its final fate is unknown.

Development of the ‘A’ Version

An Ar 240 during a flight test. [WarBirds Photos]
After a series of prototypes were built, work on the first Ar 240 A version was also undertaken by Arado. Initially, the Ar 240 A aircraft were to be powered by two 1.750 hp DB 603 A-1 engines equipped with four blade metal propellers. Armament chosen for this version consisted of two MG 151/20 (with 300 rounds of ammunition for each gun) placed in the fuselage floor and two more MG 151/20 (with same ammunition load) placed in the wings roots. There was an option for increasing the fire power by adding two more MG 151/20. For rear defence, two defense turrets equipped with MG 131 machine guns could be placed under and above the fuselage. The bomb load could have different configurations, like: One 1,000 kg (2,220 lbs) or 1,800 kg (3,930 lbs) bomb, two 500 kg (1,100 lbs) bombs, eight 50 kg (110 lbs) bombs or even 288 smaller 2.5 kg (5 lbs) incendiary and fragmentation bombs. As the Ar 240 was never accepted for service, only few of the A version aircraft were ever built.

Ar 240 A-01 (GL+QA possible marking) made its first test flight on 28th June 1942. The test flights were carried out until September 1942, when this aircraft was to be given to the Luftwaffe. After a series of further flight and weapon tests conducted at Rechlin and Tarnewitz, the Ar 240 A-01 was to be allocated to the front. It was used around Kharkov in late 1942. On 16th February 1943, Ar 240 A-01 was lost during a flight due to mechanical failure. Both crew members lost their lives during the fall.

The second Ar 240, A-02 (GL+QB), was completed by September 1942. On 13th September, the first test flight was made. The aircraft was damaged in a landing accident in late January 1943. The final fate of this aircraft is not known.

Many Ar 240 were lost in crash landings.[Luftnachrichtenhelferin]
Ar 240 A-03 (DI+CY) was initially powered by two DB 601 engines, but these were replaced with BMW 801 TJ. This aircraft had a change in the cockpit configuration, with the radio operator/observer facing forward. This aircraft was stationed at Rechlin, where it was tested from May to June 1943. During testing, Ar 240 A-03 showed to have better stability and handling during flight in contrast to previous built aircrafts. From June to late July, it was tested at Brandenburg. After these tests were completed, the aircraft was allocated for operational front use. It was given to the Aufklärungsgruppe 122, a reconnaissance unit stationed in Italy at that time. This aircraft had the same fate as most previous Ar 240, as it was heavily damaged in a crash. As the damage was extensive, it was never repaired.

Ar 240 A-04 (DI+CG) was initially equipped with two DB 601 E engines, but these would be later replaced with DB 603. It made its first flight test in late September 1942. Ar 240 A-04 was allocated to the Aufklärungsgruppe 122 as a replacement for the previous aircraft. Ironically, it suffered the same fate, but it was repaired and sent back to Arado.

Ar 240 A-05 was powered by two 1880 hp BMW 801 TJ engines equipped with a Rateau type turbo supercharger. It was possibly allocated to Aufklärungsgruppe 10 stationed in the Soviet Union.

Proposed Versions

During the Ar 240’s development, the Arado officials proposed several different variants of this aircraft, but as the whole project was not going well beside a few experimental attempts, nothing came from most of them.

Ar 240 B

This was a high-altitude reconnaissance aircraft version that was to be equipped with a pressurized cockpit and a heating system. Nothing came from this project.

Ar 240 C

On 10th March 1942, Arado officials proposed that the Ar 240 should be modified for the bomber role. For this reason, the wings were modified and its size increased. The tail design was also changed, with added tail dive brakes. As the attempt to increase the size of the internal fuel tanks proved a failure, external tanks were to be used instead. The armament consisted of two MG 151/20 and two rear mounted MG 81. It is not clear, but it is possible that at least one aircraft was built.

Ar 240 D

A proposed paper project version powered by two DB 614 engines.

Ar 240 E

A proposed version with reinforced fuselage, added bomb rack for two 500 kg (1,100 lbs) bombs and increased fuel load. Different engines were also proposed for this version, including DB 603 G, DB 627 or BMW 801 J.

Ar 240 F

A proposed heavy fighter/bomber version to be powered by two DB 603 G engines.

Ar 240 mit 7.5 cm Bordwaffen

During the war, Arado and Rheinmetall discussed the installation of a 7.5 cm gun in the Ar 240. In September 1944, it appears that one plane was actually equipped with this weapon, but was probably never operationally flight tested.

Ar 240 TL

In 1942, Dr. Ing. Walther Blume proposed a heavy fighter and night-fighter version of the Ar 240. This version was designated as Ar 240 TL, which stands for Turbinen-Luftstrahltriebwerk (turbojet). This plane was to be powered by two jet engines placed in the fuselage. It remained only a paper project.

Ar 440

With the cancellation of the Ar 240 project, Arado tried to improve the Ar 240’s overall performance by building a new version, named Ar 440. The Ar 240 V10 prototype served as a base for this modification. Beside this prototype, three more were built using already existing Ar 240 components. After some time in testing, the Ar 440 was officially rejected in October 1943 by the RLM.

Overall Performance and Cancellation of the Ar 240 Project

The Ar 240 possessed several advanced characteristics like a pressurized cockpit, remote-controlled defensive turrets, traveling flaps which provided this aircraft with good low-speed overall lift performance and fuel tanks with a new self-sealing system that used thinner tank liners. But, almost from the start of first flight testing, things turned from bad to worse for this aircraft. Almost from the start, the Ar 240 was plagued with extremely bad handling on all three axes. There were also huge problems with the controls during landing, with most aircraft being lost due to this. As the aircraft proved to be dangerous to fly, it was never adopted and the initial orders for production of 40 aircraft were never materialized.

Allied Examination After the War

Strangely, despite being a rare aircraft, the Allies managed to capture at least one Ar 240 during their advance in the West in 1944/45. This aircraft was tested by Allied pilot Captain Eric Brown. He was Chief test pilot of the Royal Aircraft Establishment at Farnborough. He was involved in a British project of taking over of German war research installations and interrogating technical personnel after the war. After the war, he managed to find the single surviving Ar 240 and, after a flight on it, made a report on its performance. The source for this account is Wings Of The Luftwaffe Flying The Captured German Aircraft of World War II by Eric Brown. This aircraft would be given by the Allies to the French and its fate is unknown.

In his report, he stated. “When the Ar 240 was wheeled out of the hangar, I was struck by its angular appearance. The wings, fuselage, and tail unit all seemed to be straight-edged, with very few curves to be seen. The engines looked very large, the airscrew spinners being level with the nose of the cockpit and well ahead of the wing leading edge, while the nacelles protruded well aft of the trailing edge. I had the feeling that, if this aeroplane was as fast as it was reputed to be, then brute engine force must be the answer … The cockpit layout was neat and the instruments were quite logically arranged, while the view was good all around except downwards on either side, where the engines interfered. Take-off was quite long, even with using 20 degrees of flap, and the initial climb rate was just over 600 m/min (2,000 ft/min). Longitudinal stability was poor, lateral stability neutral, and directional stability positive. The rate of climb fell off very little as I climbed to 6,096 m (20,000 ft), where I levelled out and settled into the cruise at what I calculated was a true airspeed of 580 km/h (360 mph). In the cruise, the aeroplane could not be flown hands-off because it diverged quickly both longitudinally and laterally, and would be tiring to fly for a long time. An autopilot was fitted, although not serviceable in my case, but I believe it would have been essential for instrument flying in bad weather. On opening up to full power, I estimated that after three minutes I was hitting an impressive true airspeed of 628 km/h (390 mph), but it was obvious that the Ar 240 was a poor weapons platform. The harmony of control was terrible, with heavy ailerons, light elevators. and moderately light rudders. ….

My assessment of the Arado Ar 240 is that it was an aircraft of outstanding performance for its class and era, but it could not capitalise on this because of inferior, and indeed dangerous, handling characteristics. According to German information, it had a service ceiling of 10,500 m (34,450 ft) and a maximum range of 1,186 miles, so it had great potential as a reconnaissance intruder, and indeed it is claimed that it made such sorties over Great Britain in 1941 and 1944. Be that as it may, there can be little doubt that the Ar 240 was a failure ..”

Production Numbers

While the Ar 240 production was initially to begin in 1941, due to many problems and delays, this was not possible. While there were attempts to start production, by the end of 1942, the RLM officially terminated the program.

How many aircraft were built depends on the source. According to author G. Lang, the problem with identification of the production numbers is complicated by the fact that some prototype aircraft were allegedly modified and used for the few A-series aircraft built. Another issue, according to Lang, is that the highest known serial number production was 240018 (starting from 240000), which suggests that at least 18 were built, but it is not completely clear. Authors Ferenc A. and P. Dancey mention that at least 15 were built by 1944. Eric Brown claims that 12 prototypes were built.

Main Production and Prototypes

  • Ar 240 V1-V14 – Prototypes series used to test different equipment, armament and engines.
  • Ar 240 A – Was to be main production version, but only few aircraft were actually built
  • Ar 240 B – High-altitude reconnaissance version, possibly few built.
  • Ar 240 C – A bomber version, unknown if any were built.
  • Ar 240 D – Proposed version powered by two DB 614 engines.
  • Ar 240 E – Proposed modified Ar 240 version.
  • Ar 240 F – Proposed heavy fighter/bomber version to be powered by two DB 603 G engines.
  • Ar 440 – An improved version of the Ar 240. Only a few were built. The project was cancelled in 1943.
  • Ar 240 mit 7.5 cm Bordwaffen – A proposed version armed with a 7.5 cm gun, possibly one built, but its fate is unknown.
  • Ar 240TL – A jet-powered paper project.

Operators

  • Germany – Operated small numbers of these aircraft, mostly for testing and reconnaissance operations.
  • France – Captured one, but the fate is not known.

Conclusion

While the Ar 240 was, on paper, an excellent design with many innovations and advanced technology, in reality it did not live up to expectations. The plane proved to be dangerous during flight and many were damaged during landing, with fatal outcomes. Because the Ar 240 proved to be difficult to control, the RLM simply decided to stop the project, as it was probably unwilling to waste more time and resources on it.

Arado Ar 240 A-0 Specifications

Wingspan 14.3 m (47 ft)
Length 12.8 m (42 ft)
Height 3.95 m (13 ft)
Wing Area 31 m² (333 ft²)
Engine Two liquid cooled twelve-cylinder 1,750 hp DB 603 A-1
Empty Weight 6,350 kg (14.000 lbs)
Maximum Takeoff Weight 10,500 kg (23,150 lbs)
Fuel Capacity 2,300 liters (607.6 US gallons)
Maximum Speed at 6 km 670 km/h (415 mph)
Cruising Speed 600 km/h (370 mph)
Range 2,200 km (1,370 mi)
Maximum Service Ceiling 11,500 m (37,730 ft)
Climb speed Climb to 6,000 m in 9.7 minutes
Crew Two pilot and the rear radio operator/gunner
Armament
  • Four 2 0mm (0.78 inch) MG 151/20
  • Two 13 mm (0.5 inch) MG 131
  • One 1,000 kg (2,220 lbs) or one 1,800 kg (3,930 lbs) bomb
  • Or two 500 kg (1,000 lbs) bombs,
  • Or eight 50 kg (110 lbs) bombs,
  • Or 288 2.5 kg (5 lbs) incendiary and fragmentation bombs

Gallery

Illustrations by Ed Jackson

Arado Ar 240A-2
Arado Ar 240C-2

Credits

Reggiane Re.2000 Falco

Kingdom of Italy flag Kingdom of Italy (1937)
Fighter Aircraft – 158 ~ 170 Built

The Falco being prepared for a shipboard catapult test launch [Colorized by Michael Jucan]
The Re.2000 was one of many Italian pre-war fighter aircraft developments. Despite having overall decent flying performance, it was never adopted for Italian service. It did see export success, to Sweden and Hungary.

History

The prototype, MM 408, in its natural metal finish. [Rod’s Warbirds]
Officine Meccaniche Reggiane SA (Reggio Emilia in Northern Italy) was a WWI-era aircraft manufacturer. However, after the war, the Reggiane was not involved in any aircraft production or design work. Things started moving only during the thirties, when Reggiane became a subsidiary of the much larger Società de Agostini e Caproni and Società Caproni e Comitti aircraft manufacturer, which was led by well-known Engineer Gianni Caproni. Thanks to him, Reggiane was provided by Caproni with a larger and well qualified aircraft design department. Reggiane and Caproni were involved in several experimental pre-war designs, like the Ca.405 Procellaria and P.32bis, in addition to the licence production of the S.M.79 bomber.

In 1938, the development of the Re.2000 began at the request of the Italian Aviation Ministry (Ministero dell Aeronautica) under the codename “Programme R”, which aimed to upgrade the Italian Air Force (Regia Aeronautica) with new and modern designs. Special care was given to the development of new single wing fighter designs. At that time, several different fighter designs were in various states of development (like the Fiat G.50, Caproni-Vizzola F.5, Macchi C.200 etc.). The Reggiane officials wanted to participate in this, and ordered the design team to begin developing a fighter plane.

The similarities in external design between the Italian and American aircraft are easy to see. [UH.edu]
A team was formed, led by the Technical Director Antonio Alessio and Engineer Roberto Longhi, who immediately began work on the new design. Due to a lack of time to properly design the new fighter, a solution was proposed to simply buy a licence from the Americans, but this was rejected by chief Ing. Caproni. The new design was, surprisingly, soon finished. This was achieved by utilizing some elements of design of an American Seversky P-35 aircraft. The main reason why the Re.2000 was influenced by the American design was Roberto Longhi. He had spent some time working in the aviation industry in America before returning to Italy in 1936. While the two planes look very similar, there were some differences, like the cockpit, landing gear etc.

Technical Characteristics

Re.2000 rear view. [Rod’s Warbirds]
The Re.2000 was designed as a low wing, mixed construction (mostly metal), single seat fighter plane. The fuselage consisted of a round frame covered with metal sheet held in place by using flush-riveting. The Re.2000 wings had a semi-elliptical design, with five spars covered with stressed skin. The central part of the wing held two integral fuel tanks. The front position had a capacity of 455 l (120 US gallons), while the smaller rear one could hold around 240 l (63 US gallons). The wings were equipped with fabric covered Frise type ailerons. The rear tail had a metal construction with the controls covered with fabric.

The landing gear system was unusual. When it retracted, it rotated 90° (a copy from the Curtiss model) before it entered the wheel bays. For better landing handling, the landing gear was provided with hydraulic shock absorbers and pneumatic brakes. The smaller rear wheel was also retractable and could be steered if needed.

Two Italian Re.2000, possibly stationed in Sicily. [Rod’s Warbirds]
The Re.2000 engine was the Piaggio P.XI R.C.40 14-cylinder air cooled radial engine, a licensed derivative of the French Gnome-Rhône Mistral Major 14K, providing 985 hp (840 hp depending on the source), equipped with a three blade variable pitch propeller made by Piaggio.

The cockpit canopy opened to the rear and the pilot had a good overall view of the surroundings. For pilot protection, a rear 8 mm (0.3 in) thick armor plate was placed behind the seat. The pilot was provided with an oxygen tank and a type B.30 radio. The Re.2000 had an option for installing wing gun-cameras, but this was rarely done.

Re.2000 (MM 5068) first series side view. This aircraft was one of the few used by the Italian Air Force. [Rod’s Warbirds]
The Re.2000 possessed weak offensive capabilities, as it was armed with only two Breda-Safat 12.7 mm (0.5 in) heavy machine guns. The machine guns were placed above the front fuselage and fired through the propeller arc. For each machine gun, 300 ammunition rounds were provided. The machine guns could, depending on the combat situation (lack of ammunition, for example), be fired together or individually. There were plans to add two more machine guns (unknown caliber) to the wings but nothing came of this.

The Re.2000 also had two small bomb bays placed in each central wing section. Each bomb bay had a payload of twenty two 2 kg (4.4 lb) anti-personnel or incendiary bombs. The bombs were electrically released individually or in larger groups.

Tense Start

The Re.2000 dashboard. [Rod’s Warbirds]
The first operational Re.2000 prototype (serial number MM.408) was completed in early 1939. It made its first test flight on 24th March (or May, depending on the source) that year, piloted by Caproni test pilot Mario De Bernardi. During this flight, the Re.2000 was shown to have good flying speed and manoeuvrability. There were some modifications requested, like changes in the design of the exhaust and carburettor air intakes. The cockpit design was also requested to be changed from a round windshield to a framed model. These flight tests were followed by armament tests, which also were without any major problems. During this time, the Re.2000 was tested in mock dog-fights against the Italian Macchi C.200 and even a German Me-109E. In these mock fights, the Re.2000 proved to have better handling and maneuverability than its counterparts.

In August 1939, the prototype was moved to the Air Force Guidonia test site near Rome for further testing. The Re.2000 was flight tested by two pilots, Colonels Aldo Quarantotti and Angelo Tondi, who both gave positive remarks on its performance. Maximum speed achieved during these test flights was 515 km/h (320 mph).

Re.2000 side view [Rod’s Warbirds]
Further tests done by the Aeronautical Construction of the Air Ministry, on the other hand, stressed the important structural problems that this plane had. The main issue was the position of the fuel tanks in the wings, which was dangerous for a fighter plane. There was another huge issue with fuel tank leaks due to loosening of the rivets. The low quality of the welding and a number of internal structural defects were also noted. Despite still being in a prototype stage, meaning that these defects could possibly have been addressed, the Re.2000 program was abandoned.

Despite the proposal of the Re.2000 main designers Alessio and Longhi to redesign the fuel tanks and improve the structure of their prototype, the decision for the cancellation of the project was not changed. The small serial production of 12 planes was rejected and the preparation of the tooling equipment for the production of the originally planned 188 aircraft was abandoned.

Strangely, for some unknown reason ,the Aviation Ministry gave permission for the construction of a second prototype (MM.454). Later, this prototype would serve as a base of the Re.2002 aircraft design.

Success Abroad

While the Re.2000 proved to have good flying performance, it was difficult to maintain properly due to the harsh weather conditions in Swedish service. [Rod’s Warbirds]
Despite not being adopted for service, the Aviation Ministry did actually include the Re.2000 for the export market, where it did see some success. Even though the Reggiane lost the order for the Re.2000 serial production, their management decided to go on with production as a private venture. The idea was that, if its own Air Force did not want to adopt it, maybe another country would. Many Nations in Europe would show interest in this design, which included Hungary, Yugoslavia, Spain, Switzerland, UK, Finland and Sweden. In the end, due to the war’s outbreak, only Hungary and Sweden would receive the Re.2000.

Negotiations with the UK

In late 1939, the UK sent a delegation led by Lord Hardwick and Wing Commander H. Thornton to Caproni. The British were interested in buying a number of aircraft designs (Ca.313 and Ca.311), including 300 Re.2000. The order was confirmed in January 1940. What is interesting is that, initially, the Germans did not try to prevent these negotiations. Later, in March, the Germans tried to enforce an embargo on the Italian sale of weapons to the UK. Caproni and Lord Wardwick tried to bypass this embargo by making a deal through a Caproni Portugese subsidiary. But, as Italy attacked the French in June 1940, the negotiations between Italy and the UK were stopped.

In Swedish Service, the “J 20”

The Re.2000 was known in Sweedish service as the J-20 model. [WW2 in Color]
Sweden negotiated with Reggiane to buy a group of 60 Re.2000 aircraft. After some initial negotiations, the deal was made on the 28th November 1940. The price of these 60 aircraft was 18.7 million Swedish Krona, but was instead paid in much needed chrome-nickel metal (of the same value) instead. The 60 Re.2000 were broken into parts and sent by train through Germany and then again re-assembled at Malmen. In Swedish service, the Re.2000 was known as the J 20. While it proved to have good flying performance, due to the harsh weather conditions, it was difficult to maintain properly. During the war, the J 20 were mostly used to patrol the Swedish skies and occasionally intercept German or Allied aircraft. Only one was lost, when it was shot down by a German Do 24 in April 1945. Due to a lack of spare parts, all were removed from service in 1946. One surviving J 20 can be seen in the Swedish Air Force Museum in Linköping.

In Hungarian service, the “Héja”

A Hungarian Heja II is preparing to take a test flight on an airfield near Budapest.

For some time, Hungary acquired aircraft and aviation equipment from Italy (like the CR.32 and CR.42, for example). By the end of 1939, Hungary asked for 70 new Re.2000 in addition to the licence rights for domestic production. Once the deal was completed, the production of the Re.2000 was given to well known manufacturer MAVAG, but the start of the production process was slow. On the other hand, the 70 Italian-produced Re.2000 arrived by the end of 1941. The first Hungarian-produced Héja (Hawk, as the Re.2000 was known in Hungary) was only built and tested in 1942. By the time production stopped, in 1944 around 185-203 aircraft of this type were built.

Re.2000 in Hungarian service. The Italians supplied the Hungarians with 70 aircraft and a production license. [Rod’s Warbirds]
During their Hungarian service, the Héja’s engine was deemed insufficient, and so a new, 14-cylinder WMK-14B 1085 hp engine was used. The heavy machine guns were also replaced with Hungarian Gebauer ones of the same caliber.

The Héja were used on the Easter front with some success, managing to achieve a number of air victories. As a shipment of more advanced Me-109G arrived in Hungary from Germany in late 1943, the Héja was mostly relegated to training. But, due to the rapid Soviet advance in 1944, many were put back into frontline service in the vain hope of stopping the enemy.

Negotiation with Yugoslavia

In early 1940, the Kingdom of Yugoslavia sent an Air Force delegation led by Colonel Pavlović to negotiate an order for 50 Re.2000 aircraft. After a brief demonstration, the delegation was impressed with its performance. In March, a new delegation led by Colonel Rubčića, with two test pilots, was sent to personally test the Re.2000’s performance. In July, Yugoslavia requested a delivery of six Re.2000 aircraft without armament. Due to the outbreak of the war, none were ever delivered to Yugoslavia.

A New Chance in Italian service

The Re.2000 would see some limited service in the Italian Air Force and Navy. Due to an urgent need for modern aircraft, the Italians simply reused 28 aircraft (the numbers are different depending on the source used) which were originally intended for Hungary (20) and Sweden (8). An additional 28 aircraft were built to replace the ones requisitioned, and supplied to the respective buyers.

Shipboard Version

Re.2000 preparing to be launched from a ship catapult. Despite the testing being successful, none were ever used operationally in this role due to rapid war developments in favor of the Allies. [Rod’s Warbirds]
When Italy declared War on the Western Allies, their navy had only a small number of 44 Ro.43 and few Ro.44 floatplanes available. Thus, the Italian Navy finally showed interest in the Re.2000 as a replacement for the older models. For this reason, a Re.2000 was to be modified with catapult mounting points, so that it could be launched by ship catapults. These were piloted not by navy pilots, but instead by the Air Force. Two Re.2000 that were modified for this purpose and were lost in accidents. The first (MM.471), piloted by Cap. Giovanni Fabbri, was lost during the flight to Taranto and the second (MM.485) was damaged during transport.

The first catapult tests were carried out in late 1941 near Perugia, by Giulio Reiner. More intensive tests were carried out in early 1942 on the Italian battleships Roma and Vittorio Veneto. These tests were considered a great success and an order was placed for 10 Re.2000 to be modified for this role.

These Re.2000 saw some modifications, like the removal of the covering behind the sliding canopy in hope of improving rear visibility, a modified windshield was added, new radio and modifications to the fuselage so that it could be launched from ship catapults.

When the testing was completed, the Re.2000 were given to the 1° Squadriglia FF.NN (Forze Navali – Naval force). Two each were given to the battleships Roma, Vittorio Veneto and Littorio. Due to the rapid development of the War in the Medeterain, the Italian navy was no longer able to effectively battle the Allied navy. These Re.2000 were never used operationally on any Italian ships in its intended role. By the time of the Italian surrender (September 1943), these battleships tried to escape to the Allied side but were attacked by the German bombers, and only one Re.2000 (from the Vittorio Veneto) survived the engagement.

Depending on the source, this version was powered by a stronger 1025 hp P.XIbis engine. The Re.2000 design for the shipboard is marked as Series II. In addition, some authors (like Maurizio D.T.) name this version as Re.2000Bis.

The Re.2000 G.A. Long Range Version

The flow of supplies to the Italian colony of Ethiopia with much needed modern weapons and equipment was constantly harassed by the British navy and aviation. One of the problems for the Italians was the lack of proper fighter cover. They attempted to send S.M.82 transport planes carrying parts for CR.42 biplanes. While these attempts did see some success, a proper solution was needed. The best Italian fighter at that time was the Macchi C.200, but it lacked the needed operational range to reach this front. Someone in the Italian Air Force proposed to modify some already produced models with increased fuel load. The Italian Navy (Regia Marina) also showed interest in this project, as they were desperate to replace the aging Ro.43 and Ro.44 aircraft (carried by larger shipps for various missions). For this proposal, the Re.2000 was chosen, despite not being adopted for service.

The prototype of the Re.2000 design for longer operational range was named “G.A” (Grande Autonomia, long range). The Re.2000 G.A had an increased fuel load to 1490 l, which increased the operational range from 840 km (520 miles) to 1.300 km (807 miles). This aircraft was tested by the famous Italian Ace Col. Adriano Mantelli. The flight proved to be successful and without any problems. Despite these results, the loss of Ethiopia to the Allies in May 1941 stopped the long range fighter project.

Re.2000 of the 74° Squadriglia. [Rod’s Warbirds]
The modified Re.2000 aircraft were allocated to the 23° Gruppo Autonomo (independent group) in the spring of 1941. The 23° Gruppo Autonomo consisted of the 70° ,74° and 75° Squadriglia. This unit was stationed at Sicily under the leadership of Major Tito Falconi. As this unit had only a small number of Re.2000, it was reinforced with older CR.42.

To better test the Re.2000 G.A. version’s performance, a special experimental section (Sezione Sperimentale), a part of the 23° Gruppo Autonomo, was formed. This Section was led by Capt. Pietro Calistri. For some time, this unit had a nonoperational status, as the Re.2000 had engine problems and could not be used. As the engine problems were solved, the Re.2000 were mainly used for patrolling the Italian coast, but in a few cases even for bombing British military installations on Malta. The Re.2000 were moved to support the 377° Squadriglia in July (or August depending on the source). At that time, the 377° Squadriglia had around 13 (or up to 17) Re.2000. This unit was stationed at the Trapani Milo airfield in Sicily. From that point, this unit was mostly used for patrol and escort missions in the Mediterranean sea.

The 23° Gruppo Autonomo was, for a very short time, even used in North Africa, but without any Re.2000. In early 1942, the unit was engaged in naval escort and reconnaissance operations, but no enemy fighters were encountered. From March 1942, this unit, under the command of Capt. Marcolini, operated from Palermo in Sicily. Its objective was to protect Palermo from any possible enemy bombing attacks and to scout for enemy ships and aircraft. During one such mission, one British Blenheim bomber was shot down, which may be the only Re.2000 air victory in Italian service.

The 377° Squadriglia was engaged in supporting the Italian attacks on British convoy ships near Malta in June 1942. During this action, no victory was achieved and no losses were recorded. After more than 320 operational missions, the Re.2000 were replaced with Macchi C.200 aircraft in September 1942. The remaining Re.2000s were in such poor repair condition that it was decided to return them to the Reggiane factory. After some were repaired, they were then moved to Treviso to be used as training aircraft, but no flights were ever made. After the Italian surrender, the Germans took over these aircraft, but they were likely scrapped, as there is no record of their use by the Germans.

Future Developments

During the war, the Re.2000 would see some improvement attempts by using a new engine and improving the overall design. There were several such projects, including the Re.2001, Re.2002, Re.2003, Re.2004 and Re.2005.

Re.2001

In the hope of improving the Re.2000’s overall flight performance, in 1939 and 1940, one plane was equipped with a German Daimler Benz DB 601 engine. While it improved the performance, Alfa Romeo was unable to produce large numbers of this engine and, for this reason, only 252 were built. They were used in different roles: fighter, ground attack, shipboard and torpedo attack plane.

Re.2002

The Re.2002 was a fighter-bomber version which incorporated design elements from the Re.2000 and Re.2001. It received two additional light machine guns, bomb racks under the fuselage and under the wings. It was powered by a 1175 hp Piaggio P.XIX R.C.45 engine. Small numbers were produced for the Italians by 1943. The German captured the Reggiane factory and produced additional aircraft.

Re.2003

One Re.2000 was used as a base for the experimental two-seat Re.2003 version. After some testing and an initial order for 200 planes, it was not adopted for service.

Production

Despite being canceled for mass production, Reggiane decided on its own initiative to produce a series of 158 to 170 (depending on the source) aircraft for export sales. Most of these would be sold to Hungary and Sweden. Small numbers (less than 30, including the prototypes) did eventually enter limited service with the Italian navy.

  • Re.2000 Prototype – two prototypes built
  • I Series – Main production version
  • II Series- Shipborne fighter/scout version
  • III Series – Long range version

Prototypes and modifications

  • Re.2001 – Improved version powered with German Daimler Benz DB 601 engine, 252 were built.
  • Re.2002 – Powered with 1175 hp Piaggio P.XIX R.C.45 engine, 225 were built.
  • Re.2003 – Experimental two-seater, one prototype built.

Operators

  • Italy – Operated less than 40 aircraft
  • Hungary – Bought 70 aircraft and a licence production for the Re.2000 under the ‘Héja’ name. Total domestic production was 185-192 aircraft
  • Sweden – Bought 60 aircraft in 1940.
  • UK – Negotiated buying 300 aircraft, but the war prevented this from happening.
  • Other countries like Yugoslavia, Finland, Spain and Switzerland showed interest in buying a number Re.2000, but nothing came from this.

Surviving Re.2000

The remains of the recovered Re.2000 [Warbird News]
Two Re.2000 wrecks were recovered from the bottom of Mediterranean. One shipboard Re.2000 (MM.8287) wreckage was found by the Italian company Micoperi. It was lost in a reconnaissance flight during April 1943. What is interesting is that this plane was modified as an experimental two seater according to author Maurizio D. T. The wreckage was, after a proper desalination process, transported to the Museum of the Italian Air Force at Vigna Di Valle. This plane is currently under restoration. Another Re.2000 (MM.8281) was also recovered in late April 2012.

Conclusion

The Re.2000 had good flying performance but it did have a number of issues. The greatest one was the engine, which demanded a lot of maintenance. There were many problems with the engine overheating. While the larger forward mounted engine did provide the pilot with additional protection from enemy fire, it also affected the pilot’s front view, which was limited. The two heavy machine guns proved to be insufficient and problematic. The biggest issue was the poor quality of the fuel tanks, a problem that was never solved successfully, which was the main reason why it was never adopted for service.

Re.2000 Specifications

Wingspans 36 ft 1 in / 11 m
Length 26 ft 5 in / 8 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One Piaggio P.XI RC.40 985 hp
Empty Weight 5424 lbs / 2.460 kg
Maximum Takeoff Weight 7143 lbs / 3.240 kg
Fuel Capacity 675 l (180 US gallons)
Climb to 6 km (19,700 ft) 6 minutes 10 seconds
Maximum Speed 320 mph / 515 km/h
Cruising speed 280 mph / 450 km/h
Range 522 mile / 840 km
Maximum Service Ceiling 34.450 ft / 11,500 m
Crew 1 pilot
Armament
  • Two 0.5 in (12.7 mm) heavy machine guns
  • Bomb bay with twenty two 4.4 lb (2 kg) bombs.

Gallery

Illustrations by Pavel

Italian Re.2000 used during catapult launch testings
A Hungarian V.4+V.40 Héja I belonging to the Dongo (Wasp) Fighter Squadron
Swedish J 20 (Re.2000) with 42 marking number

Credits

 

North American F-86A Sabre

USA flag old United States of America (1947)
Jet Fighter – 554 Built

F-86A-1-NA Sabre 47-630 in flight (North American Aviation)

The iconic F-86A got its first official production underway with the A series in 1947, with the initial examples fulfilling many testing duties, followed by a larger second production batch for active service. The development of these first Sabres would address many teething problems with the aircraft’s engines, speed brakes, and weaponry.  The A models, alongside many other first generation American jet aircraft would go on to see a few short years of service in the Korean theatre as well as defense of the United States before being eclipsed by the relatively rapid development of more advanced jet designs.

History

The P-86A was the first production version of the Sabre. North American had received an order for 33 production P-86As on November 20, 1946, even before the first XF-86 prototype had flown. The P-86A was outwardly quite similar to the XP-86, with external changes being very slight. About the only noticeable external difference was that the pitot tube was moved from the upper vertical fin to a position inside the air intact duct.

Major Richard L. Johnson, USAF with F-86A-1-NA Sabre 47-611 and others at Muroc AFB, 15 September 1948. (F-86 Sabre, by Maurice Allward)

The first production block consisted of 33 P-86A-1-NAs, ordered on October 16, 1947. These were known as NA-151 on North American company records. Serials were 47-605 through 47-637. Since there were officially no YP-86 service test aircraft, this initial production block effectively served as such.

The first production P-86A-1-NA (serial number 47-605) flew for the first time on May 20, 1948. The first and second production machines were accepted by the USAF on May 28, 1948, although they both remained at Inglewood on bailment to North American for production development work. Aircraft no. 47-605 was not actually sent to an Air Force base until April 29, 1950. It remained at WPAFB until May of 1952, when it was retired to storage at the Griffiss Air Depot.

In June of 1948, the P-86 was redesignated F-86 when the P-for-pursuit category was replaced by F-for-fighter

By March of 1949 the last F-86A-1-NA (47-637) had been delivered. Most of the 33 F-86A-1-NAs built were used for various tests and evaluations, and none actually entered squadron service.

The first production block to enter squadron service was actually the second production batch, 188 of which were ordered on February 23, 1949. They were assigned the designation of F-86A-5-NA by the USAF, but continued to be carried as NA-151 on company records. Serials were 48-129 to 48-316. These were powered by the J47-GE-7 jet engine. Deliveries began in March of 1949 and were completed in September of 1949.

A contract for 333 additional F-86As was received on May 29, 1948, and the final contract was approved on February 23, 1949. These aircraft were assigned a new designation of NA-161 on North American company records, but continued to be designated F-86A-5-NA in USAF records. Their serials were 49-1007 to 49-1229. These were powered by the General Electric J47-GE-13 engine which offered 5200 pounds of static thrust. The cockpit wiring was simplified. New 120-gallon drop tanks, developed specifically for the F-86, were introduced during this production run. Deliveries commenced in October of 1949 and were completed by December of 1950. The 282nd F-86A aircraft had a redesigned wing trailing edge with shorter chord aileron and greater elevator boost. Deliveries commenced October 1949 and ended in December 1950.

First Deployment

The first USAF combat organization to receive the F-86A was the First Fighter Group based at March AFB in California, with the famous “Hat in the Ring” 94th Squadron being the first to take delivery when they traded in their F-80s for the F-86A-5-NA during February of 1949. The 27th and 71st Squadrons were equipped with F-86A-5-NAs next, and by the end of May of 1949 the group had 83 F-86As on strength. This group was charged with the aerial defense of the Los Angeles area, which, coincidentally, is where the North American Aviation factory was located. Next to get the F-86 the the 4th Fighter Group based at Langley AFB, charged with the defense of Washington, D.C, and then the 81st Fighter Group, based at Kirtland AFT and charged with the defense of the nuclear bomb facilities at Alamogordo, New Mexico. Next came the 33rd Fighter Group based at Otis AFB in Massachusetts, charged with defending the northeastern approaches into the USA. In January of 1950, all air defense units were redesignated as Fighter Interceptor Groups (FIGs) or Fighter Interceptor Wings (FIWs) as a part of the Air Defense Command.

Origin of the “Sabre” Name

In February of 1949, there was a contest held by the First Fighter Group to choose a name for their new fighter. The name *Sabre* was selected, and was made official on March 4, 1949.

Reserves

The first Sabres that went to Reserve units were assigned to the 116th Fighter Interceptor Squadron of the Air National Guard, which received its first F-86As on December 22, 1950.

The following Wings were issued with the F-86A:

  • 1st Fighter Interceptor Wing (27th, 75st and 94th Squadrons)
  • 4th Fighter Interceptor Wing (334th, 335th, 336th Squadrons)
  • 33rd Fighter Interceptor Wing (58th, 59th and 60th Squadrons)
  • 56th Fighter Interceptor Wing (61st, 62nd, 63rd Squadrons)
  • 81st Fighter Interceptor Wing (78th, 89st, 92nd Squadron)

The F-86A was replaced in active USAF service by the F-86E beginning in the autumn of 1951. As F-86As left active USAF service, they were refurbished, reconditioned and transferred to Air National Guard units in the United States. The first ANG units to get the F-86A were the 198th Squadron in Puerto Rico, the 115th and 195th Squadrons at Van Nuys, California, the 196th at Ontario, and the 197th at Phoenix, Arizona.

Record Breaker

In the summer of 1948, the world’s air speed record was 650.796 mph, set by the Navy’s Douglas D-558-1 Skystreak research aircraft on August 25, 1947. Like the record-setting Lockheed P-80R before it, the Skystreak was a “one-off” souped-up aircraft specialized for high speed flight. The USAF thought that now would be a good time to show off its new fighter by using a stock, fully-equipped production model of the F-86A to break the world’s air speed record.

Major Richard L. Johnson on the day of his record-breaking flight, September 15th, 1948 (

To get the maximum impact, the Air Force decided to make the attempt on the speed record in the full glare of publicity, before a crowd of 80,000 spectators at the 1948 National Air Races in Cleveland, Ohio. The fourth production F-86A-1-NA (serial number 47-608, the cold weather test aircraft) was selected to make the record attempt, and Major Robert L. Johnson was to be the pilot. According to Federation Aeronautique Internationale (FAI) rules, a 3km (1.86 mile) course had to be covered twice in each direction (to compensate for wind) in one continuous flight. At that time, the record runs had to be made at extremely low altitudes (below 165 feet) to enable precise timing with cameras to be made.

On September 5, 1948, Major Johnson was ready to go and flew his F-86A-1-NA serial number 47-708 on six low-level passes over the course in front of the crowd at Cleveland. Unfortunately, timing difficulties prevented three of these runs from being clocked accurately. In addition, interference caused by other aircraft wandering into the F-86A’s flight pattern at the wrong time prevented some of the other runs from being made at maximum speed. Even though the average of the three runs that were timed was 669.480 mph, the record was not recognized as being official by the FAI.

Further attempts to set an official record at Cleveland were frustrated by bad weather and by excessively turbulent air. Major Johnson then decided to move his record-setting effort out to Muroc Dry Lake (later renamed Edwards AFB), where the weather was more predictable and the air less turbulent. On September 15, 1948, Major Johnson finally succeeded in setting an official record of 670.981 mph by flying a different F-86A-1-NA (serial number 47-611, the armaments test aircraft) four times over a 1.86-mile course at altitudes between 75 and 125 feet.

Design

F-86A-1 47-611 Conducting a Static 5-inch HVAR Rocket Firing Test (U.S. Air Force Photo)

The P-86A incorporated as standard some of the changes first tested on the third XP-86 prototype. The front-opening speed brakes on the sides of the rear fuselage were replaced by rear-opening brakes, and the underside speed brake was deleted. However, the most important difference between the P-68A and the three XP-86 prototypes was the introduction of the 4850 lb.s.t. General Electric J47-GE-1 (TG-190) in place of the 4000 lb.s.t. J35. The two engines had a similar size, the J47 differing from the J35 primarily in having a twelfth compressor stage.

The F-86A-1-NA fighters could be recognized by their curved windshields and the flush-fitting electrically-operated gun muzzle doors that maintained the smooth surface of the nose. These muzzle doors opened automatically when the trigger was pressed to fire the guns, and closed automatically after each burst.

The cockpit of the F-86A remained almost the same as that of the XP-86, although certain military equipment was provided, such as an AN/ARC-3 VHF radio, an AN/ARN-6 radio compass, and an AN/APX-6 IFF radar identification set. The IFF set was equipped with a destructor which was automatically activated by impact during a crash or which could be manually activated by the pilot in an emergency. This was intended to prevent the codes stored in the device from being compromised by capture by the enemy. The F-86A was provided with a type T-4E-1 ejection seat, with a manually-jettisoned canopy.

The F-86A-1-NA’s empty weight was up to 10,077 pounds as compared to the prototype’s 9730 pounds, but the higher thrust of the J-47 engine increased the speed to 673 mph at sea level, which made the F-86A-1-NA almost 75 mph faster than the XP-86. Service ceiling rose from 41,200 feet to 46,000 feet. The initial climb rate was almost twice that of the XP-86.

In the autumn of 1948, problems with the J-47-GE-1 engine of the early F-86As forced a momentary halt to F-86 production. It was followed by a few J47-GE-3s, and in December the J47-GE-7 became available, which offered 5340 lb.s.t. and full production resumed.

A close up of the early A models’ retractable gunport covers. (Julien of Britmodeller)

The F-86A-5-NA had a V-shaped armored windscreen which replaced the curved windscreen of the F-86A-1-NA. The A-5 would dispense with the gun doors at some point in its production in the interest of maintenance simplicity, although many A-5 examples can be seen with gun doors, many of them with the doors permanently open. A jettisonable cockpit canopy was introduced. The A-5 introduced underwing pylons capable of carrying a variety of bombs (500 and 1000-pounders) or underwing fuel tanks of up to 206 gallons in capacity. A heating system was provided for the gun compartments, and stainless steel oil tanks and lines were provided for better fire resistance.

In May of 1949, beginning with the 100th F-86A aircraft, an improved canopy defrosting system was installed and a special coating was applied to the nose intake duct to prevent rain erosion. Earlier airframes were retrofitted to include these changes. The 116th F-86A was provided with a new wing slat mechanism which eliminated the lock and provided a fully automatic operation.

Gun Sight & Radar

The P-86A was equipped with the armament first tested on the third XP-86 six 0.50-inch machine guns in the nose, three on each side of the pilot’s cockpit. The guns had a rate of fire of 1100 rounds per minute. Each gun was fed by an ammunition canister in the lower fuselage holding up to 300 rounds of ammunition. The ammunition bay door could be opened up to double as the first step for pilot entry into the cockpit. The P-86A had two underwing hardpoints for weapons carriage. They could carry either a pair of 206.5 US-gallon drop tanks or a pair of 1000-lb bombs. Four zero-length stub rocket launchers could be installed underneath each wing to fire the 5-inch HVAR rocket, which could be carried in pairs on each launcher.

An innovation introduced with the NA-161 production batch was a new type of gun aiming system. All earlier F-86As had been equipped at the factory with Sperry Mark 18 optical lead computing gunsight, which was quite similar to the type of gunsight used on American fighter aircraft in the latter parts of World War 2. When the pilot identified his target, he set the span scale selector lever to correspond to the wingspan of the enemy aircraft he was chasing. He then aimed his fighter so that the target appeared within a circle of six diamond images on the reflector. Next, he rotated the range control unit until the diameter of the circle was the same as the size of the target. When the target was properly framed, the sight automatically computed the required lead and the guns could be fired.

Beginning with the first NA-161 aircraft (49-1007), the A-1B GBR sight and AN/APG-5C ranging radar were provided as factory-installed equipment. This new equipment was designed to automatically measure the range and automatically calculate the appropriate lead before the guns were fired, relieving the pilot of the cumbersome task of having to manually adjust an optical sight in order to determine the range to the target. When activated, the system automatically locked onto and tracked the target. The sight image determined by the A-1B was projected onto the armored glass of the windscreen, and the illumination of a radar target indicator light on the sight indicated time to track target continuously for one second before firing. This system could be used for rocket or bomb aiming as well as for guns.

In the last 24 F-86A-5-NAs that were built, the A-1B GPR sight and AN/APG-5C ranging radar were replaced by the A-1CM sight that was coupled with an AN/APG-30 radar scanner installed in the upper lip of the nose intake underneath a dark-colored dielectric covering. The APG-30 radar was a better unit than the AN/APG-5C, with a sweep range from 150 to 3000 yards. The A-1CM sight and the APG-30 ranging radar were both retrofitted to earlier A-5s during in-field modifications. These planes were redesignated F-86A-7-NA. However, some F-86A-5-NAs had the new A-1CM GBR sight combined with the older AN/APG-5C radar. These were redesignated F-86A-6-NA.

Engines

Some consideration given to replacing the J47 engine with the improved J35-A-17 that was used in the F-84E. This engine was tested in the first XP-86. Flight tests between November 28, 1949 and March 1951 indicated that the performance remained much the same as that of the F-86A-1-NA but with a slightly better range. However, the improvement was not considered significant enough to warrant changing production models.

Some F-86As were re-engined with the J47-GE-13 engine, rated at 5450 lb.s.t., but their designation did not change.

All F-86As were initially delivered with the pitot head located inside the air intake duct. It was found in practice that false airspeed readings could be obtained due to the increased airflow within the intake duct, so North American decided to move the pitot head to the tip of a short boom that extended from the leading edge of the starboard wingtip. All F-86As were later retrofitted with the wingtip boom when went through IRAN (Inspect and Repair as Necessary). However, the pitot tube in the intake was never designed to provide airspeed input to the pilot, and the pitot tube in the intake was still there and was used to provide input for the engine.

Fuel

Internal fuel capacity of the F-86A was 435 gallons, carried in four self-sealing tanks. Two of the tanks were in the lower part of the fuselage, one of them being wrapped around the intake duct just ahead of the engine and the other being wrapped around the engine itself. The other two fuel tanks were in the wing roots. Usually the F-86A carried two 120-gallon drop tanks, although 206.5 gallon tanks could be fitted for ferry purposes.

Weapons

Ground attack weapons could be installed in place of the jettisonable underwing fuel tanks. Choices include a pair of 100, 500 or 1000-pound bombs, 750-pound napalm tanks, or 500 pound fragmentation clusters. Alternatively, eight removable zero-rail rocket launchers could be installed. These mounted sixteen 5-inch rockets. When external armament was fitted in place of the drop tanks, combat radius was reduced from 330 to 50 miles, which was not a very useful distance.

F-86A in Korea

Even though the initial skirmishes with MiGs in Korea had demonstrated that their pilots lacked experience and an aggressive approach, the MiG threat was very real and threw the USAF into a near panic. The USAF had nothing in Korea that could provide an effective counter if the MiG-15s were to intervene in large numbers.

In order to counter the MiG threat, on November 8 the 4th Fighter Interceptor Wing, which consisted of the 334th 335th, and 336th Squadrons, based at Wilmington, Delaware and equipped with the F-86A Sabre was ordered to Korea. Most of their pilots were seasoned veterans of World War 2 and they had shot down over 1000 Germans during that conflict. Prior to flying to the West Coast, the 4th FIG exchanged their older ’48 model F-86As for some of the best “low-time” F-86As taken from other Sabre units. The 334th and 335th FIS flew to San Diego and their planes were loaded aboard a Navy escort carrier. The 336th FIS went to San Francisco and was loaded aboard a tanker. Their F-86A aircraft arrived in Japan in mid-December. The aircraft were then unloaded and flown to Kimpo airfield in Korea.

However, before any of these Sabres could reach the front, on November 26, 1950, Chinese armies intervened with devastating force in Korea, breaking through the UN lines and throwing them back in utter confusion. The MiGs did not provide any effective support for this invasion, being unable to establish any effective intervention below a narrow strip up near the Yalu. The MiG pilots were relatively inexperienced and were poor marksmen. They would seldom risk more than one pass at their targets before they would dart back across the Yalu. Had the MiGs been able to establish and hold air superiority over the battle area, the UN forces may well have been thrown entirely out of Korea.

The first advanced detachment of 336th FIS F-86As arrived at Kimpo airfield south of Seoul on December 15. The first Sabre mission took place on December 17. It was an armed reconnaissance of the region just south of the Yalu. Lt. Col. Bruce H. Hinton, commander of the 336th Squadron, succeeding in shooting down one MiG-15 out of a flight of four, to score first blood for the Sabre. The rest of the MiGs fled back across the Yalu. On December 19, Col. Hinton led another four-plane flight up to the Yalu, where his flight met six MiGs who flew through his formation without firing a shot before dashing back across the Yalu. On December 22, the MiGs managed to shoot down a single Sabre out of a flight of eight without loss to themselves, but later that day the Sabres got their revenge by destroying six MiGs out a flight of 15. This loss spooked the MiG pilots, and they avoided combat for the rest of the month.

During December, the 4th Wing had flown 234 sorties, clashed with the enemy 76 times, scored eight victories, and lost one aircraft.

By the end of 1950, Chinese armies had driven UN forces out of North Korea and had begun to invade the South. The Sabres were forced to leave Kimpo and return to Japan which put them out of range of the action up at the Yalu.

Even though the Yalu was now out of range, on January 14, an F-86A detachment appeared at Taegu to participate as fighter bombers to try to halt the Chinese advance. The F-86A was not very successful in the fighter-bomber role, being judged much less effective than slower types such as the F-80 and the F-84. When carrying underwing ordinance, the F-86A’s range and endurance were much too low, and it could not carry a sufficiently large offensive load to make it a really effective fighter bomber. In these attacks, the underwing armament was usually limited to only a pair of 5-inch rockets.

Eventually, the Chinese advance ground to a halt due to extended supply lines and the relentless UN air attacks. The Chinese advance was halted by the end of January, and the UN forces began pushing them back. Kimpo airfield was recovered on February 10. The halting of the Chinese advance can be blamed largely on the inability of the MiGs to provide any effective support for the Chinese attack. Not only had no Chinese bombers appeared to attack UN troops, but no MiGs had flown south of the Yalu region to provide any air support.

The Chinese apparently did have plans for a major spring offensive to complete the task of driving the UN out of Korea. This plan was to be based on the construction of a series of North Korean air bases and for Chinese MiGs to use these bases as forward landing strips to provide air superiority over the North, preventing UN aircraft from interfering with the advance.

In early March, the MiGs began to become more active in support of this offensive, On March 1, MiGs jumped a formation of nine B-29s and severely damaged three of them. Fortunately, by this time the UN base at Suwon was now ready, and the Sabres were now able to return to Korea and reenter the fray over the Yalu. The Sabres of the 334th Squadron began their first Yalu patrols on March 6th, and the rest of the squadron moved in four days later. At the same time, the 336th Squadron moved to Taegu from Japan, so that they could stage Sabres through Suwon. The 4th Wing’s other squadron, the 335th, stayed in Japan until May 1.

MiG Alley

The strip of airspace in western Korea just south of the Yalu soon became known as “MiG Alley” to the Sabre pilots. The Sabres would arrive for their 25-minute patrols in five minute intervals. The MiGs would usually cruise back and forth at high altitude on the other side of the Yalu, looking for an opportune time to intervene. Very often they would remain on the north side of the river, tantalizingly out of reach. When the MiGs did choose to enter battle, the Sabres would usually have only a fleeting chance to fire at the enemy before the MiGs broke off and escaped back across the Yalu. The MiGs had the advantage of being able to choose the time and place of the battle. The MiG-15 had a better high-altitude performance than the F-86A. The MiG had a higher combat ceiling, a higher climb rate, and was faster at higher altitudes than the F-86A. Its superior high-altitude performance enabled the MiG to break off combat at will. Despite these handicaps, the F-86A pilots were far more experienced than their Chinese opponents and they were better marksmen. The Sabre was a more stable gun platform and had fewer high-speed instabilities than did the MiG-15. In addition, the F-86A was faster than the MiG-15 at lower altitudes, and an effective strategy was for the Sabre to force the battle down to lower altitudes where it had the advantage.

In April of 1951, the MiGs got a little bolder, and they would often make attempts to intercept B-29 formations that were attacking targets in the Sinuiju area up near the Yalu. The biggest air battle of that spring took place on April 12, when a formation of 39 B-29s escorted by F-84Es and F-86As were attacked by over 70 MiGs. Three B-29s were lost, whereas 14 MiGs were claimed destroyed, four by the escorting Sabres and ten by B-29 gunners.

On May 20, 1951, F-86A pilot Captain James Jabara became the world’s first jet ace when he shot down a pair of MiGs to bring his total to six.

No F-86As were lost in action during the first five months of 1951, and they flew 3550 sorties and scored 22 victories. Most of the attrition was caused by accidents rather than by losses in actual combat.

In June of 1951, the MiGs began to show more aggressive behavior, and their pilots began to get somewhat better. In air battles on June 17th, 18th, and 19th, six MiGs were destroyed but two Sabres were lost. Another Sabre was lost on June 11 when the 4th Wing covering an F-80 attack on the Sinuiju airfield shot down two more MiGs.

As the first year of the Korean War came to an end, it was apparent that the Sabre had been instrumental in frustrating the MiG-15’s bid for air superiority. Without control of the air, the Red Chinese were unable to establish their series of air bases and they were not able to carry out effective air support of their spring offensive, and the Korean War settled down to a stalemate on the ground.

The more-advanced F-86E began to enter action in Korea with the 4th Wing in July of 1951, replacing that unit’s F-86As on a one-by-one basis. The conversion to the F-86E was rather slow, and the last F-86A was not replaced until July of 1952.

Operators

  • U.S. Air Force – The U.S. utilized the F-86A extensively for the air defense of the Continental United States, while also seeing action in Korea in MiG Alley.

North American F-86A-5-NA Specifications

Wingspan 37 ft 1.5 in / 11.32 m
Length 37 ft 6.5 in / 11.44 m
Height 14 ft 9 in / 4.5 m
Wing Area 287.9 ft² / 26.8 m²
Engine 1x General Electric J47-GE-13 Turbojet Engine

5200 lbst

Weights
Empty 10,093 lb / 4,578 kg
Maximum Take Off 14,108 lb / 6,399 kg
Combat 13,791 lb / 6,255 kg
Climb Rate
Rate of Climb at Sea Level 7,470 ft / 2,277 m per minute
Time to 40,000 ft / 12,192 m 10.4 minutes
Maximum Speed
Sea Level 679 mph / 1,092 kmh
35,000 ft / 10,668 m 601 mph / 967 kmh
Takeoff Run 2,430 ft / 741 m
Range (with Drop Tanks) 660 mi / 1,062 km
Maximum Service Ceiling 48,000 ft / 14,630 m
Crew 1 pilot
Armament
  • 6x Browning M3 machine guns, 300 rounds per gun
  • A-1B GBR Gun Sight
  • AN/APG-5C Ranging Radar
  • 8x 5-inch HVAR Rockets
  • 2x 1000 lb bombs
  • 2x Drop Tanks – 206.5 U.S. Gal / 781.7 Liters

Gallery

Illustrations by Ed Jackson

F-86A-1 Sabre 47-611 – September 1948
F-86A-1 Sabre 47-630 – 1948
F-86A-5 48-0158 – 1949
F-86A-5 48-1257 – Korea 1951 – Flown by Capt. James Jabara
F-86A-5 Sabre 49-1080 February 1952 – Note the 5 inch HVAR Rocket Mounted inboard of the fuel tank

Sources:

  1. F-86 Sabre in Action, Larry Davis, Squadron/Signal Publications, 1992.
  2. The North American Sabre, Ray Wagner, MacDonald, 1963.
  3. The American Fighter, Enzo Angelucci and Peter Bowers, Orion, 1987.
  4. The World Guide to Combat Planes, William Green, MacDonald, 1966.
  5. Flash of the Sabre, Jack Dean, Wings Vol 22, No 5, 1992.
  6. North American F-86 Sabre, Larry Davis, Wings of Fame, Volume 10, 1998

 

Heinkel He 162 Volksjäger

Nazi flag Nazi Germany (1944)
Jet Fighter – 116 ~ 270 Built

The Volksjäger Fighter colorized by Michael Jucan

The combined American, British and Soviet Air Forces began to take over the skies above Europe in the later part of the war. Germans were desperate to find a way to fight the combined Allied bomber raids that were slowly destroying German industry which was necessary for continuation of the war. A cheap and easy to build jet fighter was believed to be the solution to the Allied bombing raids. From these aspirations the Volksjäger, “The People’s Fighter,” project was born.

Emergence of the Volksjäger Concept

The men responsible for the creation of the Volksjäger idea and concept were civil engineers Hauptdienstleiter Dipl-Ing Karlo Otto Saur, who was also a member of the Nazi party, and Generaloberst Alfred Keller.

Otto Saur was quick to realize that by 1944 the Luftwaffe was a shadow of its former glory. This was most obvious for the fighter force, which was engaged in a desperate struggle with a more numerous and better equipped enemy. Otto Saur’s conclusion was that a cheap and easy to build jet fighter could tip the balance of power in Germany’s favor again. He was quick to present his idea to Hermann Göring, Reichsluftfahrtminister, the Reich’s Minister of Aviation, who immediately supported it.

Generaloberst Alfred Keller, who was in charge of the flying, training and sports association (Nationalsozialistisches Fliegerkorps – NSFK) also supported the Volksjäger idea. The NSFK organization was also involved in offering several courses, The Flying Hitler Youth (Flieger Hitlerjugend) on how to build model aircraft and glider flying training for schoolboys. In support of Otto Saur’s proposal, Alfred Keller came with his own proposal to use these young boys, with ages between 15 to 17, as pilots for the mass produced Volksjäger. In Keller’s opinion, all that was needed was some short training with gliders which would be supplemented with more training on the Volksjäger.

Many in the Luftwaffe command opposed this project and the idea of using young boys as fighter pilots against the numerous and well-equipped and trained Allied air forces. The greatest advocate against this project was Generalleutnant Adolf Galland, being supported by Willy Messerschmitt, chief designer of the famous Messerschmitt company, and Kurt Tank, the most well-known designer at Focke-Wulf. The most important reason behind this opposition was the fact that, towards the end of the war, Germany was lacking fuel, materials, pilots, production capacity and many other elements. They argued that all available resources should be directed to the development and production of the already existing Me 262 jet fighter.

In the years prior to the collapse of the Luftwaffe, such a concept would most likely never have gained any support from Luftwaffe officials. However, by 1944, the Germans were in a desperate need for a wonder weapon to turn the tides. As Hermann Göring was no longer in Hitler’s good graces, he was desperate to find a way to appease Hitler. The best way to do this was to somehow find a miraculous solution to salvage the Luftwaffe, stop the incessant Allied bombardment of Germany, and provide much-needed support to the beleaguered Wehrmacht. Through these psychological lens, Otto Saur’s and Alfred Keller’s proposals looked like an ideal solution. Despite the great opposition, Hermann Göring kept insisting that the Volksjäger development should begin as soon as possible. The Volksjäger would later be supported by Adolf Hitler and Albert Speer (the Minister of Armaments and War Production).

First Steps

In the search for a new low-altitude fighter, Oberst Siegfried Knemeyer was named responsible for the Volksjäger’s initial requirements. He was in charge of the Technical Equipment Office for flight development of the Ministry of Aviation (Reichsluftfahrtministerium, RLM). Siegfried Knemeyer was an experienced military pilot and engineer who participated in the test flights of many different experimental aircraft designs. From 1943 onward, he was part of Hermann Göring’s cabinet from where he actively supported the development of the new Me 262.

While the Me 262 jet fighter was superior to piston powered Allied planes, it was far from perfect. The most significant problem with the Me 262 was the poor performance at low altitude, where it was an easy prey for Allied fighters. This is also where Allied fighters and close support aircraft were very active and often attacked German airfields, supply trains and ground troops. The already existing Me 109 and Fw 190 were becoming outdated and insufficient by late 1944 standards. In order to effectively counter enemy planes at low altitude, a new design was needed according to Siegfried Knemeyer, who noted (Source: Robert F. He 162 Volksäger Units):

“… It became absolutely essential to develop a high-speed, single-seater fighter that had a sufficiently good performance which would enable it to take off when enemy aircraft were actually sighted. In addition, due to the bombing of our large airfields with long runways, these new fighters had to be able to take off in a very short distance and thus enable small landing grounds to be used. The mass production of such an aircraft had to be on such a scale as would enable the enemy to be engaged at any point and during the entire duration of their flight …… By limiting the endurance and the armament requirement for this new aircraft, the existing jet fighter (the Me 262) would have fulfilled the requirements. However, this aircraft had to be ruled out since it was not possible to produce the numbers that would have been required for combating these low-flying attacks and, in particular, because the provision of two power units per airframe was quite beyond the capacity of industry… “. Based on this, Siegfried Knemeyer gave a list of specifications which the new low-altitude fighter had to conform with:

  • This plane should be able to take off from runways less than 1970 ft (600 m) long.
  • It should be powered by a single jet engine, in order to lower the costs.
  • As the Jumo 004 engine could not be produced in sufficient numbers, another engine was needed. The new BMW 003 was recommended.
  • Maximum speed at sea level should be at least 465 mph (750 km/h).
  • The production process had to be as simple as possible without disturbing the production of the Me 262 and Ar 234.
  • The main building material should be wood. A larger number of furniture manufacturers and carpenters should be included in the production as they had the skill and experience in working with wood that would be needed.

Based on these requirements, the RLM placed an initial order for the new Volksjäger low-altitude jet fighter in July 1944. The first mockup needed to be ready by 1st October, 1944, and a fully operational prototype should have been ready by early December the same year. The main production was planned to begin in early 1945.

The Race for the Volksjäger

The first prototype, V1, built in late 1944. [worldwarphotos.net]
For some time, the Volksjäger seemed like it would remain only a paper proposal, as little progress was made until September 1944. On 7th September, a high priority teleprint message arrived at the Heinkel company. This message was sent by Dipl-ing Karl Frydag, Heinkel’s General Director at the Ministry, but also the leader of the Main Committee for Aircraft Construction and an acquaintance of Otto Saur. The high priority message was addressed to Prof. Ernst Heinkel and his main engineer team. This illicit message contained information including not-yet-published RLM tender requirements for the new Volksjäger jet fighter.

As the official tender request was to be issued by RLM in only a few days, Ernst Heinkel and his team moved quickly to use the small time advantage they had over other possible competitors. The first thing Ernst Heinkel did was to give instructions to reuse the P 1073 paper project that was intended for an RLM request from July. P 1073 was, according to the original plans, to be powered by two HeS 011 or Jumo 004C turbojet engines. One engine was to be mounted on top of the fuselage behind the cockpit and the second one below, right under the cockpit. The maximum speed using the HeS 011 engines was estimated to be around 630 mph (1010 km/h) at 19700 ft (6000 m). P 1073’s wing was swept back at 35° with a “V” shaped rear tailplane. The armament would include two 1.18 in (30 mm) MK 108 and two MG 151/20 0.78in (20 mm) cannons.

Later, due to the new specifications for the Volksjäger, P 1073 was modified to be powered by a single BMW 003 engine. Other changes, such as increasing the dimensions, a new straight wing design and adding new rear twin tail fins. The name was changed to P 1073-15. Further modifications were conducted at the Rostock-Marienehe plant. These included a high unswept wing design, the engine mounted above the fuselage, an armament of only two MG 151/20 0.78 in (20 mm) cannons, a tricycle undercarriage and a weight around 2.5 t. The maximum speed at ground level was 500 mph (810 km/h). It was possible to increase the offensive armament with bombs and 1.18 in/30 mm cannons. The name was again changed to P 1073-18.

By 9th (or 8th, depending on the source) September 1944, other German aircraft manufacturers received the RLM requirements for the new Volksjäger project. According to these, the Volksjäger fighter had to be able to take off in less than 1640 ft (500 m). It had to be powered by one BMW 003 jet engine and the total weight must not must not exceed 4410 lbs (2000 kg). The maximum speed at sea level had to be at least 460 mph (750 km/h). The flight endurance at full thrust had to be at least 30 min. The main armament had to consist of either two MK 108 (with 80 to 100 rounds per gun) or two MG 151/20 (with 200-250 rounds per gun) cannons.

The main construction material would be wood with a smaller amount of steel used. Protection for the pilot, fuel tanks and the main gun ammunition was to be provided. However, since great attention was dedicated to the short take off distance, the manufacturers were allowed to reduce the armor and ammunition load if needed. First proposals from all interested aircraft manufacturers were to be ready in only a few days, as a draconically unrealistic deadline was set for the 14th (or 20th depending on the source) September.

Despite being planned to be put into mass production, only limited numbers of the A-1 version were ever built. [worldwarphotos.net]
Besides Heinkel, which was “unofficially” familiar with the details of this tender a few days before its publication, others aircraft manufacturers participated and submitted their own proposal. The competitors included Arado (E 580), Blohm und Voss (P 211.02), Junkers (marked either as EF 123 or EF 124) and Focke-Wulf. Focke-Wulf actually presented two different proposals (Volksflitzer and Volksflugzeug). Others, like Fieseler and Siebel, lacked the manpower and production capacity to successfully participate in this tender. Messerschmitt did not participate in this competition as Willy Messerschmitt was against the Volksjäger concept from the beginning. He was a great opponent of this project, arguing that increasing the production rate of the Me 262 should have a greater priority and that the Volksjäger was a waste of time and materials which Germany was sorely lacking.

By the end of the competition period, all proposals were submitted to the RLM. After two days, a conference was held in Berlin with the representatives of all five companies, together with officials from the Luftwaffe and RLM. The Arado, Focke-Wulf and Junkers projects were immediately rejected. Even Heinkel’s original proposal came close to being rejected, as it would be complicated to build. It was judged that the best proposal was the Blohm und Voss P 221-02 project, as it was (at least on paper) easier to build and used a smaller quantity of duralumin. At this point, Heinkel representatives were trying to win the competition by arguing that, due to the cancelation of the He 177 and the He 219 programmes, they would have enough production capacity to manufacture the Volksjäger in great numbers. They also proposed to make the entire design far simpler for mass production.

In the following days, there were many difficult and exhausting discussions around the Heinkel and Blohm und Voss projects. There was a sharp debate between Heinkel Dipl-Ing. Francke and the RLM Generaldirektor Frydag which supported the Blohm und Voss project. These discussions caused some delays in making the final decision for the implementation of the Volksjäger project. At the same time, at the Heinkel factory at Schwechat near Vienna (EHAG – Ernst Heinkel AG), work began on calculations and drawings in preparation for the production of the first models of the Volksjäger, marked as the He 500.

The final discussion regarding the competition was held at Hitler residence in Rastenberg, in East Prussia. Hermann Göring enthusiastically and actively supported the He 500 without even considering the Blohm und Voss P 221-02 project. He also gained the support of Adolf Hitler and Albert Speer. Thus, in the end, the Heinkel project was chosen. This decision was also based on the experience that Heinkel had accumulated with the construction and development of jet technology (with the He 178 and He 280) but also due to the significant lobby that this company had.

Although Heinkel’s design won, there were requests for some alterations. For easier production and construction, the design of the tail, fuselage and the landing gear had to be simplified. As was originally planned, the first mockup was ready by 1st October 1944 and the first prototype was to be built by 10th December of the same year. The main production was to begin in January 1945 with 1000 planes per month, which would be increased to 2000 per month. These dates and numbers were, taking Germany’s economic and military situation into consideration, unrealistic and understandably never achieved.

According to Ernst Heinkel, the final designation for the new Volksjäger was meant to be He 500. However, the RLM officials, in the hope of somehow hiding its original purpose from Allied intelligence, gave it the designation “8-162”. In some sources, it is also called “Salamander”. This was actually a code name given for wooden component production companies. The He 162 is also sometimes called “Spatz” (Sparrow), but this name is, according to some sources, related to the He 162S training glider prototype.

Construction of the First Prototypes

The work on the final design was given to the engineers Siegfried Günter and Karl Schwärzler. A large design staff of some 370 men was at their disposal. The design work was carried out at the Heinkel workshop (at Schwechat Air Base) near Vienna. By 15th October, the first sketches and production tools were ready.

The Heinkel factory (in Vienna) was responsible for beginning the serial production of the He 162. In the hope of speeding up production, other factories were included along with many smaller companies. Each of these were to be responsible for producing certain parts and components of the He 162. When all necessary parts for the construction of the first prototype were built, they were to be transported to Vienna for the final assembly. Due to a lack of transport capability and insufficient quality of wooden parts (especially the wings), there were some delays.

Side view of the He 162. The cannon compartment’s wooden door is removed. [warbirdsresourcegroup.org]
Despite the fact that wood was easier to work with, there were huge issues with the quality of the delivered parts. Some of the problems encountered were that the production procedures were often not carried out according to regulations, the glue used was of poor quality, sometimes parts would not fit together. There were situations in which large numbers of wooden parts were returned to the suppliers simply because they could not be used. There were also problems with the first prototype’s engine as it was damaged during the transport and had to be repaired. All the necessary parts arrived by 24th November and the assembly of the first He 162 prototype could begin.

The He 162 V1 prototype (serial number Wk-Nr 200001) was ready for testing by 1st December, 1944. The first series of prototypes had the “V” (Versuchmuster) designation. Later, starting from V3 and V4, the designation was changed to “M” (Muster – model). If it is taken into account that, from the first drawing to the first operational prototype, no more than two months had passed, this was an impressive feat. The V1 prototype was to be tested at Heidfeld but, due to some stability problems with the undercarriage, only limited ground test trials were held.

These problems were addressed by 6th December, when the He 162 made its first test flight piloted by Heinkel’s main test pilot, Flugkapitän Dipl-ing Gotthold Peter. The flight lasted around 20 minutes at speeds of 186 mph (300 km/h). During this flight, probably due to the poor quality of production, one of the three landing gear doors simply broke free and the pilot was forced to land. Beside that, the whole flight was considered successful, there were no other problems and the engine performed excellently.

At the same time, three more prototypes (V2, M3 and M4) were under construction to be used for future tests. The second prototype was transported to Heidfeld (arrived 7th December). During the production of the first series of prototypes, a problem with the wing construction was noted. The main issue was the use of poor quality glue, but at that time this problem was largely ignored.

The moment when a V1 prototype was lost, when the right aileron failed. Unfortunately, the pilot did not survive. [worldwarphotos.info]
On 10th December, another flight was performed for the Luftwaffe military officials at Schwechat. Like in the previous flights, the pilot was Gotthold Peter. In the hope of impressing the gathered crowd, the pilot made a low pass (at 330 ft/100 m) at 456 mph (735 km/h). This flight was going well until the moment when a part of the wing and ailerons were torn off, which caused the pilot to lose control and crash to the ground. Despite having an onboard ejection seat, Peter failed to activate it (possibly due to high G-forces) and was killed in this accident.

The whole flight was captured on a film camera by one of the Luftwaffe officers. The film and the wreck were thoroughly examined by Heinkel engineers who immediately noticed a few things; the wing parts were joined by using low quality glue, the poor aerodynamics of the wing design and the instability of the prototype lateral axis led to the tear off of the wing parts. As a result of this accident, the wing design was strengthened and the maximum flight speed was restricted to only 310 mph (500 km/h). Also, the size of the horizontal stabilizer was increased, the main fuel tanks were reduced in size and the wings’ connection to the main fuselage was reinforced. This accident did not have any negative impact on the continued development on this project which proceeded without interruption.

After this accident, other pilots were reluctant to fly on the He 162. Due to this, Ernst Heinkel was forced to offer a sum of 80,000 Reichsmarks for any pilots who were willing to test fly the He 162. A pilot who agreed to fly was Dipl.-Ing. Carl Francke, who was the technical director of EHAG. He made the first test flight with V2 (serial number Wk-Nr 200002) on 22nd December, 1944. Later that day, a second pilot, Fliegerstabsingineur Paul Bader, made more test flights. Flight trials with the second prototype were carried out without much problems. The V2 prototype was used for testing different wing designs and different weapon installations (two 1.18 in/30 mm Mk 108 cannons). After this, V2 would be used mostly for ground examinations, conversions, equipment testing and for attempts to simplify the overall design in order to ease production.

The third prototype was ready by 20th December, when it was tested by Paul Bader at Heidfeld. While the flight went on without many problems, the pilot noted the poor front ground visibility and vibrations during takeoff and landing. In order to improve the He 162’s wing design, the experienced Dr Alexander Lippisch (who worked on the Me 163) was contacted and included in the project. His proposal for improving the He 162’s stability was to fit small “Ohren” (ears) to the wingtips. As these were later implemented on all produced He 162, they were generally known as the ‘Lippisch ears’.

The M3 and M4 prototypes were the first fighters to be equipped with these wingtips. These two models had strengthened and redesigned wing construction with thicker plywood covering, also to shift the centre of gravity, extra weight was added to the plane’s nose. These modifications improved the He 162’s overall performance and stability significantly. The M3 improved prototype was tested in late February 1945 when it managed to reach an incredible speed of 546 mph (880 km/h). The M4 prototype was ready by the end of 1944 but, due to some engine problems, the first flight was only possible at the beginning of 1945. The first flight tests were carried by Dipl-Ing Schuck on 16th January, 1945. As the M3 and M4 wing design and shape proved satisfactory, they were chosen to be used for the upcoming production of the first He 162A combat operational variant.

The M5 prototype was built but it was never used operationally nor did it ever fly. The M6 prototype, which was intended to be used as base for the He 162A-1 production model, made its first test flight on 23rd January, 1945. The M7 (the base for the He 162A-2) was used for vibration tests and trialing the braking parachute. The M8 was the first to be equipped with two MG 151/20 cannons (120 rounds of ammunition per gun). The M9 and M10 were intended as two seat trainer aircraft versions but none were built. The M11 and M12 were powered by the much stronger Jumo 004D Orkan turbojet engine. These were to be used as base for the He 162A-8. The M13 moniker was never assigned to any prototype due to the belief that this number was unlucky. The prototype models M14 to M17 were never built. The M18 and M19 were powered by the new BMW 003E-1 jet engine which was intended to be used for the He 162A-2 production model. The M20 was used for testing different and simpler undercarriage designs. The M21 and M22 were used for main weapon testing. The M23 and M24 were used for installation of new wing root filters and for handling flight tests.

These prototypes were extensively tested and examined in detail from 22nd January to 12th February. In this period, over 200 test flights were carried out. Not all test flights were successful and without accidents. On 24th February, M20 was damaged during landing due to undercarriage malfunction. The next day, while testing the M3, there was a malfunction that led the pilot losing control of the aircraft. He managed to get out but his parachute did not fully extend, leading to his demise. At the beginning of May, one more prototype was lost in an accident. In total, there were more than 30 prototypes built. It is interesting that, even before the testing of the prototypes was completed, preparations for production of the He 162 were already underway.

He 162 A-1 and A-2

Despite the original plans requiring the start of the production in early 1945, this was never achieved. Due to the chaos in Germany at that time, there were many delays with the arrival of the necessary parts. There were shortages of nose wheels, rudders, interior equipment, weapons parts, poor quality glue and many others. For example, at Rostock, there were more than 139 partly built fuselages which could not be completed due to a lack of parts. There was also a problem with the large number of wings and tails built that were defectuous and unusable. A generalized lack of fuel, transport vehicles and electricity, Allied bombing raids and the use of slave labour also negatively influenced the overall production. Around ten pre-series He 162A-0 (with different prototype numbers) were built and stationed at Schwechat to be used for more testing needed in order to eliminate more problems.

The Soviets flight tested some captured examples of the He 162, but their overall performance proved to be poor. [airpages.ru]
The production of the first series of operational aircraft was delayed and began only at the end of March 1945. The first production series were marked He 162 A-1 and A-2. There are few visual differences between these two models. The only major difference was the armament. The A-1 was equipped with two 1.18 in (30 mm) cannons and the A-2 with two 0.78 in (20 mm) cannons. As the production of 1.18 in (30 mm) cannons was halted due to Allied bombing and the Soviets capturing the production factories, the few remaining cannons were to be allocated to the Me 262. The production of the A-1 was stopped and the exact number of manufactured aircraft is unknown. Due the lack of 1.18 in (30 mm) cannons, the He 162 manufacturers were forced to use the lighter and weaker 0.78 in (20 mm) caliber weapons.

A number of serially produced A-2 aircraft were not used for troop trials, but were instead sent to test centres for future modifications and testing. A small number would eventually reach the German troops in April. While the production of the A-2 would go on until the war’s end, the total number of produced aircraft is unknown.

The He 162 Design

He 162 top view [warbirdsresourcegroup.org]
The He 162 was designed as a high-wing jet fighter with a simple fuselage with clean lines, tricycle retracting landing gear and built using mixed construction. The simple fuselage was built by using a cheap and light metal alloy (duralumin – a combination of aluminium and copper) with a plywood nose and (one-piece) wooden wings.

The fuselage was a semi-monocoque design covered with duralumin. The front part of the fuselage was egg-shaped and had good aerodynamic properties. The nose was made of plywood and was fixed to the fuselage by using bolts. The middle top part of the fuselage was flat and the engine was connected to it. The wood was also used for the undercarriage doors.

The wings were made out of wood and connected to the central fuselage by using four bolts. In order to ease production, the wings were built in one piece. The flaps and ailerons were built using a wood frame which was covered with plywood. The flaps were controlled by using a hydraulic system while the rods were controlled with wire. To help with the stability at the end of the wing, two wingtips (one on each side) were added. These were angled at 55° downwards and made of duralumin. The two-part rear tail was made of metal and was connected to the end cone of the fuselage. The tail rudders were controlled using wires and rods.

The He 162 used a tricycle landing gear design, with one wheel at the front and two more located in the centre of the fuselage. The landing gear was hydraulically lowered and raised. The dimensions of the front nose wheel were 500×145 mm and no brake system was provided for it. Interesting to note is that the front nose wheel, when retracting, partly reached into the lower part of the front cockpit. A small window was provided for the pilot so that he could see if it was fully operational. The two central landing wheels were larger, 600×200 mm. Both the front and the rear landing wheels retracted to the rear. To help with landings, hydro-pneumatic dampers were provided.

The plexi-glass cockpit was made of two parts, the front windshield and the rear hinging canopy which were screwed into the inner bar frame. In order to make the whole construction simple as possible the cockpit was not pressurized. For better ventilation on the left side a small round ventilation window was installed. The pilot cockpit was more or less a standard German design but much simpler. It provided the pilot with good all-around view of the surroundings, but there were some complaints by some pilots for poor front ground view.

The control panel was made of wood, on which the necessary instruments were placed. Only a few were provided for the pilot and these included the speed indicator, panel lights, turn and bank indicator, rate of climb, FK 38 magnetic compass, temperature indicator, AFN-2 display, oil and fuel pressure gauge, fuel level gauge, chronometer, ammunition counters and engine tachometer. The fighter controls were placed as standard in front of the pilot. On the pilot’s left-side, the fuel valve, flap controls, landing gear control, throttle lever and trimming control were located. On the opposite side was placed the radio system (FuG 25A). The pilot seat was of a simple design but equipped with Heinkel’s ejection system with a parachute. The He 162 was one of the first German aircraft to be equipped with an ejection seat as standard equipment. The cockpit was separated from the rest of the plane by a sloped metal plate. This plate was installed in order to provide the pilot some protection in case of emergency (like fuel tank fire etc.). Behind this plate were the oxygen supply tanks with a 3 l capacity.

The engine chosen for the He 162 A-2 was the BMW 003E-1/2 turbojet (in some sources the A version was used). The engine was fixed in a nacelle placed above the central fuselage. The engine consisted of a seven-stage axial compressor, injection nozzle, annular combustion chamber and one single-stage axial turbine equipped with sheet metal heat-resistant blades which were air-cooled. The exhaust nozzle was controlled by an adjustable needle which could be mechanically moved into four positions: Position A for idle, S for start, F for flying at altitudes lower than 26.200 ft (8.000 m) and M for flying at altitudes above 26.200 ft (8.000 m). The BMW 003E-1/2 turbojet could achieve maximum thrust of 1.800 lbs (800 kg).

One He 162 was put on display in London after the war. It still had German markings on it. [aviation-history.com]
When flying at a speed of 500 mph (800 km/h) at 36.100 ft (11.000 m), the maximum thrust would fall down to only 740 lbs/340 kg. To start the engine, a small Riedel piston engine (9.86 hp) was used. This engine could be started either by using an electric starter motor or manually with a ring-pull. The He 162 engine was 11 ft (3.6 m) long with a diameter of 2.3 ft (69 cm) and a weight of 1.375 lbs (624 kg). The estimated life cycle of the engine was only 50 hours. As the engine was positioned above the fuselage, in order to avoid any damage caused by exhaust gasses, a steel plate was placed under the jet nozzle. The position of the engine also means it was easier to mount and repair. It was also easier to replace it with a new one.

The fuel tank was positioned in the middle of the fuselage. In order to save weight and to ease the production, a rubber fuel tank was used. The main fuel tank had a capacity of 695 l and there were also two smaller 175 l tanks located in the wings. For takeoff, up to two smaller auxiliary Ri 502 rocket engines could be installed. They would be located in the lower rear part of the fuselage.

The He 162’s original weapon system consisted of two MK 108 cannons, but the most built version was equipped with weaker MG 151/20 cannons. The two cannons were placed in the lower front part of the fuselage. The main gun’s ammunition was stored behind the pilot, with 120 rounds for each gun. In order for the ground support crews to have access to the gun and ammunition, wooden door panels were provided. For the gunsight, the Revi 16G or 16B models were used. There was also a gyroscopic EZ 42 gunsight tested on one He 162, but this was never adopted for service.

Other Versions and Prototypes

Despite the improvements done to the main production versions, there were still room for enhancements and modifications of the He 162. Most efforts were devoted to the installation of stronger engines and various aerodynamic improvements in order to achieve the highest speed possible. There were also plans to make the He 162 much cheaper and easier to produce. Different armament loads were also tested or proposed. Most of these proposals remained on paper only, but some received limited testing.

The first in line of the intended improved He 162 was the A-3 version. This was meant to be armed with 1.18 in (30 mm) MK 103 or MK 108 cannons (depending on the source) located in a redesigned front nose, but it is unclear if any were ever built. Later, an identically armed version (A-6) with a redesigned and longer fuselage (30 ft/9.2 m) was proposed but, like the previous version, none were probably built.

In order to increase the He 162’s maximum speed, it was intended to install the Jumo 004D “Orkan” (2.866 lbs/1.050 kg of thrust) engine to replace the standard jet engine used. The new engines were to be transported to Schwechat and tested there on fully operational prototypes. The whole process was too slow, and only as late as March 1945 were the few prototypes almost finished, but due to the war’s end, none were ever fully completed or tested. This modification is known under the name He 162 A-8. The A-9 (in some sources marked as He 162E) was to be powered by one BMW 003R engine, supported by a second BMW 718 rocket engine for extra power. The engines were tested but they were never installed on any He 162. While Heinkel conceived up to 14 different proposals for the “A” version, beyond those mentioned above, almost nothing is known about the others.

Note that the following designations (B, C and D) were never found in any EHAG official documentation and are not known to have been used by the Germans. This article will use them for the sake of simplicity only. (Source: Miroslav B. and Bily B.)

Despite the fact that the He 162 was designed to be simple and easy to build, the engine was still relatively difficult to produce in great numbers. In hope to increase the number of engines being built, the Germans began testing the less demanding technology of pulse jet engines (used on the V-1 flying bomb). The first proposed pulse jet engine to be mounted on the He 162 (generally known as He 162B) was the Argus As 004 (with 1,102 lbs/500 kg of thrust). This was followed by a second proposal to mount two Argus As 014 (each with 739 lbs/335 kg of thrust) pulse jet engines. The single engine version is named, in some modern sources, as B-2 and the two engine version as B-1. None were ever built and tested, possibly because the pulse jet was considered inferior to jet engines.

Two different wing configurations proposed, often incorrectly marked as the “D” and ”C” versions. [airvectors.net]
There were many experiments with different wing designs and shapes in order to improve the flying performance and ease production. Two similar designs were based on all-metal swept wings. The first (today called the He 162C) had a back swept wing design with the second half of the wings bent down at a sharp angle. The second (often nowadays referred to as the He 162D) had an unusual forward swept wing design. Both of these models were to be powered by one Heinkel-Hirth 011A turbojet engine (2,866 lbs/1,300 kg of thrust). Both models also had different rear tail designs. The maximum estimated top speed with this engine was up to 620 mph (1000 km/h). There were also other proposed wing designs but, beside these two, none seem to have been tested. Only a few incomplete prototypes were built and they were captured by the advancing Allied forces by the end of the war.

In autumn of 1944, it was suggested to use the He 162 for the German “Mistel 5” weapon projects. This configuration would consisted on one unmanned Arado E 337a glide bomb that would be guided by an He 162 connected on top of it. As the Arado E 337a was never built, this project remain on paper only.

At the end of January, there was a proposal to modify a few He 162 to be used as “Behelfs-Aufklarer”, in essence improvised reconnaissance planes, but this was never implemented.

The Volksjäger Training Versions

As the Volksjäger project got a green light for its implementation and orders of planned production in the thousands, a solution on how to train such large numbers of new pilots was needed. One proposal was to begin training with gliders (including a glider version of the He 162) and, after a short period of time, the pilot (usually from the Hitler Youth) would learn to fly on the training versions of the He 162. The glider version was named He 162 S “Spatz” (Sparrow). According to other sources (M.Balous and M.Bily), the “S” stands for Segelflugzeug (glider).

These gliders had to be designed and built to emulate the He 162’s takeoff and landing properties as much as possible. In order to stay in the air, the gliders were to be connected to a 1 km long cable which was attached to a 150 hp motorized winch. The gliders were to have two seats, one for the future pilot and one for the instructor. One prototype was flight tested in late March 1945 by Ing Hasse. Even the famous German woman test pilot Hanna Reitsch made at least one flight in it. The He 162 S was very similar to the original He 162, with some modifications like larger wings and fixed landing gears. The choice for using gliders as replacement for training planes was based on the general lack of fuel. Around ten of these gliders were ordered and, if testing showed good results, some 200 were meant to be built. But, due to the bad economical situation in Germany at the time, only a few were ever built at Schönhage (Hannover).

The second training aircraft was a fully powered two seat trainer version. There is no official military marking or name for this version, but today it is often known as the He 162 Doppelsitzer (two seater). This version was to be powered by a BMW 003E-1 or E-2 engine. It was to have a second seat for the instructor placed behind the main cockpit. In order to make more room in the unmodified He 162 fuselage, the gun, ammunition and oxygen tanks had to be removed. The production of this version was planned to begin by the end of 1944 and was to be built by DLH (Deutsche Lufthansa) at Oranienburg. Only one incomplete prototype may have ever been constructed.

To help the training of new pilots at the Luftwaffe test center (Rechlin), a simulator model was built. It had the exact same cockpit like an operational He 162 with all instruments. Its primary purpose was to be used for combat and fire simulator training.

Main Armament Proposal

As already stated, the 0.78 in (20 mm) cannons were, by 1944/45 war standards, simply inadequate and the lack of stronger 1.18 in (30 mm) cannons forced the Germans to search for different (somewhat unconventional) weapons for the He 162.

To increase the offensive armament, the 2.2 in (55 mm) R4M air-to-air rocket was proposed to be installed under the He 162’s wings. Another proposal was to arm the He 162 with the SG 118 Rohrblocktrommel weapon system which consisted of three 1.18 in (30 mm) barrels (connected in a circle), each armed with 7 rounds. The last proposal was to use the 3.14 in (8 cm) Panzerblitz missiles. There were planned to use the EZ 42 gyroscopic gun sight on the He 162, but the single prototype was destroyed in an Allied bombing raid. If any of these proposals were ever been implemented or allocated a version name is unknown but very unlikely.

Production

The Germans were forced to relocate some production facilities deep underground. The Volksjäger was produced in one such underground production base at Hinterbrühl, Austria. Colorized by Michael Jucan [aviation-history.com]
It was hoped by the Luftwaffe military officials that the He 162 would be built in great numbers. They counted on the fact that, by using cheap materials (mostly wood) and by employing many smaller subcontractors (woodworkers and furniture manufactures), the overall costs and time necessary for the production would be reduced.

Several factories were responsible for the production of the He 162 at Heinkel-Nord in Rostock-Marienehe, Heinkel-Sud, Hinterbühl (underground factory), Vienna-Schwechat (prototype production) and Mittelwerke (Nordhausen). In order to increase the production, Heinkel and Junkers made an agreement to use the vast Junkers production capacities. Junkers would be responsible for the production of the majority of the new He 162 planes at Bernburg. Also, a large number of smaller subcontractors were to be included, like EHAG Walldwerk or Pütnitz. The main engine suppliers were Spandau and Zühlsdorf. The armament was to be provided by Deutsche Waffen und Munitionsfabrik at Posnan. The wooden elements would be made at Erfurt, Orla and Stuttgart-Esslingen (these were also building components for the Me 163 and Ta 154). Some 750 man-hours were needed for the He 162, together with 300 man-hours for the engine production. Due to slow production, Hitler gave an order on 27th March, 1945 for the SS to take over the whole Volksjäger project. However, this had only limited (if any) effect on the speed of production.

As it was only built during the last month of the war, when confusion and chaos were ever-present in almost all spheres of political or military life in Nazi Germany, exact information about how many aircraft of this type were built is impossible to find. Depending on the sources, the total production was in the range of 116 to more than 200. According to different Authors: C. Chan (240), D. Mondey (116), F. Crosby (200), A. Ludeke (270), D. Nešić (120). According to the German General Staff Department 6 (Generalstab Abteilung 6), the total number of He 162 built was 116 aircraft. After the war, around many airfields, some 100 He 162 in different conditions were found. Additional 800 aircraft were found in different stages of factory assembly, which also complicates determining the exact number of produced He 162.

On 7th April, 1945 Hitler gave orders to stop any further development and production of the He 162 in favor of the Me 262 and Arado 234. It is hard to say for sure, but as the He 162 was produced until the end of the war, this order seems to never have been fully implemented.

Operational Service

Lineup of Volksjäger captured by the British at Leck in May 1945 [worldwarphotos.info]
The delivery of He 162 fighters to Luftwaffe front units was limited due to many reasons, including slow production, lack of fuel and spare parts and the Allied advance, but eventually, a few units equipped with this aircraft would be formed.

The first operational unit to be equipped with the new He 162 was Erprobungskommando 162 located at Rechlin-Roggenthin. In April, due to the rapid Allied advance, the unit had to reposition near Munich. This was actually a test unit and, for this purpose, a number of the most experienced German pilots (some of them having experience in flying jet aircraft) were allocated to this unit. Once these pilots had gained enough experience flying the He 162, they were to be used as base for forming the first operational unit, 1./JG 80. Immediately after the start of production, a large training process at the NSFK gliding school began. As there was only one He 162 S glider aircraft available, other simpler gliders (like the DFS SG 38 Schulgleiter) had to be used as a temporary solution. The training process did not go the way the Luftwaffe Officials hoped it would go. It was too slow and, when the first group of new pilots was tested on the Arado Ar 96B (trainer version), the results were disappointing. At this point, the plan to use Hitlerjugend members as He 162 pilots was discarded, which was somewhat expected. The experiment with the young and inexperienced pilots proves that only the most experienced pilots could successfully fly the He 162. Beside pilot training, at the same time, the training of ground support staff was carried out at Fliegertechische-Schule 6 in Neumarkt and Wiedenberg.

In order to form the first operational combat unit with the He 162, an already-experienced unit would be needed. For this purpose, Jagdgeschwader 1 “Oseau” (JG 1) was chosen. It was commanded by Oberst Herbert Ihlefeld and it was equipped mostly with Fw 190 aircraft. On 8th February, 1945, the first orders were given by General der Jagdflieger (General of Fighters) Oberst Gordon Gollob to the 2nd and 3rd Staffels (first Gruppe JG 1) commanders to prepare their pilots to be moved to the Parchim Airbase near Rostock. Once there, the first flight training with the new He 162 was to be carried out. In late February, a group of 10 pilots (from 2nd Staffel) was moved to Vienna for more training. For pilot training, two prototype aircraft were used, as the production of operational “A” variant was slow. Despite being experienced pilots, there were some accidents caused either by pilot errors or due to some mechanical faults. The He 162 M8 was lost due to engine failure on 12th March, but the pilot survived. Only two days later, one pilot was killed when he made a mistake during landing. As there were no other He 162 aircraft available, this group was forced to return to Parchim Airfield. In late March 1945, around 10 pilots of the I./JG 1 (first Gruppe) were moved to the Marienehe factory (near Rostock). They were supplied with a number of He 162 that where previously used by the mechanics and test pilots of this factory. Once the handover was completed, the group with the He 162 returned to its original base of operation.

The RLM’s next plan was to begin re-equipping II./JG 1 with the He 162 as soon as possible. The unit was moved to Rostock at the end of March 1945, where the training should have begun. Other units were expected to be formed (I and II./JG 400, III./JG 1, JG 27 and JG 77), but nothing came of this. In May 1945, a Volksstume Jagdeschwader (in essence, an improvised militia unit) was to be formed at the Sagan-Küpper airfield by using mostly volunteer pilots. However, Allied occupation of this airfield prevented the implementation of this proposal. The only unit beside JG 1 to be supplied (in limited numbers) with He 162 was I.EJG 2 (Ergänzungsjagdgeschwader, auxiliary fighter training unit), but these were probably never used operationally.

By the end of March, JG 1 was supplied with around 58 operational He 162A-2 aircraft with some 25 more on the way. At the same time, I./JG1 was moved to Ludwigslust, where it was supposed to be supplied with new He 162 aircraft. Due to the rapid Allied advance, the unit was moved in April to the Schleswig-Holstein region (Leck airfield), near the Danish border. This unit had orders to defend Berlin from Allied bombers coming from over the North Sea. The I./JG1 was to be ready for operational service by 20th April. The first combat loss happened on 19th April, when one He 162 was shot down after a take-off by an American P-47 Thunderbolt. By the end of April, II./JG 1 was moved quickly to the Leck airfield to join the first Gruppe.

He 162 side view [worldwarphotos.info]
The first operational combat mission of I./JG1 was to attack an RAF front airfield on 20th April. While on their way, the He 162’s were intercepted by a group of Hawker Tempests (3 Sqn. RAF). In this engagement, only one He 162 was shot down and the pilot managed to survive without any injuries. At the same time, one P-51 Mustang scout pilot (12th Tactical Reconnaissance Squadron) reported to have shot down one He 162, but this was never officially confirmed.

The He 162’s first allegedly air victory (and possibly the only one) was achieved by Lt. Rudolf Schmitt from I./JG 1, when he shot down a British fighter. However, this fighter was later claimed to have been shot down by German ground AA fire. While Lt. Rudolf Schmitt may not have made the first air victory, he did successfully manage to use the ejection seat in a combat zone. Due to the Allied advance, on 5th May, 1945, JG 1 received orders to stop any further action and to destroy all operational aircraft. For some reason, the order was later recalled. The Leck airfield would be captured by British forces on the 8th, which ended the He 162’s short operational combat story.

Precise information on the He 162’s combat or deployment is hard to find mostly due the chaotic state in Germany at that time. According to some authors, like Francus G., none were ever used in combat.

Japan’s military attache, in early 1945, was interested in acquiring the license production of the He 162. After a short negotiation, the Germans gave permission for license production. But there was a problem of how to transport or send the necessary documents and sketches from Germany to distant Japan. The only solution was to use radio by converting the sketches into numerical code. Unsurprisingly, this did not work well and only limited information was send before the end of the war in Europe. Due to this reason, Japan never received the complete He 162 sketches.

In Allied Hands

As the British forces captured Leck airfield, they acquired a number of fully operational He 162s. Some 11 planes were selected by the British Technical Intelligence Team to be transported to the UK. Once there, all were sent to the Farnborough airfield, which was the headquarters of the Royal Aircraft Establishment (RAE). The He 162 aircraft were thoroughly examined and divided into groups either for part analysis or for flight testing. On 9th November, 1945, while flying an He 162 (AM61) at the Exhibition of German Aircraft at Farnborough, the pilot Robert A.M. lost his life in an accident.

One of the tested He 162 (marked AM 59 by the British) would be donated to the Canadian Museum in Ottawa together with another one received later that year. Later, two were given to British museums, one to the Imperial War Museum and the second to the RAF Hendon Museum. One would be given to France, possibly either AM 63 or AM 66.

The British also supplied the American with some He 162 captured at the Leck airfield. The Americans also managed to capture some abandoned He 162s across Germany. Some would be tested at the Wright and Freeman Field research centre. One He 162 was even kept in good flight condition up to 1946. This aircraft is today privately owned by the Planes of Fame Museum in California.

The French received or captured (it is not known precisely) five He 162, of which two were airworthy. These two were tested, but one was damaged during landing and the second was lost in May 1948 with the loss of the pilot’s life. One He 162 is preserved and can be seen at the Paris Aviation Museum.

During their advance through Germany, the Soviets managed to capture about seven planes, two of which were airworthy. These would be tested and and analyzed in great details. As the Soviets lacked any advanced jet technology at that time, adopting German captured technology looked like a logical step. Most interesting for the Soviets were the Jumo 004 and the BMW 003 jet engines that would be, in later years, copied and produced in some numbers. There were also some consideration from the Soviet military to copy and produce some of the German jet aircraft, including the He 162. One He 162, with the fuselage marking 02, was tested by the Soviet Flight Research Institute (near Moscow). The second, marked 01, was tested at the Central Aero-hydrodynamics Institute. He 162 02 would be flight tested on several flights in 1946. The results of these tests were disappointing for the Soviets and a decision was made not to further consider them for service, and they did not have any influence on the later Soviet aviation development.

Conclusion

The idea for the He 162 was born out of a mix of desperation, chaos and hope for some miraculous wonder weapons that could turn the air war’s tide to the German side again. It was designed to be cheap and built in great numbers. The impressive fact is that it was designed and built in only a few months, but, on the other hand, it was built in too small numbers, the engines used were often of poor quality and there was a lack of trained pilots, which, along with other problems, meant that the He 162 did not have any major impact on the war itself or on post war jet aircraft development. In the end, it was not the ‘Wunderwaffe’ that the designers hoped for, but it was still impressive, at least because of the speed with which it was designed and built.

Variants

As only a small number of He 162 were built, there were very few operational versions. Beside the prototype series, only the “A” version was built in some numbers.

Prototypes

  • He 162 V– Prototype series
  • He 162 A-0– Around 10 pre-production aircraft built used for testing

Main production version

  • He 162A-1 – Version equipped with two MK 108 cannons, a few were possibly built
  • He 162A-2 – The main production variant armed with two MG 151/20 cannons

Training versions

  • He 162S – Two seat glider trainer version, a few built
  • He 162 Doppelsitzer – Two seat powered trainer version, only one incomplete aircraft built

Experimental prototypes based on “A” versions

  • He 162A-3 – Proposed version armed with two MK 103 or 108 cannons
  • He 162A-6 – Proposed version with redesigned and longer fuselage armed with two MK 108 cannons
  • He 162A-8 – Version equipped with the Jumo 004D jet engine, only a few incomplete prototypes built
  • He 162A-9 – The A-9 was to be powered by one BMW 003R engine and supported by a second BMW 718 rocket engine. None built
  • He 162A Mistel 5 – Paper project, a combination of an He 162 and one Arado E 337 glide bomb.
  • He 162 “Behelfs-Aufklarer” – Proposed version to be built in limited numbers as reconnaissance planes. It was never implemented and remained a proposal only.

Note that the B, C and D designations were not official and are used in this article only for the sake of simplicity.

  • He 162B – Proposed version equipped with a pulsejet engine (similar to the V-1 flying bomb engine)
    • He 162B-1 – two engine version
    • He 162B-2 – single engine version
  • He 162C – Version with back swept wing, powered by Heinkel-Hirth 011A turbojet engine
  • He 162D – Version with forward swept wing designs powered by the same Heinkel-Hirth 011A turbojet engine

Operators

  • Nazi Germany – A few hundred built, but only small numbers were allocated to front units and saw limited combat action.
  • United Kingdom – Captured a number of operational He 162, 11 would be transported and tested in the UK.
  • United States – Received a small number of He 162 from the British but also captured some in Germany.
  • France – Received or captured at least five He 162 aircraft.
  • USSR – Captured seven completed He 162 which were tested after the war.
  • Japan – Military officials tried to acquire the license for production of the He 162 but the war’s end prevented this.

Specifications (Heinkel He 162 A-2)

Wingspan 23 ft 7 in / 7.2 m
Length 29 ft 8 in / 9.05 m
Height 8 ft 6 in / 2.6 m
Wing Area 38 ft² / 11.6 m²
Engine One BMW 003E-1 with 1,760 lbs/800 kg of thrust
Empty Weight 3,666 lbs / 1,663 kg
Maximum Takeoff Weight 5,324 lbs / 2,466 kg
Fuel Capacity 1,045 l
Maximum Speed at 6 km 560 mph / 840 km/h
Range 385 mi / 620 km
Maximum Service Ceiling 39,370 ft / 12,000 m
Climb speed 9.9 m/s
Crew One pilot
Armament Two 20 mm fixed forward firing cannons in the lower sides of the fuselage

Gallery

Illustrations by Ed Jackson artbyedo.com

Heinkel He 162 Volksjäger – 20222
Heinkel He 162 A-1 Volksjäger – 120235
Heinkel He 162 A-2 Volksjäger – 120077 “Nervenklau”
Heinkel He 162 A-2 Volksjäger – wearing Soviet colors as it undergoes testing after capture – Spring 1946

Credits

  • Duško N. (2008) Naoružanje Drugog Svetsko Rata-Nemačka, Tampopring S.C.G.
  • David M. (2006) The Hamlyn Concise Guide To Axis Aircraft Of World War II, Aerospace Publishing.
  • Alexander L. (2007). Waffentechnik Im Zweiten Weltkrieg, Parragon books
  • Francis C. (2006,2010) The Complete Guide To Fighters And Bombers Of The World, Anness Publishing
  • Richard S. and William C.(1967), The Heinkel He 162, George Falkner and Sons Ltd England,.
  • Balous M. and Bily M. (2004), Heinkel He 162 Spatz, MBI Bily.
  • Robert F.(2016) He 162 Volksjäger unit, Osprey Publishing.
  • Michael S. (2007) Attack and Interceptors Jets, Orange Books.