World War 2 saw the airplane rise to even greater importance than in the first World War. Air superiority became a crucial component of battlefield operations and air forces were massively expanded during the conflict.The Allied and Axis sides of the war developed enormous war machines, capable of developing and rolling out unprecedented numbers of advanced new military equipment in rapid response to changing conditions on the battlefield, as well keeping up with the technological advances of adversaries.
High altitude bombing raids and night fighting were hallmarks of the War for Europe, whilst aircraft carrier battles pitched the American and Japanese fleets against one another. The technology of the day was pushed to it’s limit with the use of superchargers in aircraft engines, the introduction of radar, and the rapid development of the jet engine by the war’s end.
The period ended as the Nuclear Age and subsequent Cold War were ushered in by the tremendous and tragic blows to Japan’s wearied people.
The FFVS (Kungliga Flygförvaltningens Flygverkstad i Stockholm/Royal Air Administration Aircraft Factory in Stockholm) J 22 was a small light fighter airplane, and an exception to the mostly Saab-built airplanes, which were the ones equipping the Flygvapnet the most. But like those made by Saab during WWII and the early Cold War, this aircraft is a product of the defence needs that the war was imposing upon the Scandinavian nation. Although not so renown as its colleagues, this fighter proved to be a feat of Swedish capacities during dire times and tight resources, compensating its comparatively small size with good firepower and good performance. Of course, and like all of Swedish-made (and imported) air assets, it was purposed with giving Sweden with tools enough to defend its territorial and airspace integrity and security, let alone its neutrality. This under a locally built armament programme while facing restrictions to foreign advanced aviation technology.
A single-seat, single-engine airplane. Its design is conventional, yet the wings are placed further bow of the airframe, with a trapezoid shape. The nose is very similar to those of the American-made fighters, with a wide and cylindrical shape due to the shape of the engine. The cockpit was also placed at the bow section of the fighter, yet slightly aft the leading edge of the wing. The canopy was a bird-canopy design. The canopy hinged to the right side.
The J 22 was powered by a SFA STWC-3G 14-cylinder air-cooled radial engine of 1065 hp, which was an unlicensed version of the Pratt & Whitney R-1830 engine. A three propeller-blade composed the other propulsion element of the aircraft. The engine-propeller combination allowed the J 22 to yield speeds up to 575 km/h (360 mph), being this speed aimed to make the fighter comparable to the Messerschmitt Me109 and Supermarine Spitfire. The first version of the fighter (J 22A/J 22-1) was armed with a set of 2 X 7,9mm and 2 X 13,2mm light and heavy machine guns. The second version (J 22B/J 22-2) was armed with a set of 4 X 13,2mm heavy machine guns. As it not carried bombs or rockets as secondary weapons like most fighter designs of those days, it was a 100%-designed fighter.
The J 22 was developed aiming at providing Sweden with an air asset enough for it to defend its airspace, by providing the Flygvapen with a rather modern fighter. But it was also aiming at producing a new aircraft through a company established solely for this purpose, as Saab was already busy producing the Saab 17 and Saab 18 bombers.in addition, it was purposed with replacing many of the outdated fighter assets the nation had by the beginning of the war. Development began in 1940, with Bo Lundberg as both head of design and head of the newly established company (FFVS). Lundberg was already having experience as head of Swedish Air Commission USA, and as chief designer of Götaverken’s aircraft division that designed the GP 8 bomber and the cancelled GP 9 fighter. He was commissioned with designing a new fighter required to use the STWC-3G (Pratt & Whitney R-1830) engine, being small and light in size and weight, and interestingly, to be made of parts manufactured by a large number of subcontractors. The J 22 development, manufacturing and testing took place at the workshop of Flygtekniska Försöksansalten (FFA) near the Bromma airport. Both prototypes crashed during testing, due to pilot’s oxygen device and engine failures.The J 22 first flight took place in 1942
The J 22 entered in with the Flygvapnet in 1943, remaining in that until 1952, year of its retirement, with 198 fighters built from 1942 to 1946. During its service, it was well received by the pilots, thanks to its good manoeuvrability and responsive controls, capable of giving a fight to the Mustangs P-51 at heights up to 5000 meters (16,000 fts). It did not have stall problems at turns or straight forward course, and the second version (J 22B/J 22-2) was considered the best in terms of firepower. Moreover, the simple systems facilitated maintenance and service. The J 22 was reportedly comparable to the early versions of the Supermarine Spitfire and of the Mitsubishi A6M Zero. Three J 22 are preserved as static displays in museums.
Design
FFVS J 22A at an airshow circa 1990
The design of the J 22 is a conventional one, being a small and lightweight airplane, whose shape is very similar to most US airplanes of the era. The fighter is a cantilever mid-wing design, with its structure being a mixed steel tube and wood construction (plywood) one. In fact, the tubular-steel framework and fuselage were having coverings of moulded plywood panels. The only drawback of the design was that forward visibility was poor.
The J22 wing has the average shape of most WWII-era fighters, a trapezoid shape. It was located slightly towards the bow of the airplane, containing the fighter’s guns and the fuel tanks. In addition, the air intakes were placed at the roots of the wings. The aft section of the airplane contained the vertical and horizontal stabilizers, with the rudder dominating most of the tail, while and as a result, the horizontal stabilizers were placed before the rudder. The landing gear, in turn, was also of classic configuration – two ‘legs’ with the wheel and a tailwheel – being also retractable and rotating, very similar to the Vought-Chance Corsair F4U. The only problem with the tailwheel was that, if left unlocked and able to swivel, it could result in ground-loops. Interestingly, the landing gear was designed to accept skies, that were never installed as snow-clearance service of the runways was improved.
The engine was a SFA STWC-3G 14-cylinder air-cooled radial engine of 1065 hp, an unlicensed copy of the American-made Pratt & Whitney R-1830 engine, allowing speeds of up to 575 km/h (360 mph). given the shape of the engine, the nose has the characteristic cylindrical shape of the American homologues. The propelling system was comprised of a three-blade license-built Hamilton standard propeller connected to the engine. Alongside speed, the J 22 was deemed a manoeuvrable and easy to control fighter with good performance especially at low altitudes. Furthermore, it had no stalling problems but the tendency to flip over its back if pulling hard when turning. It was considered capable to outperform the P-51 Mustangs, and be equal to the early versions of the Zero and the Spitfire. The armament had different configurations on the two main versions: The J 22A (J 22-1) was armed with 2 X 7,9mm and 2 X 13,2mm machine guns. The J 22B (J 22-2) was armed with 4 X 13,2mm machine guns. In both cases, the armament was placed at the wings. No secondary weapons were carried.
The canopy was of a bird-cage type, which hinged to the right to allow the pilot to enter and exit the airplane, with the windshield made of 6mm laminated Gremax or acrylic, and the center part being thickened with 60mm for ballistic protection. The gunsight was a fixed reflex sight.
Noteworthy to point out, that 500 hundred contractors produced 12000 of the 17000 total parts of the J 22.
A war-time solution for a non-belligerent nation
The J 22 is also a product of the need to defend the airspace and the neutrality of Sweden, as modern air assets were required to meet this objective. By the beginning of WWII, Sweden was having 60 Seversky P-35 (of the 120 ordered), 60 Italian-made Reggiane 2000 and 72 Fiat CR. 42 biplanes – bought as a temporary measure – and old Gloster Gladiator fighters. As Sweden did never receive the remaining 60 P-35 and 144 Vultee P-66 Vanguard it ordered from the US, due to the embargo imposed to any arms delivered to any country but the United Kingdom after the invasion of Norway by Germany, in 1940.
As a result, Sweden bought the abovementioned Italian fighters to provide the Flygvapnet with some air assets, but it was deemed necessary to introduce up-to-date fighters. Initially, Sweden considered to buy additional fighters from abroad, such as the Finnish VL Mysky, the Soviet Polikarkov I-16 and even the Japanese Mitsubishi A6M Zero. But these options were having problems, such as not bing enough or being impossible to transport into Sweden despite being available, s it was the case of the Zero.
As a result, the FFVS was established, as Saab was already concentrating on the fabrication and development of bombers and fighters, with the sole purpose of developing and manufacturing a new lightweight fighter that would provide the Flygvapnet the needed modern air assets to keeps its neutrality in a world at war. Consequently, it replaced the Gladiator, the Severski, and Reggiane and Fiat fighters while other air asserts were received – like the Mustang P-51 – and the Saab J 21 was ready to enter into service.
The fast and small Viking warrior of the skies
Although the J 22 was a very small and lightweight fighter, it was a very capable one, proving itself to be able to undertake its purposed task: defend the Swedish airspace and neutrality. The secret of its good performance was its engine and structure. It was among the fast fighters the Flygvapnet had back then, reaching speeds of 575 Km/h (360 mph). It was also a manoeuvrable fighter, with a fast turning rate – it was even capable of getting the Mustang in the gunsight by out-turning It – with responsive controls. The altitude where it tended to perform the best was at low altitudes, with the performance decreasing at higher altitudes. Stall problems where rather absent, and it was an airplane easy to maintain and service by land maintenance crews.
Variants of the FFVS J 22
FFVS J 22A – 22185
J 22A (J 22-1) – First production series armed with 2 X ,9 mm M/39A (Browning M2) machine guns and 2 X 13,2 mm heavy machine guns. Operated until 1952. 143 delivered.
FFVS J 22B – 22280
J 22B (J 22-2) – Second production series armed with 4 X 13,2 mm M/39A (Browning M2) heavy machine guns. 55 delivered.
S 22 (J 22-3) – Reconnaissance version (the S stands for spaning, or ‘reconnaissance’ in Swedish), equipped with a vertically mounted camera. Developed from J 22A (J 22-1) airframes in 1946, refitted as fighters in 1947. Operated until 1952. 9 airframes modified and refitted.
Operators
Sweden – The Flygvapnet operated the J 22 during the last half of WWII, being also in service during the earlier days of the Cold War, as it was retired until 1952. A total of 198 airframes were in service, being 143 of the J 22A version, 55 of the J 22B version and 9 airframes of the first version modified to produce the S 22 version, which served for a very short period of time as reconnaissance airplane. In 1945 all the J 22 were re-designated as J 22-1 for the first version, J 22-2 for the second version, and J 22-3 for the third version. These last airplanes were re-conditioned a year later as fighters. Three J 22 remain today as museum exhibitions in Sweden. It served with seven squadrons throughout its career: F3 Malmen; F8 Bakarby; F9 Säve; F10 Barkråka; F13 Bråvalla; F16 Uppsala; and F18 Tullinge. The S22 (J 22-3) served only in the F3 Malmen squadron.
J 22 Specifications
Wingspan
10 m / 32 ft 10 in
Length
7,80 m / 25 ft 7 in
Height
3,60 m / 11 ft 10 in
Wing Area
16 m² / 172,16 ft²
Engine
1 SFA STWC-3G (Pratt & Whitney R-1830) 14-cylinder air-cooled radial engine of 1065 hp
Maximum Take-Off Weight
2835 Kg / 6,250 lb
Empty Weight
2020 kg / 4,445 lb
Loaded Weight
2835 kg / 6,240 lb
Maximum Speed
575 km/h / 360 mph
Range
1270 Km / 790 miles
Maximum Service Ceiling
9300 m /30,500 ft
Crew
1 (pilot)
Armament
2 X 7,9 mm M/39A (Browning M2) machine guns and 2 X 13,2 mm heavy machine guns located at the wings (J 22-1).
4 X 13,2 mm M/39A (Browning M2) heavy machine guns located at the wings (J 22-2).
Gallery
FFVS J 22A – 22185FFVS J 22B – 22280
FFVS J 22B at the Flygvapnet MuseumFFVS J 22A at an airshow circa 1990
The F4U Corsair is another most famous fighter and fighter-bomber of WWII, although it saw action mostly against the Japanese in the Theatre of the Pacific, therefore being primarily used by the US Navy and the Marines. This airplane in particular was specifically designed for aircraft carriers, being a naval aircraft in essence, although initial doubts over its performance on-board an aircraft carriers made it to serve initially as a land-based asset. It saw also action during the Korea War as a ground attack and Close Air Support (CAS) aircraft, and with the French in the Indochina, Algeria, and Suez Canal crisis. It also saw some service in the Atlantic during WWII, mainly with the British Fleet Air Arm, where reportedly provided air cover to the airplanes attacking the battleship Tirpitz, and served in the Indian and Pacific Oceans. The Corsair contributed to change the balance over the skies of the Pacific by shooting down many Mitsubishi A6M Zeros, although not as much as the Grumman F6F Hellcat.
The Corsair is single-seat and single engine fighter/fighter-bomber for day and night-time, featuring a characteristic inverted gull wing (Similar to that of the Junkers Ju-87 Stuka and the Loire-Nieuport 40) and a very long propeller-blade. The development of the Corsair began following a request by the US Navy for twin and single-engine fighters in 1938, with the single-engine required to obtain the maximum speed possible and a stalling speed of no more than 110 km/h (70 mph), and a long range. Interestingly, the initial requirements comprised the aircraft to carry anti-aircraft bombs to be dropped on enemy formations. That same year, Vought – the builder company – was awarded a contract to start with the development of the Corsair.
The Corsair was a pretty advanced aircraft for the times, and this characteristic meant that its development would find several problems that required solution, which in turn, were quite remarkable. Even so, the Corsair required improvements while in service, which does not deny the fact that it was one of the greatest and unique airplanes of the war, let alone a good complement to other aircraft carrier-based fighters and among the best naval fighters in the war.
One of the main features during development was the incorporation of the largest engine available, the Pratt & Whitney R-2800 V-18 Double Wasp of 2250 hp, requiring the installation of a wide three-blade Hamilton propeller. This installation had two visible effects on the design: First, the characteristic shape of the airframe, where the bow is basically the area where the big and long engine is located, almost displacing the cockpit further aft. Second, it yielded speeds of up to 652 km/h (405 mph), making it the first single-engine American design to reach such speed. But the first problems emerged, especially in regards to diving speed that, although achievable, meant considerable damage to control surfaces and access panels, as well as problems with the engine. Spin recovery standards also needed to be revisited.
The wing itself, along with the longitudinal shape, were both a challenge when designing the frame. In regards to the inverted gull wing, it was purposed to make the width and the landing gear as short as possible, benefiting also the minimization of drag, as the anhedral of the center section gave an optimal meeting angle between the wing and the fuselage. Yet the weight of the wing alone neutralized those effects. But it also had the problems when recovering from developed spins, as the shape of the wing interfered with the elevator. It also had problems with the starboard strip, that used drop without warning, requiring the installation of small stall strips on the leading edges. The port wing also had the potential of stalling and dropping in failed landings, which was further dangerous if throttle was abruptly increased in such cases. The inverted gull wing was also a product of solving the problem of the landing gear, as they needed to be tall enough to keep the propeller away from the ground (the same problem the Saab J-21 had). It simply shortened the length of the legs, while the landing gear was able to retract and rote 90° into an enclosed wheel well, maintaining the streamline of the wings.
The Corsair, however, was benefited during its development thanks to the experiences of other air forces when the war sparked in Europe. As a result, the set of 2 X 7.62mm synchronized engine cowling-mount machine guns, and the 2 X 12.7mm wing machine guns was deemed unsuitable, prompting the armament scheme to be modified. Three 12.7mm machine guns were fitted on each wing, increasing the firepower of the Corsair.
A Corsair and Mitchell bomber, fly together at an airshow.
As it was abovementioned, other problems prevented the Corsair to serve as a carrier-based fighter until 1944, mainly those related to the type of landing required in that type of vessel. Not only the wing-related problems when performing this manoeuvre, but also the location of the cockpit plus the long bow made landings particularly dangerous for new pilots. Furthermore, during landing approaches manoeuvres, the oil from the hydraulic cowl flaps had the tendency to spatter onto the windscreen, compromising visibility, and the oleo struts had bad rebound when landing, making the entire aircraft to bounce upon landing. The top cowl flap down was sealed, while a valve was fitted to the landing gear legs in order to solve the issues, solution that were, on the other hand, implemented by the British firstly. It had its first flight in 1940, entering in service in December 1942 intended as a naval fighter, but these problems delayed its utilization as carrier-borne fighter and the US Navy initially preferring the F6F Hellcat, but it also meant that the Marines would use the Corsair as their main air assets, and it was with this branch that the Corsair began to carve its reputation. It entered in service in the late 1942, where the Marines began to make use of it at the Battle of Guadalcanal and the Solomon Islands, where its first debut was rather disappointing. But once the Marines learned how to maximize the advantages of the Corsair, they began to contest the air supremacy the Japanese had. It also saw extensive action as a fighter-bomber/attacker in the Marshall Islands, Palaus, Iwo Jima and Okinawa.
It was the British the ones that solved the operational problems of the Corsair for naval use, as they began to operate with the Corsair in 1944, on-board the HMS Victorious. Those Corsairs saw action as carrier-borne aircraft by supressing Flaks and providing escorts to aircraft performing raids against the Kriegsmarine battleship DKM Tirpitz in three raid operations: Operation Tungsten, Operation Mascot and Operation Goodwood. Later on the British Corsairs were deployed in the Indian Ocean and the Pacific, attacking Japanese targets on April 1944.
The Corsair saw action in post-WWII conflicts such as the Korean War, the Indochina War, among others. Many served with other air forces as surplus or donated aircraft, where it served more than 30 years after WWII was over, when it scored its last air victories and gave an honourable closure to an era past gone. 10 F2G ‘Super’ Corsair series also served as civilian racers after the war. A total of 12571 Corsairs were built, being in service with the US Navy, the Marines and other air forces from 1942 to 1979, attesting the good quality of the aircraft and its endurance, being produced until 1953. A total of 15,386 Mustangs were built.
Design
The Corsair is a low inverted gull wing fighter, with a single tail and a single engine: Pratt & Whitney R-2800 V-18 Double Wasp of 2250 hp, with a wide propeller fitted as to maximize the power yield. As a result of the size of the engine, the bow or nose of the Corsair is particularly long, which made the cockpit to be located further aft. The relocation and reconfiguration of the armament – which was placed at the wings – and the resulting relocation of the fuel tank in front of the cockpit contributed to its location in the airframe, which in turn had to be elongated.
The wings with their characteristic shape were the result of the need for shortening the legs of the landing gear and for accommodating also a folding wing, while being located also well ahead the pilots’ cockpit, making the Corsair to have a cross shape. This wing design also resulted in the Corsair having remarkable aerodynamics over similar airplanes of its type. The shape of the wing was also beneficial in the sense that the meeting angle between the wing as the fuselage reduced drag and saved the utilization of wing root fairings, although the bent wing tended to neutralize such benefits given its weight. On a similar way to the Saab J 21, the supercharger air intakes, alongside the oil coolers, were placed at the wings, this case on the anhedraled center section of the wings. The combination of the propeller diameter, the engine and the wing’s shape and length – alongside the resulting aerodynamics – made the Corsair the fastest naval aircraft the US had at its disposal. The flaps were changed to a NACA slotted type while the ailerons were increased in span.
The fuselage, mainly the large panels, were made of aluminium and attached to the frames by spot welding, which eliminated the use of rivets. The top and the bottom areas of the outer wings were made out of fabric, as well as the ailerons, the elevators – which were also made of plywood – and the rudder. At the rear an IFF (Identification Friend or Foe) transponder device was installed.
The landing gear consisted typically of two ‘legs’ at the wings and a rear small wheel, with the carrier-based version having also a tail hook for the arresting cable. All of the set was retractable, only that the ‘legs’ at the wings rotated 90° and then swivelled backwards, a trait that common among many US fighters. Noteworthy to remark that the landing gear was hydraulically operated, alongside the cooling flaps, the wing flaps, the wing folding and locking, the arresting gear, the gun charging, and the dive breaks.
The aft cockpit had some interesting features and modifications resulting from the assessed hazards while landing on an aircraft carrier. As this problem was the result of the nose and the location of the same cockpit, a rectangular plexiglass panel was fitted in the lower center section, so to allow the pilot to see below and perform carrier landings with more safety. In addition, armour plates were applied to the canopy area, with the windscreen being a 38mm bullet-proof installed internally and the behind the curved windscreen. To aid the pilot’s rear view, half-elliptical planform transparent panels were placed at each side of the structure right behind the cockpit, yet the view provided was rather limited.
The aft section of the Corsair is also full of noticeable characteristics, with a projecting fuselage tip where the vertical stabilizer is placed, which is large. The horizontal stabilizer is, in turn, placed ‘aft’ of the tail.
The Corsair’s armament was originally a set of two 7.62mm machine guns at the frontal section of the nose, and two 12.7mm machine guns, one at each wing. But as the abovementioned reports from the war in Europe obliged the armament to be modified, the final disposition was of 6 X 12,7mm machineguns at the wings, three on each side.
Death has bent wings.
The Corsair was the most effective fighter the US Navy and the USMC had from the moment it was introduced and entered combat in the Solomon Islands in 1943. It was appraised by the pilots due to its performance and its capacity to remove the threat posed by the Mitsubishis A6M Zeros, as well as to break Japanese bombing raids. It was also capable of outfling and outfighting any land-based aircraft. It was capable of performing interception, bombing, ground-attack and fighter missions. The Corsair was a fighter that was also an ace-maker, with Kenneth Walsh (21 kills), Gregory “Pappy” Boyington (28 kills) and Joe Foss (26 kills). It was under Boyington lead that his squadron, the “Black Sheep” were the most effective squadron, scoring 97 kills and 103 damaged airplanes on the ground. Noteworthy to remark, the Corsair was also appraised by Admiral Nimitz giving its performance.
As the Corsair was cleared for carrier use, it began to operate on-board USS Essex and USS Bunker Hill. The Corsair also performed dive bombing missions in the Marshal Islands as it dropped more than 90718 kg (200000 lbs) of bombs against Japanese installations. It also took part in combats at China Sea, Okinawa, Iwo Jima, Formosa and the Philippines. It also took part on the Saigon and Tokyo Raids, which were diversionary attacks prior to Okinawa. It was also during Okinawa where they had to operate as fleet air defence against the Kamikaze attacks in the earlier stages of the battle, performing CAS with bombs, rockets and Napalm once the threat was neutralized. They reportedly achieved remarkable feats, like keep flying after ramming an enemy. The Corsairs scored 2140 Japanese airplanes with only 189 Corsairs lost, along with 14 warships and 33 merchants sunk (Saigon raid). These scores earned the Corsair Nimitz’s appraisal and a US government citation, and the builder granted an “E” after the War.
The Corsair was among the few WWII-era aircraft to serve right into the earlier days of the Cold War, as it took part in low altitude attack fighter-bombing and CAS missions in Korea, as well as heckling the enemy in night missions. It also attacked enemy installations It dropped bombs, Napalms, rockets and cannons the same way as in WWII, being both aircraft and pilots both veterans of that conflict, and operating from WWII aircraft carriers (USS Essex and USS Bon Homme Richard). As tough as it was, it was able to cary alarge payload and remain more time in the combat zone for CAS missions, and even the Corsair even managed to kill a North Korean Mig-15. The Corsair also had a high rate of availability and hard resistance against enemy fire.
One last dogfight over the jungle
When the 1969 ‘Soccer War’ sparked between Honduras and El Salvador, both nations were having among their air forces inventories some WWII-era fighters, namely F4U/FG-1 and P-51D/TF—51 fighters. These airplanes were to perform the last dogfight between WWII-era (or piston-propelled engine) airplanes, like two medieval knights clad in armour, ready to joust for a last opportunity as to write the last chapter of an era. The morning of the 17th of July, 1969, the encounter was bound to take place. As Honduran Captain Fernando Soto was leading a group of three F4U-5 to strafing missions at the border, one of the Corsairs was attacked by two Salvadorian P-51, with Capt. Soto shooting it down. But there was to be a second encounter between the veteran aircraft, as late on the same day, during a bombing mission alongside another F4U-5, they encountered Salvadorian FG-1. The result was that both FG-1 were shot down, making of Capt. Soto the only “Ace” of the War.
P-51 of the Salvadorian Air Force, piloted by US mercenaries, patrolled the Salvadorian skies and border, looking also for the Honduras Corsairs, with no avail.
Variants
F4U-1 (Corsair Mk I)/FG-1 – This was the first production series of the Corsair, being characterized by a ‘bird cage’ canopy and a low seating position, featuring also the definitive abovementioned modifications for the series-production models, including the 6 X 12,7mm machine guns’ configuration. An additional pair of auxiliary fuel tanks were installed in each wing edge A two-seat trainer was built but was not accepted by the US Navy. The Corsairs in service with the Marine Corps did not had folding wing capacity neither they were fitted with an arrester hook but a pneumatic tail wheel, as they were land-based, receiving the designation FG-1 and being built by the Goodyear. Those with the British Fleet Air Arm were denominated Corsair Mk I.
F4U-1A (Corsair Mk II) – A post-war denomination introduced to differentiate the mid-to-late production batch. This version – which would be the second production version – would have a new type of canopy, similar to a Malcolm hood type – like that of the Spitfire – and with only two frames. It had a simplified windscreen, which improved visibility overall along with the canopy being taller. That the pilot’s seat was raised 180mm (7 in), in combination with a lengthened tailwheel strut, meant that visibility was also improved, solving the problems posed by the long nose. This is the version that, along canopy modifications, also introduced wing and undercarriage oleo struts modifications, becoming in the US Navy carrier-based version. This version also received a new power plant, the R-2800-8W water-injection engine, and the capacity to carry a center-section fuel drop tank. Goodyear also built a variant of this version, land-based and without folding wing capacities. Those in service with the British had their wings modified – shortened by 2cms/8 in – for use in their carriers, denominated FG-1A.
F3A-1 (Corsair Mk III) – Denomination for those built by the Brewster, which none of them reached front-line units as the building both production and quality control were poor, noticeable after having speed restrictions and broken wings (due to poor quality wing fittings).
F4U-1B – Unofficial post-war denomination to identify Corsairs modified for Fleet Air Arm use.
F4U-1C – Ground attack and fighter version, with the 6 X 12,7mm guns replaced by a set of 4 X 20mm AN/M2 (Hispano-Suiza) cannons thus providing considerable firepower for ground attack missions. Based on the F-4U-1. This version had a remarkable performance in the Battle of Okinawa, as it was introduced in 1945.
F4U-1D/FG-1D/F3A-1D (Corsair Mk IV and Mk III) – Ground attack and fighter version, developed and built in parallel to the F4U-1C. It had the new engine fitted in the F4U-1A, yielding speeds of up to 684 km/h (417 mph). It also carried an increased payload of rockets and a twin-rack plumbing for an additional belly drop fuel tank, which increased firepower but also drag. The range was also increased, meaning it could perform long missions. A single piece – Malcolm hood type – canopy was adopted firstly as a standard for this version, then for the following Corsairs. Goodyear and Brewster also produced this version, under denominations FG-1D and F3A-1D, respectively.
F4U-1P – Photo-reconnaissance version.
XF4U-2 – Nigh-time fighter version fitted with two auxiliary fuel tanks.
F4U-2 – Experimental carrier-based night-time fighter. Armed with 5 X 12,7mm guns, with the starboard gun being replaced by an Airborne Intercept radome containing a radar. 32 were modified by Naval Aircraft Factory, ant two more were modified in the front-line. It saw action in the Solomon Islands and in Tarawa.
XF4U-3 – Experimental version used to test different engines that never entered into combat. Goodyear also produced some units of this version, denominated FG-3. A single XF4U-3B was produced with some modification, intended to be issued to the British Fleet Air Arm.
XF4U-4 – Version with new engine and cowling.
F4U-4 – A naval fighter/fighter bomber version, being the last one taking part in WWII, as it was introduced by late 1944. It was powered by a 2100 hp dual-stage-supercharged V18 cylinder engine, with its power boosted to 2450 hp when the cylinders were injected with a water/alcohol mixture. An air scoop was fitted under the nose, while the wing fuel tanks were removed. The propeller was also changed from a three blade to a four blade type. The new engine, the mixture and the new propeller blades allowed the F4U-4 to reach speeds of up to 721 km/h (448 mph) and a better climbing rate (4500 ft/min / 1180 m/min). A flat bulletproof windscreen was also installed, avoiding optical distortions. Versions with wingtip tanks and a six-blade contra-rotating propeller were proposed but ultimately rejected by the US Navy.
F4U-4B – Corsair that were set to be delivered for the British Fleet Air Arm, but were confiscated by the US.
F4U-4C – A version with an alternate weapons set of 4 X 20mm AN/M2 (Hispano-Suiza) cannon. 300 delivered.
F4U-4E/F4U-4N – Night fighters with the starboard wing radar radome. The F4U-4E was equipped with an APS-4 search radar, and the F4U-4N was equipped with an APS-6 search radar. These Corsairs would have an armament of 4 X 20mm AN/M2 (Hispano-Suiza) cannons. These Corsairs served in the Korean War.
F4U-4K – Experimental drone version
F4U-4P – A photo-reconnaissance version.
XF4U-5 – Version with new engine cowling.
F4U-5 – A modified version of the F4U-4, introduced in 1945 and aimed at increasing the Corsair’s performance and introduce many of the suggestions issued by the pilots. It was powered with a Pratt & Whitney R-2800-32(E) engine with a two-stage supercharger of 2850 hp. Automatic blower controls, cowl flaps, intercooler doors and oil cooler for the engine were fitted. Spring tabs for the elevators and rudder, a modernized cockpit, a retractable tailwheel, heated cannon bays and pitot head were also fitted. The cowling was lowered two degrees, and the wings were all-metal. 223 units delivered.
F4U-5N – A radar equipped version. 214 units delivered.
F4U-5NL – A winterized version equipped with rubber de-icing boots on the leading edge of both wings and tail. 72 units delivered and 29 units modified from F4U-5N.
F4U-5P – A long range photo-reconnaissance version. 30 units delivered.
F4U-6/AU-1 – A re-designated AU-1 (which in turn, was based on a modified F4U-6), which was the ground-attack version in use by the Marine Corps. The AU-1 had extra armour protecting both pilot and fuel tank, as well as extra racks, and the oil coolers relocated inboard to reduce changes of ground fire damage. The supercharger was redesigned for low-altitude operations. Capable of carrying up to 3720kg (8,200lbs) of bombs and of reaching speeds of 383 Km/h (238mph) or 479 Km/h (298mph) when armed with bombs or rockets and with one or two fuel tanks. At empty payload this version could reach speeds of 626 Km/h (389mph). produced in 1952 and retired in 1957, seeing action in the Korea War.
F4U-7 – Version based on the AU-1 for service with the French Navy.
FG-1E – Goodyear-made Corsairs FG-1 with radar equipment.
FG-1K – Goodyear-made Corsairs FG-1 used as drones.
FG-3 – A turbosupercharger version from modified FG-1D airframes.
FG-4 – Goodyear-made Corsairs F4U-4 that were never delivered.
Super Corsairs (F2G-1 / F2G-2) – Versions developed after the war, powered by a Pratt & Whitney R-4360 Was major with 4-row 28-cylinder radial engine and a teardrop/bubble canopy. The F2G-1 had a manual folding wing and a 4,3m (14ft) propellers, the F2G-2 had hydraulic operated folding wings, 4m (13ft) propellers and carrier arresting hooks. Development problems delayed and finally ended further developments, with the F2G-2 becoming racing planes.
Operators
U.S. Navy F4U-4 – VMF 124 No 13 – June 1945
United States of America – The Corsair was primarily used by the US Navy and the United States Marine Corps in most of the campaigns of the Pacific War. It started its service at Solomon Island in 1943 as fighter in the hands of the USMC, where three famous Pacific War American Aces marked their scores with Corsairs. It also took part of dive bombing operations in the Marshal Islands, seeing also action in the China Sea, Okinawa, Iwo Jima, Formosa, the Philippines and also in the Tokyo and Saigon Raids. In Okinawa, it became the main defence against Kamikaze attacks. The Korean War brought the Corsairs back given its capacity to carry large and heavy amounts of payload/ordnance, performing ground-attack and CAS missions, used by the USMC. Many were also sold as surplus aircraft, serving in the air forces of Argentina, El Salvador and Honduras.
Royal Navy F4U-1 (F.Mk.1) 1855 NAS FAA – Oct 1943
United Kingdom – 2,012 Corsairs were issued to the British Royal Navy Fleet Air Arm in 1943, where the wings were clipped 8 inches in order to increase storage in the lower carrier decks, being the British Corsairs the first ones to be used in on an aircraft carrier. The Corsair also took part as escort fighter and anti-air defences in three operations – Operation Tungsten, Operation Mascot and Operation Goodwood – against German battleship DKM Tirpitz. In 1944, British Corsairs took part in operations at the Indian and the Pacific Ocean, remarkably used in Java as bombers. It was during Corsair service with the British, that enhancements for carrier operation were made.
French Navy F4U-7 – 14F Aeronavale No.133704 – Circa 1956
France – France and its naval air branch or Aéronavale operated with 69 AU-1 and 94 F4U-7s from 1954 to 1964. It was introduced to replace the Supermarine Seafires, Grumman Hellcats, Curtiss Helldivers and SBD Dauntless that equipped the naval air service. They operated from 4 carriers – Arromanches, Dixmude, La Fayette and Bois Belleau – that were part of the French Navy. 4 squadrons – the 14F, 12F, 15F and 10F – were operating with the Corsair, alongside two training squadrons – 10S and 57S. French Corsairs intervened firstly in Indochina, as they were handed by the US (AU-1 Korean War veterans) and where they were well received by French troops and pilots. In Indochina 6 Corsairs lost and 2 pilots dead.
The Corsairs also operated in Africa, namely in Algeria, Suez and Tunisia. In Algeria, they provided fire support, bombing, reconnaissance and protection of airborne troops. There were some considerable losses due to accidents and AA fire took place. In Suez, they took part in operations from carriers Arromanches and La Fayette, attacking the Cairo-Almanza airfield with only one loss against 12 planes damaged and 1 damaged of the Egyptians. The last action the French Corsairs saw was in Tunisia, where they provided support to besieged troops at a French airbase after Tunisian independence, attacking also Tunisian troops and vehicles. 3 Corsairs were lost due to the AA. The French reportedly used the Corsairs to experiment with anti-tank missiles, but they were never used. As new carriers and new air naval assets were introduced, the Aéronavale withdrew its Corsairs.
Royal New Zealand AF F4U-1A – 22 Sqn 49944 – July 1944
New Zealand – The New Zealand air force shifted from the P-40 to the Corsair in 1944, receiving in total 424 airframes as a lend-lease, with 13 squadrons operating it. The RNZAF operated with F4U-1A, F4U-1D and FG-1D, concentrating on attacking the bypassed islands with ground support, escort and air patrols. Only 17 Corsairs were lost, as the Japanese air superiority was, by the time the Corsairs were received, almost neutralized. A squadron equipped with Corsairs served an occupation duty for two years once the Pacific War was over.
Argentina – Argentine acquired the day-time and night-time fighter versions of the Corsairs (26 F4U-5/5N/5NL) in 1957, being incorporated to the Argentinian aircraft carrier ARA Independencia. As the abovementioned versions were fitted with Radar, Argentina became the first nation in the region to operate aircraft with radars. They intervened during the 1958 border incidents with Chile, and in the period of 1959-1960, the Corsairs were used as submarine chasers – equipped with depth charges – following the detection of unidentified submarines. They also took part during the political revolt of 1963, being 1964 their last year of operational service during another set of border incidents with Chile. They were withdrawn from service in 1968.
Honduras – The Honduras Air Force operated the Corsair from 1956 to 1979, with 19 units. The Honduran Corsairs also took part in the 1969 ‘Soccer War’, where a single Corsair scored three victories against two Salvadorian Corsairs and one Mustang, piloted by Capt. Fernando Soto. These were the only air-to-air victories of the war. The Honduras Corsairs also performed strafing missions at the border. The Corsair that scored those victories is now a war memorial.
El Salvador Air Force FG-1D – 67087 – Circa 1958
El Salvador – The Salvadorian Air Force operated the Corsair from 1957 to 1976, with 25 F4U-/FG-1D. They took part in combats during the 1969 ‘Soccer War’, where took some losses in the hands of the Honduras Air Force operating similar F4U-4 and F4U-5 fighters.
Germany – Germany captured only one British Corsair that was forced to land in Norway due to technical issues while taking part in Operation Mascot.
Japan – Japan also captured two Corsairs after emergency landings, with one possible tested in flight.
F4U-4 Specifications
Wingspan
12,49 m / 41 ft 0 in
Length
10,27 m / 33 ft 8 in
Height
4,5 m / 14 ft 9 in
Wing Area
29,17 m² / 314 ft²
Engine
1 Pratt & Whitney R-2800-18W 18 cylinder radial engine of 2,250 hp
Propeller Diameter
4,06 m/ 13 ft 4 in
Maximum Take-Off Weight
6149 Kg / 13,556 lb
Empty Weight
4174 kg / 9,202 lb
Loaded Weight
5626 kg / 12,405 lb
Maximum Speed
718 km/h / 446 mph
Range
2511 Km / 1,560 miles
Maximum Service Ceiling
12650 m /41,500 ft
Climb Rate
3050m in 5,1 minutes (22.1 m/s; 4,360 ft/min)
Crew
1 (pilot)
Armament
6 X 12,7mm (0.50 caliber) M2Browning machine guns or 4 X 20mm AN/M2 cannons.
Up to 1000 kg (4000 lbs) of bombs.
8 X 127 mm high velocity aircraft rockets.
Gallery
U.S. Navy F4U-4 – VMF 124 No 13 – June 1945U.S. Navy F4U-1 VMF 123 no. 15 ‘Daphne C’ – July 1943U.S. Navy F4U-1A – VF-17 17640 ‘Big Hog’ – Nov 1943U.S. Navy F4U-1D – VMF-451 20141 – Apr 1945Royal Canadian Navy FG-1D – 1841 Sqn BuNo 76236 – Aug 1945Royal New Zealand AF F4U-1A – 22 Sqn 49944 – July 1944Royal New Zealand AF F4U-1 – No. 21 Sq NZ5315 BuNo 49909 – Jun 1944Royal Navy F4U-1 (F.Mk.1) 1855 NAS FAA – Oct 1943French Navy F4U-7 – 14F Aeronavale No.133704 – Circa 1956El Salvador Air Force FG-1D – 67087 – Circa 1958
The Saab J 21 is a peculiar airplane, not only because of its advanced features. This fighter in particular is one of the only two airplanes that were initially powered with a piston-propelled engine, then later modified to incorporate a jet engine using the same airframe and implementing very few modifications. This airplane is also the product of Swedish defence concerns and resourcefulness, as Sweden wanted to keep its neutrality and territorial integrity during WWII, electing to develop a domestic fighter program as access to foreign advanced technology was restricted.
Saab J 21A-3
A single-seat, single-engine airplane that later became one of the first-generation jet fighters. Its design is a twin-boom tail pusher configuration. It had two longitudinal booms, attached to the main wing but extending backwards from the middle section of each wing, with the main body placed in the middle. Similar to the Lockheed P-38. This design also implements a rear mounted piston engine, otherwise known as a pusher configuration, which made engine modifications easy.
The piston-propelled version, the J 21 – had the engine, a licensed Daimler-Benz DB 605B, simply fitted at the rear of the main body, behind the cockpit and between the longitudinal booms. The jet version – J 21R – was fitted with air in-takes at both sides of the fuselage, having the engine (a De Havilland Goblin 2 and later a Swedish-licensed version, a Flygmotor RM1) located on the same area as the piston-propelled version and elongating the main body. The fuselage section harbouring the engine was also widened. Another modification was that the elevator was placed at the upper area of the double tail plane. The wing in both configurations was a low-wing, being straight until it met the longitudinal booms, changing into a slightly swept wing from the longitudinal boom to the wing tip. It also received wingtip fuel tanks.
The J 21 could develop speeds up to 645 km/h (400,78 mph), while the jet propelled version could develop speeds up to 800 km/h (497 mph), being a fast aircraft in both configurations. Its firepower (J 21) was equally powerful, as it was armed with a 20 mm cannon, either a Bofors or a Hispano-Suiza HS.404, and 2X 13,2mm Bofors machineguns at the nose, with 2X 13,2mm Bofors machineguns in the wings. The J 21R received an even much more considerable firepower, as it featured a 20mm Bofors cannon, 4X 13.2mm M/39A heavy machine guns, a centreline pod with 8X 13.2mm M/39 machineguns, and wing racks for 10X 100mm, 5X 180mm, or 10X 80mm anti-armour rockets.
Prototype in Service
The J 21 was initially developed with the aim of providing Sweden with good air assets to defend its air space and neutrality, and also with the aim of replacing many of the existing airplanes development. The development began in 1939, under the lead of Frid Wänström, having as basis a Bristol Taurus as an engine, yet it fell into a momentary freeze until 1941, when it was resumed. This freeze was due to Saab’s concentration in the Saab B 17 and B 18 bombers. As the configuration resulted problematic for the pilot’s safety when bailing out, many proposed solutions came, such as blowing the propeller, blowing the entire engine or using a “bomb crutch” to throw the pilot away from the airframe. The solution came with the development and implementation of a Bofors ejection seat, which was tested first on ground and in-flight on a SAAB B 17. The nose landing gear wheel was tested on a steel platform attaching the three undercarriage components, with the structure being towed by a truck during the test programme. In 1943 the first flight of the prototype took place, with units entering in service with the Flygvapnet in 1945. Three prototypes were built during the development process. In 1947 the J 21 evolved into de J 21R when it received the De Havilland Goblin jet engine, but as the J 29 Tunnan was introduced, it replaced the J 21 as the main fighter, performing the J 21 instead ground attack missions, thus designated A 21R.
The J 21 was in service with the Flygvapnet from 1945 until 1954, with 298 fighters built from 1945 to 1949. The J 21R was in service with the Flygvapnet from 1950 until 1956, with 60 units built from 1950 to 1952. Three J 21 are preserved as static displays in museums.
Design
The jet powered Saab 21 R in flight
The basic design of the J 21/J 21R was a twin-boom tail pusher propeller, making it one of the most radical operational designs of those times. This scheme proved to be beneficial for two important aspects. First, it benefited both pilot view forward and allowed the armament to be concentrated on the nose, meaning that such combination provided a good firing scope and sight, let alone a good firepower and making maintenance services rather easy. Second, it made possible for the aircraft to be updated thus being able to install a jet engine using the same airframe of the piston-propeller engine version, which was basically the basic airframe.
The only drawback of this layout – mainly with the J 21 piston-propelled engine version – was the risk for the pilot to hit the blades when bailing out, as the engine was placed right behind the cockpit. The solution came with one of the first ejection seats in the world, developed by Saab in 1943, being tested on the ground and on-flight and being a SAAB B 17 the testing platform. Another drawback was that, similar as the earlier versions of the Mustang P 51, the rearward view was rather poor, which could be problematic in a dog-fight. The J 21 featured a characteristic wing, as it was roughly strait from the main fuselage to the tail twin-booms, then being slightly swept back from the tail booms to the wingtips.
The wing was purposed with acquiring laminar flow as far as possible. In regards to the aerodynamics, it was required the airframe to reduce minimum drag and engine cooling drag, so the oil and liquid coolers, along with the duct system for the engine, inside the airfoil contour between the fuselage and the tail booms. Considering the tail boom design, the horizontal elevator was placed between the tail sections, connecting them. The landing gear, meanwhile, was of tricycle configuration and long, which made the J 21 to be a tall aircraft so to keep the propeller away from the ground. The rear gear retracted into the tail booms behind the rear wing spar, but this forced the fuel tank to be placed in the wing centre section. The frontal wheel was located at the nose.
The engine was a Daimler-Benz DB 605B inverted V12 of 1475 hp, which gave the airplane speeds of maximum 645 km/h (400,78 mph), but as the engines were received in poor conditions, improvements and overhauling were required. As a result of the power provided by this engine and the aerodynamic characteristics, the J 21 was deemed good, as it had excellent handling, benign stall characteristics and tight turning circle. The armament also gave this fighter good firing power, with the Swedish pilots being able to compare it with the Mustang P 51D (Sweden received a good number of them) and considering they were a good match for it. But the main drawbacks were that at medium and high altitudes performance tended to decrease, the rearward view was poor, and the controls were heavy to operate, increasing tiring during combat.
The armament of the J 21 consisted of a 20 mm cannon, either a Bofors or a Hispano-Suiza HS.404, and 2X 13,2mm Bofors machineguns at the nose, with 2X 13,2mm Bofors machineguns in the wings. The J 21A-3 was able of carrying unguided rockets (2X 180mm or 8X 80/145mm) and bombs (600kg, 500kg, 250kg or 4X 50Kg).
After World War II, the jet engine technology was becoming the mainstream propulsion system, and the Flygvapnet wanted to catch up and incorporate such technology into its assets. As the development of a new jet propelled fighter would take some time, the J 21 was chosen to be the platform for using an airframe in use with the new technologies back then. As a result, the J 21R was developed and introduced, with the first prototype taking flight in 1947 and then entering service in 1950. This ‘new’ fighter required some structural changes so to cope with the new power plant, like up to 50% of its airframe. First, the main body was slightly prolonged ant widened, so to allow the De Havilland Goblin 2/Flygmotor RM1 engine (that allowed speeds of 800 km/h) and the air intakes, located at each side of the fuselage. In addition, the stabilizer was moved upwards top to the fin, so to allow the engine flow, requiring the tails to be redesigned. The wing leading edge was mover forward and made sharper. Airbrakes were introduced, one upward and other downward flaps placed on the outer wing’s trailing edge. Given the increased speed, the ejection seats were properly modified so to enable ejections at subsonic speeds. And as the propeller was removed, the landing gear was shortened in turn, reducing the height of the airplane. Fuel tanks were fitted in the middle wing and the wingtips, which increased the fuel volume.
The J 21R received an enhanced firing power, as the standard 20mm cannon/4X 13,2mm M/39A heavy machineguns set was added with a centreline external pod carrying 8 additional 13,2mm M/39 heavy machineguns. In addition, the J 21R was fitted with wing racks allowing the airplane to carry 10X 100mm or 5X 180 Bofors rockets, or 10X 80mm anti-armour rockets.
Materializing ‘Armed Neutrality’
The J 21 is, like the J 29 Tunnan, the product of Sweden’s concerns about its own security during WWII, especially in the light of Germany’s invasions of Norway and Denmark in 1940, which were neutral nations by the time. As Sweden considered that its existing air assets wouldn’t be able to successfully contribute to the defence, given their obsolete condition, it considered that new aircraft were necessary. As with the J 29, Sweden faced some problems when trying to acquire some technology due to the restrictions imposed by the conflict, although by sheer luck it was able to receive the Daimler-Benz DB 605B engine, as Germany was trying to hamper the delivery. These circumstances decided the Swedish government to undertake a local rearmament programme and implement a policy of ‘armed neutrality’ to secure the nation’s neutrality. The focus was placed on the development and fabrication of advanced aircraft. As the same concerns prevailed after World War II and into the very earlier days of the Cold War, it was deemed that the resulting technologies from the War needed to be exploited and incorporated, having in mind Sweden to catch up with the newly developed technologies, especially in regards of propulsion. The Saab J 21 became the platform for the Flygvapnet to make the transition from piston-propeller engine to jet engine, while at the same time providing the country with a locally built jet engine fighter, while newer and more advanced aircraft were put into service.
A feat of Swedish Nytänkande
The fact that the J 21 was used as a basis for an almost new jet powered engine fighter is a product of Sweden’s innovative thinking and also of its capacities – out of need, in part – of working with existing resources at the point of maximizing them. While the J 29 Tunnan has the honour of being the first jet fighter exclusively built for that purpose, it is the J 21 the very first jet engine fighter the Flygvapnet operated with, being amongst the very few designs, if not the only one, in being successfully modified as it received two different types of power plants. And while the J 29 Tunnan displaced the J 21 as a fighter, it was able to operate as a good ground attack aircraft until 1956, making this airplane born in the World War II, an early Cold Warrior and the basis for Sweden’s jet fighter industry and operationalization. It simply meant a huge step for the Swedish Air Industry, let alone its Air Force.
Variants of the J 21
J 21A-1 – Fighter version and the very first production series of the J 21. It featured the armament configuration of the 20mm Hispano-Suiza HS.404 cannon and the 13,2mm Bofors/Colt heavy machine guns. In service until 1949. 54 delivered.
J 21A-2 – Fighter version and the second and third production series, featuring enhanced avionics and incorporating a Bofors 20mm gun, with the other armament being the same. It was also equipped with further direction horizon instruments. In service until 1953-1954. 124 delivered.
J/A 21A-3 – Fighter/fighter-bomber version based from modified J 21A-2 airframes. It was equipped with a SAAB BT9 bomb aiming sight and two RATO (Rocket-Assisted Take-off) devices, armed with unguided rockets (2X 180mm or 8X 80/145mm) and bombs (600kg, 500kg, 250kg or 4X 50Kg). 119 delivered.
J 21B – A planned version to be armed with 3X 20mm guns at the nose, a radar in the starboard room, improved aerodynamics and better engines (A Daimler-Benz DB 605E/Rolls-Royce Griffon). It was also intended to feature a pressurized cockpit and a bubble canopy. Cancelled
Variants of the J 21R
J 21RA / A 21RA – First production series powered by a De Havilland Goblin engine. Later reconfigured into ground attack airplanes (A 21RA). Fitted with wingtip fuel tanks to increase the operational range and endurance. Operated until 1953. 30 delivered.
J 21RB / A 21RB – Second production series powered by a Swedish-license made De Havilland Goblin (RM1). It was also reconfigured later into a ground attack airplane (A 21RB), with the nose heavy machineguns changed to a 12.7mm caliber. Fitted with wingtip fuel tanks to increase the operational range and endurance. Operated until 1956. 30 delivered.
Operators
Sweden -The Flygvapnet operated the J21 a time roughly after the end of World War II. It operated with 54 fighters of the J 21A-1 version, 124 The J 21 fighters of the J 21A-2 version, and 119 fighter/bombers of the J 21A-3 version. The J 21 was in service between 1945 and 1954, with X units: F9 Goteborg, F15 Soderhamn, F12 Kalmar, F6 Karlsborg and F7 Såtenäs. In addition, the Flygvapnet operated with 30 fighters of the J 21RA version, and 30 fighters of the J 21RB version. Both were later on modified into ground attack airplanes, being denominated as a result A 21RA and A 21RB. The J 21R was in service from 1950 to 1956, with three units: The F10 Ängelholm, the F7 Såtenäs, and the F17 Kallinge. Three J 21 remain today as museum exhibitions in Sweden.
21 Specifications
Wingspan
11,6 m / 38 ft 0 in
Length
10,44 m / 34 ft 3,02 in
Height
3,97 m / 13 ft 0 in
Wing Area
22.2 m² / 238,87 ft²
Engine
1 Daimler-Benz (SFA) DB 605B inverted V12 of 1475 hp
Maximum Take-Off Weight
4431 Kg / 9,768.6 lb
Empty Weight
3250 kg / 7,165 lb
Loaded Weight
4150 kg / 9,149 lb
Maximum Speed
645 km/h / 400,78 mph
Range
750 Km / 466 miles
Maximum Service Ceiling
11000 m /36,090 ft
Climb Rate
15 m/s (2,950 ft/min)
Crew
1 (pilot)
Armament
1 X 20 mm Hispano-Suiza HS.404 or a Bofors cannon located at the nose.
2 X 13,2 mm Bofors (Colt) heavy machine guns located at the nose.
2 X 13,2 mm Bofors (Colt) heavy machine guns located at the wings.
The J 21A-3 fighter/bomber version could carry also 2 X 180mm, or 8X 80/145mm rockets; and 600kg, 500kg, 250kg or 4X 50Kg bombs
21R Specifications
Wingspan
11,37 m / 37 ft 4 in
Length
10,45 m / 34 ft 3 in
Height
2,90 m / 9 ft 8 in
Wing Area
22.3 m² / 260,0 ft²
Engine
1 De Havilland Goblin 2 Turbojet (Svenska Flygmotor RM2B Turbojet)
Maximum Take-Off Weight
5000 Kg / 1,0230 lb
Empty Weight
3200 kg / 7,055 lb
Loaded Weight
N/A
Maximum Speed
800 km/h / 497 mph
Range
720 Km / 450 miles
Maximum Service Ceiling
12000 m /39,400 ft
Climb Rate
17.1 m/s (3,366.1 ft/min)
Crew
1 (pilot)
Armament
1 X 20 mm Bofors cannon located at the nose.
4 X 13,2 mm M/39 heavy machine guns located at the nose, later changed to 12.7mm caliber.
8 X 13,2 mm M/39 heavy machine guns on a centreline pod.