Category Archives: Weimar and Nazi Germany

Messerschmitt P.1101

Nazi flag Nazi Germany (1944)
Jet Fighter – 1 Incomplete Prototype Built 

The P.1101 prototype after the war [Wiki]


During the war, German scientists and engineers managed to develop and build a number of jet powered aircraft, several of which went on to see combat. What is generally less known are the large number of experimental jets that were proposed and prototyped. These designs utilized a great variety of engines, airframes, and weapons. One of these unfinished projects was the Messerschmitt P.1101 jet fighter.

Need for a New Jet Fighter

Line drawing of the P.1101 [Luftarchiv]
During the war, the Germans introduced the Me 262, which had the honor of being the first operational jet fighter in the world. While it provided better performance than ordinary piston powered aircraft, it was far from perfect. The greatest issues were that it was expensive to build, required two jet engines, and could not be built in sufficient numbers. The German Air Ministry (Reichsluftfahrtministerium; RLM) wanted a much simpler and cheaper design powered by a single engine. They issued a competition for a new jet fighter ,code named 1-TL-Jäger, during July 1944 for all available aircraft manufacturers. Some of the requirements listed were that it would be a single seater, have a maximum speed of 1000 km/h (620 mph), an endurance of at least one hour, armor protection for the pilot, make use of the Heinkel HeS 011 engine, and had an armament that had at least two 30 mm (1.18 in) MK 108 cannons. During a meeting with the leading German aircraft manufacturers held in September 1944, Messerschmitt presented the P.1101designed by Waldemar Voight.

The Messerschmitt P.1101 Development History

Drawing of the P.1101 before a number of design changes were introduced. [Luft46.com]
Messerschmitt’s engineers and designers began working on designing a single engined jet aircraft at the start of 1943. Two projects, P.1092 and P.1095, were both powered by a single Jumo 004 jet engine, but, as the Me 262 was entering full production, their development was largely suspended. These projects were shelved until the RLM competition in 1944. Seeing a new opportunity, Messerschmitt presented drawings of a new project named P.1011, which was influenced by the previous projects. It had an all-metal fuselage construction and was powered by one HeS 011 engine with the air intakes placed on the wing’s roots. It also had a V-tail.

Following the meeting with the RLM officials in September, some changes were made to the P.1101’s overall design. Instead of two air intakes, a single one in the nose was to be used. This also necessitated the redesigning of the cockpit, which was moved back. In addition, the rear V-tail was replaced with a standard fin design. At this early stage, the possibilities of using this aircraft for other purposes were still being explored. Beside the standard fighter, other roles which were considered were night fighter and interceptor. On 10th November, the owner of the company, Willy Messerschmitt, issued orders to begin working on the first experimental prototype. To speed up the developing time, it was proposed to reuse the already produced components of the Me 262. The Me 262 fuselage, wings design and construction were to be copied.

End of the Project

The P.1101 prototype was only partially completed in early 1945. It appears that, despite Messerschmitt’s attempts to complete this project, the RLM simply lost interest. Messerschmitt’s other projects, like the P.1110 and P.1111, showed greater potential than the P.1101. This, together with the fact that the promised engine never arrived, meant that the single incomplete prototype was put into storage at the Messerschmitt Oberammergau research center. It remained there until the war’s end, when it was captured by American forces.

Technical Characteristics

Side view of the P.1101. This picture was taken at the Messerschmitt Oberammergau base. [Luftarchiv]
The P.1101 was a single seater, jet engine-powered mixed construction fighter. The lower parts of the all-metal fuselage were designed to house the jet engine. In the front of the fuselage, a round shaped intake was placed. To the rear, the fuselage was additionally reinforced to avoid any damage due to the heat of the jet exhaust. The underside of the fuselage was to have a skid to help better land during an emergency.

While it was originally intended to be powered by the HeS 011 engine, the power plant was never supplied and the Jumo 004B was to be used as a replacement. The main fuel tank, with a capacity of 1,100 liters (290 gallons), was placed just behind the cockpit. Only a mock-up engine was ever installed in this aircraft, so it was never tested properly, even on the ground. Due to this, it is unknown what the P.1101’s overall flight performance would have been. Some sources give rough estimates, such as that it could have reached 890 km/h (550 mph) at sea level and up to 980 km/h (610 mph) at higher altitudes. Of course, these are only estimations contingent on the fact that the plane had no other problems during operational flight. In addition the general ability to test flight characteristics in the transonic-supersonic range were extremely crude at this point.

Close up view of the P.1101’s large front air intake for the jet engine. The markings painted on it were probably added by the Americans after the war. [Luftarchiv]
The wing’s were made of wood materials. The prototype would have a completely innovative feature, namely the sweep angle of the wings could be adjusted at different angles ranging between 35° and 45°. The rear vertical and horizontal tail assembly was also made of wood.

The P.1101 had a retracting tricycle-type landing gear. It consisted of one forward mounted and two mid-fuselage wheels. All three retracted rearwards into the fuselage. The cockpit had a round shaped canopy with good all around vision.

The basic armament configuration consisted of two MK 108 cannons with 100 rounds each. These were placed in the front lower part of the fuselage. There were proposals to increase the firepower by adding two more MK 108 cannons, and the use of experimental air-to-air missiles was also considered. As the prototype aircraft was built to test overall flight performance, no armament was ever installed.

Rear view of the tail assembly. [Luftarchiv]

In American Hands

The restored P.1101 in America. [Pinterest]
Advancing American soldiers reached the Messerschmitt Oberammergau base during April (or May) 1945. The single P.1101 was found there and, for some time, left open to the elements. The Bell Aircraft Chief Designer Robert Woods came to know of the existence of this aircraft. Once he had a chance to examine it, he organized for it to be shipped back to America for further study. It would be restored and used as testing mock up aircraft. The Bell aircraft design bureau paid great interest to the variable wing design. Working from the P.1101, they would eventually develop the Bell X-5, one of the first operational aircraft that could change the position of its wings during flight.

The Bell X-5 aircraft, which was heavily influenced by the German P.1101 design [WIki]

Conclusion

While incorporating the innovative feature of variable swept wings, the P.1101 was another victim of the chaotic state Germany was in at the end of war. Whether this aircraft could have performed its role is unknown, and while it never flew for the Germans, it helped the Americans develop the Bell X-5 after the war which incorporated the same variable wing design.

P. 1101 Specifications

Wingspans 27 ft / 8.24 m
Length 30 ft 1 in / 9.13 m
Height 9 ft 18 in / 2.8 m
Wing Area 170 ft² / 15.8 m²
Engine One Jumo 004B or one HeS 011
Empty Weight 5,725 lbs/ 2,600 kg
Maximum Takeoff Weight 8,950 lbs / 4,060 kg
Fuel Capacity 1,100 l / 290 Gallons
Estimated Maximum Speed 610 mph / 980 km/h
Estimated Cruising speed 550 mph / 890 km/h
Crew 1 pilot
Armament
  • Two 108 MK cannons
Messerschmitt P.1101 Prototype
Initial P.1101 Design prior to changes

Credits

  • Article by Marko P.
  • Edited by Stan L. and Henry H.
  • Illustrated by Carpaticus
  • D. Nešić, (2008). Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
  • D. Monday. (2006). The Hamlyn Concise Guide To Axis Aircraft Of World War II, Bounty Books.
  • D. Sharp (2015) Luftwaffe Secret Jets of the Third Reich, Mortons Media Group
  • M. Griehl (2012) X-Planes, Frontline Books
  • R. Ford (2000) German Secret Weapons of World War Two, MBI Publishing
  • Jean-Denis G.G. Lepage (2009) Aircraft of the Luftwaffe 1935-1945, McFarland and Company
  • J. R. Smith and A. L. Kay (1972) German Aircraft of the Second World War, Putnam
  • http://www.luft46.com/mess/mep1101.html

Focke-Wulf Fw Triebflügel 

Nazi flag Germany (1944)
Experimental VTOL Fighter – Paper Project

The bizarre looking Focke-Wulf Triebflügel fighter design. [luft46.com]
During the war, German aviation engineers proposed a large number of different aircraft designs. These ranged from more or less orthodox designs to hopelessly overcomplicated, radical, or even impractical designs. One such project was a private venture of Focke-Wulf, generally known as the Triebflügel. The aircraft was to use a Rotary Wing design in order to give it the necessary lift. Given the late start of the project, in 1944, and the worsening war situation for Germany, the aircraft would never leave the drawing board and would remain only a proposal.

History

During the war, the Luftwaffe possessed some of the best aircraft designs and technology of the time. While huge investments and major advancements were made in piston engine aircraft development, there was also interest in newer and more exotic technologies that were also being developed at the time, such as rocket and jet propulsion. As an alternative to standard piston engine aircraft, the Germans began developing jet and rocket engines, which enabled them to build and put to use more advanced aircraft powered by these. These were used in small numbers and far too late to have any real impact on the war. It is generally less known that they also showed interest in the development of ramjet engines.

Ramjets were basically modified jet engines which had a specially designed front nozzle. Their role was to help compress air which would be mixed with fuel to create thrust but without an axial or centrifugal compressor. While this is, at least in theory, much simpler to build than a standard jet engine, it can not function during take-off. Thus, an auxiliary power plant was needed. It should, however, be noted that this was not new technology and, in fact, had existed since 1913, when a French engineer by the name of Rene Lorin patented such an engine. Due to a lack of necessary materials, it was not possible to build a fully operational prototype at that time, and it would take decades before a properly built ramjet could be completed. In Germany, work on such engines was mostly carried out by Hellmuth Walter during the 1930s. While his initial work was promising, he eventually gave up on its development and switched to a rocket engine insead. The first working prototype was built and tested by the German Research Center for Gliding (Deutsche Forschungsinstitut für Segelflug– DFS) during 1942. The first working prototype was tested by mounting the engine on a Dornier Do 17 and, later, a Dornier Do 217.

The Dornier Do 217 was equipped with experimental ramjets during trials. [tanks45.tripod.com]
The Focke-Wulf company, ever keen on new technology, showed interest in ramjet development during 1941. Two years later, Focke-Wulf set up a new research station at Bad Eilsen with the aim of improving already existing ramjet engines. The project was undertaken under the supervision of Otto Ernst Pabst. The initial work looked promising, as the ramjets could be made much cheaper than jet engines, and could offer excellent overall flying performance. For this reason, Focke-Wulf initiated the development of fighter aircraft designs to be equipped with this engine. Two of these designs were the Strahlrohr Jäger and the Triebflügel. The Strahlrohr had a more conventional design (although using the word conventional in this project has a loose meaning at best). However, in the case of the Triebflügel, all known and traditional aircraft design theory was in essence thrown out the window. It was intended to take off vertically and initially be powered by an auxiliary engine. Upon reaching sufficient height, the three ramjets on the tips of the three wings would power up and rotate the entire wing assembly. It was hoped that, by using cheaper materials and low grade fuel, the Triebflügel could be easily mass-produced.

A model of the Triebflügel. This is how it may have looked if completed. [Wiki]

The Name

Given that these ramjet powered fighter projects were more a private venture than a specially requested military design, they were not given any standard Luftwaffe designation. The Triebflügel Flugzeug name, depending on the sources, can be translated as power-wing, gliding, or even as thrust wing aircraft. This article will refer to it as the Triebflügel for the sake of simplicity. 

Technical Characteristics  

Given that the Triebflügel never left the drawing board, not much is known about its overall characteristics. It was designed as an all-metal, vertical take-off, rotary wing fighter aircraft. In regard to the fuselage, there is little to almost no information about its overall construction. Based on the available drawings of it, it would have been divided into several different sections. The front nose section consisted of the pilot, cockpit, and an armament section for cannons and ammunition, which were placed behind him. Approximately at the centre of the aircraft, a rotary collar was placed around that section of the fuselage. Behind it, the main storage for fuel would be located. And at the end of the fuselage, four tail fins were placed. 

A drawing of the Triebflügel’s interior. [luft46.com]
This aircraft was to have an unusual and radical three wing design. The wings were connected to the fuselage while small ramjets was placed on their tips. Thanks to the rotary collar, the wings were able to rotate a full 360o around the fuselage. Their pitch could be adjusted depending on the flight situation. For additional stability during flight, the tail fins had trailing edges installed. The pilot would control the flying speed of the aircraft by changing the pitch.  Once sufficient speed was achieved (some 240 to 320 km/h (150 to 200 mph)), the three ramjets were to be activated. The total diameter of the rotating wings was 11.5 m (37  ft 8  in) and had an area of 16.5 m² (176.5 ft²). 

This unusual aircraft was to be powered by three ramjets which were able to deliver some 840 kg (1,1850 lb) of thrust each. Thanks to ramjet development achieved by Otto Pabst, these had a diameter of 68 cm (2.7 ft), with a length of less than 30 cm (0.98 ft). The fuel for this aircraft was to be hydrogen gas or some other low grade fuel. The estimated maximum speed that could be achieved with these engines was 1,000 km/h (621 mph). The main disadvantage of the ramjets, however, was that they could not be used during take-off, so an auxiliary engine had to be used instead. While not specifying the precise type, at least three different engines (including jet, rocket, or ordinary piston driven engines) were proposed.

In the fuselage nose, the pilot cockpit was placed. From there the pilot was provided with an overall good view of the surroundings. The main issue with this cockpit design wass the insufficient rear view during vertical landing. 

Close up view of the Triebflügel landing gear assembly. [Secret Jets of the Third Reich]
The landing gear consisted of four smaller and one larger wheels. Smaller wheels were placed on the four fin stabilizers, while the large one was placed in the middle of the rear part of the fuselage. The larger center positioned wheel was meant to hold the whole weight of the aircraft, while the smaller ones were meant to provide additional stability. Each wheel was enclosed in a protective ball shaped cover that would be closed during flight, possibly to provide better aerodynamic properties. It may also have served to protect the wheels from any potential damage, as landing with one of these would have been highly problematic. Interestingly enough, all five landing wheels were retractable, despite their odd positioning.  

The armament would have consisted of two 3 cm (1.18 in) MK 103s with 100 rounds of ammunition and two 2 cm (0.78 in) MG 151s with 250 rounds. The cannons were placed on the side of the aircraft’s nose. The spare ammunition containers were positioned behind the pilot’s seat.

Final Fate

Despite its futuristic appearance and the alleged cheap building materials that would have been used in its construction, no Triebflügel was ever built. A small wooden wind tunnel model was built and tested by the end of the war. During this testing, it was noted that the aircraft could potentially reach speeds up to 0.9 Mach, slightly less than 1,000 km/h. The documents for this aircraft were captured by the Americans at the end of the war. The Americans initially showed interest in the concept and continued experimenting and developing it for sometime after. 

In Modern Culture 

The Triebflügel taking off in the movie. [marvelcinematicuniverse.fandom.com]
Interestingly, the Triebflügel was used as an escape aircraft for the villain Red Skull in the 2011 Captain America: The First Avenger movie.

Conclusion

The Triebflügel’s overall design was unusual to say the least. It was a completely new concept of how to bring an aircraft to the sky. On paper and according to Focke-Wulf’s engineers that were interrogated by Allied Intelligence after the war, the Triebflügel offered a number of advantages over the more orthodox designs. The whole aircraft was to be built using cheap materials, could achieve great speeds, and did not need a large airfield to take-off, etc. In reality, this aircraft would have been simply too complicated to build and use at that time. For example, the pilot could only effectively control the aircraft if the whole rotary wing system worked perfectly. If one (or more) of the ramjets failed to work properly, the pilot would most likely have to bail out, as he would not have had any sort of control over the aircraft. The landing process was also most likely very dangerous for the pilot, especially given the lack of rear view and the uncomfortable and difficult position that the pilot needed to be in order to be able to see the rear part of the aircraft. 

The main question regarding the overall Triebflügel design is if it would have been capable of successfully performing any kind of flight. Especially given its radical, untested and overcomplicated design, this was a big question mark. While there exist some rough estimation of its alleged flight performances, it is also quite dubious if these could be achieved in reality. The whole Triebflügel project never really gained any real interest from the Luftwaffe, and it is highly likely that it was even presented to them. It was, most probably, only a Focke-Wulf private venture.

Triebflügel Estimated  Specifications

Rotating Wing diameter 37  ft 8  in / 11.5 m
Length 30 ft / 9.15 m
Wing Area 176.5 ft² / 16.5 m²
Engine Three Ramjets with 840 kg (1,1850 lb) of thrust each
Empty Weight 7,056  lbs / 3,200 kg
Maximum Takeoff Weight 11,410 lbs / 5,175 kg
Climb Rate to 8 km In 1 minute 8 seconds
Maximum Speed  621 mph / 1,000 km/h
Cruising speed 522 mph  / 840 km/h
Range 1,490  miles / 2,400 km
Maximum Service Ceiling 45,920 ft / 14,000 m
Crew 1 pilot
Armament
  • Two 3 cm MK 103 (1.18 in) and two 2 cm (0.78 in) MG 151 cannons

Gallery

A rendition of how the Triebflugel may have looked had it been built. Illustration by Pavel ‘Carpaticus’ Alexe.

Credits

  • Article by Marko P.
  • Duško N. (2008)  Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
  • D. Sharp (2015) Luftwaffe Secret Jets of the Third Reich, Dan Savage
  • Jean-Denis G.G. Lepage (2009) Aircraft of the Luftwaffe 1935-1945, McFarland and Company  
  • J.R. Smith and A. L. Kay (1972) German Aircraft of the Second World War, Putham  
  • http://www.luft46.com/fw/fwtrieb.html 

 

Junkers Ju 88G

Nazi flag Nazi Germany (1943)
Night fighter – Approximately 2,520 Built

A Ju 88G-1 in transit. [Boiten]
Developed from converted fighter versions of the Ju 88A-4 medium bomber, the Ju 88G would take up a growing role in the German night fighter force, as it saw its greatest successes in the Spring of 1944, and its decline in the Autumn of that same year. While built mostly as a result of the German aviation industry’s failure to produce a new specialized night fighter design, the Ju 88G would nonetheless prove to be a valuable asset, one that far exceeded the capabilities of its predecessors and was well suited for mass production.

Hunting in the Dark: 1943

1943 was a year of highs and lows for the Luftwaffe’s night fighter force, one that saw their tactics change considerably to match those of RAF’s Bomber Command. The year started with the Luftwaffe continuing the heavy use of its long standing fixed network of defensive ‘Himmelbett’ cells. These contained searchlights, radar, and night fighters that coordinated to bring down raiders. This chain of defenses stretched across the low countries through northern Germany in a network known more broadly as the ‘Kammhuber line’, named after its architect and initial commander of the German night fighter force, Josef Kammhuber. However the British would develop tactics to shatter this line and employ countermeasures to blind the radars used both by flak and fighter directors, and night fighters. 

They employed what became known as the ‘bomber stream’, deploying their aircraft in a long and narrow formation in order to penetrate as few of the Luftwaffe’s defensive boxes as possible. It was a simple but effective tactic, a night fighter could only intercept so many planes, and the cells were quickly overwhelmed. When they coupled this tactic with radar reflecting chaff, which they called ‘window’, the result was the near total collapse of the German air defenses during the July raid against the city of Hamburg. With German radar scopes clouded by the resulting interference, they were unable to direct gun laying radar for their anti-aircraft guns, and night fighters could not be vectored onto their targets, much less find anything using their on-board radar systems. Virtually defenseless and in the grips of a hot, dry summer, Hamburg suffered a level of destruction eclipsed only by the raid on Dresden when the war was coming to a close.

The Himmelbett system provided expansive coverage but could easily be overwhelmed by a concentrated stream of enemy aircraft. [Price]
The Luftwaffe’s disaster over Hamburg forced them to reform their strategy and develop new detection systems that would be unaffected by the newest RAF countermeasures. Kammhuber was sacked, though not exclusively as a result of the raid, and a new system of night fighter control was to be the primary means of nightly strategic air defense. Instead of the heavy focus on the fixed Himmelbett boxes, night fighters would be assembled over beacons before being directed towards bomber streams. This would ensure there would be no bottlenecks and would allow the full strength of the night fighter force to, as it was hoped, be brought against the enemy in mass. They would also employ new equipment, modifying their Wurzburg radars, used for fire and aircraft direction, with a chaff discriminating device, and replacing the older Lichtenstein (B/C) aerial search radars with the new SN-2.

In the winter of 1943, Bomber Command set out to try and knock Germany out of the war. They launched a series of large-scale raids against major industrial cities and the capital, with Sir Arthur Harris, its C-in-C, believing he could end the war without the need for a costly invasion of the continent (Overy 339). The Luftwaffe’s new weapons and tactics would quickly prove their worth during what later became known as the ‘first Battle of Berlin’. Bomber Command held that a loss rate of 5% represented “acceptable losses” and significantly higher values could spell trouble for continuous operations (Brown 309). Between August and November of 1943, the casualty rates during the “1st Battle of Berlin” sat at 7.6-7.9%, figures which would climb slowly over the following months (Overy 342). However, while most Luftwaffe planners were enthusiastic about the new air defense methods, they would have to confront a growing concern in the service: they were reliant on considerably dated night fighter designs.

 

The Search for a New Design

Left to right: Ta 154, He 219, Ju 188. [avionslegendaires.net & Wikipedia]
Throughout much of 1943, the night fighting mission was taken up mostly by variants of the Bf 110, followed by the Ju 88, and in much smaller numbers the Do 217 and He 219. In order to address the lack of a mass produced, specialized night fighter design, three new proposals were introduced. The first being the Ta 154 “Moskito,” a wooden, dedicated night fighter design which hoped to capture the same success as the British aircraft which bore the same name. The second, the He 219, was a specialized night fighter design championed by the very man who had devised the Himmelbett system, Josef Kammhuber. Lastly the Ju 188, a bomber that at the time still lacked a night fighter version, was proposed for conversion (Aders 72).

The Ta 154, despite high hopes for the project, never came to fruition as a result of its troubled development. The He 219 was sidelined by Generalflugzeugmeister (Chief of Procurement and Supply) Erhard Milch, who opposed increasing the number of specialized airframes in favor of mass production of multipurpose designs (Cooper 265). To make matters worse for the project a number of technical issues prolonged development, the aircraft took around 90,000 hours to produce, and with comparatively little support from the Luftwaffe, few were built (Cooper 325). The aircraft would, however, still be employed with the Luftwaffe, but in limited service. The Ju 188 design that likely would have received Milch’s support simply never materialized. 

With the failure to find a new design, it was clear that the brunt of future night fighting would fall on existing designs, in particular the Ju 88. In early 1943, it was on this design that hopes were placed for a high performance, specialized night fighter that would become available to the Luftwaffe the following year (Cooper 266).

The Old 88

Left to right: Ju 88A-4, Ju 88C-6, Ju 88R, Ju 88G-1. [Asisbiz]
Originally entering service as a medium/dive bomber in 1939, the Ju 88A was a state of the art, if somewhat conservative, design that was exceedingly versatile and easily modifiable. The airframe was sturdy, aerodynamically clean, and modular, with many components capable of being modified without necessitating major revisions to its overall design. This is perhaps nowhere more evident than the self-enclosed combined engine-radiator assemblies that allowed the powerplant and its associated cooling systems to be easily removed or replaced via connecting plates and brackets (Medcalf 106, 107, 191).

Not long after its teething period subsided, the Ju 88 proved itself in a number of roles and was employed as a night fighter early in the war, as some bombers were converted to Zerstorer (long range fighter/ground attack aircraft) at Luftwaffe workshops. Several of these aircraft were subsequently handed off to night fighter squadrons by the end of 1941, the first set with their dive brakes still equipped (Aders 31). However, by the end of 1941, small quantities of serial-built Ju 88C fighters were being delivered, with a larger production run following in the subsequent years. The type would eventually take up a growing position in the night fighter force (Medcalf 166, 178). Owing to their origins as converted aircraft, the Ju 88C-6 series retained virtually the same airframe as their bomber counterparts, with some minor alterations. The bombardier and their equipment were removed and an armament of three 7.92 mm MG17’s, a 20mm MG 151/20, and a pair of 20mm  MG FF cannons were installed in the nose of the aircraft and in the “gondola” beneath the nose that would have otherwise carried the bombsight and ventral gunner (Medalf 319).

The night fighting capabilities of the C-6 were good but its shortcomings were becoming more apparent as the war progressed. By early 1943, it was considered relatively slow and this was particularly worrying in the face of the RAF’s growing use of the Mosquito as a bomber and pathfinder, an aircraft which no German night fighter in service was able to effectively intercept. When flying at high speeds and altitudes, catching these aircraft was often more a matter of good fortune than anything else. In mid 1943, an interim design known as the Ju 88R was introduced in the hopes of alleviating some of the deficiencies of the preceding series. Despite remaining very capable in the anti-heavy bomber role, it had no hope of intercepting the Mosquito. While the Ju 88R proved to be significantly faster thanks to the use of the much more powerful BMW 801 engines over the older Jumo 211Js, it still failed to fulfill the anti-Mosquito role that its planners hoped to achieve. 

  While the aircraft offered greater performance and was favored by pilots, it was still very much a simple conversion, much like the C series it was supplementing, and it was clear additional modifications were necessary to better realize the airframe’s potential. In particular, its greater engine power meant the aircraft could reach higher speeds, but that power also enabled the aircraft to exceed the limits to which the rudder was effective (Aders 73). However, despite the disappointments of the year and the failure to secure a brand-new night fighter design, the hope that a new model of specialized Ju 88 would be entering service was soon realized.

Gustav

The Ju 88G would provide the Luftwaffe with a high performance night fighter that also allowed them to consolidate existing production lines. [Asisbiz]
By the end of 1943, work on the new night fighter was complete and the Luftwaffe was preparing to receive the first planes by the end of the year. The new Ju 88G-1 was developed as the successor to the previous C and R series night fighters, both consolidating production and vastly improving performance. 

The Ju 88V-58 was the primary prototype for the Ju 88G-1 and first flew in June of 1943 (Aders 258). It sat between the older Ju 88R series aircraft and the later Ju 88G in design and appearance, using the same basic airframe as the Ju 88R and its BMW 801 power plants. However, it also incorporated the vertical stabilizer designed for the Ju 188, used a new narrower, low drag canopy from previous fighter models, and removed the “gondola” which carried a portion of the aircraft’s armament in previous models (Aders 132; Medcalf 191, 192). The armament was significantly improved with the addition of a mid-fuselage gun pod which mounted four MG 151/20 20 mm cannons, making use of the space otherwise taken up by bombing gear, with another pair of cannons installed in the nose of the aircraft. However, the nose mounted pair were removed later on due to issues regarding the muzzle flash of the guns affecting the pilot’s vision, a resulting shift in the aircraft’s center of gravity, and interference with nose mounted radar aerials (Medcalf 191). 

After this series of changes to the aircraft’s fuselage, armament, and the subsequent addition of an SN-2c radar, the Ju 88G went into production. 6 pre-production Ju 88G-0 aircraft and 13 Ju 88G-1s were completed by the end of 1943 (Medcalf 178). The production switch between the previous Ju 88R and 88C models to the G was relatively smooth, with the first three aircraft delivered to the Luftwaffe in January of 1944. Production and deliveries of the new model increased sharply over the following weeks thanks to the aircraft sharing most of its components with older models (Aders 129). Mass production was carried out rapidly, with 12 planes completed a month later in January, roughly doubling the next month, and rising to 247 aircraft in June, before gradually falling as the production of its successor, the G-6, began to supersede it (Medcalf 240).

The Ju 88G-1 went into production with an offensive armament of four forward facing 20 mm MG 151/20 cannons in a pod mounted ventrally near the center of the aircraft. Upward facing cannons in the fuselage, in a configuration referred to as ‘Schräge Musik’, were often installed later at field workshops. These upward facing weapons were of particular use against British bombers, which had forgone ventral defensive guns. This armament was a marked improvement over the three 20 mm cannons and three MG 17 7.92 mm machine guns carried by the preceding C6 and R series (Medcalf 319). 

The aircraft was powered by the much more powerful BMW 801 G-2 engines producing 1740 PS, a huge boost up from the Jumo 211J, 1410 PS, on the Ju 88C-6. This allowed the aircraft to reach 537 km/h at an altitude of 6.2 km, quite a considerable improvement over the Ju 88C-6’s 470 km/h at 4.8 km (Junkers Flugzeug und Motorenwerke 7, 12, Medcalf 319). The engines were unchanged from that of the previous Ju 88R model, though it was able to make better use of them thanks to the enlarged vertical stabilizer which granted better control and stability at high speed.

G-6 

The G-6 would incorporate more powerful engines and standardize several common modifications made to the previous model.  [albumwar2]
To build on the success and production base of the first design, work began on a successor. Retaining the same airframe, the G-6 would be powered by the Junkers Jumo 213 A-1 and would standardize the use of equipment commonly added to the G-1 at Luftwaffe workshops. To this end several new prototypes were produced, these being Ju 88V-108, V-109 which included the MW50 boost system, and Ju 88V-111 which served as a production prototype (Medcalf 192). 

The aircraft carried with it several key improvements over the initial model. It was faster, better armed, and possessed a more advanced set of electronic warfare equipment. However, it’s top speed is difficult to ascertain given the limited number of sources on the aircraft. It was able to achieve 554 km/h (344 mph) at 6km (19685 ft) without the use of the MW50 boost system, and after the war Royal Navy test pilot Eric Brown was able to reach a top speed of 644km/h (400mph) at an altitude of 9,145 meters in tests (30,000ft) (Medcalf 319, Eric Brown 195). In all likelihood, this was a testing aircraft that was using either Jumo 213E or 213F engines, as 9km was well above the full throttle height of the Jumo 213A. Alternatively, some of these engines may have made their way into very late production G-6 aircraft.

 The new standardized equipment included an upward firing pair of 20 mm cannons, the FuG 350 Naxos Z radar detector, and they would later be the first night fighters to be equipped with the new SN-2R and Naxos Zr tail warning equipment. They also carried the new Neptun radars for twin engine fighter use and were the only aircraft that made use of the SN-3 and Berlin search radars (Medcalf 319, 324; Aders 181)

The SN-2R was a rearward facing radar aerial added to the SN-2d search radar sets that would warn the crew of pursuers. It helped to significantly improve survivability along with the new Naxos Zr, which could now warn the crew of enemy night fighter radar emissions. These systems quickly showed their worth. Ju 88G-6’s fared better in the presence of enemy night fighters than the He 219’s and Bf 110’s, which lacked standardized tail warning equipment (Aders 181). 

Late G-6’s were also equipped with the FuG 120A Bernhardine. This device was intended to make use of a nationwide network of high powered transmitters that would have been unjammable by the RAF’s electronic warfare equipment. The system would provide the altitude of a bomber stream, its location on a grid map, its course, strength, and the recipient night fighter’s bearing from the ground station. All of this information was relayed in coded messages by means of a teleprinter in the cockpit of the night fighter. It was mostly foolproof, but the system was not fully operational by the war’s end (Medcalf 325; Price 237, 238).

Pilot’s Remarks and General Flight Characteristics

As with the rest of the Ju 88’s in the night fighter service, the plane had the ergonomics and handling characteristics that were so sought after by pilots. The sorties they faced by this point of the war were as long as two hours and as such undemanding flight characteristics were a crucial feature of any night fighter (Aders 23). Stability, well balanced controls and the ability to fly well on one engine were crucial factors, and having them made the Ju 88G a highly rated aircraft among the force (Aders 31, 132). Its reinforced airframe also came in useful, as its earlier use as a dive-bomber required a high tolerance for g-forces that made it capable of pulling off hard maneuvers without risk of damaging the airframe in the process. The addition of the Ju 188’s vertical stabilizer also improved handling markedly, as the newer design provided much smooth rudder controls over the previous version, which had ones unchanged from older bomber models and were quite stiff once the aircraft was brought up to speed (Medcalf 304).

Ju 88G-1 flown by Roland Beamont. [asisbiz.com]
The G-1 handled exceedingly well, with controls that were well balanced and responsive. Praise for the Gustav’s handling could even be found outside the ranks of the Luftwaffe, as Roland Beamont, an RAF fighter pilot and post war test pilot, had a chance to take one up and evaluate how it performed at RAF Tangmere in the summer of 1945. Beamont found the aircraft undemanding, with gentle controls and that, on landing, the aircraft “could be steered on the approach as gently and responsively as any fighter”. Equally as important, he found the aircraft needed very little adjustment in the air, with only very minor trimming of control surfaces needed for smooth operation in regular flight. In a rare chance, he even found an opportunity to have a mock battle with another RAF pilot, Bob Braham, flying a DeHavilland Mosquito. Beamont found the 88 was able to hold its ground for some time, but eventually letting up when he began to reach the limits of the unfamiliar plane so low to the ground and in the wake of Bob’s plane, which promptly outmaneuvered him.

Despite his praise for the aircraft’s flight characteristics, he felt the structural cockpit framework was very restrictive of the pilot’s vision. In a summary of his first flight and a second on July 16th, he claimed “It has remained in my rating as one of the best heavy piston-engined twins of all time and a very pleasant flying experience.” (Medcalf 294, 295). Much like Beamont, most Luftwaffe pilots were very satisfied with the aircraft (Aders 132).

Famed Royal Navy pilot Capt. Erik ‘Winkle’ Brown would also be among the few allied pilots to have the opportunity to fly both the G-1, and subsequent G-6 model. Capt. Brown felt the aircraft possessed largely the same excellent handling characteristics as the Ju 88A-5 he’d flown prior. He praised the aircraft for its easy ground handling, thanks to its excellent brakes, it’s good handling during climbs, and light controls at cruising speed (Brown 190).

Capt. Brown would spend more time with the G-6 and was able to put one through more demanding tests. Having previously flown several versions of the Ju 88, Brown was particularly impressed by the aforementioned high speeds achieved by a Ju 88G-6 (Werk-nr 621965) he’d flown in tests. The aircraft remained in line with his general, glowing remarks over the Ju 88. “It was a pilot’s airplane, first and last, it demanded a reasonable degree of skill in handling and it responded splendidly when such skill was applied. There was a number of very good German aircraft but, with the exception of the Fw 190, none aroused my profound admiration as did the Junkers ‘eighty-eight’ (Brown 195).” 

Perhaps the simplest but greatest advantage the aircraft had in night fighting was in the close proximity of the crewmembers, which allowed them easy communication in the event of intercom failure or emergency. It also allowed the pilot to be seated beside their radar operator, with the flight engineer seated directly behind him, an ideal arrangement providing both easy communication and good situational awareness, which became a necessity as bomber streams became the hunting grounds for RAF night fighters (Aders 132).

While it inherited the benefits of the original design, it also had its flaws, the most obvious of which was the poor visibility due to the bars of the reinforced cockpit frame, and the troublesome landing gear which had a tendency to buckle if the aircraft was brought down too hard (Medcalf 75). The landing gear was a hydraulically actuated set that rotated 90 degrees so that the wheels would lie flat within their nacelles. This greatly reduced drag, as the shallower landing gear bays contributed far less to the frontal area of the plane, but they could be broken in forced landings or careless flying. These types of accidents were typically handled by the airfield ground staff, though handing off the plane to a recovery and salvage battalion could prove necessary in the event of a forced landing or a particularly bad accident (Medcalf 62).

Lichtenstein SN-2

Early combined SN-2 with the wide-angle attachment; compared to a later model on Ju 88G. These large aerials came to be known as the ‘Hirschgeweih’(stag antlers). [Bauer, Rod’s Warbirds]
Perhaps the most important feature of the Ju 88G, its radar, was easily the weakest point of the aircraft in comparison to its contemporaries in foreign service. Unlike the British or Americans, the Germans lacked any major production of centimeter band search radars, forcing them to rely on meter band types. In practical terms, the meter band radar carried with it several major disadvantages, the most evident and visible of which were the large aerial antennas which protruded from the aircraft’s fuselage and created significant drag. In tests by the Luftwaffe’s Rechlin test pilots, it was found that the Lichtenstein (B/C) decreased the maximum speed of a Bf-110 by 39.9 km/h (Aders 44). Another major disadvantage was its inferior ability to cut through ground clutter, leading to very poor performance at lower altitudes and making it useless near ground level (Aders 163, 200). 

The standard Ju 88G-1 was equipped with the Lichtenstein SN-2c, also designated as FuG 220. This airborne radar set was designed by Telefunken for naval service and originally rejected by the Luftwaffe earlier in the war. Its initial rejection was based on its extreme minimum range of 750 meters, which meant that any target would disappear off the scopes long before the pilot would be able to see it (Aders 79, 80). Its later adoption was a matter of the previous air search radar having a relatively short maximum range, and that the SN-2 would be unaffected by the chaff that made the previous sets useless (Brown 309). However, due to the shortcomings of the original SN-2, the device was coupled with a simplified version of the older Lichtenstein  FuG-212 radar to track targets within the large minimum range of the new system.  The resulting set up required the use of 5 radar scopes and was an exceedingly cumbersome display, with three scopes devoted to the older Lichtenstein set and two for the SN-2 (Price 196). 

The two scope SN-2c display, the “peaks” represent radar contacts. Left is azimuth and range, right is elevation. The range demarcations are 2 km for both sides, the radar will not display contacts beyond the 5th demarcation.[Bauer]
The SN-2 carried by the 88G was an improved model which had its minimum range decreased to an acceptable distance, allowing it to drop the excess equipment for the far simpler SN-2c, which required only two scopes (Aders 122). The system had a frequency range of 73/82/91 MHz, a power output of 2.5 kW, an instrumented range of 8km, a minimum range of 300 m, a search angle with an azimuth of 120 degrees, an elevation of 100 degrees, and a total weight of 70 kg. While the system had a maximum instrumented range of 8km, its practical detection range was tied to the altitude at which it was operating and the size of the target. For example, if searching for a heavy bomber traveling at the same altitude, and with the maximum antenna aperture towards the Earth being roughly 30 degrees, and at an operating altitude of 5km, the slant range of the radar can be placed roughly at the system’s maximum range of 8km (Bauer 12, 13). This range increases or decreases correspondingly with the altitude of the aircraft or its target, with the device being virtually useless near ground level.

 One SN-2c was eventually recovered by the RAF when an inexperienced crew landed their plane at RAF Woodbridge as a result of a navigation failure, which allowed the British to develop both effective chaff and electronic jamming countermeasures for it (Price 221). This same aircraft would be the one given such a good review by Roland Beamont, its registration code being 4R+UR. 

The SN-2 would see further development even as its usefulness declined in the face of widespread jamming and chaff which targeted its operating bands. The SN-2d was the most immediate development which helped to some degree. Its operating frequencies were shifted to the 37.5-118 MHz dispersal band to make use of its still usable frequencies that were not fully targeted by RAF jamming efforts. It would later be combined with the SN-2R tail warning radar and, very late in the war, made use of low drag ‘morgenstern’ aerials and an aerodynamic nose cone which fit over it (Aders 244). 

Late War and Experimental Radars

Left to right: Fug 218 Neptun, Lichtenstein FuG 220 SN-2 with a low drag array, FuG 240 Berlin with its parabolic antenna set behind a removable nose cone. [Rod’s Warbirds, Asisbiz,ww2aircraft.net]
 The FuG 217/218 Neptun radar sets were developed and built by FFO. These had been initially developed for use in single engine night fighters, but were later adapted for use aboard twin engine aircraft. They were largely a stop gap following the RAF jamming efforts against the SN-2, as any new aerial search radar was months away. These series of radars came in a variety of configurations as they were further developed and pressed into wider service.

 The Neptun 217 V/R was a search radar that could switch between two frequencies between 158 and 187 MHz, had a search angle of 120 degrees, a maximum range of 4 km with a minimum of 400 meters, and a total weight of 35 kg. The subsequent Neptun 218 V/R search radar included four new frequency settings along the same range, had a maximum range of 5km with a minimum of 120 meters, a power output of 30kW, weighed 50kg, and possessed the same search angle as the previous model. Both radars could be mounted in a “stag antler” array with the preceding Neptun 217 V/R also having a “rod” type mounting arrangement, which consisted of individual antennas attached to the airframe. As with the SN-2, tail warning sets were produced which were found in the form of the standalone Neptune 217 R and Neptun 218 R sets, or as a component of the Neptune 217 V/R and Neptun 218 V/R combined search and tail warning radars. (Aders 245, 246).

The FuG 228 SN-3 was developed by Telefunken and was visually similar to the SN-2 but with thicker dipoles. The device operated on a frequency range of 115-148 MHz, had a power output of 20kW, a maximum range of 8km with a minimum of 250m, a search angle with an azimuth of of 120 degrees, an elevation of 100, and a total weight of 95kg. Some sets also made use of a low drag “morningstar ” array that used ¼ and ½-wavelength aerials. 10 sets were delivered for trials and may have been used in combat (Aders 245).

 The FuG 240 Berlin was another radar developed by Telefunken and their last to see operational use during the war, it also being the first and only centimetric aerial search radar to see service with the Luftwaffe. It operated on a wavelength of 9 to 9.3 cm, an output of 15kW, had a maximum range of roughly 9 km, a minimum of 300 m, a search angle of 55 degrees, weighed 180 kg, and had no serious altitude limitations (Aders 246, Holp 10). While only twenty five Berlin sets were delivered to the Luftwaffe they made successful use of them in March of 1945 (Aders 246; Brown 317). While these new devices were free of the heavy jamming the SN-2 faced, they lacked the larger production base of the SN-2 which continued to be fitted to new night fighters until the end of the war.

Passive Sensors

While the SN-2 radar was somewhat mediocre, this deficiency was offset by other devices that were often installed aboard which could supplement it, these being the FuG 227 Flensburg and FuG 350 Naxos Z. Developed by Telefunken, Naxos was able to detect the emissions of British H2S ground mapping radar and other devices with frequencies in the centimeter band. This would enable a night fighter equipped with the system to home in on RAF aircraft that were using ground mapping radar to direct bomber streams to their targets. The Naxos Z set was capable of detecting emissions at up to 50 km, enabling them to find pathfinders or simply other bombers in the stream as the ground mapping radar became more commonplace among the aircraft of Bomber Command (Price 176, Medcalf 325). Subsequent models would expand the reception band to allow the device to detect British centimetric aerial intercept radar and combine the system with tail warning equipment to alert aircrews to the presence of British, and later American, night fighters, with the series working within the 2500 mHz to 3750 mHz band (Medcalf 325). These included the Naxos-Zr, used exclusively in Ju 88s, with the aerial contained within the fuselage, the Naxos ZX, which further increased the detectable frequency ranges, and the Naxos RX, which was a version of the previous type which coupled it with tail warning equipment (Aders 248, 249). This was solely a directional sensor and would give the operator the azimuth of the target, but not its altitude or range. 

Naxos indicator, each notch represents a detected emission [Bauer]
Flensburg was another passive device, this one made by Siemens. While Naxos detected the emissions from RAF ground mapping radar, Flensburg picked up the tail warning radar of RAF bombers, a device codenamed Monica. With later versions operating on a tunable frequency band of 80 mHz to 230 mHz, it allowed aircraft equipped with it to detect virtually all bombers traveling within a stream should their rear warning radar be active (Medcalf 325). Among the captured pieces of equipment in Ju 88G [4R+UR], this was evaluated by the RAF and found to be an exceedingly useful tool for detecting and closing in on their bombers. The aircraft with the device was evaluated by Wing Commander Derek Jackson in a series of tests with both a single RAF Lancaster bomber and a small group of five planes flying over a considerable distance. He found that, in both cases, he was able to home in on the bombers with the Flensburg device alone from as far as 130 miles away without any issues even when the aircraft were in close formation, where there was hope that several of the tail warning radars operating closely together might have confused the device (Price 222). 

In all, 250 Flensburg sets were produced, alongside roughly 1,500 Naxos-Z sets, and though only the latter became standard equipment, both saw extensive use among Ju 88 night fighters (Aders 124). These devices proved incredibly successful in combination with SN-2 and, for several months, allowed the German night fighter forces to achieve great operational success. However, they eventually fell behind again one final time after the successful British efforts to counter the Luftwaffe’s sensors and tactics in the months following the landings in France (Brown 319). In the end only Naxos remained the only reliable means of detecting raiders as, unlike Monica, they could not do without their H2S ground mapping radar.

Initial Deployments

Field use of the aircraft began shortly after the delivery of the first pre production aircraft, which were quickly sent out to units equipped with older models of Ju-88s, often being placed into the hands of formation leaders. In this way, its introduction into service was gradual, with the first aircraft already being in the hands of more experienced pilots before more deliveries allowed for the entire unit to transition away from older models. Prior to July of 1944, Gruppe IV of NJG3, II and III of NJG6, and I of NJG7 were supplied with large numbers of G-1s, followed by a gradual supply to NJG2, Gruppe IV of NJG 5, III of NJG3, and NJG100. It should also be noted that these aircraft could be found in the inventories of most units, even those that did not fully transition over fully to their use (Aders 131). 

For the first three months of 1944, the Luftwaffe inventory had only a single digit number of operational G-1s but, by April and May, mass deliveries of the aircraft began, with 179 planes available in May and 419 by July (Aders 272). A total 1,209 Ju 88G-0s and G-1s were delivered to the Luftwaffe between December of 1943 and October of 1944, with the aircraft and its successor, the Ju 88G-6, becoming the mainstay of the German night fighter force for the remainder of the war (Medcalf 178, 240).

Zahme Sau: Winter through Spring

As a heavy radar equipped night fighter, the Ju 88G would serve the Luftwaffe as “Zahme Sau” (Tame Boar) interceptors. They differed from “Wilde Sau” (Wild Boar), in that they were to receive guidance toward enemy bombers from a series of ground based stations in a system known as Y-Control. With information collected from various search radars and passive radio and radar detectors scattered throughout much of Western Europe, ground control operators would direct interceptors toward bomber streams (Price 175, 178).

For much of 1944, a typical mission for a Zahme Sau pilot would go as follows. First, they would take off and head for an assembly point marked by a radio/searchlight beacon. Then, they would wait their turn before receiving radio commands directing them towards a bomber stream. The fighters were led away from the beacons by their formation leaders, but rarely did all a gruppe’s fighters actually reach the target in close order. Lastly, upon reaching the stream, they would attempt to merge with it and then begin to search out targets with on board sensors. In addition to direct guidance, Y-control gave a running commentary on a bomber stream, describing its course and the altitude range the staggered bombers flew at (Aders 102, 103,195). This running commentary was particularly useful later on when night fighters more commonly flew alone and the use of the signal beacons was restricted.

This system would see the effectiveness of the Luftwaffe’s night fighters reach its zenith in the spring. Building upon their successes of the previous winter they would inflict heavy losses on Bomber Command. Between November of 1943 and March of 1944, Bomber Command would lose 1,128 aircraft prior to the temporary withdrawal from large scale operations over Germany. During the raid on Nuremberg in April of 1944, 11.9% of raiders failed to return home in what became the costliest raid of the entire war (Overy 368). Thankfully for the Allies, the Luftwaffe would never see this level of success again, as Bomber Command shifted to support Operation Overlord at the end of May. While Arthur Harris wished to continue his large-scale area bombing campaign over Germany, he would relent to pressures from higher offices and place his forces in support of the coming operation to liberate France. The subsequent raids against various rail yards across coastal France would prove a well needed respite for Bomber Command. The short distance the raiders flew over hostile territory meant that Luftwaffe night fighters had fewer opportunities for interception, and thus Bomber Command’s losses were comparatively light.

RAF Tactics and Changing Fortunes

Avro Lancaster and DeHavilland Mosquito NF MK XVII. [Flickr]
Following Overlord, Bomber Command returned to Germany better equipped and prepared for the challenges ahead. A typical late war Bomber Command heavy raiding force was composed mostly of Lancaster and Halifax heavy bombers which were supported by airborne  radar and radio jammers, night fighters, decoy formations composed of trainee squadrons, and chaff dispersing aircraft. In addition to the aforementioned Lancaster and Halifax, the B-17 and B-24 were also used by both the USAAF and RAF as electronic warfare platforms during these raids, though in much smaller numbers. Several variants of the DeHavilland Mosquito would be used as pathfinders, bombers, and nightfighers. The pathfinders were particularly troublesome as they could outpace any interceptor, save for a night fighter variant of the Me 262 that was introduced near the end of the war. While goals of the heavy bombers were straightforward, the supporting forces’ goal was to disorient Luftwaffe ground controllers and engage their night fighters to reduce operational losses and tie up enemy aircraft (Aders 194, 195).

Locating the stream proved difficult, but if a fighter was to infiltrate it, they were mostly free of electronic interference and would encounter little resistance. While successful infiltration often meant good chances for kills, most night fighters would end up returning to base having expended most of their fuel in the search.

Various derivatives of the FuMG 402 Wasserman radar, a long range early warning and fighter control radar built by Siemens. Later versions were capable of frequency changes within the 1.9-2.5 m, 1.2-1.9 m, and 2.4-4.0 m ranges (Aders 251). [cdvandt]
While the Luftwaffe’s system was still holding steady it soon faced a new challenge, as from December 1943 onward, German night fighter pilots would also have to contend with the long-range Mosquito night fighters of the RAF’s 100 Group. Tasked with supporting bombing raids through offensive action, they operated by seeking out German night fighters over raid targets, at night fighter assembly points, and lastly to seek out enemy aircraft near the stream itself (Sharp & Bowyer 289). 

 By the beginning of May 1944, 100 Group possessed only about a hundred Mosquitos, though the number would grow larger and they would begin to replace their older and less capable aircraft (Sharp & Bowyer 290, 291). In the Autumn of 1944, the Mosquitos began to carry equipment to track German night fighters by activating their Erstling IFF (Identify Friend or Foe System) by mimicking the signals of German search radars. With this new gear and their bolstered numbers, they had tied down much of the Luftwaffe night fighter force by the winter of 1944. Eventually, the Germans left their IFFs off, which made tracking their own planes extremely difficult, and forced them to abandon the use of the assembly beacons which were frequented by the Mosquitos (Aders 196). Understandably, the Mosquito became the source of constant anxiety for Luftwaffe night fighter crews. The Mosquito typically made its appearance during takeoffs, landings, and when the often unsuspecting German night fighters were transiting to and from their targets. Under such circumstances, the use of tail warning and radar detecting equipment aboard the Ju 88G was both an important defensive tool, and a serious morale booster. 

Despite its earlier successes, the Luftwaffe’s night fighter force’s effectiveness began its decline in August of 1944 in the face of general disruptions to their detection and communication capabilities as the Allies deployed radar and radio jammers to the continent (Aders 194, 195, 197). This loss of early warning radar coverage would prove a decisive blow to the Luftwaffe, one that they never recovered from.

Blind and Deaf: Autumn into Winter 

As summer turned to autumn, night fighter bases were increasingly harassed by Allied daylight fighter bombers, which forced the Luftwaffe to disperse their forces to secondary airfields. While these “blindworm” locations were free of prowling Mosquitos and fighter bombers, they were not without their disadvantages. While these fields were well camouflaged, their rough landing fields could be hazardous and they were not cleared for night landings. This forced many night fighters to land at their more well-constructed bases after their nightly sorties and return to the camouflaged fields in the evenings. The result was a rise in losses as the aircraft were occasionally caught by Allied fighters on their flight back. Through late 1944 and into 1945, German night fighter losses were most commonly the result of interception in transit or being hit on the ground. While at first only bases in Belgium and the Netherlands were threatened, Allied fighters would appear in growing numbers over the skies of Western and Southern Germany, as would the recon aircraft that periodically uncovered the “blindworm” bases (Aders 197). 

A Ju 88G caught in transit. [asisbiz.org]
In September of 1944 the night fighter force flew a total of 1,301 sorties against approximately 6,400 enemy aircraft, of which they brought down approximately 76, representing a loss rate of 1.1%. Bomber Command losses had fallen significantly from the 7.5% of the previous year, and from last April’s catastrophic high of 11.9%. As such, Bomber Command losses were once again well below the 5% attrition threshold for continuous operations (Aders 197). 

By the start of winter, the RAF and USAAF had largely succeeded in jamming most of the Luftwaffe’s early warning radars, y-control radio services, and through the use of chaff and jammers, made the standard SN-2 search radar useful only in the hands of experts. This had the overall effects of ensuring the night fighter force was slower to respond in-bound raiders, more likely to be sent against diversionary formations, and that night fighters were far less likely to make contact with the bomber stream after being vectored toward it. By winter, it had become clear for the Luftwaffe that the after hours war over Western Europe had been irrevocably lost.

While the night fighter force had some success in finding alternatives to their models of the SN-2 air search radars there was no hope of recouping their past successes. Between the chronic fuel shortages, marauding RAF Mosquitos, mounting ground and transit losses, and the compromised performance of most of the Luftwaffe’s ground based radars, the situation had become unsalvageable. Its decline was final, and in February of 1945, the force disintegrated as the Allies took the war into Germany (Aders 201). After almost a year following its greatest successes, the Luftwaffe’s night fighter force finished the war mostly grounded for lack of fuel and as night harassment forces in support of Germany’s depleted and hard pressed army (Aders 206). 

Large numbers of German night fighters were captured as the Allies overran their airfields, many left intact. Lacking flame dampeners or exhaust stains, these planes have likely never been flown. [flickr]

On the Offense

In conjunction with their interception duties, many units equipped with Ju 88Gs would conduct night ground attack operations against Allied forces in France against the Normandy beachhead, and later across the Western front in support of Operation Wacht am Rhein at the end of 1944. 

On the night of August the 2nd, 1944, the first of these operations were carried out against various targets, including the disembarkation area at Avranches and the Normandy bridgehead. The operation code-named ‘Heidelburg’ was conducted by elements of NJG’s 2, 4, and 5.These attacks were conducted without the use of bombs and were regarded by some as absurd due to the extreme danger in conducting low level strafing runs at night, and with only limited preparations being made before the operation (Boiten P4 25). The attacks would be carried out until the night of the tenth with the night fighters taking considerable, but inconsistent, losses. 

On the night of the sixth, one Ju 88G would claim an unusual victory in this period as during their return flight,  Lt. Jung of 6./NJG2. Jung and his R/O Fw. Heidenrech detected and closed in on P-38 of the 370th fighter squadron at around 2:30 near Falaise, which they subsequently downed. Not all the aircraft had the same luck as Jung, as during the same night another Ju 88G of his Gruppe would be brought down by an Allied night fighter. The aircraft proceeded to crash into a Panther tank belonging to the 1st SS Panzer Division, resulting in a two hour traffic jam during that unit’s counter attack on Mortain (Boiten P4, 28). The overall impact these missions had were largely undefinable due to the inability to accurately survey the damage inflicted. 

While infrequent attacks were carried out during the Autumn of 1944, the Luftwaffe’s night fighters would not be committed to any major ground attack operations until the end of the year. On the night of December 17th, several night fighter squadrons would be called upon for night ground attack operations in support of Operation Wacht Am Rhein. This action saw roughly 140 Ju 88’s and Bf 110’s of at least seven Gruppen being committed to what was to become the Battle of the Bulge (Boiten P3, 65). 

This abandoned Ju 88G-6 was modified for ground attack missions, its radar had been removed and racks for bombs had been added. An AB 500 cluster bomb unit lies in the foreground. [Rod’s Warbirds]
These night raids did considerable damage and sowed confusion amongst rear-echelon services, as vehicles initially traveled with undimmed lights and many facilities failed to observe black out conditions. This was especially true against rail and road traffic which, until then, felt safe traveling at night. These mistakes placed otherwise safe trucks, trains, depots, and barracks in the sights of night fighters sent on massed area raids, and armed reconnaissance patrols. These attacks were typically carried out by strafing, and bombing in the case of modified aircraft, which were equipped with ETC 500 bomb racks. During the nightly ground attack operations during the Battle of the Bulge, these modified aircraft typically carried a pair of AB 250 or AB500 cluster bombs which themselves contained either SD-1 and SD-10 anti-personnel submunitions.

These attacks were particularly effective on the odd night with higher visibility. On the night of the 22nd of December, 23 Bf 110G’s and Ju 88G’s belonging to the I. and IV./NJG 6 flew interdiction missions around Metz-Diedenhofen. Owing to the good weather that night they were able to successfully attack several targets, which included some 30 motor vehicles credited as destroyed, and several trains which they attacked north of Metz. They were joined that night by seven aircraft from I.NJG4 which undertook low level strafing attacks, for which they were credited for the destruction of one locomotive, four motor vehicles, and a supply dump. Additionally, they were credited for damaging another locomotive, six motor transport columns, and five single motor vehicles. Losses amongst the night fighters were uncharacteristically light that night, with only Bf 110 G-4 2Z+VK having been lost during the raids (Boiten 73).

Ground crew with an engine heater prepare a Ju 88G-1. [Asisbiz]
The operational conditions during these raids were generally very poor, both a result of the weather, which had infamously grounded most aircraft during the initial stages of the battle, and Allied electronic interference. While the navigational aids and avionics of their aircraft made them effectively all weather capable, the harsh weather and Allied jamming of navigation beacons and radio communications proved serious challenges to Luftwaffe night fighter crews. The difficult nature of the missions themselves made for little improvement, as they typically flew at low altitudes under weather conditions which reduced visibility. The sum of all of these factors made for missions which brought on significantly more fatigue than the typical bomber interception mission.

Throughout the battle, the Ju 88G would prove an exceptional night ground attack aircraft or ‘Nachtschlachter’. With its powerful engines, cannons, large payload, and exceptional de-icing systems, the aircraft could carry out attacks under very harsh winter conditions. Several of these aircraft would have their radar removed and were used exclusively for this mission until the end of the war. A number of former night fighters would even serve with the bomber squadron KG2, with their cannon armament removed, as night attack aircraft (Medcalf Vol.2 618).

The raiders encountered few night fighters as several RAF Mosquito night fighter units had been withdrawn to requip with the new Mosquito NF Mk. XXX. Between the two USAAF squadrons with their P-61’s and the remaining RAF units, there were few Allied night fighters in the area (Aders 200). However, Luftwaffe losses to AAA were high thanks to the advanced centimetric gun-laying radars in use with the US and British armies. In the end the night fighters were able to cause disruptions behind allied lines, but the price paid was steep, with 75 aircraft being lost over 12 nights (Boiten P5 3). 

Operation Gisela:

The Ju 88G would play an exclusive role in the last major Luftwaffe night action of the entire war, in a large-scale intruder mission dubbed Operation Gisela. This operation was likely formulated after Maj. Heinz-Wolfgang Schnaufer discovered that night fighting conditions on the other side of the ‘front’ were far more favorable. He later submitted a proposal to his fighter division to attack Allied bombers over the North sea, where there would be relatively little electronic and chaff interference, and where the bombers would least suspect an attack. However, the CO of the 3rd fighter division would instead propose to attack the bombers at their airfields when they were landing.

In any case the British intelligence services got wind of the plan as was made clear by the broadcasting of the song ‘I dance with Gisela tonight’ over a propaganda station. The attack would be postponed several times until early March, 1945 (Aders 205). 

About 100 Ju 88G’s were dispatched in three waves to follow a bomber stream as it departed for home. Upon reaching their destination the first wave would down twenty two bombers, however the fires from the wrecks would ruin the chances of the subsequent waves. While many bombers were saved by flying to different airfields after being alerted by the flames, eight more were wrecked attempting to land at darkened airstrips. However, the night fighters would face a dangerous return trip as they had to chart a course using dead reckoning and astral navigation due to their signal beacons being jammed (Aders 205). In the end, the night fighters would suffer a similar level of losses to the bombers they were hunting as a result of ground fire, crashes resulting from low level flight, and navigation failures. Operation Gisela would end in failure with no subsequent missions being attempted.

Construction 

Fuselage 

Wing connecting system [Ju 88A-4 Bedieungsvorscrift. [1941], 46]
The Ju 88A-4 was the most widely produced bomber variant and provided the foundations for the C, R, and G types. It was a fairly conventional all metal aircraft in its construction, and, while it pushed few technical boundaries, it was state of the art and versatile. It was primarily made of sheet aluminum fastened by rivets, with cast parts used for load bearing elements. Some use of Elektron magnesium alloy was made to further reduce weight, with sparing use of steel where strength was required, particularly in the landing gear assemblies and fuselage connecting elements. The fuselage cross section was rectangular with rounded corners and clad in large sheet aluminum stampings. It used a semi-monocoque structure made up of formers and bulkheads joined by connectors that ran front to aft, with the outer aluminum skin riveted to both elements, which allowed it to bear some of the structural load. Its structural load factor was 4.5 with a 1.1 multiplier for the first wrinkle, 1.3 for yield, and 1.8 for failure. In service, it proved very sturdy, with Junkers engineers claiming after the war that there had been no reported major structural failures over the service life of the airframe (Medcalf  41,43,73).

Eventually, the construction process had been improved to the point where the fuselage could be built from sub-assemblies that would become the upper and bottom halves of the fuselage. These would then be joined together after the internal components were fitted. Wing construction followed a similar process, making heavy use of sub assemblies, followed by equipment installation, skinning, and painting. An early model Ju 88 took roughly 30,000-man hours to complete. By the end of 1943, this number remained about the same for the Ju 88G-1. While this may seem unimpressive at face value, the night fighter carried an airborne radar system and a much more sophisticated set of avionics (Medcalf 41-43; Adders 183).

Wings and Stabilizers

The Ju 88’s wings were the heaviest part of the aircraft, comprising much of its total structural weight at over 1200 kg. A pair of massive main spars ran from the root to the wing tip, a rear spar ran across the entire span of the wing to support the flaps and ailerons, and two forward spars ran from the engine nacelles to the fuselage to transfer thrust from the engines and support loads from the landing gear. These spars were joined by relatively few airfoil shaped ribs and stiffened with corrugated aluminum (Medcalf 41-43). The wings were joined to the fuselage by means of four large ball connectors, which made for easy assembly and alignment. (Medcalf 73).

The vertical stabilizer was fixed to the fuselage by means of the same ball-screw connectors as the wings. Installing it was simple, with the rudderless stabilizer being fitted to the fuselage, and the rudder fin being affixed afterwards. The horizontal stabilizers did not use the same fitting system. Instead, they were each inserted into the fuselage by two spars which were then bolted together. This process was virtually the same on both the Ju 88A and the Ju 188, save for the latter having a fin which was 42% larger by area and a rudder which was 68% larger than the previous model (Ju 88A-4 Bedienungsvorschrift-FL Bedienung und Wartung des Flugzeuges; Ju 188E-1(Stand Juni 1943); Medcalf 123). The Ju 88G would incorporate the larger vertical stabilizer from the Ju 188 to improve stability and control at high speed.

Ju 188 vertical stabilizer assembly. [Ju 188E-1(Stand Juni 1943)]
As previously stated, the landing gear could prove troublesome due compromises in its design. During early prototyping, JFM (Junkers Flugzeug- und Motorenwerke) redesigned the landing gear into a single strut that would rotate so that it would lie flat beneath the wing when retracted. While this did remove the frontal area that would have seriously impacted the aircraft’s high speed performance, it came at the cost of added complexity and made for a far less robust landing gear arrangement (Medcalf 74, 75). Differing from earlier series, the Ju 88G’s landing gear frames made use of welded cast steel instead of light weight alloys.

 The G-1 carried a maximum of 2835 liters (620 gallons) of fuel, with the subsequent G-6 likely having a reduced fuel capacity considering its shorter endurance (Report No. 8 / 151).

Engines and De-icing Systems

The Ju 88R’s BMW 801 engines and engine mounting plate. [Wikimedia]
Among the most notable features of the Ju 88 were its use of unitized engine power units and its novel de-icing system. The unitized engine installation incorporated both the engine and associated cooling system into a single module that could be installed or removed from the aircraft relatively quickly, and made storage of components easier. These “kraftei” arrangements existed for the BMW 801 G-2, and, later, Jumo 213 A-1 engines. These engines were fitted with VDM and VS-111 propellers respectively. 

 

Engine Type Arrangement  Bore  Stroke  Displacement  Weight  Maximum Output  Maximum RPM Fuel type
BMW 801 G-2 Radial 14 156 mm 156 mm 41.8 liters 1210 kg 1740 PS 2700 C3, 95 octane
Junkers Jumo 213 A-1 Inverted V-12 150 mm 165 mm 35 liters 820 kg 1775 PS [2100 PS MW50] 3250 B4, 87 octane

(Medcalf 323; Ju 88S-1 Flugzeug Handbuch 3, Smith & Creek 687; Jumo 213 13) 

The aircraft was also equipped with a de-icing mechanism which took in air, ran it through a heat exchanger around the exhaust ejector stacks, drove it through channels in the wings, and then out over the ailerons (Rodert & Jackson). As the BMW 801 had no exhaust stacks compatible with this system, they made use of a petrol-fired heater to supply air to the de-icing system on the Ju 88G-1 (Report No. 8 / 151).

On left: Exhaust stack heat exchanger. On Right: the wing channel flow area. [Rodert & Jackson]

Cockpit

 The crew arrangement on all Ju 88 models would set the entire crew within the canopy and in close contact with one another. The bombardier ,or radar operator, sat to the pilot’s right, a flight engineer/gunner at the pilot’s back, and a ventral gunner sat beside the flight engineer or in a prone position inside the “gondola”, where his weapon was located. Aboard the Ju 88G, the ventral gunner’s position had been omitted with the removal of the gondola, however the positions of the other crew members remained largely unchanged. While these close quarters arrangements were somewhat claustrophobic, they ensured easy communication between the pilot and the rest of the crew at all times. It also made for a much simpler bail out procedure, as half the canopy would detach and allow for a quick escape for all aboard. In the Ju 88G, the crew entered the aircraft through a hatch below the cockpit.

Ju 88G-1 instrument panel. The cables for the radar display are on the right. [albumwar2]
The Ju 88G’s cockpit differed heavily from previous fighter versions as a result of added instrumentation and alterations to some of the aircraft’s existing controls. Among the new additions were ammunition counters with space for representing up to six guns, and a Zeiss Revi C.12/D gunsight. This sight differed from previous sets by its new elevation controls and its lack of an anti-glare shield. The front of the canopy was protected by a 10mm armor plate, with the windscreen itself being comprised of four panes of armored glass. The three in front of the pilot were electrically heated to prevent frost formation (Report No. 8 / 151). Work was also done to revise the controls to bring them more in line with other Luftwaffe fighters, perhaps most usefully by the addition of an automatic engine control system and manual propeller pitch control switches being added to the throttles (Brown 194).

Armament

The gunpod of the Ju 88G. [Asisbiz, Ju 88 G-1 Schusswaffenlage Bedienungsvorschrift-Wa]
The aircraft’s initial armament consisted of four Mg 151/20 cannons and a defensive MG 131. The cannons were mounted in a ventral pod between the aircraft’s wings and supplied by ammunition belts that occupied the space used as a bomb bay on bomber variants of the airframe. The ammunition belts were loaded with an equal proportion of high explosive ‘mine-shot’, armor piercing, and general purpose high explosive shells. The single 13 mm MG 131 was placed at the rear of the canopy within an armored glass mount and supplied with 500 rounds of armor piercing and high explosive shells in equal proportion (Ju 88G-1 Schusswaffenlage Bedienungsvorschrift-Wa). An armament of upward firing 20mm cannons, being either the MG FF or MG 151/20, were often installed at Luftwaffe field workshops prior to their inclusion to the design in the production run of the G-6 model.

In addition to its cannons, the aircraft could mount ETC 500 underwing racks for bombs and fuel tanks. These racks could each support bombs weighing over 1000kg, though bomb loads in service were light compared to those carried by bomber variants of the Ju 88. These were universal pylons that were added to existing aircraft, an alteration that was fairly simple given the design commonalities with the older Ju 88A-4, and newer Ju 88S medium bombers.

Avionics

In addition to its complement of detection devices, the aircraft carried a variety of tools to aid in navigation and ground direction. Ju 88G’s were typically equipped with the following devices: FuB1 2 (Blind approach receiver), Fug 10P (radio set), FuG 25 (IFF), FuG 101 (Radio altimeter), and the FuG 16zy (radio set).

The FuB1 2 was a blind landing system that guided the aircraft onto a runway by way of two radio beacons placed at 300 m and 3000 m away from one end of the airstrip. It was a tunable device so that airfields could possess separate frequencies between 30 and 33.3 mHz. The aircraft itself carried the Eb1 2 beacon receiver, the Eb1 3F beam receiver, the FBG 2 remote tuner, the AFN 2 approach indicator, the U8 power supply unit, and either a mast or flush antenna (Medcalf 324). 

The FuG 10P was a radio developed by Telefunken and was coupled with the Pielgeräte 6 radio direction finder. The device consisted of numerous transmitters and receivers capable of operating at various ranges. One pair, E10 L and EZ 6, operated at between 150-1200kHz, and another, S10 K and E10 K, between 3-6mHz. Other components included the U10/S and U10/E power supply units, and the fixed antenna loading unit AAC 2. Numerous versions existed and made use of various other components. Much of this system was later removed during the production run of the Ju 88G-6 (Medcalf 324).

The FuG 25 “Erstling” was an IFF system manufactured by GEMA that would respond with coded impulses to the ground-based Wurzburg, Freya, and Gemse radar systems up to a range of 100 km. The receiver operated on a frequency of 125 mHz and the transmitter at 160 mHz. The entire unit was contained within the SE 25A unit, with the BG 25A control box in the radio operator’s station (Medcalf 324).

FuG 101 was a radio altimeter designed by Siemens/LGW with a maximum range of 150-170 m and operated on a frequency of 375 mHz at 1.5 kW. Accuracy was within 2 m and the entire system weighed 16 kg. It consisted of the S 101A transmitter, E 101A receiver, U 101 power supply unit, and the pilot’s panel indicator (Medcalf 325). 

The FuG 16zy “Ludwig” was a radio manufactured by Lorenz and used for fighter control and directional homing, operating on a frequency range of 38.5 to 42.3 MHz. In Ju 88 night fighters it usually accompanied the Fug 10P radio gear which sat just below the defensive machine gun at the rear of the canopy. It could be set to different frequencies for the Y-control communication system: Gruppenbefehlswelle [between aircraft in formation], Nachischerung und Flugsicherung [between the pilot and the ground control unit], and Reichsjagerwelle [running battle commentary] (Aders 242). It was composed of the S16 Z Tx transceiver, E16 Z and U17 power supply systems, and the loop phasing unit ZWG 16 along with the antenna (Medcalf 324).

The FuG 120A ‘Bernhardine’ was a radio positioning device designed by Siemens to provide navigational assistance and bomber stream intercept information to night fighters by means of a teleprinter in the aircraft’s cockpit. It was intended to overhaul the night fighter force’s air to ground communication infrastructure which faced significant signals interference from the RAF, but the war ended before it entered large scale service. Aircraft could be directed over a range of 400km with position bearings accurate within .5 degrees from ground stations (Medcalf 325, Price 238, 239).

Emergency Equipment

The emergency equipment carried by the Ju 88G. [Ju 88S-1 Flugzeug Handbuch]
The Ju 88G would share the same emergency gear as the Ju 88S, this being stowed in a compartment at rear of the fuselage. The largest items of the set were an inflatable raft and an emergency radio beacon, with the contents of the entire compartment being sealed in a waterproof cloak (Ju 88S-1 Flugzeug Handbuch 64).

Production

Junkers Flugzeug und Motorenwerke AG was the sole manufacturer of the Ju 88G and, as was the case with most late war German aircraft, production was conducted at major plants in conjunction with dispersal facilities. The primary production facility for the Gustav was at Bernburg, with two dispersal plants at Fritzlar and Langensalza, each of which would eventually be able to assemble 75 aircraft every month, these being half the capacity of the main Bernburg plant (Medcalf 241, 247).

As with all major fighter projects at the time, large-scale mobilization of labor and material resources was managed by the Jagerstab, an office which built direct links with the RLM (Reichsluftfahrtministerium, the German Air Ministry), regional government officials, and industrialists in order to marshal resources for expanding fighter production. The office was created in response to increasing Allied raids against Germany’s aviation industries and the growing disparity in numbers, which began to strongly favor the Allies as they built up their forces in anticipation for the landings in France. The office was headed by Albert Speer, Minister of Armaments and War production, and aided by Erhard Milch, Generalluftzeugmeister (Air Master General). In spite of the rapidly deteriorating wartime conditions facing all German industries, the office was successful in boosting production, but relied on desperate and illegal measures (Medcalf 229,232). In the fall of 1944, a minimum 72-hour work week was standard, as was the use of forced labor under conditions that were especially poor at the dispersal sites. The acceptance of rebuilt and used parts became ever more commonplace. This, however, did little to offset the clear superiority of the Allies in the air after the Summer of 1944 (Medcalf 247).

Up until April of 1944, the aircraft was built in parallel with decreasing numbers of Ju 88C-6 and Ju 88R, as production at Bernburg transitioned over to the Gustav. Production of the Ju 88G-1 ceased in October as the factories shifted over to the Ju 88G-6 (Medcalf 240). The Bernburg plant was hit twice by the USAAF’s Eight Air Force in February of 1944, which resulted in total stoppages for only a few days, after which production quickly resumed. However, there was a projected loss of over a hundred aircraft per month compared to the averages of the previous year, with a full recovery requiring several months (Medcalf 229).

 

Ju 88 Production January  February  March April May June  July August September October November  December
1943 13 (+6 pre-production)
1944 12 26 47 169 209 247 239 143 88 10
5* 14* 138* 189* 222* 308* 178*
1945 168* 35* 19*

 

Ju 88G-6 production*

Ju 88G-0 Werk Nummern: 710401 through 710406

Ju 88G-1 Werk Nummern: 710407 through 714911

Ju 88G-6 Werk Nummern: 620018 through 623998

Ju 88G-7 Werk Nummern: 240123 through 240125 (~3 built)

Ju 88G-10 Werk Nummern: 460053 through 460162 (~30 built, converted to mistel air to ground weapons)

Variants:

G-0: Preproduction aircraft, the same as G-1

G-1: Production night fighter, powered by BMW 801 G-2 engines 

G-2: Proposed zerstorer, powered by the Jumo 213A, was to carry a single MG 131, four MG 15’s, and two MK 103’s. No radar.


G-3: Proposed night fighter, powered by DB 603, same armament as the G-1

G-4: Proposed night fighter, powered by Jumo 213A, with GM-1 boost system

G-5: Proposed night fighter, powered by Jumo 213A

G-6: Production night fighter, powered by Jumo 213A

G-7: The same as G-6 except with Jumo 213E engines with three speed, two stage intercooled superchargers. Output: 1726 HP (1750 PS) unboosted, 2022 HP (2050 PS) with boost at 3250 RPM. Weight: 28,946 lbs (13,130 kg). Speed:  650 km/h at 7.9 km. Experimental.

G-10: Same as G-6 but with an extended fuselage.

(Medcalf 319, 178, 240; Green 448-482; Smith & Creek 687)

Conclusion:

Only a handful of Berlin centimeter band radars would enter service with the Luftwaffe near the end of the war. The system improved the aircraft’s performance across the board, lacking the drag inducing aerials of the SN-2, and it was untroubled by allied jamming or the altitude limitations of older systems. [wikimedia]
The Ju 88G would prove a valuable asset to the Luftwaffe’s night fighter forces through its zenith, in the spring of 1944,  until its collapse nearly a year later. From a production standpoint the aircraft was phenomenal. It made use of existing supply chains and components from Ju 88 variants that had long been in service prior to its introduction, allowing for a near seamless transition into mass production. In terms of its performance, the initial model would prove exceptional, being far faster and easier to fly than the existing night fighter workhorses, the aging Bf 110G and Ju 88C. The subsequent G-6 model would prove to be even more impressive with the addition of more powerful engines and standardized tail warning equipment.

While the aircraft did have its downsides and couldn’t solve every problem the night fighter service faced, it effectively fulfilled its purpose, and became the most numerous night fighter model in German service by the war’s end.

Specification Charts:

Classification Aircraft type Engine Engine output  Loaded weight Range Maximum Speed 
Bomber Ju 88A-4 Jumo 211J 2×1400 PS (2x 1380 hp) 14000 kg, 30864lbs  2430 km, 1510 mi 440 km/h (5.5 km), 273mph (18044ft)
Zerstorer/Night fighter Ju 88C-6 Jumo 211J 2×1400 PS (2x 1380 hp) 470 km/h (4.8 km), 292mph (15748ft)
Zerstorer/Night fighter Ju 88R-2 BMW 801D 2×1740 PS (2×1716 hp) 3450 km, 2144 mi  550 km/h (6.2km), 341 mph (20341ft)
Night fighter Ju 88G-1 BMW 801G 2×1740 PS (2×1716 hp) 12005 kg, 26466lbs 2870 km, 1783 mi 537 km/h (6.2km), 333mph (20341ft)
Night fighter Ju 88G-6 Jumo 213A 2x 1775 PS [2100 PS], (2×1750 hp [2071 hp]) 12300 kg, 27116lbs ~2400km, 1491 mi 554 km/h (6.0km), 344mph (19685ft)

(Medcalf 323, 319, 320; Smith & Creek 687)

*only the G series was tested with radar and exhaust flash hiders fitted, when equipped with these devices the C and R series flew at values lower than the ones presented on this chart

[] denotes performance with the MW50 boost system

Ju 88G-1  (Ju 88G-6) Specification
Engine BMW 801 G-2 (Jumo 213 A-1)
Engine Output 2×1740 PS (2x 1774PS [MW50: 2100PS]) : 2×1706 hp (2×1750 hp [2071 hp])
Empty Weight 8846 kg (9000kg) : 19502 lbs (19842 lbs)
Loaded Weight 12,005 kg (12300kg) : 26466 lbs (27117 lbs)
Maximum Range 2870 km (~2400 km) : 1784 mi  (~1490 mi)
Maximum Endurance 4 hours 35 minutes (3 hours 45 minutes)
Maximum Speed [at altitude] 537 km/h [6.2 km] : 333mph [20341ft] 
Armament 4xMG 151/20 , 1xMG 131 (4xMG151/20, 2xMG 151/20, 1x MG 131)
Crew 1 Pilot, 1 Radar Operator, 1 Flight Engineer/Gunner
Dimensions
Length 14.5 m : 47′6 7/8” 
Wingspan 20.08 m : 65′11″ 
Wing Area 54.5 m2 : 586.6 ft2 

(Ju 88 G-2, G-6, S-3, T-3 Bedienungsvorschrift-Fl 66, 69 Part II; Ju 88G-1,R-2, S-1,T-1 Bedienungsvorschrift-Fl 49, 53 part II; Report No. 8 / 151: Junkers Ju 88 G-1 Night Fighter 2; Medcalf 323, 319, 320)

*Top speeds reflect only the initial production models and do not take into account any boost systems.

BMW 801 G-2 Low supercharger gear (January 1944) At Height Output RPM Manifold Pressure
Maximum power (3 minutes) 0.9 km 1740 PS 2700 1.42 ata
Combat power (30 minutes) 1.1 km 1540 PS 2400 1.32 ata
Maximum continuous 1.6 km 1385 PS 2300 1.20 ata
Low power, greatest efficiency 2.2 km 1070 PS 2100 1.10 ata
Low power 2.3 km 980 PS 2000 1.05 ata
BMW 801 G-2 High supercharger gear (January 1944) At Height Output RPM Manifold Pressure
Maximum power (3 minutes) 6.0 km 1440 PS 2700 1.30 ata
Combat power (30 minutes) 5.6 km 1320 PS 2400 1.32 ara
Maximum continuous 5.8 km 1180 PS 2300 1.20 ata
Low power, greatest efficiency 5.7 km 990 PS 2100 1.10 ata
Low power 5.7 km 905 PS 2000 1.05 ata

Engine rated for C3 ~95 octane fuels

(Ju 88S-1 Flugzeug Handbuch 3)

 

Radar System Practical Maximum range Minimum range Search angle-azimuth Search angle-elevation Frequency Output Array Other notes
FuG 220  Lichtenstein SN-2c & SN-2d  8km (instrumented)

Altitude dependent 

300m 120 degrees 100 degrees 73/82/91 MHz later changed to 37.5-118 MHz dispersal band 2.5kW Stag antler (Hirschgeweih), few examples of low drag morningstar array (Morgenstern) SN-2d had a narrower beam width, was combined with tail warning radar, and performed better against jamming. Standard production radar for the Ju 88G.
FuG 217 Neptun V/R Altitude dependent 400m 120 degrees Two click stop frequencies of 158 amd 187 MHz Rod or stag antler FuG 217R was the tail warning radar component
FuG 218 Neptun  V/R Altitude dependent 120m 120 degrees Six click stop frequencies between 158-187 MHz stag antler  FuG 218R was the tail warning component
FuG 228 Lichtenstein SN-3 Altitude dependent 250m 120 degrees 100 degrees 115-148 MHz 20kW Stag antler, morningstar ten sets built
FuG 240/1 Berlin N-1a ~9km 300m 55 degrees 9-9.3cm (3,250-3,330 MHz) 15kW Parabolic antenna 25 sets built, 10 delivered for service, 1945

 

This chart is only for operational and experimental radar usage aboard the Ju 88G, it does not include earlier radars or specialized sets designed for other aircraft. 

*The morgenstern (eng. morningstar) aerial is often misidentified as a separate search radar or exclusive to either the SN-2d or SN-3, it is a low drag aerial arrangement compatible with either device.

~ Sources disagree

(Aders 244-246; Holp 10)

Gallery

Illustrations by Ed Jackson

Ju 88G-1
Ju 88G-1 [4R+UR], 7. Staffel/NJG2 flown by Hans Mackle, WNr. 712273. This is a relatively early production Ju 88G equipped with an FuG 220 SN-2c search radar and a FuG 227 Flensburg radar detector.
Ju 88G-6 [C9+AC], Stab II./NJG5 Hans Leickhardt, 1944. This late production G6 used a rare “morningstar” low drag array for its SN-2d combined search and tail warning radar set. While the SN-2’s faced considerable jamming and chaff interference, the series still was still improved upon, focusing on its still usable bands and developing more aerodynamically efficient antennas. This plane was also equipped with a Naxos radar detected which was installed within the fairing over the cockpit.
Ju 88G-1 [2Z+HM], 4. Staffel/NJG6 Aschaffenburg, Germany 1945. While this is a relatively early production Ju 88G it was later refitted with the SN-2d as can be seen from the angle on the nose mounted dipoles and the tail warning array. This aircraft also received a pair of upward firing cannons and a Naxos radar detector.
Junkers Ju 88G-6 [C9+AR], 6. Staffel/NJG5 Dubendorf, Switzerland, 1945. A late war Ju 88G-6 equipped with a FuG 218 G/R Neptun combined search and tail warning radar set, and while it lacks the fairing typically used for installing the Naxos radar detector there was by this point a fuselage mounted model designed for the Ju 88G. Unlike the SN-2R, the FuG 218R tail warning radar sits at the top of the vertical stabilizer rather than below it.
Junkers Ju 88G-6 [4R+EP], 6. Staffel/NJG2 Fritzlar 1945. This aircraft is a good example of the lax camouflage regulations for the Luftwaffe’s night fighters. While aircraft were delivered in white-grey liveries the air and ground crews were free to devise their own patterns.
Ju 88G-6 [C9+HB], 1. Staffel/NJG5, 1945. This aircraft was equipped with an extremely rare FuG 240 Berlin centimeter band search radar. While it presented many major improvements over previous Luftwaffe aerial search radars, only a few were delivered near the end of the war. The radar’s parabolic antenna sits behind the wooden nose cone which created far less drag compared to the ‘antlers’ that were used by the older meter band radars. This aircraft and others that carry late war radar sets are typically misidentified as Ju 88G-7’s. Due to the overlap between that type and very late production G-6’s, identifying them can only be done through their Werk-Nummer.
With its nose mounted Mg 151/20, Hptm. Johannes Strassner’s Ju 88G had perhaps the most peculiar Schräge Musik arrangement of any night fighter. (Boiten P4 30) [Asisbiz]
One of the most obvious differences between the Gustav and other Ju 88 fighters was the removal of the nose mounted weapons to a ventral pod, where muzzle flashes would not disturb the pilot, and the empty area that once served as a bomb bay would offer a much larger capacity for ammunition. Also visible here is the larger vertical stabilizer. [warbirdphotographs.com]
A Flensburg aerial, one of several mounted to a Ju 88G [asisbiz.com]
The capture of a Ju 88G-1 proved to be one the most valuable Allied intelligence coups of the war and, for the Germans, a source of endless trouble. [i.pinimg.com]
Many of the Luftwaffe’s ‘blindworm’ makeshift airfields were later overrun by allied forces, here American personnel inspect Ju 88G-6’s and Bf 110G-4’s hidden in a forest clearing. [SmallScaleArt]
Despite its growing obsolescence and degraded performance in the face of RAF jamming efforts, the SN-2 saw continued development. Its last versions used morningstar aerials encased within wooden nosecones to reduce drag.[Asisbiz]

A restored Ju 88G-1 fuselage in the Berlin Technikmuseum. (http://3.bp.blogspot.com/-eWzHzdTpJNo/TVqQOv6IFHI/AAAAAAAACVI/gvX4yAaLL_0/w1200-h630-p-k-no-nu/ju88berlin0.jpg )

Primary Sources

  • Air Intelligence 2 (g) Inspection of Crashed or Captured Enemy Aircraft Report Serial No. 242 dated 16th July 1944 Report No. 8 / 151: Junkers Ju 88 G-1 Night Fighter. 1944.
  • Fw-190 A-5/A-6 Flugzeug-Handbuch (Stand August 1943). Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. December 8, 1943.
  • Handbuch fur die Flugmotoren BMW 801 MA-BMW 801 ML-BMW 801C und BMW 801D Baureihen 1 und 2. BMW Flugmotorenbau-Gessellschaft m.b.H. Munich. May, 1942.
  • Junkers Flugmotor Jumo 213 A-1 u. C-0. Junkers Flugzeug und Motorenwerke Aktiengesellschaft, Dessau. December, 1943.
  • Ju 88S-1 Flugzeug Handbuch. Junkers Flugzeug und Motorenwerke A.G., Dessau. 1944.
  • Ju 88A-4 Bedienungsvorschrift-FL Bedienung und Wartung des Flugzeuges. Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. July 19, 1941.
  • Ju 188E-1 (Stand Juni 1943). Junkers Flugzeug und Motorenwerke Aktiengesellschaft, Dessau. June 1, 1943.
  • Ju 88G-1 Schusswaffenlage Bedienungsvorschrift-Wa (Stand Oktober 1943). Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. November, 1943.
  • Ju 88 G-1,R-2, S-1,T-1 Bedienungsvorschrift-Fl (Stand November 1943). Der Reichsminister der Luftfahrt und Oberbefehlshaber der Luftwaffe, Berlin. December 1, 1943.
  • Ju 88 G-2, G-6, S-3, T-3 Bedienungsvorschrift-Fl (Stand September 1944). 1944.
  • Rodert, L. A., & Jackson, R. (1942). A DESCRIPTION OF THE Ju 88 AIRPLANE ANTI-ICING EQUIPMENT (Tech.). Moffett Field, CA: NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. 1942.

Secondary Sources

  • Aders, Gebhard. German Night Fighter Force, 1917-1945. Stroud: Fonthill, 2016.
  • Bauer, A. O. (2006, December 2). Some Aspects of German Airborne Radar Technology, 1942 to 1945 [Scholarly project]. In Foundation for German Communication and Related Technologies. Retrieved from https://www.cdvandt.org/
  • Bauer, Arthur O. “Stichting Centrum Voor Duitse Verbindings- En Aanverwante Technologieën 1920-1945.” Foundation for German communication and related technologies (History of Technology), December 2, 2006. https://www.cdvandt.org/.
  • Boitens, Theo. Nachtjagd Combat Archive 24 July – 15 October 1944 Part 4. Red Kite . 2021.
  • Boitens, Theo. Nachtjagd Combat Archive 16 October – 31 December Part 5 1944. Red Kite . 2021. 
  • Boitens, Theo. Nachtjagd Combat Archive, 1 January – 3 May 1945. Red Kite . 2022.
  • Brown, L. A radar history of World War II: Technical and military imperatives. Bristol: Institute of Physics Pub. 1999
  • Brown, Eric Melrose. Wings of the Luftwaffe. Hikoki, 2010.
  • Cooper, M. The German Air Force, 1933-1945: An Anatomy of Failure. Jane’s Pub, 1981.
  • Green, William. The warplanes of the Third Reich (1st ed.). London: Doubleday. pp. 448–482, 1972.
  • Manfred Griehl, Nachtjäger über Deutschland, 1940-1945: Bf 110, Ju 88, He 219 (Wölfersheim-Berstadt: Podzun-Pallas-Verlag, 1999).
  • Medcalf, William A. Junkers Ju 88 Volume One From Schnellbomber to Multi-Mission War Plane. Manchester, UK: Chevron Publishing Limited , 2013.
  • Medcalf, William A. Junkers Ju 88 Volume Two The Bomber at War Day and Night Operational and service history. Manchester, UK: Chevron Publishing Limited , 2014. 
  • Holpp, Wolfgang. “The Century of Radar.” EADS Deutschland GmbH
  • Holm, M. (1997). The Luftwaffe, 1933-45. Retrieved February, 2021, from https://www.ww2.dk/
  • Overy, Richard James. The Bombing War: Europe 1939-1945. London: Penguin Books, 2014.
  • Price, Alfred. Instruments of Darkness: the History of Electronic Warfare, 1939-1945. Barnsley, S. Yorkshire: Frontline Books, 2017.
  • Sharp, C. Martin, and Bowyer Michael J F. Mosquito. Bristol: Crecy Books, 1997.
  • Smith, J. R., & Creek, E. J. (2014). Focke-Wulf Fw 190, Volume 3: 1944-1945. Manchester: Crecy Publishing.

Credits

  • Article written by Henry H.
  • Edited by Stan L. and Ed J.
  • Ported by Ed J.
  • Illustrations by Ed Jackson

Junkers Ju 87A Stuka

Nazi flag Nazi Germany (1934)
Dive-bomber – 262-400 Built

The Ju 87A [warbirdphotographs.com]
Prior to the Second World War, the Germans were experimenting with how to increase the accuracy of air bombing attacks. One solution was to use dive attacks, which greatly increased the chance of hitting the desired targets. By the mid-30s, a number of German aircraft manufacturing companies were experimenting with planes that could fulfill these dive bomb attacks. The Junkers Ju 87 proved to be the most promising design and would be adopted for service.  The Ju 87 would become one of most iconic aircraft of the Second World War, being feared for its precise strikes, but also for its unique use of sirens for psychological warfare.

History

After the First World War, the Germans began experimenting with ideas on how to make aircraft more precise during ground attack operations. The use of conventional bombers that dispatched their payload from straight and level flight could effectively engage larger targets, such as urban centers, industrial facilities, infrastructure, etc. This method was less effective for destroying smaller targets, like bunkers or bridges. A dive-attack, on the other hand, provided a greater chance of hitting smaller targets and, to some extent, reduced the chance of being shot down by ground based enemy anti-aircraft fire. This concept of dive-attack aircraft would be studied and tested in detail by the Germans during the 1930s. These aircraft would be known as Sturzkampfbomber (dive-bomber), but generally known as Stukas. 

The development of such aircraft was greatly hindered by the prohibitions imposed by the Treaty of Versailles. To overcome this, some German companies simply opened smaller subsidiaries in other countries. In the case of the Junkers, a subsidiary company known as Flygindustri was opened in Sweden. There, they developed a K 47 two-seater fighter in 1929. It was tested for the role of dive-bomber and proved successful. But its price was too high for the German Luftwaffe to accept, so it was rejected.

The Junkers K 47 was a two-seater fighter from 1929. While showing to possess good dive-attack characteristics, due to its price, it was not adopted for service. [Wiki]
As a temporary solution, the Germans adopted the He 50 in 1932. The following year, a more comprehensive test of the dive-bombing concept was undertaken at airbase Juterbog-Damm. During these trials, Ju-52 bombers were used. The overall results were disappointing, thus development of a completely new dedicated design was prioritized by the Germans. For this, Luftwaffe officials placed an order with all aircraft manufacturers to present their models for the dive-bomber competition.

In late 1933, the Junkers dive-bomber development project was carried out by engineer Herman Pohlmann. He stressed the importance of an  overall robust aircraft design in order to be able to withstand steep diving maneuvers. Additionally, it should have had fixed landing gear and be built using all-metal construction. 

The next year, a fully completed wooden mock-up with inverted gull wings and twin tail fins was built by Junkers. Officials from the German Aviation Ministry (Reichsluftfahrtministerium RLM) inspected the mock-up during late 1934, but they were not impressed and didn’t place a production order. Despite this, Junkers continued working on the project. Junkers soon began construction of a full scale prototype. Due to many delays with the design, construction of the project dragged into October 1935. The first prototype received the Ju 87 V1 designation, bearing serial number 4921. Somewhat surprisingly, it was powered by a 640 hp Rolls-Royce Kestrel 12 cylinder engine. The first test flight was completed in September 1935 by test pilot Willi Neuenhofen. While the first flight was generally successful, the use of a foreign engine was deemed unsatisfactory and it was requested that a domestic built engine be used instead.  The V1 prototype would be lost in an accident when one of the twin tail fins broke off during a dive test near Dresden. Both the pilot Willi Neuenhofen and the second passenger, engineer Heinrich Kreft, lost their lives. The examination of the wreckage showed that the fin design was too weak and thus had to be replaced with a simple conventional tail fin. 

The V1 prototype could be easily identified by its twin tail fin design. [warbirdphotographs.com]
Ju 87 V2 (serial number 4922 and with tail code  D-UHUH (later changed to D-IDQR) was built with the 610 hp Jumo 210 A engine and had a redesigned tail fin. Another addition was the installation of special slats that could be rotated at 90° forward, perpendicular to the underside of the wing, acting as dive brakes. The V2 also received a specially designed bomb release mechanism, meant to avoid accidentally hitting the lowered radiator and the propeller. When the pilot activated the bomb release during a dive, the specially designed cradle would simply swing forward. In essence, this catapulted the bomb safely away from the plane while still maintaining its trajectory toward the target. There were a number of delays with the redesign of the airframe, which led to V2’s first flight being made during late February 1936. While the test flight was successful, the Luftwaffe officials showed some reluctance with regards to the project, given the fate of the first prototype. Nevertheless, the Ju 87, together with the He 118, Ha 137 and Ar 81, were used in a dive-bomber competition. The initial results favored the Heinkel, but when the He 118 was lost during one of its  test flights together with the engine problems, the RLM proclaimed the Ju 87 as the winner.

The unsuccessful He 118 aircraft. [Wiki]
The Ju 87 V2 prototype. [warbirdphotographs.com]
Winning the competition for the new dive-bomber design, Junkers was instructed to build more prototypes to improve the overall performance of the Ju 87. The V3 (serial number 4923 and designation D-UKYQ) received a number of modifications. It had an enlarged tailfin, added counterweights on the elevators, a modified landing gear, and a redesigned engine cowl to improve forward visibility. The first test flight was made in March of 1936. 

The V4 (serial number 4924 and with D-UBIP) was further modified by once again increasing the size of the tailfin, adding forward firing machine guns, a rear defensive machine gun, and again redesigning the front engine compartment. It was powered by the Jumo 210 Aa engine. It was flight tested for the first time in June 1936. During its test flight, the maximum cruising speed achieved was 250 km/h (155 mph). The RLM would become increasingly concerned about the Ju 87 design, as this cruising speed was the same as that of the older He 50. Despite this, the handling and resilience of the whole airframe were deemed satisfactory. The V4 prototype would later serve as the base for the A-0 pre-production series. The last prototype, V5 (serial number 4925), was built in May 1936. It was built to test the installation of the DB 600 and Jumo 210 engines. 

The V4 prototype, which served as base of the A-0 pre-production series. In addition, it was the first Ju 87 aircraft to see real combat action during the Spanish Civil War. [warbirdphotographs.com]

The Ju 87 ‘Anton’ Introduction

Following the success of the prototype series, the RLM officials issued orders for more Ju 87 aircraft. This would lead to a small production run of between 7 to 10 aircraft of the Ju 87A-0 pre-series aircraft (A for Anton, according to the German phonetic alphabet). While the first A-0 aircraft were to be built starting in November 1935, due to a number of delays, the actual production began in the spring of 1936. Following a series of tests conducted on the A-0 aircraft at the end of 1936, it was determined that these planes, equipped with the Jumo 210 Aa engine, were underpowered. A number of the A-0 aircraft would receive a new 680 hp Jumo 210 D engine as an upgrade. The A-0’s rear fuselage was also lowered to provide the rear gunner with a better firing arc. For the radio equipment, two ‘V’ shaped antennas were placed around the cockpit. 

Further development led to the Ju 87A-1, which was powered by the Jumo 210 D as standard. The A-1 series was able to carry one 250 kg (550 lbs) bomb in its standard two man crew configuration. Alternatively, it could carry one 500 kg (1100 lbs) bomb but, in this case, the rear machine gunner had to be left behind. 

The last version of the series was the Ju 87A-2. It was slightly improved by adding better radio equipment. In addition, the engine performance was improved, along with a new two-stage compressor, and a new propeller.

Technical Characteristics 

The Ju 87A was designed as a single-engined, twin-seat all metal dive bomber. Its fuselage was built by connecting two oval-shaped sections with a simple structure design. The longerons consisted of long shaped strips which spanned across the longitudinal direction of the aircraft. These had a ‘U’ shape which was connected to the duralumin skin by rivets. 

For construction of the Ju 87’s wings, Junkers engineers employed the doppelüger (a double wing construction). This meant that the full-span ailerons were hinged near the trailing edge of the wings. Another feature of the wings was that they had an inverted gull design. This was done intentionally by the Junkers engineers in an attempt to provide the crew members with the best possible all around visibility. The Ju 87 fuselage and wings were covered with a combination of duralumin and magnesium alloy sheeting. While the V1 prototype was equipped with twin tail fins, the A-series was equipped with a more orthodox tail design. The tailplanes had a rectangular shape, while the rudder had a square shape.

Rear view of the Ju 87A [asisbiz.com]
The landing gear was fixed. It consisted of two larger front wheels, with one smaller tailwheel to the rear. The front landing gear and wheels were covered in large protective fairings, sometimes known as “spats.” This arrangement would prove to be problematic, and would later be replaced with a much simpler design.

The Ju 87 had a distinguishable fixed landing gear, protected by a larger housing. This design would be simplified in later version. [asisbiz.com]
The Ju 87 engine was mounted specifically to provide easy access for replacement or maintenance. It was powered by an inline Jumo 210 D water cooled engine, with a variable pitch propeller with a 3.3 m diameter. The fuel capacity was 480 liters, placed in two tanks. The fuel tanks were located in the center part of the curved wings. 

The Ju 87 had a large cockpit where the pilot and the rear gunner were positioned in a back-to-back configuration. The center of the canopy assembly was reinforced by a durable section of cast magnesium, meant to provide better structural integrity. The cockpit was also protected with a fire-resistant asbestos firewall. On the A-series, the pilot was responsible for operating the radio equipment. This task would be allocated to the rear gunner in later versions. The radio equipment consisted of a FuG VII radio receiver and transmitter. 

The Ju 87A-1 was armed with one forward mounted 7.92 mm MG 17 and a rear positioned MG 15, also firing 7.92 mm, fitted on a flexible mount. The offensive armament consisted of either a 250 kg or 500 kg bomb (550 to 1100 lbs). When the larger bomb was used, the rear crew member had to be left behind. A small number of aircraft were equipped with bomb racks for four 50 kg (110 lbs)  mounted under the wings. These were actually used for training purposes, as the bombs were actually made of concrete. 

Diving Operation

The Ju 87 pilot would commence the dive-bombing run once the target was identified. The target would be located through a bombsight which was placed in the cockpit floor. The attack would usually be carried out from an altitude of less than 4,600 meters. The aircraft would then be rolled around by the pilot until it was upside down. The Ju 87 would then engage its target at an angle of attack of 60 to 90°, with a speed of 500 to 600 km/h (310-370 mph). During these dive-bombing runs, there was a chance the pilot could  temporarily lose consciousness due to extensive G-forces. If the pilot was unable to pull up, a ground collision was a strong possibility. To avoid this, the Ju 87 was equipped with automatic dive brakes that would simply level out the plane at a safe altitude. Once the plane reached a level flight, the brakes would then disengage. The Ju 87 was also equipped with warning lights that informed the pilot when it was time to release the bomb. 

Germans conducted extensive research to determine how much G-force a pilot could endure without any medical problems. The testing revealed that the pilot could overcome a 4G force without problems. At 5G , the pilot would experience blurred vision. The maximum G-forces were noted to be 8.5 G but only for three seconds. Any more could lead to extensive injuries or even death. 

Illustration of a Ju 87 dive-attack run. Source Pinterest

Organization

The Ju 87 were used to equip the so-called Sturzkampfgeschwader or simply StG (dive-bomber flight unit). The StG was divided into three Gruppen (groups). Each of these groups was further divided into three Staffel (squadrons).  

In Combat

The Ju 87 saw its first combat action during the Spanish Civil War that lasted from 1936 to 1939. The Germans saw this war as the perfect place to test their new aircraft designs. For this reason, one V4 prototype was secretly disassembled and transported on a passenger ship to Spain in August 1936. It was part of the experimental unit (Versuchskommando) VK/88 (or VJ/88, depending on the source) of the Condor Legion. The overall performance or even the use of this aircraft is generally unknown. During this conflict, it received the designation 29-1. It may have taken part in the Battle of Bilbao  in June of 1937, after which it was shipped back to Germany. 

In early 1938, three more aircraft of the A-1 series were shipped to Spain. These received the 29-2, 29-3, and 29-4 designations. They were given to the 1st Staffel of Sturzkampfgeschwader  162 (dive bomber wing).  While only three aircraft were used by this unit  their original designations were often replaced with higher numbers in an atempt to decive the enemy.  The initial pilots of these aircraft were Ernst Bartels, Hermann Hass, and Gerhard Weyert. The Germans would replace them with new crew members after some time, in the hope of increasing the number of pilots with experience operating the aircraft under combat situations. 

Their initial base of operations was an airfield near Zaragoza, Spain. There were some problems with the forward landing gear covers, which would dig into the ground on the sandy soil of the airfield. To resolve this issue, the crews simply removed them. The use of a larger 500 kg bomb required the removal of the rear gunner, so the smaller 250 kg bomb load was more frequently used.

In March 1938,, the three Ju 87s attempted to attack retreating Spanish Republican units at the Aragon with somewhat limited success. The attacks were less successful, mainly due to the inexperience of the pilots. From July 1938 on, the Ju 87 showed more promising performance during the Spanish Republican failed counterattack at the Ebro River and Mequinenza. By October, all three Ju 87 As were shipped back to Germany. 

A Ju 87A during the Spanish Civil War [Wiki]
The overall performance of the A-series was deemed insufficient for combat operations early on. This, together with the fact that the improved Ju 87B version was becoming available in increasing numbers, leading to a withdrawal of the A version from service. These would be reallocated to training units, and would be used in this role up to 1944. 

The Ju 87A would see only limited combat service, being mostly allocated to training units [warbirdphotographs.com]

In Hungarian Service 

During the war the Germans provided their Hungarian ally with four Ju 87A aircraft. These were used mostly for crew training in later stages of the war. 

Hungarian Ju 87A [Hungarian Air Forces 1920-1945]

Production and Modifications

Production of the Ju 87 ended by the summer of 1938. By that time, some 262 were built by the Junkers factories located in Dessau (192) and Bremen (70). These numbers are according to M. Griehl (Junkers Ju 87 Stuka). Author D. Nešić (Naoružanje Drugog Svetsko Rata-Nemačka), on the other hand, notes a number of 400 aircraft being built. 

The main versions were:

  • Ju 87 Prototype series – Five prototypes were built and used mostly for testing. 
  • Ju 87A-0 – A small pre-production series.
  • Ju 87A-1 – Main production version.
  • Ju 87A-2 – Slightly improved A-1 aircraft.

Conclusion

While the Ju 87A fulfilled the role of dive-bomber well, it was shown to be inadequately developed to meet military requirements. For this reason, it was mainly issued for crew training. Its main success was that it provided the German with an excellent base for improvement and development of further aircraft. It also provided the German pilots with valuable experience in such dive-bombing flights.

Ju 87A-1  Specifications

Wingspans 45 ft 3 in / 13.8 m
Length 35 ft 4 in / 10.78 m
Height 12 ft 9  in  /  3.9 m
Wing Area 104 ft² /  31.9 m²
Engine Junkers Jumo 210D 680 hp engine
Empty Weight 5,070 lbs / 2,300 kg
Maximum Takeoff Weight 7,500 lbs / 3,400 kg
Fuel Capacity 480 liters / 127 US gallons            
Maximum Speed  200 mph / 320 km/h
Cruising speed 170 mph  / 275 km/h
Range 620 miles / 1,000 km
Maximum Service Ceiling 22,970 ft / 7,000 m
Crew One pilot and the Rear Gunner
Armament
  • One forward mounted 7.92 mm MG17 and one 7.92 mm MG15 positioned to the rear
  • One 550 lb (250 kg) bomb for two-seaster
  • Or one  1100 lb (500 kg) bomb in the single-seater configuration. 

Gallery

Illustrations by Carpaticus

Ju 87A with an unusual winter camouflage
Ju 87A-1 from the Dive bomber school 1, operated during winter 1940-1941
Ju 87A used for pilot training in late 1939
Ju 87 A-1 1st Staffel of Sturzkampfgeschwader 162 during the Spanish Civil War

Credits

  • Article by Marko P.
  • Edited by Stan L. & Ed J.
  • Illustrations by David Bocquelet & Carpaticus
  • M. Griehl (2006) Junkers Ju 87 ‘Stuka’, AirDOC.
  • M. Guardia (2014) Junkers ju 87 Stuka, Osprey Publishing 
  • D. Nešić (2008). Naoružanje Drugog Svetsko Rata-Nemačka. Tampoprint S.C.G. Beograd.
  • D. Monday. (2006). The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
  • Z. Bašić (2018) Građanski Rat U španiji 1936-1939, Čigoja Štampa. 
  • G. Sarhidai, H. Punka and V. Kozlik. (1996) Hungarian Air Forces 1920-1945, Hikoki Publisher  

 

 

Blohm und Voss Bv 141

Nazi flag Nazi Germany (1938)
Tactical Reconnaissance Aircraft – 13-18 Built

The Second Bv 141 Prototype (V1) – Colorized by Michael Jucan

During the Second World War, the Germans would design and build a number of unusual aircraft (the Me 163 or the He 111 Zwilling, for example), but none was so unorthodox and strange as the Bv 141. In order to provide good visibility for its reconnaissance role, the crew gondola was completely separated from the aircraft’s fuselage. While small numbers were built, during testing it was shown to have decent flying characteristics for its completely unconventional design.

History 

In 1937, the German Ministry of Aviation (Reichsluftfahrtministerium RLM) issued a request to all German aircraft manufacturers for a new single-engine reconnaissance aircraft with provision for three crew members. Great attention was to be dedicated to having a good all-around visibility. In addition, the aircraft would also have to be able to act as a light attack, and smokescreen laying aircraft. Three aircraft manufacturers responded to this request, Arado, Focke Wulf, and Blohm und Voss. Of these, Blohm & Voss would submit the most distinctive design to say at least. 

While at first glance, the Ha 141 (as it was known at the start of the project, with the ‘Ha’ designation stands for Hamburger Flugzeugbau) appears to be created by someone with no experience whatsoever in aircraft design. This was not actually the case. In reality, the Ha 141 was designed by Dr. Ing. Richard Vogt, who was Chief Designer at Blohm und Voss for the new reconnaissance aircraft. The Ha 141 was to have an unusual design, as the crew was put into a well-glazed gondola, with the fuselage with and engine to the left. During his initial calculations, Dr. Vogt predicted, successfully, that the large crew gondola would act as a counterbalance to the long left-side engine fuselage.  

When Dr. Ing. Richard Vogt presented his plans to the Ministry of Aviation, the officials were quite uninterested in such an unorthodox design, and the story of the Ha 141 would have ended there. Not willing to give up on his idea so easily, the Blohm und Voss company financed the construction of the first prototype with its own funding. The prototype was completed early in 1938  and the name was changed to Bv 141. It made its maiden flight on the 25th of February that year. The flight went well, without any major problems. The only issue was a slight oscillation of the landing gear. When it was presented to the Luftwaffe officials, they were surprised by its performance and ordered a production run of three more prototypes. Interestingly, after some negotiations with Blohm & Voss, their prototype was included in this order and two more aircraft were actually built. The first prototype was marked as V0 and would be later rebuilt into the Bv 141 V2 prototype and tested with the BMW 139F engine.  The Luftwaffe officials only requested that the crew gondola be completely redesigned, internally and externally, to incorporate a larger working space, and to be almost completely glazed, quite similar in design to the Fw 189. Bv 141 V1, actually the second produced aircraft, was used to test the aircraft’s general flight performance. The V3 made its first test flight on 5th October 1938 and was used mainly to test the BMW 132N engine. 

After the first prototype was shown to the Luftwaffe officials order few more to be built for future testing [luftwaffephotos.com]
By 1939, an additional two more aircraft were built. The V4, that was to be sent to the Erprobungstelle Testing Center at Rechlin, had an accident during landing. After the repairs were made, it was finally flight tested at Rechlin. It performed well and it was liked by the pilots that had the chance to fly it. It also underwent a number of different weapon tests. Once all these tests were completed, the V4 prototype was chosen for modification into the first A-series. After that, a small series of the A version, five aircraft in total, were built and used mostly for testing and development of new improvements at Rechlin. Some were stationed at Aufklärungsschule 1 (Training School 1) at Großenhain. While the A-2 would be rebuilt into a training airframe in May 1942, the fate of the remaining aircraft of this series is unknown. Likely, all were scrapped. Depending on the sources the A-series aircraft were powered by a 1,000 hp BMW Bramo 323 radial engine.

A rear view of the Bv 141 V4 prototype. [luftwaffephotos.com]
Following these tests, the Bv 141 received positive reports about its overall performance. There were also discussions about its mass production. Despite this, the whole project was officially canceled on 4th April 1940. The main reason was the Luftwaffe high officials’ distrust of the design. The official reason for rejection of the Bv 141 was noted as ‘underpowered,’ despite its good performance.

Technical Characteristics

The Bv 141 was a uniquely designed single-engine all-metal aircraft. It did not have a standard fuselage, with the engine in the front and the crew behind it.  The crew gondola and the fuselage with the engine were completely separate from each other. Both were located slightly off the center of the wings. The crew gondola was placed on the right, with the engine to the left.

The glazed crew gondola is quite visible here [luftwaffephotos.com]
The first A-series aircraft had a wingspan of 15 m (49 ft 3 in). The Bv 141 was initially powered by a 865 hp BMW 132N 9-cylinder radial engine. It used a constant speed propeller. Behind the engine, the 490 l fuel tank was placed. 

Close up view of the initially used 865 km/h BMW 132N engine. While weaker than the later engine used, its performance was much better and offered a much more pleasant flight. [luftwaffephotos.com]
The tail design was changed during the Bv 141’s development. Initially, a standard tail design was used. This would later be replaced with a forward leaning, asymmetric tailplane, offset to port side. The unusual shape of the new tailplane had the intent of providing the rear gunner with the best available firing arc. It only had one elevator, which had a larger surface area than the previous model. Surprisingly, the aircraft’s good performance was left unchanged after the introduction of the asymmetric tailplane. 

The landing gear was more or less standard for its time. The front landing gear consisted of two large wheels that retracted outwards into the leading edges of the wings. To the rear, there was a small landing wheel that retracted to the back and slightly protruded out of the fuselage.

The landing gear on the Bv 141 were standard type at the time, consisting of two forward landing wheels and one smaller to the rear [luftwaffephotos.com]
The first crew gondola had fewer glazed surfaces than the later used models. In general, it provided the crew with excellent front, rear, and right-side views of the surroundings. The left view was partly obscured because of the engine.

The Bv 141 pilot front gondola interior [luftwaffephotos.com]
The armament consisted of four 7.92 mm machine guns. Two MG 17 forward firing fixed machine guns were placed in the forward nacelle. These were operated by the pilot, who used a Revi aim sight. To the rear, one defensive MG 15 was placed in a small circular cupola atop of the Bv 141. The last MG 15 was positioned to the rear of the aircraft. The Bv 141 could also carry four 50 kg (110 lb) bombs. 

The pilot was positioned on the left side of the englazed nose of the gondola.  Next to him  was the position of the observer, who also acted as bombardier in case the Bv 141 was used for ground attack. The observer also had the job of operating the radio and the machine gun placed in the small circular cupola. Interestingly, because he performed different tasks, his seat was connected to two tracks which enabled him to move freely inside the gondola without getting up. The third crew member operated the rear defensive machine gun. 

The Bv 141 pilot had a large glazed gondola where the crew was positioned. It offered a good all round view (except to the right side where the engine was). [luftwaffephotos.com]
The front view of the first Bv 141 prototype built by Blohm und Voss. [luftwaffephotos.com]

Last Hope for Production

With the cancelation of the Bv 141A series due to allegedly poor engine performance, Dr. Ing. Richard Vogt immediately began working on an improved version. In order to address the concerns made  by the Luftwaffe regarding its engine, the Blohm & Voss designers decided to use the stronger 1,560 hp BMW 801A 14-cylinder two-row engine. Unbeknownst to them, this decision would actually doom the whole project. 

With the new engine, other changes to the overall design had to be made. The wings had to be reinforced and their span increased to 17.46 m (57 ft 3 in). In addition, the leading and trailing edges had to be redesigned. The rear part of the fuselage’s design was also changed. The landing gear was also improved by adding much stronger landing gear wheels. The armament appears to have been reduced to three machine guns (the sources are not clear here), while the bomb load remained the same.

The top view of one of few built Bv 141B series. While intended to improve the Bv 141A series performance, it was never achieved successfully. [luftwaffephotos]
All these changes would lead to the development of the Bv 141B series. The first mock-up was completed in February 1940. The first test flight was made on the 9th January 1941. This time, the Luftwaffe officials showed interest in it, especially after installing the much stronger engine. While Blohm & Voss received permission to build five aircraft of the B-series, the order was increased by five more. Initial calculations showed that it could reach speeds up to 480 km/h (300 mph), at least in theory. Almost immediately, the Bv 141B aircraft proved to be plagued with many problems. The controls were difficult to use and the plane was prone to mechanical faults, especially regarding the landing gear and the hydraulic systems. A huge issue was also created by the strong vibrations that occurred during the test flights. In addition, during firing trials, it was noted that cordite fumes would accumulate in the cockpit from the guns.

The Luftwaffe’s initial enthusiasm for this unusual aircraft quickly faded away. While the tests on the Bv 141 would go on for a few more years, the Fw 189 would be chosen instead. Despite this setback, Dr. Vogt would continue on working on similar and improved designs during the war. Due to urgent requests for more ‘normal’ planes, he was ultimately forced to abandon his work and, besides some proposals, he never got a chance to build another such aircraft during the war. The last mention of the Bv 141 B-10 was in May of 1944, when it was used to tow another unusual design from Blohm and Voss, the experimental Bv 40 armed glider. 

A group of three Bv 141 aircraft during one of many test flights [luftwaffephotos]

Operational Use

The Blohm und Voss Bv 141 [luftwaffephotos.com]
The second BV 141B prototype was allocated to Aufklärungsschule 1 (Reconnaissance Training Unit) in 1941, stationed at Grossenhain. It appears that its performance was deemed satisfactory, as more aircraft were requested in order to form at least one operational test unit for use on the Eastern Front. This was never implemented, mostly due to two reasons. The Blohm und Voss factories were redirected to higher priority projects, and since the  Fw 189 was accepted for service, there was no real need for another reconnaissance aircraft.

Some sources, like the book Aircraft of World War II by C. Chant, mention that it was used in test flights over the UK and the Soviet Union during its short operational service.

Use After the War

The fate of the small number of Bv 141s produced is not known. While the majority were scrapped, some managed to survive until war’s end. One Bv 141 was actually captured by the Soviet Forces near the end of the war. This aircraft would be flight tested by the British pilot Captain Eric Brown. He was the chief test pilot of the Royal Aircraft Establishment at Farnborough. He was involved in a British project tasked with taking over German war research installations and interrogating technical personnel after the war. 

The single Bv 141 was relocated to an auxiliary airfield near the town of Meissen. When Captain Brown arrived, Soviet soldiers were already taking anything that was of use from the airfield and destroying everything else. After making a request to the Soviets to see if the aircraft could be flown, the Soviets approved. He was instructed to conduct a short flight around the airfield, and to beware of possible engine malfunctions due to the general poor state of the aircraft.  

Captain Eric Brown described the flight with the Bv 141 as follows. “With the flaps set to start, there was surprisingly little take-off swing, although I had expected rather a lot. The run was short, but I found the undercarriage took a long time to retract, although I suspected the hydraulics were sluggish after a long period of disuse.

The climb was mediocre at a speed of 189 km/h (112 mph) and, remembering my Russian instructions, I did not go above about 915 m (3,000 ft). Cruising speed at that height was 325 km/h (202 mph). It was at this speed that I decided to try out the theory behind the asymmetric layout of the 141, namely that in the event of attack, the aircraft could be stood on its wing tip and held there in straight flight, thus giving the gunner in the cone of the nacelles a tremendous field of fire. 

Frankly, I was sceptical of this claim of edge-on straight flight, but it proved to be, as near as damn it, true. I then stepped up the power, increasing the speed to 360 km/h (224 mph), but just as I rolled the aircraft on to its port side, the engine suddenly backfired heavily and oil pressure began to drop. This terminated any short handling session, as I considered discretion better than providing the Russians with their eagerly awaited spectacle. 

I therefore turned straight into the landing pattern with the engine throttled well back, and lowered the undercarriage immediately at about 610 m (2,000 ft) to give it time to lower in case it got temperamental. I had both flaps and the undercarriage lowered by about 305 m (1,000 ft), across wind of the final approach, turning on to finals at 150 m (490 ft) at 145 km/h (90 mph) and easing the speed off to 130 km/h (80 mph) over the airfield boundary. 

I stopped the engine at the end of the landing run, as it was obviously very sick. …. In retrospect, I am really glad to have had the unique opportunity of even a short flight in the Bv 141B, because it left me with the realisation that it was not as bad an aircraft as its development history seemed to suggest. It had good, effective controls, although it had poor lateral stability, which would have made it unpleasant to fly in turbulence at low level. Maybe this and the fact that its competitor, the Fw 189, had excellent flying characteristics, were the real reasons for its demise before reaching operational production.  “

Allegedly, according to some internet sources, at least one Bv 141 was captured by the British forces. It was then shipped to England for evaluation, but its fate is unknown. 

Production

How many Bv 141s were produced is not clear in the sources. The number ranges from 13 to 18 aircraft being built. This includes at least three prototypes, five of the slightly improved A series and some 10 B series aircraft. The last Bv 141B was delivered in mid-May 1943.

  • Ha 141 Prototype – The first prototype was built as a Blohm & Voss private venture.
  • BV 141A –  Slightly improved version.
  • BV 141B – Powered by a much stronger engine and with many other modifications, especially to the wing design.  

Operators

  • Germany – A few aircraft were used experimentally by the Luftwaffe.
  • Soviet Union – After the War, the Soviets managed to capture one Bv 141B, but its fate is unknown.
  • United Kingdom – Possibly captured one, which was allegedly shipped to England for evaluation.

Conclusion

The BV 141 initially demonstrated generally good flight characteristics, despite its unusual and radical design. The desire to further improve the flight performance, and distrust by the Luftwaffe eventually killed the project. The extensive redesign of the Bv 141B series simply had too many problems that were never completely resolved. The Luftwaffe was also reluctant to invest more time in it, especially as the more orthodox Fw 189 was being introduced into service. In the end, while it was not put into production, the BV 141 was nevertheless an interesting design and certainly deserves a spot in aviation history.

Bv 141B Specifications

Wingspans 57  ft 3  in / 17.56  m
Length 45  ft 9 in / 13.9 m
Height 11 ft 9 in  / 3.6  m
Wing Area 570 ft² / 52.9 m²
Engine One BMW 801 A-0 1.560 HP 14 cylinder radial engine
Empty Weight 10,360  lbs / 4,700 kg
Maximum Takeoff Weight 13,450 lbs / 6,100 kg
Fuel Capacity 470 l
Climb Rate to 6 km In 8 minute 48 second
Maximum Speed at 5.000 m 272 mph / 438 km/h
Cruising speed 250 mph  / 400km/h
Range 745  miles / 1,200 km
Maximum Service Ceiling 32,810 ft / 10,000 m
Crew Pilot, observer and the rear gunner. 
Armament
  • Two forward fixed 0.3 in (7.92 mm) machine guns and one same caliber machine gun placed to the rear.
  • Up to four 110 lb (50 kg) bombs

Gallery

Illustrations by Ed Jackson

Bv 141 V2 – The 1st Prototype
Bv 141B – The first B Series Prototype
Bv 141B V-11
Bv 141B V-18 with 50kg Bomb Mounted
Bv 141B Overhead View

Credits

  • D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograd
  • B.Eric (1977/2010) Wings Of The Luftwaffe Flying The Captured German Aircraft of World War II, Hikoki Publications.
  • C. Chant (2007) Pocket Guide Aircraft Of World War II, Grange Books. 
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book.
  • Jean-Denis G.G. Lepage Aircraft Of The Luftwaffe 1935-1945, McFarland and Company.
  • D. Donald (1994) Warplanes Of The Luftwaffe, Barnes and Noble. 

Heinkel He 114

Nazi flag Nazi Germany (1936)
Shipborne and coastal reconnaissance aircraft – 98~118 Built

The He 114 Source: www.warbirdphotographs.com

In the mid-thirties, the German Ministry of Aviation (Reichsluftfahrtministerium – RLM) tasked the Heinkel company with developing a replacement for the He 60 shipborne and reconnaissance aircraft. While Heinkel fulfilled the request by building the He 114, its overall performance was deemed insufficient for German standards.

History

During the early thirties, the He 60 was adopted for service as the main German shipborne and coastal reconnaissance aircraft. As it was considered outdated, in 1935, the RLM issued to Heinkel a request for a new shipborne and coastal reconnaissance aircraft that was to replace the He 60. The next year, two prototypes were completed. While it was originally planned to test these aircraft with the BMW 132 engine, due to lack of availability, this was not possible. The first prototype (with D-UBAM marking) made its maiden flight in September 1936. It was powered by a Daimler Benz DB-600A which gave out 900 hp. The test results of the first flight were disappointing, as it proved difficult to control on the water but also in the air. The second prototype, V2 (D-UGAT), powered by a 740 hp Jumo 210 E, made its first flight in December 1936. It was used to test the catapult launching capabilities of this aircraft. It had some modifications in comparison to the first prototype, like having a larger tail and redesigned floats. Despite some improvements, the catapult launch testings from the Gneisenau showed that the He 114 was not suited for this role.

Despite not having a promising start, further prototypes were ordered. The V3 (D-IDEG) prototype was powered by an 880 hp BMW 132 K (or D, depending on the source) engine. The floats were once again redesigned and the pilot had a better-glazed shield. This aircraft was tested in April 1937 with similar performance as previous versions.

V4 (D-IOGD) made its maiden test flight in August 1937. It had many modifications in order to improve its performance. The wing’s edges were redesigned, new floats were used and it was also fitted with machine gun armament. V5 (D-IQRS) had new improved floats which enabled it to take-off even from ice. While most sources mention only five prototypes, some note that there were two more. The V6 and V7 prototypes were tested with similar equipment and were armed with two machine guns, one firing through the propeller and the second mounted to the rear. Additional armament tested consisted of two 50 kg (110 lb) bombs.

A side view of the V4 prototype, during a test flight. Source www.warbirdphotographs.com

Technical characteristics

The He 114 was designed as a single-engine, all-metal, twin crew biplane aircraft. It had a monocoque oval-shaped fuselage design. It was powered by one BMW 132K 960 hp nine-cylinder radial engine. The fuel load consisted of 640 l.

The He 114 BMW 132K 960 hp nine-cylinder radial engine. Source: www.warbirdphotographs.com

Somewhat unusual for biplanes of the era, the lower wings were much smaller than the upper ones. They had a half-elliptical design and were thicker than the upper wings. The upper wing was connected to the fuselage by two ‘N’ shaped struts. There were also two ‘Y’ struts connecting the lower and the upper wings. The upper wing was constructed using three parts with two ailerons. The upper wing could, if needed, be folded to the rear. The landing gear consisted of two floats which could also act as auxiliary fuel storage tanks with 470 l each.

On later models, the floaters were used as auxiliary fuel tanks. Source www.warbirdphotographs.com

The crew consisted of the pilot and the rear positioned machine gunner/observer. The armament consisted of one MG 15 7.92 mm (0.31 in) machine gun placed to the rear. The ammunition load for this machine gun was 600 rounds. Additionally, there was an option to externally mount two 50 kg (110 lb) bombs.

Close up view of The He 114 pilot control table. Source: www.warbirdphotographs.com/luftwaffephotos

Further development

Despite being shown to have poor performance, a small production run was made by Heinkel. Some 10 (or 6 depending on the source) aircraft of the A-0 series, together with 33 of the A-1 series would be built. The only difference was the use of a larger rear tail design on the He 114A-1 series. The small number of He 114 built were given to various test units and flight schools, where its performance was often criticized by all. During its introduction to service, the much more promising Ar-196 was under development, but it would need some time until production was possible. As a temporary solution, the Luftwaffe officials decided not to retire the He 60 from service yet. Heinkel was informed that, due to the He 114’s overall poor performance, it would not be accepted for service and that it would be offered for export if anyone was interested. For this reason, Heinkel developed the He 114A-2 series. The He 114A-2 had a reinforced fuselage, floats that could be used as fuel storage tanks, and, additionally, it was modified to have catapult attach points. The He 114A-2, while tested, was not operated by the Luftwaffe, and it was used for the export market.

The following B-series (including B-1 and B-2) were actually just A-2 planes with some slight improvements, meant primarily for export. The history of the C-series is somewhat unclear, as it appears to be specially developed for Romania. It was much better armed, with either two 20 mm (0.78 in ) MG 151 cannons, two 13 mm (0.51 in) MG 131 heavy machine guns, or even two MG 17 7.92 mm (0.31 in) (the sources are not clear) placed inside the lower wings. Some sources also mention that additional machine guns were installed inside the engine compartment and could be fired through the propeller. Additionally, it appears that its fuselage was modified to be able to carry two additional 50 kg (110 lb) bombs. The rear positioned MG 15 was unchanged. This version also had a new Junkers type 3.5 m diameter propeller. The floaters were also slightly redesigned and it received smoke screen trovers. Additionally, to provide better stability while positioned near shore, a small anchor could be realized.

Operational use

Despite not being accepted by the Luftwaffe, due to the Kriegsmarine’s (German war navy) lack of sufficient seaplanes, some He 114 had to be used for this purpose. The distribution of the He 114 began in 1938 when the 1./Küstenfliegergruppe 506 was equipped with this aircraft. In 1939, it was 43equipped with the older He 60, as these proved to be better aircraft. Some German ships, like the Atlantis, Widder, and Pinguin, received these aircraft. During their use, the He 114 floater units proved to be prone to malfunctions. These were reported to be too fragile and could easily be broken down during take-off from the sea during bad weather.

While designed to be able to take-off from German ships, the He 114 construction was not strong enough and was prone to breakdowns with many aircraft being lost this way. Source /www.warbirdphotographs.com/luftwaffephotos
Despite intended as a replacement of the He 60 this was never implemented due to He 114 poor performance. Source www.warbirdphotographs.com/luftwaffephotos

A group of 12 He 114 C-1 aircraft that were to be sold to Romania were temporarily allocated to the 2nd Squadron of the 125th Reconnaissance Group (2/125 Aufkl.Sta.). These units operated in the area of Finland’s shore. When the Bv 138 became available in sufficient numbers, the He 114 C-1 was finally given to Romania.

Foreign use

While the He 114 failed to get any large production orders in Germany, it did see some export success. These included Denmark, Spain, Romania and Sweden. The B-series was sold, which was more or less a copy of the A-2 series.

In Danish service

The Danish use of the He 114 is not clear. Depending on the source, there are two versions. In the first, Denmark managed to buy 4 He 114 aircraft and even ordered more, but the German occupation stopped any further orders. In the second, while Denmark wanted to buy some He 114, nothing came of it, once again due to German occupation.

In Spanish service

During 1942, Spain obtained some 4 He 114s from the Germans. In Spanish service, these were known as HR-4. Despite their obsolescence and lack of spare parts, these would remain in use up to 1953.

Small numbers of He 114 were supplied to Spanish State during 1942. Source: www.warbirdphotographs.com

In Romanian service

Romania received a group of 12 He 114 in 1939. During the war, the number would be increased to 29 in total. These would be extensively used to patrol the Black Sea. At the end of the war, these were captured by the Soviets, who confiscated them. Some would be returned to Romania in 1947, which would continue to use them up to 1960, when they were scrapped.

The He 114 in Romanian Service.Source: www.warbirdphotographs.com/luftwaffephotos

In Swedish service

Sweden bought some 12 He 114 in March 1941. In Swedish service, these would be renamed to S-12. Despite being an unimpressive design and prone to malfunction, the Swedish used them extensively during the period of 1941 to 1942, with over 2054 flight missions. They would remain in service up to 1945, with six aircraft being lost in accidents.

One S-12 (as it was known in Sweden) of 12 in total was sold to Sweden. Source: www.warbirdphotographs.com/luftwaffephotos

Production

Despite its poor performance, Heinkel undertook a small production of the He 114. The number of produced aircraft ranges from 98 to 118 depending on the source.

  • He 114 Prototypes – Between 5 to 7 prototypes were built
  • He 114 A – Limited production series
  • He 114 B – Export version of the A-series
  • He 114 C – Slightly improved version with stronger armament

Operators

  • Germany – Small numbers of these aircraft were operated by the Luftwaffe and Kriegsmarine, but their use was limited
  • Denmark – Possibly operated four He 114 before the German occupation
  • Spain – Bought four He 114, and operated them up to 1953
  • Sweden – Bought 12 He 114 in March 1941, which remained in use until 1945
  • Romania – Operated 29 He 114, with the last aircraft being scrapped in 1960

Surviving aircraft

While there are no complete surviving He 114s various parts and wrecks have been found over the years. Parts of one wreck were found in lake Siutghiol near Mamaia, on the Romanian Black Sea coast, in 2012. There is a possibility that the wreck of another lays in a lake near Alexeni as well.

Conclusion

The He 114 was an unsuccessful design that failed to gain any larger production orders in Germany. It had difficult controls both in the air and on the water. While it would see some limited service with the Luftwaffe, most would be sold abroad, where some were used up to the ’60s.

Specifications –  He 114A
Wingspan 44 ft 7 in / 13.6 m
Length 38 ft 2 in / 11.65 m
Height 17 ft 2 in / 5.23 m
Wing Area 455 ft² / 42.27 m²
Engine One BMW 132K 960 hp nine-cylinder radial engine
Empty Weight 5.070 lb / 2.300 kg
Maximum Takeoff Weight 8.090 lb / 3.760 kg
Fuel Capacity 640 liters
Climb Rate to 1 km In 4 minute 20 second
Maximum Speed 208 mph / 335 km/h
Range 572 mi / 920 km
Maximum Service Ceiling 16,075 ft / 4,900 m
Crew One pilot and one rear gunner
Armament
  • One rear-mounted 0.31 in (7.92 mm) machine gun
  • Two 110 lb (50 kg) bombs

Gallery

Illustrations by Ed Jackson

He 114C-1 1./SAGr.125 -Baltic Area 1941
He 114A-2 1.-KuFlGr-506 Devenow 1938
He 114A 1./SAGr.125 Baltic Area 1941
He 114B in Romanian Service Circa 1943

Sources

  • D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograd
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book.
  • S. Lonescu and C. Craciunoi, He 114, Editura Modelism
  • Jean-Denis G.G. Lepage Aircraft Of The Luftwaffe 1935-1945, McFarland and Company.
  • Ferenc A. and P. Dancey (1998) German Aircraft Industry And Production 1933-1945. Airlife England.
    https://www.cugetliber.ro/stiri-eveniment-hidroavion-din-al-doilea-razboi-mondial-descoperit-in-lacul-tasaul-201060

Heinkel He 178

Nazi flag Nazi Germany (1939)
Experimental jet-engine powered aircraft – 2 prototypes and 1 mockup

The He 178 has the honor to be the first aircraft that made it to the sky solely powered by a jet engine. It was mainly designed and built to test the new jet engine technology. Two would be built, of which the first prototype made its maiden flight in late October 1939, just weeks after the start of the Second World War.

A photograph of the He 178 taken during its first test flight. Source: airwar.ru

Early German jet engine development

The leading German scientist in jet engine development was Hans Joachim Pabst von Ohain. He began working on jet engine designs during the thirties, and by 1935 managed to patent his first jet engine while working at the University of Göttingen. The following year, the director of this University, seeing the potential of the Hans Joachim jet engine, wrote a letter to Ernst Heinkel (the owner of the Heinkel aircraft manufacturer). Ernst Heikel was very interested in the development of jet-powered aircraft, seeing they had the potential of achieving great speed and range. After a meeting with Hans Joachim (17th March 1936), Ernst immediately employed him and his team (led by a colleague named Max Hahn) to work for his company.

In 1936, Hans Joachim and his team began building the first working prototype jet engine, using hydrogen gas as the main fuel, the HeS 1 (Heinkel-Strahltriebwerk 1). The HeS 1 was not intended as an operational engine, but for testing and demonstration purposes only. It was built and tested in early 1937, and was considered successful, so the research continued. The HeS 2 was the second test jet engine that initially used hydrogen gas fuel, but this would be changed to gasoline fuel. While this engine had some issues, it helped Hans Joachim and his team in gaining important experience in this new technology.

In September 1937, a series of modifications were made in order to improve its performance. By March 1938, the third HeS 3 jet engine was able to achieve 450 kg (1,000 lbs) of thrust during testing, much lower than the estimated 800 kg (1,760 lbs). Further modifications of the HeS 3 jet engine would lead to an increase of only 45 kg (100 lbs) of thrust.

Experimenting with the HeS 3 engine mounted on the He 118

In May (or July depending on the source) of 1939, testing of the improved HeS 3A engine began. At the same time, field testing done by attaching this engine to a piston-powered aircraft was being planned. For this reason, an He 118 was equipped with this auxiliary test jet engine. The He 118 was Heinkel’s attempt to build a dive bomber, but the Junkers Ju 87 was chosen instead. Having a longer undercarriage, the He 118 was able to mount the jet engine without any major problem. In order to keep the whole flight testing a secret, the tests were scheduled to start early in the morning.

Drawing of the He 118 equipped with the experimental HeS 3A jet engine. An improved version of this engine would later be mounted in the He 178. Source: www.fiddlersgreen

The pilot chosen for this test flight was Erich Warsitz. When the He 118 reached the designated height using the piston engine, the pilot would then activate the auxiliary jet engine. During this flight, the He 118 powered by the HeS 3A jet engine managed to achieve 380 kg (840 lb) of thrust. More test flights were carried out with the modified He 118 until it was destroyed in a fire accident during landing. Despite this accident, the final version of the HeS 3B jet engine was intended to be mounted in the Heinkel designed He 178 aircraft. While this engine was far from perfect and did not manage to achieve the designer’s expected thrust, Ernst Heinkel urged its installation in the He 178 as soon as possible.

The He 178 history

Interestingly, the whole He 178 development began as a private venture. It was also under the veil of secrecy and the RLM (Reichsluftfahrtministerium), the German Aviation Ministry, was never informed of its beginning. Ernst Heinkel gathered the designers and technical directors to reveal to them ’…We want to build a special aircraft with a jet drive! The RLM is not to know anything about the 178. I take full responsibility!..’

Heinkel was possibly motivated by a desire to get an early advantage over the other German aircraft manufacturers. The main competitor was the Junkers Flugzeugwerke, which would also show interest and invest resources in developing this new technology.

While Hans Joachim was in charge of developing the proper jet engine, work on the He 178 airframe was led by the team of Hans Regner as main designer and Heinrich Hertel, Heinrich Helmbold, and Siegfried Günter as aircraft engineers. The first He 178 mockup was ready by the end of August 1938. Ernst Heinkel was, in general, satisfied with the design, but asked for some modifications of the cockpit and requested adding an emergency escape hatch door for the pilot on the starboard side. The following year, both the He 178 airframe and the HeS 3B jet engine were ready, so the completion of the first working prototype was possible.

Technical characteristics

The He 178 was designed as a shoulder wing, mixed construction, jet engine-powered aircraft. As it was to be built in a short period of time and to serve as an experimental aircraft, Ernst Heinkel insisted that its overall construction should be as simple as possible. It had a monocoque fuselage which was covered with duralumin alloy. The wings were built using wood and were sloping slightly upwards. The wing design was conventional and consisted of inboard trailing edge flaps and ailerons. The rear tail was also made of wood. The pilot cockpit was placed well forward of the wing’s leading edge.

The jet engine used initially was the HeS 3B, but this was later replaced with a stronger HeS 6 jet engine. The He 178 jet engine was supplied with air through a front nose Pitot-type intake, then through a curved shaped duct which occupied the lower part of the fuselage, leading directly to the engine. The exhaust gasses would then go through a long pipe all the way to the end of the fuselage. At the developing stage, there were proposals to use side intakes but, probably for simplicity’s sake, the nose-mounted intake was chosen instead. The He 178 fuel tank was placed behind the cockpit.

The He 178 was to be equipped with a retractable landing gear with two larger wheels in the front and a small one at the rear. All three landing gear legs retracted into the aircraft fuselage. For unknown reasons, this was not adopted early on and many test flights were carried out with landing gear in the down position. One possible explanation was that the Heinkel engineers may have left it on purpose. They probably wanted to have the landing gear down in order to be able to land quickly if the engine failed.

First test flights

The first He 178 V1 prototype was completed by June 1939, when it was transported to the Erprobungsstelle Rechlin (test center). Once there, it was presented to Adolf Hitler and Hermann Göring. Interestingly, prior to the flight testing He 178 V1, another Heinkel innovative rocket-powered aircraft, the He 176 was demonstrated. On 23rd June 1939, the He 178 pilot Erich Warsitz performed a few ground test runs. During this presentation, the He 178 was not taken to the sky, mostly due to the poor performance of the HeS 3A jet engine.

Following this presentation, He 178 V1 was transported back to the Heinkel factory in order to prepare it for its first operational test flight. The first He 178 test flight was achieved on 27th August 1939 at the Heinkel Marienehe Airfield near Rostock. At this stage, the pilot, Erich Warsitz, was instructed by the Heinkel engineers not to fly this aircraft at high speeds, mostly due to the fixed undercarriage. In addition, the HeS 3B could only provide enough thrust for only six minutes of effective flight. During this flight, there was a problem with the fuel pump but, despite this, the pilot managed to land with some difficulty but nevertheless successfully.

While there are only a few photographs of the He 178 V1 prototype, this was taken during its maiden flight on the morning of 27 August 1939. Source: airwar.ru

The flight is best described by the pilot’s own words. ‘…As the aircraft began to roll I was initially rather disappointed at the thrust, for she did not shoot forward as the 176 had done, but moved off slowly. By the 300-meter mark, she was moving very fast. The 176 was much more spectacular, more agile, faster, and more dangerous. The 178, on the other hand, was more like a utility aircraft and resembled a conventional aircraft …In this machine, I felt completely safe and had no worries that my fuel tanks would be dry within a minute. She was wonderfully easy to hold straight, and then she lifted off. Despite several attempts, I could not retract the undercarriage. It was not important, all that mattered was that she flew. The rudder and all flaps worked almost normally, the turbine howled. It was glorious to fly, the morning was windless, the sun low on the horizon. My airspeed indicator registered 600 km/h, and that was the maximum Schwärzler had warned me. Therefore, I throttled back, since I habitually accepted the advice of experienced aeronautical engineers. The tanks were not full and, contrary to custom, I did not want to gain altitude for a parachute jump should things go awry. It was supposed to be a short flight. At 300 to 400 meters altitude I banked cautiously left – rudder effect not quite normal, the machine hung to the left a little, but I held her easily with the control stick, she turned a little more and everything looked good.

After flying a wide circuit my orders were to land at once, this had been hammered into me, but now I felt the urge to go round again. I increased speed and thought, ‘Ach! I will!’ Below I could see the team waving at me. On the second circuit – I had been in the air six minutes – I told myself ‘Finish off!’ and began the landing. The turbine obeyed my movement of the throttle even though a fuel pump had failed, as I knew from my instruments and later during the visual checks. Because the airfield was so small for such flights I was a little worried about the landing because we did not know for certain the safe landing speed: we knew the right approach, gliding and landing speeds in theory, but not in practice, and they did not always coincide. I swept down on the heading for the runway. I was too far forward and did not have the fuel for another circuit. Now I would have to take my chances with the landing, losing altitude by side-slipping. I was flying an unfamiliar, new type of aircraft at high speed near the ground and I was not keen on side-slipping. It was certainly a little risky, but the alternative was overshooting into the River Warnow. Such an ending, soaking wet at four on a Sunday morning, appealed less. The onlookers were horror-struck at the maneuver. They were sure I was going to spread the aircraft over the airfield. But the well-built kite was very forgiving. I restored her to the correct attitude just before touching down, made a wonderful landing, and pulled up just short of the Warnow. The first jet flight in history had succeeded! …’’ Source: L. Warsitz (2008) The First Jet Pilot The Story of German Test Pilot Erich Warsitz.

An interesting fact is that pilot Erich Warsitz managed to be the first man that flew on both a rocket-powered (He 176) and a jet-powered (He 178) aircraft in history.

Heinkel’s attempt to gain the support of the Luftwaffe

During the following months, Hans Joachim tried to improve the HeS 3B jet engine, which would lead to the development of the HeS 6. This jet engine managed to achieve a thrust of 1,300 lb (590 kg), but due to the increase in weight, it did not increase the He 178’s overall flight performance.

As the He 178 was built as a private venture, Heinkel’s next step was to try obtaining state funding for further research from the RLM. For this reason, a flight presentation was held at Marienehe with many RLM high officials, like Generaloberst Ernst and General Erhard Milch. During the He 178 V1’s first attempt to take off, the pilot aborted the flight due to a problem with the fuel pumps. During his return to the starting point, a tire burst out. The pilot, Erich Warsitz, lied to the gathered RLM officials that this was the reason why he aborted the takeoff.
After a brief repair, Erich Warsitz managed to perform several high-speed circuits flights. During the presentation flight, Erich Warsitz estimated that he had reached a speed of 700 km/h (435 mph), which was incorrect, as later turned out… Interestingly, even at this stage, the He 178 was still not provided with the retractable landing gear. The RLM officials were not really impressed with the He 178’s performance, and for now, no official response came from them.

This was for a few reasons. The Luftwaffe had achieved great success during the war with Poland, which proved that the piston-powered engines were sufficient for the job. In addition, Hans Mauch, who was in charge of the RLM’s Technical Department, as opposed to the development of jet engines. He was against the development of jet engines by any ordinary aircraft manufacturer. Another problem was the He 178’s overall performance. During the test flights, the maximum speed achieved was only 595 km/h (370 mph). Hans Joachim calculated that the maximum possible speed with the HeS 6 was 700 km/h (435 mph). The speed was probably affected by the landing gear, which was still deployed and not retracted.

While the RLM did not show any interest in the He 178, Heinkel would continue experimenting with it. While the He 178 did perform many more flight tests, these were unfortunately not well documented. What is known is that, in 1941, the He 178 (with fully operational landing gear) managed to achieve a maximum speed of 700 km/h (435 mph) with the HeS 6 jet engine.

The He 178’s final fate

By this time, Heinkel was more interested in the development of the more advanced He 280. In addition, the use of the HeS 3B jet engine was completely rejected, being seen as underpowered. The interest in the development of the He 178 was lost and it was abandoned. The second prototype, which was similar in appearance, but somewhat larger in dimensions, was never fitted with an operational jet engine. It was possibly tested as a glider. There was also a third mockup prototype built that had a longer canopy.

This is a wooden mockup of the third prototype. While it is somewhat difficult to spot, the front landing gear wheels are actually made of wood and not rubber. Source: airwar.ru
Front view of He 178 V2. Strangely, more photographs of the second prototype survived the war than of the first prototype. Source: airwar.ru
Rearview from the second He 178 V2 prototype. Source: airwar.ru
This is the second V2 prototype which was to be powered by the HeS 6 jet engine but was never equipped with it. Source: Source: airwar.ru

The He 178 V1 was eventually given to the Berlin Aviation Museum to be put on display. There, it was lost in 1943 during an Allied bombing raid. The fate of the second prototype is unknown but it was probably scrapped during the war. While no He 178 prototypes survived the war, today we can see a full-size replica at the Rostock-Laage Airport in Germany.

An He 178 replica can be seen at Rostock-Laage Airport in Germany. Source: Wiki

Conclusion

Today, it is often mentioned that the He 178 was Germany’s lost chance to get an edge in jet-powered aircraft development. What many probably do not know is that the He 178 was not designed to be put into production, but to serve as a test aircraft for the new technology. We also must take into consideration that the jet engine technology was new and needed many years of research to be properly used. While Germany would, later on, operate a number of jet aircraft, they were plagued with many mechanical problems that could never be solved in time. Regardless, the He 178 was an important step in the future of aviation development, being the first aircraft solely powered by a jet engine

Heinkel He 178 (HeS 6 jet engine) Specifications

Wingspan 23 ft 7 in / 7.2 m
Length 24 ft 6 in / 7.5 m
Wing Area 98 ft² / 9.1 m²
Launch Weight 4.405 lbs / 2.000 kg
Engine One HeS 6 jet engine with 590 kg (1,300 lb) of thrust
Maximum speed 435 mph / 700 km/h
Cruising speed (when towed) 360 mph / 580 km/h
Crew
  • Pilot
Armament
  • None

Gallery

Illustration’s by Ed Jackson

He-178 V1

He 178 V2

Sources

  • C.Chant (2007), Pocket Guide Aircraft Of The WWII, Grange Books
  • D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograds
  • Jean-Denis G.G. Lepage (2009), Aircraft Of The Luftwaffe 1935-1945, McFarland & Company Inc
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book
  • T. Buttler (2019) X-Planes 11 Jet Prototypes of World War II, Osprey Publishing
  • L. Warsitz (2008) The First Jet Pilot The Story of German Test Pilot Erich Warsitz Pen and Sword Aviation

Blohm und Voss Bv 40

Nazi flag Nazi Germany (1943)
Glider-fighter – 6 prototypes

By the middle of the Second World War, the Germans were losing control of the skies over the occupied territories. Even the Allied air attacks on Germany itself were increasing. In an attempt to stop these raids, the Blohm und Voss company presented the Luftwaffe with a new project which involved using cheap gliders in the role of fighters. While a small series would be tested nothing came from this project.

The Bv 40 was designed as a cheap, armed, and armored fighter glider. This is the first prototype (PN + IA) which was lost on its second test flight. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

History

By 1943, the German Luftwaffe (air force) was stretched to limits in an attempt to stop the ever-increasing number of Allied air attacks. The Allied Bombing campaign particularly targeted German war industry. During this time, there were a number of proposals on how to effectively respond to this ever-increasing threat. Proposals like the use of a large number of relatively inexpensive fighter aircraft, that were to be launched from larger aircraft, were considered with great interest. One proposal went even further by suggesting the use of an inexpensively modified glider for this role. This idea came from Dr. Ing Richard Vogt who was the chief designer at Blohm und Voss.

In mid-August 1943, Dr. Ing Richard Vogt handed over the plans of a cheap and easy to build (without the use of strategic materials which were in short supply) glider that could be built by a non-qualified workforce to the German Ministry of Aviation (Reichsluftfahrtministerium – RLM). The pilots intended to fly this glider were to be trained in basic flying skills only. The initial name of this Gleitjäger (glider fighter) was P186 which would later be changed to Bv 40. After receiving the initial plans the RLM responded at the end of October 1943 with a request for six prototypes to be built. The number of prototypes would be increased to 12 December 1943 and again to 20 in February 1944. If the project was successful, a production order of some 200 per month was planned.

One of the few built prototype is preparing for a test flight. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Design

The Bv 40 was designed as a partly armored and armed, mixed construction, fighter glider. Its 0.7 m (2ft 3 in) wide fuselage was mostly constructed using wooden materials, while the cockpit was provided with armored protection. The front armor of the cockpit was 20 mm (0.78 in) thick, the sides were 8 mm (0.31 in), and the bottom 5 mm (0.19 in) thick. Additionally, the cockpit received a 120 mm thick armored windshield.

The wings and the tail unit were also built mostly using wooden materials. The rear tail had a span of 1.75 m (5ft 9in). For towing operation, the Bv 40 was provided with a jettisonable trolley that was discarded once the Bv 40 was in the air. Once it was back to the airbase it was to land using a skid.

What is interesting is that in order to have as small a size as possible, the cockpit was designed so that the pilot had to be in a prone position. While a pilot prone positioned design offered advantages like being a smaller target and having an excellent view at the front, it also caused some issues like a bad rearview. While this design was tested in Germany (like the Akaflieg Berlin B9 for example), it was never implemented. Inside the cockpit, there were only basic instruments that were essential for the flight. In addition, due to the high altitude that it was supposed to operate, the pilot was to be provided with an oxygen supply system and a parachute. The side windows had sliding armored screens with integral visor slots that could offer extra protection.

Close up view of the small pilot cockpit. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

The armament of this glider consisted of two 3 cm (1.18 in) MK 108 cannons. These were placed in the wing roots with one on each side. This was serious firepower which could cause a huge amount of damage to the target it hit. Due to its small size, the ammunition loadout was restricted to 35 rounds per cannon. The ammunition feed system was quite simple; it consisted of a rectangular ammunition feed hatch placed in the middle of each wing. Inside the wings, an ammunition conveyor chute was placed to guide the rounds directly to the cannons. There was also a secondary option which included the use of one cannon together with the ‘Gerät-Schlinge’ 30 kg (66 lb) towed guided bomb. This bomb was to be guided by the Bv 40 toward the enemy bombers and was then detonated at a safe distance. In practice, during testing, this proved to be almost impossible to achieve success.

The front view of the Bv 40. Note the towing cable and the release mechanism just behind it. The pilot was beside he armored cockpit also protected by a 120 mm thick armored windshield. The large box with the round capcel (marked as number 5) is the compass housing. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Other weapon systems were also proposed. For example the use of R4M rockets placed under the wings. There was also a proposal to use the Bv 40 in the anti-shipping role by arming it with four BT 700 type torpedoes or even using 250 kg (550 lbs) time-fused bombs. Due to the extreme weight increase, this was never possible to achieve.

How should it be used?

In essence, the glider was to be towed by a Me-109G to a height of around 6 km before being released. Once released, it was to engage incoming enemy bombers with its two 3 cm (1.18 in) cannons. If circumstances allowed, a second attack run was to be launched. After the attack, the pilot simply guided the glider to the nearby airbase. It was hoped that the small size and armored cockpit would be the pilot’s best defense.

Testing of the Prototypes

Once the first prototype (marked PN+UA) was completed in early 1944, the first test flight made at Hamburg-Finkenwerder was unsuccessful as it was not able to take-off from the ground. A second more successful attempt was made on the 6th (or 20th depending on the source) May 1944 at Wenzendorf. Despite being intended to have an armored cockpit, the first prototype was tested without it. It appears also that during the maiden flight it was towed by another unusual Blohm und Voss design: the asymmetrical Bv 141. But according to most sources, the Me-110 was to be used, which seems more plausible. After the first flight, some modifications to the jettisonable undercarriage were made. On the 2nd June 1944, the first prototype was lost during a crash landing.

The Bv 40 small size is evident here. Source: Pinterest

A few days later the second prototype (PN+UB) made its first test flight. During a dive, it managed to reach a speed of 600 km/h (370 mph). Its final fate is unknown but it was probably scrapped. The third prototype never took off from the ground as it was used for static structural tests. The fourth prototype (PN+DU) was lost during its first test flight but the precise date is unknown. The fifth prototype (PN+UE) made its first test flight on 6th July 1944, but its fate is also unknown. The last prototype (PN+UF) was tested with a new fin section and made its maiden flight on the 27th of July 1944.

During these test flights, the Bv 40 was able to achieve a flight speed of up to 650 km/h (404 mph). During dive testing, the following speeds at different altitudes were achieved: 850 km/h (528 mph) at 4,000 m (13,120 ft), 700 km/h (435 mph) and an astonishing 900 km/h (560 mph) at 5,000 (16,400 ft). Nevertheless, the results of the test flight appear to have been disappointing due to Bv 40’s poor overall flight performance.

The Bv 40 interior of the pilot cockpit. The Pilot was placed in a prone position. While this arrangement was tested on some German aircraft design in practice it was never implemented. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Rejection of the Project

Once the project was properly revised by the RLM officials, the obvious shortcomings of the Bv 40 became apparent. The Bv 40 was simply deemed too helpless against the Allied fighter cover. In addition, when the report of the first few prototypes was studied, it became clear even to the RLM that the Bv 40 was simply a flawed concept and so it decided to cancel it in mid-August 1944. The next month the Allies bombers destroyed the remaining 14 Bv 40 which were in various states of production.

Not wanting to let their project fail, the Dr. Ing Richard Vogt and the Blohm und Voss designers proposed to mount either two Argus As 014 pulsejets or two HWK 109-509B rocket engines under its wings. Nothing came from this as the Me-328 and Me-163 proved to be more promising (these ironically also ended in failure). There was even a proposal to modify the BV 40 to be used as a Rammjäger (ram fighter) which was never implemented.

Production

Despite initial requests for the production of 200 such gliders only a small prototype series would be built by Blohm und Voss during 1944.

  • Bv V1 – Lost during its second test flight.
  • Bv V2 – Fate unknown.
  • Bv V3 – Used for static testing.
  • Bv V4 – Lost during it’s first flight.
  • Bv V5 – Flight tested but final fate unknown.
  • Bv V6 – Tested with modified fin section.
  • Bv V7-V20 – Lost during one of many Allied bombing raids on Germany.

Operators

Germany – While testing was conducted on a small prototype series no production order was given.

The Bv 40 side view. Source: http://www.histaviation.com/Blohm_und_Voss_Bv_40.html

Conclusion

The Bv 40 on paper had a number of positive characteristics; it was easy to make, could be available in large numbers, was cheap, well-armed and it did not need skilled pilots. But in reality, the poor performance, lack of a power plant, low ammunition count, and its vulnerability to Allied escort fighters showed that this was a flawed concept. This was obvious even to RLM officials who put a stop to this project during 1944.

The Bv 40 drawings. The small rectangles in the middle of the wings are ammunition feed openings. Source: http://www.warbirdsresourcegroup.org/LRG/luftwaffe_blohm_und_voss_bv40.html

Gallery

Illustration by Ed Jackson

Blohm und Voss Bv 40

Blohm und Voss Bv 40 Specifications

Wingspan 25 ft 11 in / 7.9 m
Length 18 ft 8 in / 5.7 m
Height 5 ft 4 in / 1.63 m
Wing Area 93.64 ft² / 8.7 m²
Empty Weight 1.844 lbs / 830 kg
Launch Weight 2.097 lbs / 950 kg
Climb rate to 7 km In 12 minutes
Maximum diving speed 560 mph / 900 km/h
Cruising speed (when towed) 344 mph / 550 km/h
Maximum Service Ceiling 23,000 ft / 7,000 m
Crew
  • Pilot
Armament
  • Two 3 cm (1.18 in) MK 108 cannons
  • Or one 3 cm (1.18 in) MK 108 cannon and a glider bomb

Sources

  • J. Miranda and P. Mercado (2004) Secret Wonder Weapons of the Third Reich: German Missiles 1934-1945, Schiffer Publishing.
  • R. Ford (2000) Germany Secret Weapons in World War II, MBI Publishing Company.
  • Jean-Denis G.G. Lepage Aircraft Of The Luftwaffe 1935-1945, McFarland and Company.
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book.
  • D. Herwig and H. Rode (2002) Luftwaffe Secret Projects, Ground Attack and Special Purpose Aircraft, Midland.
  • http://www.warbirdsresourcegroup.org/LRG/luftwaffe_blohm_und_voss_bv40.html
  • https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Blohm und Voss Bv 222

Nazi flag Nazi Germany (1938)
Transport plane – 13 built with 4 uncompleted aircraft

The Blohm und Voss Bv 222 was the largest World War Two flying boat that ever reached operational service. Even though it started as a civilian project, due to wartime demand, it was quickly put into service with the Luftwaffe during the Second World War.

The Bv 222 during a flight over Germany. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The History of Blohm & Voss

The Blohm & Voss Schiffswerft und Maschinenfabrik (shipbuilding and engineering works) company was founded in 1877 by Hermann Blohm and Ernst Voss. After World War I, Blohm & Voss continued production of ships, but also reoriented to the production of aircraft (especially flying boats). In the following years, the company managed to cooperate with Lufthansa (the German Passenger Airline) and later even with the Luftwaffe.
Early on in the development and production of their first aircraft, they received the ‘Ha’ designation (standing for Hamburger Flugzeugbau, the factory’s station at Hamburg). This would be later replaced by ‘Bv’ (also sometimes marked as ‘BV’), which represented the owner’s initials. Blohm & Voss would build a number of flying boat designs like the Ha 138, Ha 139, Bv 222 and BV 238. During the war, the company was also engaged in developing a number of glide bombs like the Bv 143 and Bv 246 Hagelkorn.

The first prototype of the Bv 222, V1 (reg. D-ANTE), was briefly tested by Lufthansa before being taken over by the Luftwaffe. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The Lufthansa Request

In 1937, Lufthansa opened a tender for long-range passenger transport flying boats. The requirements for this tender included that the aircraft had to be able to travel from Berlin to New York in 20 hours. A few well known German aircraft manufacturers responded to this tender, including Heinkel, Blohm & Voss and Dornier. Whilst both Heinkel and Dornier had enough experience in designing seaplanes, Blohm & Voss was relatively new to this. One of the first Blohm & Voss seaplane designs was the Ha 139. While only a few were built, the company gained valuable experience in building such aircraft. The man responsible for designing the flying boat was Dr. Ing. Richard Vogt (chief designer at the Blohm & Voss) and his assistant R. Schubert.

All three aircraft manufacturers presented their models. Heinkel submitted the He 120 (renamed later to He 220), Dornier came up with the Do 20 and Blohm & Voss proposed the Ha 222 (later renamed to Bv 222). The Lufthansa officials, after detailed considerations, decided that the best aircraft was the Bv 222. An official contract between Lufthansa and Blohm & Voss was signed on 19th August 1937 for three aircraft to be built.
By the end of 1937, the Lufthansa officials requested improvements to the Bv 222. One of these regarded the number of passengers. It now had to accommodate at least 24 passengers on shorter trips and 16 during long voyages across the Atlantic.

Change into a Military Project

The design work on the new aircraft began in January of 1938 and lasted almost a year. This was mainly due to the huge task and the inexperience of Blohm & Voss in designing such large aircraft. Nevertheless, the construction of the first Bv 222 V1 prototype began in September 1938, followed a few weeks later by the V2 and V3 prototypes. Work on the Bv 222 was slow and it dragged on into 1939 and 1940. By this time, due to the outbreak of war, a shortage of skilled labour and the decision to concentrate on the Bv 138, the Bv 222 had low priority.

In July 1940, Blohm & Voss presented a mockup of the Bv 222 exterior and interior to Lufthansa officials. They were generally satisfied but demanded some changes. In early August, despite receiving Lufthansa approval, the Bv 222 project was actually slowly being taken over by the Luftwaffe for its own use.

By the end of August 1940, the Bv 222 V1 prototype was completed, and many taxi and loading tests were carried out. The first test flight was piloted by Captain Helmut Wasa Rodig on 7th September 1940. While the general flight performance was deemed satisfactory, there were some issues, such as instability during horizontal flights and staggering from one side to another when floating on water. While still under development and testing for civilian use, the Bv 222 V1 received the registration D-ANTE.

The Bv 222’s cockpit. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

Technical Characteristics

The Bv 222 was designed as a six-engined, high wing, flying transport plane. Unfortunately, the sources do not provide us with more precise information about its construction. This is mostly due to the small number of aircraft built.

While the sources do not mention if it was built using only metal or mixed construction, the Bv 222’s fuselage was covered with 3-5 mm thick anticorrosive metal framework. Its large size made it possible to build two floors. The upper floor was designed for the crew of the plane. The lower floor was initially designed to accommodate civilian seats, but as the Bv 222 was put into military service, this area was used to store equipment or soldiers. A large door was provided to access the lower floor.

The wings were constructed using a huge tubular main spar. These were used to provide additional room for spare fuel and oil tanks. The fuel was stored in six fuel tanks with a total capacity of 3,450 litres. Four outboard stabilising floats (two on each side) were carried on the wings. These would split into two halves and retract into the wing. The purpose of these stabilising floats was to stabilise the plane during landings on water.
The crew number varied between each aircraft. It usually consisted of two pilots, two mechanics, a radio operator and, depending on the number of guns installed, additional machine gun operators.

The Bv 222 was initially powered by six Bramo 323 Fafnir 1000 hp strong radial engines. Other engines, for example Jumo 207C, were used later during the production run.

The defensive armament varied between each plane and usually consisted of several different machine guns or cannons. The following different types of weapons are known to have been used: 7.92 mm (0.31 in) MG 81, 13 mm (0.51 in) MG 131 and 20 mm (0.78 in) MG 151.

The Bv 222 V2 prototype from the rear. Here we can also see the rear defense turret. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The Bv 222 (V4, V5, V6 and V8) were equipped with the most advanced electronic equipment that the Germans had, such as the FuG 200 surface search radar, FuG 101 A radio altimeter, FuG 25 A friend or foe identification system and the FuG 16 command guided target approach system. The radio equipment used on these four were the Lorenz VP 257 and the Lorenz VP 245 transoceanic relay sets.

First Military Transport Flight Operations

By the end of 1940, Bv 222 V1 was mostly used for testing and correcting any issues. By December of 1940, due to the winter and bad weather, further tests were not possible. As Bv 222 V1 was fully operational and enough fuel was stored, it was deemed a waste of resources to simply wait for the arrival of spring. For this reason, Luftwaffe officials proposed for the Bv 222 V1 to be used in a military transport operation between Hamburg and Kirkenes (Norway). For this operation, the Bv 222 V1 was modified by adding a large side hatch door. During this operation, Bv 222 V1 received a military camouflage paint scheme and received the registration number CC+EQ. By mid August 1941, the Bv 222 V1 achieved a total of 120 hours flight, with some 65 tonnes of cargo and 221 wounded soldiers transported. This mission was a success and the Bv 222 V1 proved to be an effective transport plane.

Bv 222 V5 somewhere in the Mediterranean. Note the left wing’s outboard stabilizing floats designed to provide better balance when floating on water. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

After a period of needed general overhaul and repair, Bv 222 V1 was set for a new transport mission, this time to support the DAK-Deutsches Afrikakorps (German Africa Corps). The main bases of operation were from Athens to Derna in Africa. The mission was carried out from 16th October to 6th November 1941. In total, seventeen flights were carried out, with 30 tonnes of supplies and 515 wounded soldiers and personnel transported. As Bv 222 V1, at this time, was not equipped with any defensive armament, two Me 110s were provided for its escort. While it was a prototype plane, no defensive armament was installed. But, after several encounters with the British Air Force in the Mediterranean, the need for defensive armament became apparent. At this stage, the Bv 222 was lucky, as it managed to emerge from these engagements in one piece. It even managed to survive the attack of three British Beaufighters on a flight from Taranto to Tripoli.

During these transport flights, the improved Bramo 323 engines (which replaced the earlier BMW 132) achieved a solid but satisfactory overall flight performance. But the Bramo 323 engines were deemed prone to malfunctions.

Future Service within the Luftwaffe

During the winter of 1941/1942, Bv 222 V1 was again returned to Blohm & Voss for more repairs but also for fitting its first defensive armament. The armament consisted of several 7.92 mm (0.31 in) and 13 mm (0.51 in ) machine guns. Note that the information about armament in this article is taken from H. J. Nowarra’s book “Blohm and Voss Bv 222”, but other authors state that different armament was used. One MG 81 was placed in the nose, four more MG 81s were placed in the fuselage and two additional DL 131 turrets with MG 131s were placed in the upper fuselage. At the same time, Bv 222 V1 received a new registration code, X4+AH. It was attached to Luft-Transport-Staffel 222 (short LTS 222) which mainly operated in the Mediterranean. The LTS 222 official squadron marking was a Viking longship and it is probably for this reason that the Bv 222 were nicknamed ‘Wikings’.

The Bv 222 V8 placed on a ramp, possibly for repairs. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

During 1942, LTS 222 was reinforced with four newly built Bv 222s of the A-series. V4 (reg. num. X4+DH) was received in mid April, V5 (reg. num. X4+EH) on 7th July, V6 (reg. num. X4+FH) on 21st August and V8 (reg. num. X4+HH) in late September. These four were provided with defensive armament consisting of two DL 151 turrets, each armed with an MG 151 in the upper fuselage, one MG 131 in the nose position and two MG 81 on the fuselage sides.

After many extensive and dangerous transport missions, Bv 222 V1 finally ran out of luck, and was lost in a tragic accident in early 1943. While on a flight to Athens, due to Allied air raids, the pilot tried to land on water. Because of the total darkness, the pilot was unable to see a half sunken wreckage, which damaged the plane so much that it sank in only a few minutes. Luckily, the crew was safely evacuated.

Bv 222 V2 made its first test flight on the 7th August 1941. It was initially used by the Erprobungsstelle Travemünde for testing and improvements. It had its bottom fuselage redesigned to provide better stability when floating in water. In addition, two reserve thrust propellers were attached to each middle engine on both sides, which improved flight performance. It was not used by LTS 222 but was instead given to the Fliegerführer Atlantik unit. As this unit name suggests, Bv 222 V2 (which later included other Bv 222s) was used to patrol the Atlantic. Its main base of operations was the city of Biscarrosse in occupied France. Bv 222 V2 would remain in use up to the war’s end, when it was captured by the Allied forces in May 1945.

The Bv 222 V3 prototype had a much shorter operational service life. It made its first test flight on the 28th November 1941. It was lost on the 30th June 1943 while on a patrol mission across the Atlantic.

Bv 222 V4 was initially used in a transport mission above the Mediterranean. On 10th December 1942, it was damaged by Allied raids. After the necessary repairs, it would be used for the remainder of the war on patrol missions across the Atlantic. In October 1943, it, together with Bv 222 V2, managed to shoot down a British Avro Lancaster bomber over the ocean. The circumstances of this event are not clear even to this day. Bv 222 V4 was sunk by its crew in May 1945 at Kiel.

Most Bv 222s were powered by six 1000 hp Bramo 323 engines. These were later replaced with Jumo 207Cs. http://www.warbirdphotographs.com/luftwaffephotos/index.html

V5 was used for transport of materiel and men above the Mediterranean, until the loss of Bv 222 V1. After that, it was recalled to Germany to be structurally strengthened and equipped with stronger defensive armament. From April 1943, it was used in Atlantic patrol missions, until it was shot down by the Allies in June the same year.

V6 was shot down by the British shortly after it was attached to LTS 222. Bv 222 V8 also had a short operational life, as it was lost in action to Allied fighters on 10th December 1942.

It is interesting to point out that, during the Bv 222’s service in the Mediterranean, the British would attack these aircraft only when they were transporting ammunition and supplies to Africa, but they would not attack them on their way back to Europe as they would be transporting wounded soldiers.

After construction of the first three prototypes, the next four aircraft were reclassified as the A-series (V4, V5, V6 and V8). Interestingly, these would also retain their prototype ‘V’ designation, which can lead to some confusion.

Future Improvements and Modifications

Even as the first series of Bv 222 were under construction, there was a proposal for a new improved civilian version named Bv 222 B, which was to be powered by Jumo 208 engines. Due to the war, this was never implemented and remained a paper project.

As the first series of Bv 222 had some issues with the engines, there were attempts to equip them with better models. For this reason, Bv 222 V7 (reg. TB+QL ) was instead powered by Jumo 207 C 680 hp diesel engines. The idea behind using diesel engines was that the Bv 222 could be refueled at sea by using U-boats. The Jumo 207C engines also proved to have some issues, but it was nevertheless decided to use the Bv 222 V7 as the basis for the C-series. Bv 222 V7 was flight tested in April 1943, and it would remain in service up to the war’s end, when it was destroyed by its crew to avoid capture by Allied forces in May 1945.

Due to the bad wartime situation for the Germans and the lack of materials, only a limited number of C-series aircraft were ever built. Of the nine that were under construction, only about five (beside V7) were ever completed. Two of the C-series aircraft were to be used for a new D-series powered by the Jumo 207 D engines. Due to problems with this engine, production was never implemented.

Bv 222 V2 that was captured by the Allies in Trondheim Fjord. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The first aircraft of the C-series (Bv 222 C-9) was allocated to Fliegerführer Atlantik on the west in late July 1943. After the Allied landings in France, the Germans lost their air bases in this area. For this reason, the long-range patrol missions were carried out from occupied Norway. C-9 was lost in early 1945 (or 1944, depending on the source), when it was shot down by a British Hawker Typhoon. C-10 was lost in a crash in February 1944. C-11 was fully equipped but was never used operationally for unknown reasons. C-12 was tested with rocket assisted engines to help during takeoff. The use of the C-13 aircraft is unfortunately unclear. While the C-14 to C-17 were under construction, they were never completed due to a lack of resources.

While the Bv 222 was primarily designed as a flying boat, there were plans to modify it to be used as a standard transport plane. This was to be achieved by adding landing gear wheels to it. The projects received the P.187 designation. Possibly due to a low priority, this project was under development up to the war’s end and was never implemented.

Flight to Japan

During the war, the Germans had plans to establish a flight line connection with Japan. Original flight plans stated that the starting point for the Germans was Kirkenes and then to Tokyo via the Sakhalin Island. The Bv 222 was in the competition for this mission, but was rejected due to the small number built and because it was not designed for this role. Other aircraft considered were the Ju 290 and the He 177. The aircraft ultimately chosen was the Ju 290, but this planned flight was never attempted and the whole project was dropped.

The side view of the Bv 222. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

Arctic Rescue Mission

During the war, the Germans managed to set up a secret meteorological station in the Arctic. In the spring of 1944, the crew of this station were sick because they had eaten raw meat. A supply mission was conducted using a Fw 200 for transporting a doctor to this base. The pilot tried to land but, during the landing, one wheel of the landing gear broke down. The base sent back a distress call for further aid. For this mission, one of the Bv 222s was chosen and was loaded with a spare wheel and spare parts. Once it was above the base, the parts were successfully dropped by a parachute. The station crew were eventually rescued once the Fw 200 was repaired.

In Allied Hands

By the end of the war, the Americans managed to capture two Bv 222 aircraft, C-11 and C-13. C-11 would be flown to America and was used for evaluation. While it would eventually be scrapped, it gave the Americans valuable information about designing and building such huge flying bots. C-13 was also flown to America, where it would later be scrapped.

One of the captured Bv 222s used by the British. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The British also managed to capture Bv 222 C-12 in Norway. During the flight to the UK, one of the engines stopped working, but the pilot managed to reach the UK. The British also captured the Bv 222 V2 prototype which was also relocated to the UK. These would serve the British in gaining valuable information about the aircraft’s construction.

Production

The only producer of these aircraft was Blohm & Voss at Hamburg. Due to many factors, such as long development and testing time, the substantial resources needed to build them and the pressing need for fighter aircraft, there was only a limited production run. In total, only 13 Bv 222 were ever made. These included three prototypes, four of the A-series and six C-series aircraft. While there were a few more under construction, these were never completed.

Versions

  • Bv 222 V1-V3 – Several prototypes built with different armament and engines tested
  • Bv 222 A – Four aircraft built
  • Bv 222 B – Proposed improved civilian version
  • Bv 222 C – Version powered by the Jumo 207 engine, few built
  • Bv 222 D – Proposed improved C-series to be powered by Jumo 207 D engine, none built
  • P.187 – Proposed land-based version, none built

Operators

  • Lufthansa – Although the original purchaser of this aircraft, only V1 saw limited evaluation and testing service in Lufthansa service
  • Nazi Germany – Operated a small number of these aircraft
  • USA – Captured two aircraft of the C-series which were used for testing
  • UK – Captured two aircraft.

Surviving aircraft

Unfortunately, due to wartime attrition and sabotage by their own crews, not a single BV 222 is known to have survived to this day. There are possibly several wrecks underwater, like the one in Greece, that could maybe one day be salvaged or even restored.

Conclusion

The Bv 222 was the largest operational aircraft built during the war. While it was never used in its original role, it would see extensive service with the Luftwaffe, despite being available only in small numbers. Due to its large transport capabilities, it was vital to the Germans, as they lacked transport planes throughout the war. But, due to the bad military situation in the second half of the war and the need for a large number of fighter planes, the Bv 222 would only be built in limited numbers.

Gallery

Illustrations by Ed Jackson

Blohm und Voss BV 222

Blohm und Voss Bv 222 V7 Specifications

Wingspan 151 ft / 46 m
Length 120 ft / 36.5 m
Height 35 ft 9 in / 10.9 m
Wing Area 2.745 ft² / 255 m²
Engine Six 1000 hp Jumo 270C
Fuel load 3,450 l
Empty Weight 65,430 lb / 29,680 kg
Maximum Takeoff Weight 99,210 lb / 45,000 kg
Maximum Speed 220 mph / 350 km/h
Cruising Speed 190 mph / 305 km/h
Range 3,790 mi / 6,100 km
Maximum Service Ceiling 23,950 ft / 7,300 m
Climb speed Climb to 6,000 m in 9.7 minutes
Crew
  • Two pilots
  • Two mechanics
  • One radio operator
  • Five machine gunners
Armament
  • Five MG 81
  • Six MG 131

Credits

  • Ferenc A. and P. Dancey (1998) German Aircraft Industry And Production 1933-1945. Airlife England.
  • D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograd
  • Jean-Denis G.G. Lepage (2009), Aircraft Of The Luftwaffe 1935-1945, McFarland & Company, Inc.
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book.
  • D.Mondey (2006) Guide To Axis Aircraft Of World War II, Aerospace Publishing
  • H. J. Nowarra (1997) Blohm and Voss Bv 222, Schiffer Military History
  • C. R. G. Bain (2019) High Hulls: Flying Boats Of The 1930s And 1940s, Fonthill Media
  • http://fly.historicwings.com/quietly-awaiting-recovery/

Arado Ar 240

Nazi flag Nazi Germany (1938)
Multi-role Fighter – 12 ~ 18 Built

Rear Quarter Drawing of the 240 [Luftnachrichtenhelferin]
The Ar 240 was designed as a possible replacement of the Me 110. While initially it seemed to have great potential, problems with handling and mechanical breakdowns proved to be too much for this aircraft. As it would not be accepted for service, only a small number were actually built. While a few were used by the Luftwaffe, their operational usage was limited.

History of Arado

Werft Warnemünde, later known as Arado, was an aircraft manufacturer that was founded during the Great War, in 1917, as a subsidiary of Flugzeugbau Friedrichshafen. In 1921, this company was purchased by an engineer, Heinrich Lübbe, who was more interested in designing and building ships. In 1924, it was once again engaged in development of aircraft designs, mainly intended for foreign markets. For the position of chief designer, Walter Rethel, who previously had worked for Fokker was chosen.

Werft Warnemünde would be renamed in 1925 to Arado Handelsgesellschaft and renamed again in March 1933 to Arado Flugzeugwerke GmbH. At this time, Walter Blume was appointed as the new chief designer. During his supervision, several projects that were later used by the Luftwaffe were built, including the Ar 66 trainer and the Ar 65 and Ar 68 fighter aircraft.

At the start of the Second World War, Arado was mostly engaged in licenced aircraft production for the Luftwaffe. But work on its own aircraft designs was not discarded. The most important of these upcoming designs were the Ar 96 trainer, Ar 196 reconnaissance plane and the Ar 234, which would become the first operational jet bomber in the world. While these proved a huge contribution to the German war efforts, the Ar 240 design proved to be a failure.

Development of the Ar 240

During 1938, the German Ministry of Aviation (Reichsluftfahrtministerium, RLM) was interested in the development of a new multi-purpose twin engine aircraft that would replace the Me 110. Besides Messerschmitt, which began development of the Me-210, the Arado company would also be involved. In early April 1939 or 1938, depending on the source, the Arado company received a contract for the construction of three prototypes of the new multi-purpose plane initially called E-240. The development of this new aircraft was carried out by an Arado team of designers and engineers led by Walther Blume and by Dipl.-Ing. Wilhelm van Nes.

Interestly, possibly for reasons such as good connections with the Nazi Party or Arado’s good reputation as an aircraft manufacturer, even before the completion of the first prototype, an order for 10 additional prototypes was given by the RLM. While these would be built, a number of problems were identified which would prove to be the downfall of the aircraft.

Technical Characteristics

Front view of the Arado Ar 240 V3 prototype. [Luftwaffe Resource Center]
Close up of the extended flap system [Luftnachrichtenhelferin]
The Arado 240 was designed as a two seater, twin-engined, mid wing monoplane. The fuselage had a monocoque design and stressed-skin. The fuselage was oval-shaped, with the rear part being more round shaped. The rear tail of the Ar 240 consisted of two fins and rudders, but also had dive brakes installed.

The central parts of the wings were rectangular, while the outer part was trapezoidal in shape. The wings were constructed using a two-part spar structure. The Ar 240 used Fowler type flaps, which covered the entire trailing edge. What is interesting is that the Ar 240 flaps were integrated with the ailerons and that this configuration was previously tested on the Ar 198. Another innovation was the use of automatic leading edge slats, but this system was used only on the first few prototypes and abandoned later on. The wings also housed four fuel tanks on each side, which had a total fuel load of 2,300 liters (600 US gallons). The fuel tanks were built using a new self-sealing system that used thinner tank liners, which enabled the aircraft to have a much increased fuel load.

Ar 240 front view. This picture was taken during March 1944. [WarBirds Photos]
The Ar 240’s cockpit interior. [WarBirds Photos]
The cockpit was initially positioned directly over the place where the wing root. After the third prototype, the cockpit was moved forward. The cockpit used a back to back seat configuration, with the pilot positioned on the front seat and the radio operator, who was also acting as the rear gunner, being positioned in the rear seat. The Ar 240 cockpit was completely pressurized. The cockpit was directly connected to the fuselage, but was provided with a jettisonable canopy in case of emergency. The well designed glazed canopy provided the pilot and crewman with an excellent all-around view.

The Ar 240 used a conventional retractable landing gear which consisted of two front wheels and one smaller tail wheel. The two front wheels retracted outward into the engine nacelles, while the third wheel retracted into the rear tail fuselage section.

The Ar 240 was tested with a number of different engine types, as the designer had problems in finding an adequate one. The prototype series was powered by Daimler Benz DB 601A and DB 603 A. The later built A series would also be tested with a number of different engines, including the DB 601 A-1 and DB 603, BMW 801 TJ etc..

Different armaments were proposed for the AR 240, including a pair of remotely controlled defence turrets. The control of these turrets was hydraulic and they were equipped with periscope aiming sights. The bomb load would consist of around 1 to 1.8 tons, placed under the fuselage.

Development and Usage of the Ar 240 Prototype Series

Another view of the V3 prototype. [WarBirds Photos]
Note: Due to differing information depending on the author, the following information was mostly taken from G. Lang. (1996), Arado Ar 240, A Schiffer Military History Book.

The first operational Ar 240 V1 prototype (markings DD+QL), powered by two 1,157 hp DB 601 engines, was completed in early 1940 and was flight tested on the 10th of May the same year. The next flight tests were made on 25th June and 17th July 1940. In May 1941, the engines were replaced with two DB 603 E. More tests were carried out until October 1941, when the prototype was removed from service for unknown reasons. According to M. Griehl, it was destroyed on the 18th April 1941. The test results of the Ar 240 V1 showed that this aircraft had huge problems with the controls and was difficult to fly, a trend which will be inherited on all Ar 240 planes.

The second prototype, V2, is somewhat shrouded in mystery, as the date of its first operational test flight is unknown. A possible date for the first test flight is 15th September 1940. While it is not clear, the V2 prototype probably received the DD+CE markings. Arado test pilots made several flight trials during September 1940. By the end of February 1941, the Ar 240 V2 prototype was relocated to Rechlin for future tests. By May 1941, the V2 prototype received new DB 603 engines. At the same time, it was also fitted with two 7.92 mm (0.311 in) MG 17 and two 20 mm (0.78 in) MG 151/20 cannons. In November 1941, this plane was modified to be used in dive bombing trials. An additional change was the installation of two DB 601 E engines. The final fate of the V2 prototype is not known precisely, but it was probably scrapped.

The Ar 240 V3 (KK+CD) prototype was first flight tested on 9th May 1941. In comparison to the earlier two prototypes, this model had the cockpit moved forward. The rear tail-positioned dive brakes were replaced with a cone and ventral fins. Numerous engines were tested on this aircraft, including two Jumo 203 and DB 601 E. In early 1942, a number of pressure cabin tests were conducted on the V3 prototype. This aircraft also served as a test bed for the new FA-9 remote controlled system developed in cooperation between Arado and the DVL (aviation research institute), but proved to be problematic. V3 would be used operationally as a reconnaissance aircraft over England. It was piloted by Oberst Siegfried Knemeyer, and while his plane was unarmed, thanks to its high speed, he managed to avoid any confrontation with British planes. The fate of this aircraft is not known, as (depending on the sources) it could have been lost in either April 1944 or May 1942.

Row of three Ar 240 prototypes. [Luftwaffe Resource Center]
The V4 prototype was to be tested as a dive-bomber variant. The first test flight was made on 19th June 1941. It was powered by two 1,750 hp DB 603 A engines. It was modified with added dive brakes and was capable of carrying up to eight 50 kg (110 lb) bombs under the fuselage. Its fuselage was also elongated to 13.05 m (42 ft 9 ¾ inches). Many detailed tests with the V4 were carried out in France and in the Mediterranean. The V4 prototype was lost in August 1941 in an air accident.

The V5 (GL+QA or T5+MH) prototype made its maiden flight test in September 1941. What is interesting is that it was not built by Arado but by AGO Flugzeugwerken from Oschersleben. It was powered by two 1,175 hp DB 601 E engines and was provided with a tail cone. It was armed with two wing root MG 17 machine guns and two same caliber MG 81 machine guns placed into two (one above and under the fuselage) FA-13 type remotely controlled turrets. In late March 1942, this aircraft was given to the Aufklärungsgruppe Oberbefehlshaber der Luftwaffe (reconnaissance unit/group belonging to the Commander in Chief of the Luftwaffe). It was then, possibly in late 1942, allocated to Versuchsstelle für Höhenflüge VfH (research station for high-altitude flight).

Ar 240 with tow ropes attached in the Soviet Union during the winter of 1942/1943 [Luftnachrichtenhelferin]
Ar 240 A-01 used around Kharkov in late 1942. [Luftnachrichtenhelferin]
The V6 (GL+QA or T5+KH) prototype was also built by AGO, and while most parts were ready during November 1941, the aircraft was only completed in early 1942. It was flight tested in January 1942, but if this was its first test flight is not clear. It was given to the Luftwaffe in early March 1942 and moved to Oranienburg for future tests. It was similar in appearance and equipment with the previous V5 aircraft. While it was used mostly for testing, it saw front line service during the winter of 1942/43 around the Kharkov area. The plane is listed as destroyed but under which circumstances is not known.

The V7 (DM+ZU) prototype made its first test flight in October or December 1942. It was designed to be used as the basis for the Ar 240 B high-altitude reconnaissance aircraft. It was to be provided with a pressurized cockpit and a heating system. V7 was powered by two 1,475 hp DB 605 A engines, which were specially designed to use a methanol-water injection in order to increase the engine overall performance and output. Armament consisted of two wing mounted MG 17s and a rear mounted remotely-controlled turret armed with the MG 151/20, and two 50 kg (110 lb) bombs. Operational range was 1,900 km (1,180 mi) and it a was capable of climbing to 6 km (19,685 ft) in 10 minutes and 6 seconds.

The V8 prototype was a direct copy of the V7 and possibly made its first test flight in December 1942 or March 1943 depending on the sources. The final fate of this and the previous aircraft is not known.

The V9 (BO+RC) prototype was designed as a Zerstörer (heavy fighter) aircraft. It was to be used as a test base for the planned Ar 240 C version. The V9 had redesigned longer wings and fuselage. It was powered by two DB 603 A engines which were also equipped with a methanol-water injection system. The main armament consisted of four forward and two rear MG 151/20. While this version had a great priority and was even considered for acceptance for production. This was never achieved, mostly due to a lack of necessary equipment and parts. The final fate of this aircraft is not clear, as it was possibly never even fully completed, but some sources also mention that it was lost in a landing accident.

The V10 prototype was designed as a night fighter aircraft, powered by two Jumo 213 engines. The first test flight was made in September of 1943, while more tests would be carried out up to late 1944. Arado reused this aircraft for the new improved version called Ar 440.

The V11 prototype was tested as a heavy fighter-bomber and was to be used as the base of the Ar 240 F aircraft. Due to many delays, it was actually never fully completed. It had the heaviest armament, which included a mix of MG 151 and 30 mm (1.18 inch) MK 103 cannons forward mounted, rear mounted MG 151 and 13 mm (0.5 inch) MG 131 and a bomb load of 1,800 kg (3,970 lbs). V12 was a direct copy of V11 and, as these two aircraft were never completed, both were scrapped. V13 was to be used as a test base of the Ar 240 D equipped with two 2,020 hp DB 614 engines, but none were built.

V14 was probably never fully constructed. It was to be used as a base for the Ar 240 E project and powered by two DB 627 engines. V15 was to be used in a reconnaissance role and equipped with the FuG 202 Lichtenstein radar. The V15 prototype was probably never built.

An Ar 240 during its short operational life in the Soviet Union during the winter of 1942/1943. [WarBirds Photos]
There are two more Ar 240 aircraft only known by their serial numbers (240009 and 2400010). While the usage and fate of the first aircraft is generally unknown, the second was used by the Luftwaffe operationally in the Soviet Union during 1943. It was damaged during a landing in August the same year. Its final fate is unknown.

Development of the ‘A’ Version

An Ar 240 during a flight test. [WarBirds Photos]
After a series of prototypes were built, work on the first Ar 240 A version was also undertaken by Arado. Initially, the Ar 240 A aircraft were to be powered by two 1.750 hp DB 603 A-1 engines equipped with four blade metal propellers. Armament chosen for this version consisted of two MG 151/20 (with 300 rounds of ammunition for each gun) placed in the fuselage floor and two more MG 151/20 (with same ammunition load) placed in the wings roots. There was an option for increasing the fire power by adding two more MG 151/20. For rear defence, two defense turrets equipped with MG 131 machine guns could be placed under and above the fuselage. The bomb load could have different configurations, like: One 1,000 kg (2,220 lbs) or 1,800 kg (3,930 lbs) bomb, two 500 kg (1,100 lbs) bombs, eight 50 kg (110 lbs) bombs or even 288 smaller 2.5 kg (5 lbs) incendiary and fragmentation bombs. As the Ar 240 was never accepted for service, only few of the A version aircraft were ever built.

Ar 240 A-01 (GL+QA possible marking) made its first test flight on 28th June 1942. The test flights were carried out until September 1942, when this aircraft was to be given to the Luftwaffe. After a series of further flight and weapon tests conducted at Rechlin and Tarnewitz, the Ar 240 A-01 was to be allocated to the front. It was used around Kharkov in late 1942. On 16th February 1943, Ar 240 A-01 was lost during a flight due to mechanical failure. Both crew members lost their lives during the fall.

The second Ar 240, A-02 (GL+QB), was completed by September 1942. On 13th September, the first test flight was made. The aircraft was damaged in a landing accident in late January 1943. The final fate of this aircraft is not known.

Many Ar 240 were lost in crash landings.[Luftnachrichtenhelferin]
Ar 240 A-03 (DI+CY) was initially powered by two DB 601 engines, but these were replaced with BMW 801 TJ. This aircraft had a change in the cockpit configuration, with the radio operator/observer facing forward. This aircraft was stationed at Rechlin, where it was tested from May to June 1943. During testing, Ar 240 A-03 showed to have better stability and handling during flight in contrast to previous built aircrafts. From June to late July, it was tested at Brandenburg. After these tests were completed, the aircraft was allocated for operational front use. It was given to the Aufklärungsgruppe 122, a reconnaissance unit stationed in Italy at that time. This aircraft had the same fate as most previous Ar 240, as it was heavily damaged in a crash. As the damage was extensive, it was never repaired.

Ar 240 A-04 (DI+CG) was initially equipped with two DB 601 E engines, but these would be later replaced with DB 603. It made its first flight test in late September 1942. Ar 240 A-04 was allocated to the Aufklärungsgruppe 122 as a replacement for the previous aircraft. Ironically, it suffered the same fate, but it was repaired and sent back to Arado.

Ar 240 A-05 was powered by two 1880 hp BMW 801 TJ engines equipped with a Rateau type turbo supercharger. It was possibly allocated to Aufklärungsgruppe 10 stationed in the Soviet Union.

Proposed Versions

During the Ar 240’s development, the Arado officials proposed several different variants of this aircraft, but as the whole project was not going well beside a few experimental attempts, nothing came from most of them.

Ar 240 B

This was a high-altitude reconnaissance aircraft version that was to be equipped with a pressurized cockpit and a heating system. Nothing came from this project.

Ar 240 C

On 10th March 1942, Arado officials proposed that the Ar 240 should be modified for the bomber role. For this reason, the wings were modified and its size increased. The tail design was also changed, with added tail dive brakes. As the attempt to increase the size of the internal fuel tanks proved a failure, external tanks were to be used instead. The armament consisted of two MG 151/20 and two rear mounted MG 81. It is not clear, but it is possible that at least one aircraft was built.

Ar 240 D

A proposed paper project version powered by two DB 614 engines.

Ar 240 E

A proposed version with reinforced fuselage, added bomb rack for two 500 kg (1,100 lbs) bombs and increased fuel load. Different engines were also proposed for this version, including DB 603 G, DB 627 or BMW 801 J.

Ar 240 F

A proposed heavy fighter/bomber version to be powered by two DB 603 G engines.

Ar 240 mit 7.5 cm Bordwaffen

During the war, Arado and Rheinmetall discussed the installation of a 7.5 cm gun in the Ar 240. In September 1944, it appears that one plane was actually equipped with this weapon, but was probably never operationally flight tested.

Ar 240 TL

In 1942, Dr. Ing. Walther Blume proposed a heavy fighter and night-fighter version of the Ar 240. This version was designated as Ar 240 TL, which stands for Turbinen-Luftstrahltriebwerk (turbojet). This plane was to be powered by two jet engines placed in the fuselage. It remained only a paper project.

Ar 440

With the cancellation of the Ar 240 project, Arado tried to improve the Ar 240’s overall performance by building a new version, named Ar 440. The Ar 240 V10 prototype served as a base for this modification. Beside this prototype, three more were built using already existing Ar 240 components. After some time in testing, the Ar 440 was officially rejected in October 1943 by the RLM.

Overall Performance and Cancellation of the Ar 240 Project

The Ar 240 possessed several advanced characteristics like a pressurized cockpit, remote-controlled defensive turrets, traveling flaps which provided this aircraft with good low-speed overall lift performance and fuel tanks with a new self-sealing system that used thinner tank liners. But, almost from the start of first flight testing, things turned from bad to worse for this aircraft. Almost from the start, the Ar 240 was plagued with extremely bad handling on all three axes. There were also huge problems with the controls during landing, with most aircraft being lost due to this. As the aircraft proved to be dangerous to fly, it was never adopted and the initial orders for production of 40 aircraft were never materialized.

Allied Examination After the War

Strangely, despite being a rare aircraft, the Allies managed to capture at least one Ar 240 during their advance in the West in 1944/45. This aircraft was tested by Allied pilot Captain Eric Brown. He was Chief test pilot of the Royal Aircraft Establishment at Farnborough. He was involved in a British project of taking over of German war research installations and interrogating technical personnel after the war. After the war, he managed to find the single surviving Ar 240 and, after a flight on it, made a report on its performance. The source for this account is Wings Of The Luftwaffe Flying The Captured German Aircraft of World War II by Eric Brown. This aircraft would be given by the Allies to the French and its fate is unknown.

In his report, he stated. “When the Ar 240 was wheeled out of the hangar, I was struck by its angular appearance. The wings, fuselage, and tail unit all seemed to be straight-edged, with very few curves to be seen. The engines looked very large, the airscrew spinners being level with the nose of the cockpit and well ahead of the wing leading edge, while the nacelles protruded well aft of the trailing edge. I had the feeling that, if this aeroplane was as fast as it was reputed to be, then brute engine force must be the answer … The cockpit layout was neat and the instruments were quite logically arranged, while the view was good all around except downwards on either side, where the engines interfered. Take-off was quite long, even with using 20 degrees of flap, and the initial climb rate was just over 600 m/min (2,000 ft/min). Longitudinal stability was poor, lateral stability neutral, and directional stability positive. The rate of climb fell off very little as I climbed to 6,096 m (20,000 ft), where I levelled out and settled into the cruise at what I calculated was a true airspeed of 580 km/h (360 mph). In the cruise, the aeroplane could not be flown hands-off because it diverged quickly both longitudinally and laterally, and would be tiring to fly for a long time. An autopilot was fitted, although not serviceable in my case, but I believe it would have been essential for instrument flying in bad weather. On opening up to full power, I estimated that after three minutes I was hitting an impressive true airspeed of 628 km/h (390 mph), but it was obvious that the Ar 240 was a poor weapons platform. The harmony of control was terrible, with heavy ailerons, light elevators. and moderately light rudders. ….

My assessment of the Arado Ar 240 is that it was an aircraft of outstanding performance for its class and era, but it could not capitalise on this because of inferior, and indeed dangerous, handling characteristics. According to German information, it had a service ceiling of 10,500 m (34,450 ft) and a maximum range of 1,186 miles, so it had great potential as a reconnaissance intruder, and indeed it is claimed that it made such sorties over Great Britain in 1941 and 1944. Be that as it may, there can be little doubt that the Ar 240 was a failure ..”

Production Numbers

While the Ar 240 production was initially to begin in 1941, due to many problems and delays, this was not possible. While there were attempts to start production, by the end of 1942, the RLM officially terminated the program.

How many aircraft were built depends on the source. According to author G. Lang, the problem with identification of the production numbers is complicated by the fact that some prototype aircraft were allegedly modified and used for the few A-series aircraft built. Another issue, according to Lang, is that the highest known serial number production was 240018 (starting from 240000), which suggests that at least 18 were built, but it is not completely clear. Authors Ferenc A. and P. Dancey mention that at least 15 were built by 1944. Eric Brown claims that 12 prototypes were built.

Main Production and Prototypes

  • Ar 240 V1-V14 – Prototypes series used to test different equipment, armament and engines.
  • Ar 240 A – Was to be main production version, but only few aircraft were actually built
  • Ar 240 B – High-altitude reconnaissance version, possibly few built.
  • Ar 240 C – A bomber version, unknown if any were built.
  • Ar 240 D – Proposed version powered by two DB 614 engines.
  • Ar 240 E – Proposed modified Ar 240 version.
  • Ar 240 F – Proposed heavy fighter/bomber version to be powered by two DB 603 G engines.
  • Ar 440 – An improved version of the Ar 240. Only a few were built. The project was cancelled in 1943.
  • Ar 240 mit 7.5 cm Bordwaffen – A proposed version armed with a 7.5 cm gun, possibly one built, but its fate is unknown.
  • Ar 240TL – A jet-powered paper project.

Operators

  • Germany – Operated small numbers of these aircraft, mostly for testing and reconnaissance operations.
  • France – Captured one, but the fate is not known.

Conclusion

While the Ar 240 was, on paper, an excellent design with many innovations and advanced technology, in reality it did not live up to expectations. The plane proved to be dangerous during flight and many were damaged during landing, with fatal outcomes. Because the Ar 240 proved to be difficult to control, the RLM simply decided to stop the project, as it was probably unwilling to waste more time and resources on it.

Arado Ar 240 A-0 Specifications

Wingspan 14.3 m (47 ft)
Length 12.8 m (42 ft)
Height 3.95 m (13 ft)
Wing Area 31 m² (333 ft²)
Engine Two liquid cooled twelve-cylinder 1,750 hp DB 603 A-1
Empty Weight 6,350 kg (14.000 lbs)
Maximum Takeoff Weight 10,500 kg (23,150 lbs)
Fuel Capacity 2,300 liters (607.6 US gallons)
Maximum Speed at 6 km 670 km/h (415 mph)
Cruising Speed 600 km/h (370 mph)
Range 2,200 km (1,370 mi)
Maximum Service Ceiling 11,500 m (37,730 ft)
Climb speed Climb to 6,000 m in 9.7 minutes
Crew Two pilot and the rear radio operator/gunner
Armament
  • Four 2 0mm (0.78 inch) MG 151/20
  • Two 13 mm (0.5 inch) MG 131
  • One 1,000 kg (2,220 lbs) or one 1,800 kg (3,930 lbs) bomb
  • Or two 500 kg (1,000 lbs) bombs,
  • Or eight 50 kg (110 lbs) bombs,
  • Or 288 2.5 kg (5 lbs) incendiary and fragmentation bombs

Gallery

Illustrations by Ed Jackson

Arado Ar 240A-2
Arado Ar 240C-2

Credits