Bolkhovitinov S-2M-103

USSR flag USSR (1936)
Experimental Light Bomber – One Prototype Built

Bolkhovitinov’s light bomber was a truly unusual design, with two engines mounted in the same fuselage.

Prior to the German invasion, the Soviet air industry was in the process of developing a series of new experimental ideas and concepts. While generally unknown around the world, some of these were interesting designs, such as the Bolkhovitinov “S” experimental twin-engine fast attack bomber. Due to the German advance and the need for immediately operational planes, the development of this model was terminated.

An Unusual Idea

The leader of the whole S-2M-103 project, aircraft engineer Viktor Federovich Bolkhovitinov.

The S-2M-103 was designed and developed by a Soviet aircraft engineer team led by Viktor Federovich Bolkhovitinov (Ви́ктор Фёдорович Болхови́тинов). Bolkhovitinov (February 1899 – 29 January 1970) was a Soviet professor at the Zhukovsky Air Force Academy in Moscow, and also an aircraft engineer. One of his best known designs was the four-engined Bolkhovitinov DB-A bomber that was intended to replace to aging TB-3 bomber.

During 1936, Bolkhovitinov and his team were looking for a solution for the lack of a high-speed light bomber in the Soviet Air Force. Their answer would be an unusual twin-engine aircraft with a peculiar wing configuration. Instead of a conventional wing placement, the wings were mounted very low on the fuselage, and the tail was a twin fin design.

When they began working on the first calculations and drawings, their greatest concern was how to reduce drag. Usual bomber designs with wing-mounted engines slowed down the plane due to excessive drag. Fighters, on the other hand, had much better aerodynamic properties as they were designed to achieve the highest possible speeds. Bolkhovitinov and his team decided that, for their purposes, they would reuse elements from other bombers (two engines, bomb-carrying capacities, defensive armament) and a one-part fuselage.

The problem was how to position the two engines in order to reduce the drag as much as possible. They quickly came up with the idea of putting them both on the same line (one behind the other) and in the same fighter-like fuselage. While this configuration would make the new plane longer, it could be designed with much better aerodynamic properties.

The development and design of the unusual twin-engine system began in 1936, while work on the aircraft design itself began the next year. By 1938, the design was completed and preparations for the construction of a fully operational prototype began in July that year. The prototype was completed in 1939 and flight tests were scheduled to begin in July 1939 (or in early 1940 according to some sources).

Designation

This was the single-engined version tested during the winter of 1940/41.

The aircraft’s original designation was simply “Bolkhovitinov S” or “Sparka/Cпаренный”, which means twin. Today it is generally known under the “S-2M-103” designation, where the “2” stands for twin-engine configuration and “M-103” is the name of the engine. There were other designations used for this plane, such as “BBS-1” (Ближний бомбардировщик скоростной, fast short-range bomber), “LB-S“ (легкий бомбардировщик спаренный, light twin-engined bomber) оr “BB“ (Болхови́тинов Бомбардировщик, Bolkhovitinov Bomber). As the plane is best known as the the S-2M-103, this article will use this designation.

Technical Characteristics

The S-2M-103 was designed as a low wing, all-metal construction, two-seater, two-engined fast attack bomber. The S-2M-103’s main fuselage had an elliptical cross-section. The fuselage consisted of four (bottom, top and left and right side) panels that were held in place by using four strong angled-section longerons. The S-2M-103’s structure was covered with a modern light alloy stressed-skin.

The wings were constructed using a structural box with flanged lightening holes (to save weight). The wings’ interior sheet ribs were covered on both sides (upper and lower) by metal skin and held in place by flush riveting.

The two three-bladed propellers turned in the opposite directions in order to provide better stability during flight.

The rear twin-finned tail was covered with duralumin skin. For better stability, the rudders were equipped with inset balanced hinges. For the tailplanes’ movement, an irreversible trimming motor was used. The elevator had trim tabs with a variable geared drive.

The S-2M-103 had a completely retractable landing gear that was operated electrically. The front wheels and the smaller rear tail wheel was able to retract backward 90 degrees. During the winter of 1940/41, the wheeled landing gear was replaced with fixed skis.

Drawing of the twin-engined configuration.

This aircraft had an unusual two tandem engine arrangement, placed in the same mounting in the fuselage. The rear-mounted engine’s shaft passed through the front engine’s cylinder blocks. Both engines were connected to the two propellers (with six blades in total) which, when powered, turned in opposite directions, which provided better stability during flight (at least in theory). The S-2M-103 was powered by two 960 hp (716 kW) Klimov M-103’s V-12 liquid cooled engines. This engine was based on the French Hispano-Suiza 12Y which was produced under license by the Soviet Union as the M-100.

The water radiators were placed under the fuselage and had controllable exit flaps. Two oil coolers were located on the ducts on both sides of the two engines. The fuel was stored in four fuel tanks that were placed in the wings (between the wing spars). Unfortunately, there is no information available about the capacity of these tanks.

The two crew members were positioned in an unusually large cockpit fully enclosed with a plexiglass canopy. The crew consisted of the pilot and the navigator. The navigator was also provided with a bombsight. The navigator’s position was covered with plexiglas on all sides, which provided him with an excellent all-around view, including under the plane. His additional role was to operate the rear-mounted machine gun.

The S-2M-103 lacked any forward-firing offensive armament. While it was planned to equip it with weapons mounted in the wings, this was never accomplished. For self-defense, one 0.3 in (7.62 mm) ShKAS machine gun was provided for the navigator/gunner. Due to its tail design, the rear machine gun had a wide firing arc. Later, it was planned to replace the single 7.62 mm rear gun with heavier twin 0.5 in (12.7 mm) UBT machine guns. There were also alleged plans to equip the S-2M-103 with a rear-mounted remotely controlled ShKAS machine gun. Whether this was ever implemented is unknown, as there no photographs or precise information are available. The bomb bay, which could carry 880 lb (400 kg) of bombs, was located under the pilot cockpit. The bomb bay opening doors were opened electrically.

Operational Tests

Side view of the S-2M-103.

The S-2M-103, piloted by D.N. Kudrin, made its first test flight in late 1939. More tests were carried out by the Army from March to July 1940, the plane being piloted by D.N. Kudrin and A.I. Kabanov. During these flight tests, the S-2M-103 proved to be able to achieve a maximum speed of 354 mph (570 km/h) at 15,400 ft (4,700 m). The tests also proved that the concept of installing two engines in the same fuselage had some advantages over the wing-mounted configuration. The most obvious was the reduced drag, which lead to increased speed and improved flight performance.

There were also some problems with the design. Immediately noticeable were the poor take-off and landing performance during these tests trials. Due to its high weight of 12,460 lb (5,650 kg), the S-2M-103 needed a 3,430 ft (1,045 m) long airfield. More tests were carried out by removing any extra weight. With the weight being reduced by some 1,100 lb (500 kg), the S-2M-103 now only needed a 2,800 ft (860 m) long airfield. During landing at speeds of 103 mph (165 km/h) the aircraft needed a 2,130 ft (650 m) long airfield. Some problems with the twin propellers were also noted. The rear-mounted propeller drive shaft was damaged due to strong vibrations. Unfortunately, there are no records of cruising speed, climbing speed, or maximum service ceiling.

The Single-Engine Version

For testing during the winter of 1940/41, instead of the standard landing gear, fixed skies were provided.

In the following months of 1940 and 1941, the S-2M-103 received a number of modifications in the hope of solving the issues observed during preliminary testing. The twin-engine configuration was replaced with a single M-105P engine with a power of 960 hp (or 1,050 hp depending on the source). The area where the second engine was previously located was filled in order to maintain the stability of the aircraft. Due to the removal the second engine, the second contra-rotating propeller was no longer needed. The new engine’s oil coolers were placed in the main radiator duct. The designers had a dilemma about what to do with the extra interior space left by the removal of the second engine, but this was never solved completely. With these modifications, the weight was reduced from 12,460 lb (5,650 kg) to 8,820 lb (4,000 kg).

The wing design was also changed to one done by Z.I. Iskovich by increasing its size and using a new aerofoil shape. The previous wing design had an area of 246.5 ft² (22.9 m²), while the new one had 252 ft² (23.4 m²). The last change was made to ease testing during winter, replacing the landing gear with fixed skis.

It appears that no official designation for this version existed but, using the same logic as for the two-engine version, it could be called S-M-105, but this is only speculation at best. According to some sources, the single-engined variant was marked as the S-1.

There were plans to improve the performance of the projected fighter version by mounting two M-107 engines. The new fighter was to be designated simply as the “I” or “I-1”. Due to the later cancellation of the S-2M-103 project, the I-1 was also abandoned.

The Fate of the S-2M-103 Project

More flight tests were carried out during the first half of 1941. While there is no precise information, the newly modified single-engined version of the S-2M-103 allegedly had poor performance. Despite the modifications, the new single-engined version managed to achieve a much lower top speed of 248 mph (400 km/h) at 14,440 ft (4,400 m). The poor performance, preparation for Pe-2 production at the factory where it was built, and the German Invasion of the Soviet Union led to the cancellation of the S-2M-103 project.

Operators

  • The Soviet Union – A single prototype was tested in 1940/41, but was not adopted for production.

Variants

  • S-2M-103 – Twin engine fast bomber
  • S-2M-103 (possibly S-M-105) – Single-engine version
  • I-1 – Improved fighter version equipped with two M-107 engines, due to cancelation of the S-2M-103 none were built.

Conclusion

The concept of installing two engines in the same fuselage had some advantages over the wing mounted configuration. It reduced drag, which lead to increased speed and flight performance. The S-2M-103 proved this by achieving speeds of up to 350 mph (570 km/h). However, its design had issues that were never resolved. Given enough time, those might have been solved. Alas, in 1941, the German Invasion and the need to increase production of already existing aircraft stopped all unimportant projects.

Bolkhovitinov S-2M-103 (original twin-engine configuration) specifications
Wingspan 37 ft 5 in / 11.4 m
Length 43 ft 4 in / 13.2 m
Wing Area 246.5 ft ² / 22.9 m²
Engine Two 960 hp (716 kW) Klimov M-103
Maximum Takeoff Weight 12,460 lb / 5,650 kg
Maximum Speed at 4.6 km 354 mph / 570 km/h
Range 435 mi / 700 km
Crew The pilot and the navigator
Armament
  • One 0.3 in (7.62 mm) ShKAS machine gun
  • Bomb load of 880 lb/400 kg

Gallery

Illustrations by Haryo Panji https://www.deviantart.com/haryopanji

Drawing of the S-2M-103.
View of the engine compartment interior.
Rear view of the S-2M-103.

Credits

 

 

One thought on “Bolkhovitinov S-2M-103

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.