Nazi Germany (1940)
Jet Powered Bomber & Reconnaissance Aircraft – 8 Prototypes Built
Following a request from the German Ministry of Aviation (Reichsluftfahrtministerium – RLM), in 1940, German aircraft manufacturer Arado began working on a new multi-purpose jet powered plane. Arado’s work would lead to the development of the advanced and sophisticated Ar 234 aircraft. During 1943, a small series of eight prototypes would be built and used mainly for testing, but some saw operational service.
History
During the spring of 1940, Arado was contacted by RLM officials with a request to design a completely new multi-purpose jet aircraft to be used for bombers and for reconnaissance duties. This aircraft was to be powered by new jet engines which were under development by Junkers and BMW. Interestingly, besides the request that it should be able to reach the British naval base at Scapa Flow in Northern Scotland, no other performance requirements were specified. The sources do not specify the precise base of operation for these reconnaissance missions. Geographically, the closest territories under German control were south Norway and Denmark, although it is possible that these aircraft would have had to operate from air bases in the occupied territories in Western Europe, either from France, the Netherlands or Belgium. This would require an estimated range of over 900 km. In essence, the RLM gave Arado free reign in terms of the overall design and its performance. If the prototypes built were satisfactory, an initial order for 50 aircraft was to be given.
Work on this new design was given to engineer Rüdiger Kosin, as Arado’s Technical Director, Walter Blume, was uninterested in this project. When work started, it received the Arado Erprobungs (experimental) 370 designation. During the initial phases, there were several different proposals about the number of crewmen, wing size, weapon configuration and the number of engines. After nearly a year, in October 1941, the first proper project, designated the E 370/IVa, was completed. This proposal was mainly intended to be used as a reconnaissance aircraft and was to be equipped with camera equipment. It was to be powered by two BMW P 3302 turbo jet engines. The armament was quite modest and consisted of only one 13 mm MG 131 machine gun. As this aircraft was to operate from short-length airfields, the designers came up with the idea to use a wooden retractable skid for landing, which was to be mounted beneath the fuselage.
The project was presented to RLM officials in late October of 1941. They were satisfied and gave permission for the production of 50 aircraft. During the evaluation, it received the 8-234 designation. Unfortunately for Arado, the head of the RLM Technical Department, Ernst Udet, committed suicide just a few weeks later. He was replaced by Erhard Milch, who was more interested in aircraft that were already being produced rather than the proposed Arado project. This without a doubt affected the earlier mentioned initial production order, as the initial order for 50 seems to disappear from record. Despite this setback, work on the E 370 continued. During early 1942, some modifications to the fuselage were made with the aim of increasing its size and strength. The unusual skid undercarriage was replaced by a retractable wheeled bogie system.
In February 1942, Erhard Milch visited the Arado company. He was presented with the drawings and calculations for the improved E 370 model. He was generally impressed with what he saw, and gave his permission for the construction of a wooden mockup. The order would be increased to six prototypes in the following month. The aircraft was to take off using a small three wheel dolly. After the aircraft was in the sky, the dolly was jettisoned and landed with the help of a parachute, meaning it could be used again. In addition, the idea of using a retractable skid undercarriage was reintroduced. If needed, jettisonable Walter HWK auxiliary rocket take-off engines could be attached under the wings. Throughout 1942, many additional modifications and changes were made to the design. Great attention was given to the testing of different engine types and configurations.
By the end of 1942, the number of prototypes to be built was once again increased to 20. The first seven aircraft were to be powered by Jumo 004 engines, with prototype V8 powered by four BMW 003 engines, and V9 through V14 with two BMW 003 engines. The remaining aircraft were to be powered by four BMW 003 engines. The first prototype was meant to be built by November 1943, with the last in October 1944. Surprisingly, these 1942 plans actually started to be completed early, with the first 3 prototypes ready by August 1943. Thanks to this, it was possible to run the first test trials even earlier than anticipated.
Work on the First Prototypes
Work on the construction of the first prototype began in late 1942. During this time, the name was changed to Ar 234. Progress was slow due to problems with the delivery of the Jumo 004 engines, which only arrived in February 1943. These engines were tested and immediately proved to be problematic, as they failed to achieve the promised 850 kg (1879 lbs) thrust. Once fitted with these engines, the first prototype, Ar 234 V1, was used for static ground testing and taxiing trials. No flight was initially accepted due to the short runway at Brandenburg, where the prototype was built. For this reason, the prototype was moved to a Luftwaffe airfield at Munster. During July 1943, this aircraft was mainly used for ground tests. In late July, there was an accident when one of the Jumo engines caught fire. The damage was minor and was quickly repaired. On 30th July, Ar 234 V1 made its first test flight piloted by Horst Selle. The flight was successful, with no problems with the aircraft. The dolly, on the other hand, was lost when the parachute failed to properly open. In early August, there were again problems with the same engine. To avoid any potential threat to the aircraft, it was simply replaced by an engine taken from Ar 234 V3, which was under construction. On 9th August, another test flight was undertaken. During this flight, Selle reached a speed of 650 km/h (400 mph) without any problems. The dolly was once again lost, similarly to the first one. Additional changes were made to the position of the parachute on the dolly, which proved to be the solution to this problem. The V1 prototype would be lost in an accident where the pilot overshot the landing field and crash landed on 29th August. While the aircraft was not repaired, parts of it were reused for testing other equipment.
The V2 prototype was completed in late August 1943. There were some issues with the engine, which had to be replaced. The aircraft was otherwise trouble-free. It was moved to Alt Lonnewitz, where it was mainly used for engine testing. In late September 1943, V3 made its first flight. While, initially, it was to be equipped with a pressurized cabin and an ejector seat, this was never implemented.
In early October 1943, the V2 prototype, with its pilot, Selle, were lost in a fire. This accident prompted the Germans to introduce automatic fire extinguishing systems on all of the Ar 234 prototypes, including later ones. Another change was introducing ejection seats to avoid any further pilot casualties. Due to this accident, there were some delays in the Ar 234 project. Testing continued in November, when V3 was piloted by Walter Kroger. On the 21st of November, the V3 aircraft was transferred to Insterburg to be presented to Adolf Hitler, together with other experimental jet aircraft, like the Me 262 and Me 163. Hitler was highly impressed and even gave orders that some 200 aircraft be built during 1944. During this time, V4 was also flight tested. Both V3 and V4 were used until June 1944 for various roles, including crew training, after which they were removed and replaced with later Ar 234 B versions. By the end of 1943, V5, fitted with Jumo 004 B-0 engines. was introduced.
During early 1944, two Arado 234 aircraft would be tested with a four engine configuration. The idea was that the use of four smaller engines would provide similar performance to the larger ones. V8 was powered by two pairs of BMW P.3302 engines. V6 (which was built later than V8) was tested with four BMW 003 engines placed in four separate wing-mounted nacelles. During a routine flight of V6 at the start of June 1944, all four engines stopped working only 17 minutes after take-off. The pilot was forced to conduct an emergency landing of the plane, after which it caught fire and was heavily damaged, rendering it a complete loss. After this accident, and due to many other engine problems with both versions, all further work on the multi-engined Ar 234 A was discontinued. These would later serve as the basis for the Ar 234 C version instead.
Technical Characteristics
The Arado Ar 234A (as they were designated later on) prototypes were designed as all metal, high-wing turbojet-powered experimental reconnaissance planes. Their fuselages had a semi-monocoque design with a flat top. The wings consisted of two main spars, each with 29 ribs. They were covered with metal stressed skin. Each wing was connected to the fuselage by four bolts. If needed, these could easily be taken off and removed. At the rear, there was a more or less conventional tail unit.
The Ar 234 was used to test a number of different engines. The first 4 prototypes were powered by two Jumo 004 A-0 engines, which had 840 kg (1,850 lbs) of thrust. V5 and V7 used Jumo 004 B-0 engines which provided 900 kg (1,980 lbs) of thrust. The 3.8 m (12 ft) long engines (both types had the same size) were attached to the wings using three bolts. V6 and V8 were powered by four engines which were able to achieve 800 kg (1,760 lbs) of thrust. As the Ar 234 was intended to be used for reconnaissance operations, a large fuel capacity was important. One 1,800 liter fuel tank was placed behind the cockpit, with a second 2,000 liter tank in the rear of the fuselage. With this fuel load the Ar 234 had an operational range of 1,500 km (930 miles). To assist with take-off, the Ar 234 could be equipped with small Walter 109-500 type rocket engines. These had a run time of 30 seconds and could generate 500 kg (1,100 lbs) of thrust. After the Ar 234 was in the air, the rocket motors would be jettisoned and would land on the ground using small parachutes.
The Ar 234 did not have conventional landing gear, but instead used a three wheel 640 kg (1,410 lbs) jettisonable take-off assist dolly. The Ar 234 pilot could control this dolly by using the rudder, which was connected to hydraulic brakes on the dolly. Once in flight, the dolly would detach and then fall back to Earth using a parachute, and could thereafter be reused. Initially, it was discarded during flight, but this proved to be problematic. After some redesign work, the moment of release was changed to just after take-off. There was no risk of the dolly impacting the fuselage in midair, as the parachute pulled it away from the aircraft. When the Ar 234 had to land, it would use the retractable hydraulically operated skid under the fuselage. The engine nacelles were also provided with smaller skids to avoid any damage to them and to provide better stability during landing. The V3 prototype tested in early 1944 used a drag parachute during landing. This proved to be successful and was later implemented as standard from the B series on.
The pilot’s cockpit was fully glazed, which provided excellent all around visibility. To enter the cockpit, the pilot used a small hatch placed atop the cockpit. This was not a great design feature as, in an emergency, the pilot could not easily escape the plane. In order to protect the pilot from enemy fire from the rear, a 15 mm thick armor plate was installed behind his seat. Behind this protective armor plate, three oxygen tanks were placed. The instruments were placed on two smaller panels to the left and right of the pilot.
A few Ar 234s were equipped with two Rb 50/30 cameras. These were placed behind the rear fuel tank. These could cover a wide area of 10 km (6 mile) at an altitude of 10 km (33,000 ft).
There were initial plans to arm the Ar 234 with a 13 mm machine gun for self defence. Due to the experimental nature of the Ar 234 A version, no actual armament would actually be installed.
Operational Service
In May 1944, Conny Noell of the Luftwaffe experimental Versuchsverband unit requested that at least two Ar 234 airframes be used for experimental reconnaissance operations after examining the prototypes. The request was accepted and the V5 and V7 aircraft were allocated for this task. Besides the camera equipment, virtually nothing else was changed on these two aircraft.
For the testing of these aircraft, two pilots were chosen, Horst Götz and Erich Sommer. At the start of June 1944, the V5 prototype was tested by Götz during a short 30 minute long flight. He later wrote, after the war “The take-off procedure was not very complicated. First, I engaged the starter, then fed petrol into the combustion chamber until, at approximately 6,000 rpm, I made the gradual change to J2 kerosene. The engines were then reved up to their maximum 9,000 revolutions. After take-off, I throttled the engine back to cruising speed. It was a completely new flying experience. Only a slight whistling noise in the cockpit could be heard. The take-off dolly had functioned quite normally. It was really wonderful”.
Four days later, Sommer also tested this aircraft and gave a similar positive assessment of its overall performance. More flights were undertaken in the following days without major problems. While piloting the V5 prototype during a routine take-off, Götz’ wheeled takeoff dolly release mechanism failed, with the assembly remaining stuck to the aircraft’s landing skids. He immediately tried to land back at the airfield. Despite the dangerous maneuver, he managed to land in a nearby potato field, with minimal damage to the plane.
Around this time, the two test pilots were informed that no prolonged or high-altitude flights had ever been attempted by the Ar 234 prototypes, mostly due to a lack of pressurized cockpit. For this reason, Sommer decided to personally test the Ar 234’s performance at altitude. In late June 1944, he made the first high altitude flight, which lasted over an hour and fifteen minutes at an altitude of 11 kilometers (36,000 ft). During a dive, he managed to reach a speed of 590 km/h (367 mph). A few days later, he made another similar flight that lasted over two hours, during which he managed to cover a distance of 1,435 km (890 miles). When the test flights were completed, both pilots gave positive feedback and evaluations about the performance of the planes and recommended their immediate production.
Following the Allied invasion of German occupied France in 1944, the experimental unit was ordered to move its two aircraft and equipment by train to Juvincourt, in France, by the end of July. Due to delays with the delivery of necessary parts, mostly due to Allied air raids, V7 was finally ready to take to the sky on the 2nd of August. V7’s first operational mission was to take photographs of the Allied landing beaches and the 10 km (6 mile) wide inland strip . The flight was a success, without any problems. The Ar 234’s cameras managed to take nearly 400 photographs of the Allied invasion force, which provided the Germans with vital information about the strength and numbers of the enemy. With this single flight, Sommer managed to achieve what the remaining Luftwaffe reconnaissance units failed to do in two months. During August, some 7 reconnaissance flights were undertaken by the two Ar 234 aircraft. Following the rapid Allied advance, they had to be relocated to Belgium. While V7, piloted by Sommer, arrived without any problems, Götz was less fortunate. During the flight, he was hit by friendly anti-aircraft fire. While damaged, Götz managed to fly up to Oranienburg. But his bad luck for that day was not yet over. His landed Ar 234 aircraft was struck from behind in a ground collision by a Focke Wulf Fw 190 which was attempting a take-off, completely destroying V5. Ironically, the first German operational jet powered aircraft, and the first in the world, was shot down by the Germans and then destroyed by a German fighter plane!
Sommer was stationed with his aircraft at Volkel in Holland until the 5th of September, when it was relocated to Rheine base. On the 10th, Sommer performed a reconnaissance flight over the Thames Estuary but, without direct orders, continued up to London. The next morning, he was informed that, due to this action, he was to be arrested and court martialed. Sommer immediately contacted Götz and explained the situation to him. Götz immediately took action and, after persuasions and threats, managed to get the charges against Sommer dropped. After the war, they both found out who demanded Sommer’s arrest. It was the chief of the V-2 program, Hans Kammler, who had feared that the pictures of London would prove the failure of his rocket program.
Sommer made at least four more reconnaissance flights with Ar 234 V7 before it was finally replaced with a B version, which was essentially just a copy of the previous version but with a wider fuselage and a more conventional completely retractable wheeled landing gear. After this, V7 was mainly used for crew training before being damaged during a take-off accident on 19th October 1944. After it was repaired, Götz made a flight to Oranienburg, where the plane was removed from service.
Production
Of the Arado 234 A series, only 8 aircraft were ever produced, as they were used for experimentation of various equipment and engine units.
V1 (TG+KB) – Badly damaged during a harsh landing.
V2 (DP+AW) – Was lost in a flight accident.
V3 (DP+AX) – Was presented to Hitler, who authorized the Ar 234 production. Used for various testing until July 1944.
V4 (DP+AY) – Similar to the V3 prototype, used up to June 1944 mainly for crew training, when it was removed from service.
V5 (GK+IV) – The first aircraft to be used operationally, but was lost when damaged by friendly ground-based anti-aircraft fire.
V6 (GK+IW) – Heavily damaged during a landing accident and caught fire soon after.
V7 (GK+IX/ T9+MH) – Used operationally until October 1944, when it was damaged in a take-off accident. Written off as a complete loss.
V8 (GK+IY) – Tested with a four engine configuration, but proved to be highly problematic.
Conclusion
While only a small number of Ar 234A planes were built, they proved to be successful designs. During the initial development phase and in their experimental use in service, no major issues were noted. The major drawback was the insufficient quality of the engines and the use of a jettisonable takeoff dolly. Following the success of the Ar 234 A, the development and production of the B and C versions was approved.
Nazi Germany (1942)
Jet Fighter Concept – None Built
The Fw 190 Strahljäger (Jet Fighter) was a conceptual turbojet fighter and the Focke-Wulf Flugzeugbau firm’s first attempt to design a jet-powered fighter. First mentioned in a report dated November 5, 1942, the Fw 190 Strahljager would have seen the BMW 801 radial engine replaced by a Focke-Wulf T.1 turbojet engine capable of producing 1,300 lb / 600 kg of thrust at most. Short-lived and canceled mere months after its conceptualization, the Fw 190 Strahljäger is quite mysterious in many aspects, such as how the engine would have performed while mounted. Unfortunately, due to the unique nature of the design, the Fw 190 Strahljäger has been the victim of falsification and malicious misinformation. One of the most popular claims on this aircraft was that it was built. This is almost assuredly false, as no primary sources support this claim. A photo does exist which purports to show a Fw 190 with the jet engine, but this photo is definitely a fake as there are too many discrepancies and questionable content, such as the plastic model looking landing gear. Nonetheless, the Fw 190 Strahljäger is quite an interesting design from 1942 that shows Focke-Wulf’s attempts to remedy the powerplant issues of their Fw 190.
History
When first fielded in August of 1941, the Focke-Wulf Fw 190 Würger (Shrike) made a positive impression with Luftwaffe pilots. Seemingly equal or superior to most contemporary Allied fighters, the Fw 190 gained a fearsome reputation among the Allied pilots, who at first did not even realize the Fw 190 was a new aircraft model. Despite the success of the Fw 190, there were several problems with the aircraft’s design. For one, the air-cooled 14-cylinder BMW 801 radial engine which powered the aircraft was prone to overheating due to inadequate cooling systems and, as a result, would produce fumes which would seep into the cockpit and suffocate the pilot. This issue was somewhat addressed in subsequent production variants, but the problem was never snuffed out. In an attempt to address this issue, the Bremen-based Focke-Wulf firm began to look into the possibility of changing the powerplant. However, it was not until late 1942 that the firm launched several design ventures for a new design. In the spring of 1942, the Focke-Wulf firm received a considerable amount of funds from production orders for the Fw 190 by the Reichsluftfahrtministerium (RLM / Ministry of Aviation). The goal of the design venture was to provide a successor to the Fw 190 by replacing the BMW 801 with more promising engines being developed at the time.
One of the designs which resulted from this venture was the Fw 190 Strahljäger (jet fighter), a curious design that first appeared in documents on November 5, 1942. This design explored the feasibility of replacing the BMW 801 with a Focke-Wulf designed turbojet engine. Even before 1942, the Focke-Wulf firm looked into the possibility of replacing the BWM 801 with a turbojet. Dr. Otto Pabst, a Focke-Wulf engineer, told British officials after the war that he attempted to design a jet engine which would be used for the Fw 200 Condor bomber before the Second World War started. The report which entails his interview states: “Dr. Pabst had also worked on a gas turbine engine to be constructed by Focke-Wulf, which consisted of a double entry radial compressor and a single stage axial flow turbine with a single annular burner chamber which was expected to produce 600 kg (1,300 lb) thrust at 11 km (7 mi) or 2 kg (4 lb) thrust at sea level.“ The 4 lb / 2kg thrust at sea level is likely an error by the document author, and the more realistic thrust would be 440 lb / 200 kg. The engine in question was the Focke-Wulf T.1, and this same engine was envisioned to power the Fw 190 Strahljäger.
Much of the Fw 190 Strahljäger’s developmental history is unknown due to poor documentation and the project’s short lifespan. It would appear that the Fw 190 Strahljäger was designed with the intent of making the turbojet nose easily adaptable to standard Fw 190 airframes. Surprisingly, estimated performance graphs on the Fw 190 Strahljäger exist and demonstrate improvement over the standard Fw 190 A variant. Despite this, however, the Fw 190 Strahljäger’s top speed was lower than the Heinkel firm’s He 280 jet fighter and the Messerschmitt firm’s Me 262 fighter. As such, the Reichsluftfahrtministerium decided that the project was not worth pursuing and priority was given to the other firm’s jet fighter programmes. As such, the Fw 190 Strahljäger project would come to an end either in very late 1942 or early 1943, after only two or three months of development time. The original intent to replace the BMW 801 with a turbojet failed, and the Fw 190 program would evolve to utilize improved and reliable conventional reciprocating engines and propellers.
Fact or Fiction? – Author’s Analysis
With the mysterious and unique nature of the Fw 190 Strahljäger design, several online publications from recent times have made several claims about the project, with the most important being that a Fw 190 was actually converted to test the turbojet. This claim is certainly false, as primary documentation and credible historians show that the project did not even make it past the drawing stage. Although the Focke-Wulf firm could have easily taken a factory fresh Fw 190 off of the production lines to test this, just because they could does not mean they did.
There does exist a photo which claims to be evidence that a Fw 190 Strahljäger was built, but there are several discrepancies which suggest that it is fake. For one, the landing gear seems rather plastic, and the shadows are questionable. The shadow of the main wing suggests it is evening or morning and the sun is off to the left, while the shadow from the tailplane is projected as if the sun is behind the plane. Furthermore, it appears that two Werfer-Granate 21 rocket launchers are hung beneath the wing. If a hypothetical aircraft was converted to test the engine, it would make no sense for it to retain the launchers especially when it takes little time to remove them. Lastly, it seems that the nose exhaust is at the wrong angle relative to the fuselage. In conclusion, this appears to be a photo of a model which has been bleached to give the black and white effect. FotoForensics (used to detect photoshopped images) does not appear to suggest that the photo was modified, but this could possibly be due to the image not being the original one.
Other than that, a curious nomenclature which has surfaced in recent times suggests the turbojet-powered Fw 190 would be called the Fw 190 TL (TurboLader Strahltriebwerk – Turbocharger Jet Engine). However, this claim is questionable as official documents only state the name was “Fw 190 Strahljäger”. This can possibly be chalked up to misinformation.
Design
The Fw 190 Strahljäger was a 1942 project to mate a Focke-Wulf designed turbojet engine with a standard Fw 190 A airframe. According to credible secondary sources and an interview with former Focke-Wulf engineer Otto Pabst, the engine which would power the Fw 190 Strahljäger “consisted of a double entry radial compressor and a single stage axial flow turbine with a single annular burner chamber which was expected to produce 600 kg (1,322 lb) thrust at 11 km (6.8 mi) or 2 kg (4 lb) thrust at sea level”. As mentioned earlier, the 4 lb / 2 kg thrust was likely an error and the actual engine would produce 440 lb / 200 kg of thrust at sea level. The engine was the Focke-Wulf T.1 turbojet. The exhaust of the turbojet would be passed through a ring-shaped outlet between the engine and the fuselage. The exhaust passed through the side and bottom, but not the cockpit on the top. The engine would be accompanied by 370 gal / 1,400 l fuel, which the engine uses at 309 gal / 1,170 l per hour. This would give the Fw 190 Strahljäger a total flight time of 1.2 hours or 72 minutes.
The Fw 190 Strahljäger’s armaments consisted of two 7.92x57mm Rheinmetall-Borsig MG 17 machine guns mounted on the engine cowl and two 20x82mm Mauser MG 151/20 cannons, one in each wing. It is unknown whether or not the aircraft would have been able to carry ordinance.
Official graphs of the Fw 190 Strahljäger’s estimated performance exist. Some fundamental specifications are listed in the Specifications Table below.
Operators
Nazi Germany – The Fw 190 Strahljäger was intended to replace the Fw 190’s troublesome BMW 801 engine, but the design did not go into production due to several factors.
Focke-Wulf Fw 190 Strahljäger*
* – Information taken from “Das Focke-Wulf Strahltriebwerk wird an die vorhandene Zelle Fw 190 angebout” published in 1942 by the Focke-Wulf Flugzeugbau AG and “Luftwaffe: Secret Jets of the Third Reich” published in 2015 by Dan Sharp
Wingspan
34 ft 5.78 in / 10.51 m
Wing Area
197 ft² / 18.3 m²
Engine
1x single stage axial flow turbine Focke-Wulf T.1 turbojet
Engine Ratings
4 lb / 2 kg at Sea Level*
1,300 lb / 600 kg at 7 mi / 11 km
* – Likely an error in the document, the more realistic thrust would be 440 lb / 200 kg
The combined American, British and Soviet Air Forces began to take over the skies above Europe in the later part of the war. Germans were desperate to find a way to fight the combined Allied bomber raids that were slowly destroying German industry which was necessary for continuation of the war. A cheap and easy to build jet fighter was believed to be the solution to the Allied bombing raids. From these aspirations the Volksjäger, “The People’s Fighter,” project was born.
Emergence of the Volksjäger Concept
The men responsible for the creation of the Volksjäger idea and concept were civil engineers Hauptdienstleiter Dipl-Ing Karlo Otto Saur, who was also a member of the Nazi party, and Generaloberst Alfred Keller.
Otto Saur was quick to realize that by 1944 the Luftwaffe was a shadow of its former glory. This was most obvious for the fighter force, which was engaged in a desperate struggle with a more numerous and better equipped enemy. Otto Saur’s conclusion was that a cheap and easy to build jet fighter could tip the balance of power in Germany’s favor again. He was quick to present his idea to Hermann Göring, Reichsluftfahrtminister, the Reich’s Minister of Aviation, who immediately supported it.
Generaloberst Alfred Keller, who was in charge of the flying, training and sports association (Nationalsozialistisches Fliegerkorps – NSFK) also supported the Volksjäger idea. The NSFK organization was also involved in offering several courses, The Flying Hitler Youth (Flieger Hitlerjugend) on how to build model aircraft and glider flying training for schoolboys. In support of Otto Saur’s proposal, Alfred Keller came with his own proposal to use these young boys, with ages between 15 to 17, as pilots for the mass produced Volksjäger. In Keller’s opinion, all that was needed was some short training with gliders which would be supplemented with more training on the Volksjäger.
Many in the Luftwaffe command opposed this project and the idea of using young boys as fighter pilots against the numerous and well-equipped and trained Allied air forces. The greatest advocate against this project was Generalleutnant Adolf Galland, being supported by Willy Messerschmitt, chief designer of the famous Messerschmitt company, and Kurt Tank, the most well-known designer at Focke-Wulf. The most important reason behind this opposition was the fact that, towards the end of the war, Germany was lacking fuel, materials, pilots, production capacity and many other elements. They argued that all available resources should be directed to the development and production of the already existing Me 262 jet fighter.
In the years prior to the collapse of the Luftwaffe, such a concept would most likely never have gained any support from Luftwaffe officials. However, by 1944, the Germans were in a desperate need for a wonder weapon to turn the tides. As Hermann Göring was no longer in Hitler’s good graces, he was desperate to find a way to appease Hitler. The best way to do this was to somehow find a miraculous solution to salvage the Luftwaffe, stop the incessant Allied bombardment of Germany, and provide much-needed support to the beleaguered Wehrmacht. Through these psychological lens, Otto Saur’s and Alfred Keller’s proposals looked like an ideal solution. Despite the great opposition, Hermann Göring kept insisting that the Volksjäger development should begin as soon as possible. The Volksjäger would later be supported by Adolf Hitler and Albert Speer (the Minister of Armaments and War Production).
First Steps
In the search for a new low-altitude fighter, Oberst Siegfried Knemeyer was named responsible for the Volksjäger’s initial requirements. He was in charge of the Technical Equipment Office for flight development of the Ministry of Aviation (Reichsluftfahrtministerium, RLM). Siegfried Knemeyer was an experienced military pilot and engineer who participated in the test flights of many different experimental aircraft designs. From 1943 onward, he was part of Hermann Göring’s cabinet from where he actively supported the development of the new Me 262.
While the Me 262 jet fighter was superior to piston powered Allied planes, it was far from perfect. The most significant problem with the Me 262 was the poor performance at low altitude, where it was an easy prey for Allied fighters. This is also where Allied fighters and close support aircraft were very active and often attacked German airfields, supply trains and ground troops. The already existing Me 109 and Fw 190 were becoming outdated and insufficient by late 1944 standards. In order to effectively counter enemy planes at low altitude, a new design was needed according to Siegfried Knemeyer, who noted (Source: Robert F. He 162 Volksäger Units):
“… It became absolutely essential to develop a high-speed, single-seater fighter that had asufficiently good performance which would enable it to take off when enemy aircraft were actually sighted. In addition, due to the bombing of our large airfields with long runways, these new fighters had to be able to take off in a very short distance and thus enable small landing grounds to be used. The mass production of such an aircraft had to be on such a scale as would enable the enemy to be engaged at any point and during the entire duration of their flight …… By limiting the endurance and the armament requirement for this new aircraft, the existing jet fighter (the Me 262) would have fulfilled the requirements. However, this aircraft had to be ruled out since it was not possible to produce the numbers that would have been required for combating these low-flying attacks and, in particular, because the provision of two power units per airframe was quite beyond the capacity of industry… “. Based on this, Siegfried Knemeyer gave a list of specifications which the new low-altitude fighter had to conform with:
This plane should be able to take off from runways less than 1970 ft (600 m) long.
It should be powered by a single jet engine, in order to lower the costs.
As the Jumo 004 engine could not be produced in sufficient numbers, another engine was needed. The new BMW 003 was recommended.
Maximum speed at sea level should be at least 465 mph (750 km/h).
The production process had to be as simple as possible without disturbing the production of the Me 262 and Ar 234.
The main building material should be wood. A larger number of furniture manufacturers and carpenters should be included in the production as they had the skill and experience in working with wood that would be needed.
Based on these requirements, the RLM placed an initial order for the new Volksjäger low-altitude jet fighter in July 1944. The first mockup needed to be ready by 1st October, 1944, and a fully operational prototype should have been ready by early December the same year. The main production was planned to begin in early 1945.
The Race for the Volksjäger
For some time, the Volksjäger seemed like it would remain only a paper proposal, as little progress was made until September 1944. On 7th September, a high priority teleprint message arrived at the Heinkel company. This message was sent by Dipl-ing Karl Frydag, Heinkel’s General Director at the Ministry, but also the leader of the Main Committee for Aircraft Construction and an acquaintance of Otto Saur. The high priority message was addressed to Prof. Ernst Heinkel and his main engineer team. This illicit message contained information including not-yet-published RLM tender requirements for the new Volksjäger jet fighter.
As the official tender request was to be issued by RLM in only a few days, Ernst Heinkel and his team moved quickly to use the small time advantage they had over other possible competitors. The first thing Ernst Heinkel did was to give instructions to reuse the P 1073 paper project that was intended for an RLM request from July. P 1073 was, according to the original plans, to be powered by two HeS 011 or Jumo 004C turbojet engines. One engine was to be mounted on top of the fuselage behind the cockpit and the second one below, right under the cockpit. The maximum speed using the HeS 011 engines was estimated to be around 630 mph (1010 km/h) at 19700 ft (6000 m). P 1073’s wing was swept back at 35° with a “V” shaped rear tailplane. The armament would include two 1.18 in (30 mm) MK 108 and two MG 151/20 0.78in (20 mm) cannons.
Later, due to the new specifications for the Volksjäger, P 1073 was modified to be powered by a single BMW 003 engine. Other changes, such as increasing the dimensions, a new straight wing design and adding new rear twin tail fins. The name was changed to P 1073-15. Further modifications were conducted at the Rostock-Marienehe plant. These included a high unswept wing design, the engine mounted above the fuselage, an armament of only two MG 151/20 0.78 in (20 mm) cannons, a tricycle undercarriage and a weight around 2.5 t. The maximum speed at ground level was 500 mph (810 km/h). It was possible to increase the offensive armament with bombs and 1.18 in/30 mm cannons. The name was again changed to P 1073-18.
By 9th (or 8th, depending on the source) September 1944, other German aircraft manufacturers received the RLM requirements for the new Volksjäger project. According to these, the Volksjäger fighter had to be able to take off in less than 1640 ft (500 m). It had to be powered by one BMW 003 jet engine and the total weight must not must not exceed 4410 lbs (2000 kg). The maximum speed at sea level had to be at least 460 mph (750 km/h). The flight endurance at full thrust had to be at least 30 min. The main armament had to consist of either two MK 108 (with 80 to 100 rounds per gun) or two MG 151/20 (with 200-250 rounds per gun) cannons.
The main construction material would be wood with a smaller amount of steel used. Protection for the pilot, fuel tanks and the main gun ammunition was to be provided. However, since great attention was dedicated to the short take off distance, the manufacturers were allowed to reduce the armor and ammunition load if needed. First proposals from all interested aircraft manufacturers were to be ready in only a few days, as a draconically unrealistic deadline was set for the 14th (or 20th depending on the source) September.
Besides Heinkel, which was “unofficially” familiar with the details of this tender a few days before its publication, others aircraft manufacturers participated and submitted their own proposal. The competitors included Arado (E 580), Blohm und Voss (P 211.02), Junkers (marked either as EF 123 or EF 124) and Focke-Wulf. Focke-Wulf actually presented two different proposals (Volksflitzer and Volksflugzeug). Others, like Fieseler and Siebel, lacked the manpower and production capacity to successfully participate in this tender. Messerschmitt did not participate in this competition as Willy Messerschmitt was against the Volksjäger concept from the beginning. He was a great opponent of this project, arguing that increasing the production rate of the Me 262 should have a greater priority and that the Volksjäger was a waste of time and materials which Germany was sorely lacking.
By the end of the competition period, all proposals were submitted to the RLM. After two days, a conference was held in Berlin with the representatives of all five companies, together with officials from the Luftwaffe and RLM. The Arado, Focke-Wulf and Junkers projects were immediately rejected. Even Heinkel’s original proposal came close to being rejected, as it would be complicated to build. It was judged that the best proposal was the Blohm und Voss P 221-02 project, as it was (at least on paper) easier to build and used a smaller quantity of duralumin. At this point, Heinkel representatives were trying to win the competition by arguing that, due to the cancelation of the He 177 and the He 219 programmes, they would have enough production capacity to manufacture the Volksjäger in great numbers. They also proposed to make the entire design far simpler for mass production.
In the following days, there were many difficult and exhausting discussions around the Heinkel and Blohm und Voss projects. There was a sharp debate between Heinkel Dipl-Ing. Francke and the RLM Generaldirektor Frydag which supported the Blohm und Voss project. These discussions caused some delays in making the final decision for the implementation of the Volksjäger project. At the same time, at the Heinkel factory at Schwechat near Vienna (EHAG – Ernst Heinkel AG), work began on calculations and drawings in preparation for the production of the first models of the Volksjäger, marked as the He 500.
The final discussion regarding the competition was held at Hitler residence in Rastenberg, in East Prussia. Hermann Göring enthusiastically and actively supported the He 500 without even considering the Blohm und Voss P 221-02 project. He also gained the support of Adolf Hitler and Albert Speer. Thus, in the end, the Heinkel project was chosen. This decision was also based on the experience that Heinkel had accumulated with the construction and development of jet technology (with the He 178 and He 280) but also due to the significant lobby that this company had.
Although Heinkel’s design won, there were requests for some alterations. For easier production and construction, the design of the tail, fuselage and the landing gear had to be simplified. As was originally planned, the first mockup was ready by 1st October 1944 and the first prototype was to be built by 10th December of the same year. The main production was to begin in January 1945 with 1000 planes per month, which would be increased to 2000 per month. These dates and numbers were, taking Germany’s economic and military situation into consideration, unrealistic and understandably never achieved.
According to Ernst Heinkel, the final designation for the new Volksjäger was meant to be He 500. However, the RLM officials, in the hope of somehow hiding its original purpose from Allied intelligence, gave it the designation “8-162”. In some sources, it is also called “Salamander”. This was actually a code name given for wooden component production companies. The He 162 is also sometimes called “Spatz” (Sparrow), but this name is, according to some sources, related to the He 162S training glider prototype.
Construction of the First Prototypes
The work on the final design was given to the engineers Siegfried Günter and Karl Schwärzler. A large design staff of some 370 men was at their disposal. The design work was carried out at the Heinkel workshop (at Schwechat Air Base) near Vienna. By 15th October, the first sketches and production tools were ready.
The Heinkel factory (in Vienna) was responsible for beginning the serial production of the He 162. In the hope of speeding up production, other factories were included along with many smaller companies. Each of these were to be responsible for producing certain parts and components of the He 162. When all necessary parts for the construction of the first prototype were built, they were to be transported to Vienna for the final assembly. Due to a lack of transport capability and insufficient quality of wooden parts (especially the wings), there were some delays.
Despite the fact that wood was easier to work with, there were huge issues with the quality of the delivered parts. Some of the problems encountered were that the production procedures were often not carried out according to regulations, the glue used was of poor quality, sometimes parts would not fit together. There were situations in which large numbers of wooden parts were returned to the suppliers simply because they could not be used. There were also problems with the first prototype’s engine as it was damaged during the transport and had to be repaired. All the necessary parts arrived by 24th November and the assembly of the first He 162 prototype could begin.
The He 162 V1 prototype (serial number Wk-Nr 200001) was ready for testing by 1st December, 1944. The first series of prototypes had the “V” (Versuchmuster) designation. Later, starting from V3 and V4, the designation was changed to “M” (Muster – model). If it is taken into account that, from the first drawing to the first operational prototype, no more than two months had passed, this was an impressive feat. The V1 prototype was to be tested at Heidfeld but, due to some stability problems with the undercarriage, only limited ground test trials were held.
These problems were addressed by 6th December, when the He 162 made its first test flight piloted by Heinkel’s main test pilot, Flugkapitän Dipl-ing Gotthold Peter. The flight lasted around 20 minutes at speeds of 186 mph (300 km/h). During this flight, probably due to the poor quality of production, one of the three landing gear doors simply broke free and the pilot was forced to land. Beside that, the whole flight was considered successful, there were no other problems and the engine performed excellently.
At the same time, three more prototypes (V2, M3 and M4) were under construction to be used for future tests. The second prototype was transported to Heidfeld (arrived 7th December). During the production of the first series of prototypes, a problem with the wing construction was noted. The main issue was the use of poor quality glue, but at that time this problem was largely ignored.
On 10th December, another flight was performed for the Luftwaffe military officials at Schwechat. Like in the previous flights, the pilot was Gotthold Peter. In the hope of impressing the gathered crowd, the pilot made a low pass (at 330 ft/100 m) at 456 mph (735 km/h). This flight was going well until the moment when a part of the wing and ailerons were torn off, which caused the pilot to lose control and crash to the ground. Despite having an onboard ejection seat, Peter failed to activate it (possibly due to high G-forces) and was killed in this accident.
The whole flight was captured on a film camera by one of the Luftwaffe officers. The film and the wreck were thoroughly examined by Heinkel engineers who immediately noticed a few things; the wing parts were joined by using low quality glue, the poor aerodynamics of the wing design and the instability of the prototype lateral axis led to the tear off of the wing parts. As a result of this accident, the wing design was strengthened and the maximum flight speed was restricted to only 310 mph (500 km/h). Also, the size of the horizontal stabilizer was increased, the main fuel tanks were reduced in size and the wings’ connection to the main fuselage was reinforced. This accident did not have any negative impact on the continued development on this project which proceeded without interruption.
After this accident, other pilots were reluctant to fly on the He 162. Due to this, Ernst Heinkel was forced to offer a sum of 80,000 Reichsmarks for any pilots who were willing to test fly the He 162. A pilot who agreed to fly was Dipl.-Ing. Carl Francke, who was the technical director of EHAG. He made the first test flight with V2 (serial number Wk-Nr 200002) on 22nd December, 1944. Later that day, a second pilot, Fliegerstabsingineur Paul Bader, made more test flights. Flight trials with the second prototype were carried out without much problems. The V2 prototype was used for testing different wing designs and different weapon installations (two 1.18 in/30 mm Mk 108 cannons). After this, V2 would be used mostly for ground examinations, conversions, equipment testing and for attempts to simplify the overall design in order to ease production.
The third prototype was ready by 20th December, when it was tested by Paul Bader at Heidfeld. While the flight went on without many problems, the pilot noted the poor front ground visibility and vibrations during takeoff and landing. In order to improve the He 162’s wing design, the experienced Dr Alexander Lippisch (who worked on the Me 163) was contacted and included in the project. His proposal for improving the He 162’s stability was to fit small “Ohren” (ears) to the wingtips. As these were later implemented on all produced He 162, they were generally known as the ‘Lippisch ears’.
The M3 and M4 prototypes were the first fighters to be equipped with these wingtips. These two models had strengthened and redesigned wing construction with thicker plywood covering, also to shift the centre of gravity, extra weight was added to the plane’s nose. These modifications improved the He 162’s overall performance and stability significantly. The M3 improved prototype was tested in late February 1945 when it managed to reach an incredible speed of 546 mph (880 km/h). The M4 prototype was ready by the end of 1944 but, due to some engine problems, the first flight was only possible at the beginning of 1945. The first flight tests were carried by Dipl-Ing Schuck on 16th January, 1945. As the M3 and M4 wing design and shape proved satisfactory, they were chosen to be used for the upcoming production of the first He 162A combat operational variant.
The M5 prototype was built but it was never used operationally nor did it ever fly. The M6 prototype, which was intended to be used as base for the He 162A-1 production model, made its first test flight on 23rd January, 1945. The M7 (the base for the He 162A-2) was used for vibration tests and trialing the braking parachute. The M8 was the first to be equipped with two MG 151/20 cannons (120 rounds of ammunition per gun). The M9 and M10 were intended as two seat trainer aircraft versions but none were built. The M11 and M12 were powered by the much stronger Jumo 004D Orkan turbojet engine. These were to be used as base for the He 162A-8. The M13 moniker was never assigned to any prototype due to the belief that this number was unlucky. The prototype models M14 to M17 were never built. The M18 and M19 were powered by the new BMW 003E-1 jet engine which was intended to be used for the He 162A-2 production model. The M20 was used for testing different and simpler undercarriage designs. The M21 and M22 were used for main weapon testing. The M23 and M24 were used for installation of new wing root filters and for handling flight tests.
These prototypes were extensively tested and examined in detail from 22nd January to 12th February. In this period, over 200 test flights were carried out. Not all test flights were successful and without accidents. On 24th February, M20 was damaged during landing due to undercarriage malfunction. The next day, while testing the M3, there was a malfunction that led the pilot losing control of the aircraft. He managed to get out but his parachute did not fully extend, leading to his demise. At the beginning of May, one more prototype was lost in an accident. In total, there were more than 30 prototypes built. It is interesting that, even before the testing of the prototypes was completed, preparations for production of the He 162 were already underway.
He 162 A-1 and A-2
Despite the original plans requiring the start of the production in early 1945, this was never achieved. Due to the chaos in Germany at that time, there were many delays with the arrival of the necessary parts. There were shortages of nose wheels, rudders, interior equipment, weapons parts, poor quality glue and many others. For example, at Rostock, there were more than 139 partly built fuselages which could not be completed due to a lack of parts. There was also a problem with the large number of wings and tails built that were defectuous and unusable. A generalized lack of fuel, transport vehicles and electricity, Allied bombing raids and the use of slave labour also negatively influenced the overall production. Around ten pre-series He 162A-0 (with different prototype numbers) were built and stationed at Schwechat to be used for more testing needed in order to eliminate more problems.
The production of the first series of operational aircraft was delayed and began only at the end of March 1945. The first production series were marked He 162 A-1 and A-2. There are few visual differences between these two models. The only major difference was the armament. The A-1 was equipped with two 1.18 in (30 mm) cannons and the A-2 with two 0.78 in (20 mm) cannons. As the production of 1.18 in (30 mm) cannons was halted due to Allied bombing and the Soviets capturing the production factories, the few remaining cannons were to be allocated to the Me 262. The production of the A-1 was stopped and the exact number of manufactured aircraft is unknown. Due the lack of 1.18 in (30 mm) cannons, the He 162 manufacturers were forced to use the lighter and weaker 0.78 in (20 mm) caliber weapons.
A number of serially produced A-2 aircraft were not used for troop trials, but were instead sent to test centres for future modifications and testing. A small number would eventually reach the German troops in April. While the production of the A-2 would go on until the war’s end, the total number of produced aircraft is unknown.
The He 162 Design
The He 162 was designed as a high-wing jet fighter with a simple fuselage with clean lines, tricycle retracting landing gear and built using mixed construction. The simple fuselage was built by using a cheap and light metal alloy (duralumin – a combination of aluminium and copper) with a plywood nose and (one-piece) wooden wings.
The fuselage was a semi-monocoque design covered with duralumin. The front part of the fuselage was egg-shaped and had good aerodynamic properties. The nose was made of plywood and was fixed to the fuselage by using bolts. The middle top part of the fuselage was flat and the engine was connected to it. The wood was also used for the undercarriage doors.
The wings were made out of wood and connected to the central fuselage by using four bolts. In order to ease production, the wings were built in one piece. The flaps and ailerons were built using a wood frame which was covered with plywood. The flaps were controlled by using a hydraulic system while the rods were controlled with wire. To help with the stability at the end of the wing, two wingtips (one on each side) were added. These were angled at 55° downwards and made of duralumin. The two-part rear tail was made of metal and was connected to the end cone of the fuselage. The tail rudders were controlled using wires and rods.
The He 162 used a tricycle landing gear design, with one wheel at the front and two more located in the centre of the fuselage. The landing gear was hydraulically lowered and raised. The dimensions of the front nose wheel were 500×145 mm and no brake system was provided for it. Interesting to note is that the front nose wheel, when retracting, partly reached into the lower part of the front cockpit. A small window was provided for the pilot so that he could see if it was fully operational. The two central landing wheels were larger, 600×200 mm. Both the front and the rear landing wheels retracted to the rear. To help with landings, hydro-pneumatic dampers were provided.
The plexi-glass cockpit was made of two parts, the front windshield and the rear hinging canopy which were screwed into the inner bar frame. In order to make the whole construction simple as possible the cockpit was not pressurized. For better ventilation on the left side a small round ventilation window was installed. The pilot cockpit was more or less a standard German design but much simpler. It provided the pilot with good all-around view of the surroundings, but there were some complaints by some pilots for poor front ground view.
The control panel was made of wood, on which the necessary instruments were placed. Only a few were provided for the pilot and these included the speed indicator, panel lights, turn and bank indicator, rate of climb, FK 38 magnetic compass, temperature indicator, AFN-2 display, oil and fuel pressure gauge, fuel level gauge, chronometer, ammunition counters and engine tachometer. The fighter controls were placed as standard in front of the pilot. On the pilot’s left-side, the fuel valve, flap controls, landing gear control, throttle lever and trimming control were located. On the opposite side was placed the radio system (FuG 25A). The pilot seat was of a simple design but equipped with Heinkel’s ejection system with a parachute. The He 162 was one of the first German aircraft to be equipped with an ejection seat as standard equipment. The cockpit was separated from the rest of the plane by a sloped metal plate. This plate was installed in order to provide the pilot some protection in case of emergency (like fuel tank fire etc.). Behind this plate were the oxygen supply tanks with a 3 l capacity.
The engine chosen for the He 162 A-2 was the BMW 003E-1/2 turbojet (in some sources the A version was used). The engine was fixed in a nacelle placed above the central fuselage. The engine consisted of a seven-stage axial compressor, injection nozzle, annular combustion chamber and one single-stage axial turbine equipped with sheet metal heat-resistant blades which were air-cooled. The exhaust nozzle was controlled by an adjustable needle which could be mechanically moved into four positions: Position A for idle, S for start, F for flying at altitudes lower than 26.200 ft (8.000 m) and M for flying at altitudes above 26.200 ft (8.000 m). The BMW 003E-1/2 turbojet could achieve maximum thrust of 1.800 lbs (800 kg).
When flying at a speed of 500 mph (800 km/h) at 36.100 ft (11.000 m), the maximum thrust would fall down to only 740 lbs/340 kg. To start the engine, a small Riedel piston engine (9.86 hp) was used. This engine could be started either by using an electric starter motor or manually with a ring-pull. The He 162 engine was 11 ft (3.6 m) long with a diameter of 2.3 ft (69 cm) and a weight of 1.375 lbs (624 kg). The estimated life cycle of the engine was only 50 hours. As the engine was positioned above the fuselage, in order to avoid any damage caused by exhaust gasses, a steel plate was placed under the jet nozzle. The position of the engine also means it was easier to mount and repair. It was also easier to replace it with a new one.
The fuel tank was positioned in the middle of the fuselage. In order to save weight and to ease the production, a rubber fuel tank was used. The main fuel tank had a capacity of 695 l and there were also two smaller 175 l tanks located in the wings. For takeoff, up to two smaller auxiliary Ri 502 rocket engines could be installed. They would be located in the lower rear part of the fuselage.
The He 162’s original weapon system consisted of two MK 108 cannons, but the most built version was equipped with weaker MG 151/20 cannons. The two cannons were placed in the lower front part of the fuselage. The main gun’s ammunition was stored behind the pilot, with 120 rounds for each gun. In order for the ground support crews to have access to the gun and ammunition, wooden door panels were provided. For the gunsight, the Revi 16G or 16B models were used. There was also a gyroscopic EZ 42 gunsight tested on one He 162, but this was never adopted for service.
Other Versions and Prototypes
Despite the improvements done to the main production versions, there were still room for enhancements and modifications of the He 162. Most efforts were devoted to the installation of stronger engines and various aerodynamic improvements in order to achieve the highest speed possible. There were also plans to make the He 162 much cheaper and easier to produce. Different armament loads were also tested or proposed. Most of these proposals remained on paper only, but some received limited testing.
The first in line of the intended improved He 162 was the A-3 version. This was meant to be armed with 1.18 in (30 mm) MK 103 or MK 108 cannons (depending on the source) located in a redesigned front nose, but it is unclear if any were ever built. Later, an identically armed version (A-6) with a redesigned and longer fuselage (30 ft/9.2 m) was proposed but, like the previous version, none were probably built.
In order to increase the He 162’s maximum speed, it was intended to install the Jumo 004D “Orkan” (2.866 lbs/1.050 kg of thrust) engine to replace the standard jet engine used. The new engines were to be transported to Schwechat and tested there on fully operational prototypes. The whole process was too slow, and only as late as March 1945 were the few prototypes almost finished, but due to the war’s end, none were ever fully completed or tested. This modification is known under the name He 162 A-8. The A-9 (in some sources marked as He 162E) was to be powered by one BMW 003R engine, supported by a second BMW 718 rocket engine for extra power. The engines were tested but they were never installed on any He 162. While Heinkel conceived up to 14 different proposals for the “A” version, beyond those mentioned above, almost nothing is known about the others.
Note that the following designations (B, C and D) were never found in any EHAG official documentation and are not known to have been used by the Germans. This article will use them for the sake of simplicity only. (Source: Miroslav B. and Bily B.)
Despite the fact that the He 162 was designed to be simple and easy to build, the engine was still relatively difficult to produce in great numbers. In hope to increase the number of engines being built, the Germans began testing the less demanding technology of pulse jet engines (used on the V-1 flying bomb). The first proposed pulse jet engine to be mounted on the He 162 (generally known as He 162B) was the Argus As 004 (with 1,102 lbs/500 kg of thrust). This was followed by a second proposal to mount two Argus As 014 (each with 739 lbs/335 kg of thrust) pulse jet engines. The single engine version is named, in some modern sources, as B-2 and the two engine version as B-1. None were ever built and tested, possibly because the pulse jet was considered inferior to jet engines.
There were many experiments with different wing designs and shapes in order to improve the flying performance and ease production. Two similar designs were based on all-metal swept wings. The first (today called the He 162C) had a back swept wing design with the second half of the wings bent down at a sharp angle. The second (often nowadays referred to as the He 162D) had an unusual forward swept wing design. Both of these models were to be powered by one Heinkel-Hirth 011A turbojet engine (2,866 lbs/1,300 kg of thrust). Both models also had different rear tail designs. The maximum estimated top speed with this engine was up to 620 mph (1000 km/h). There were also other proposed wing designs but, beside these two, none seem to have been tested. Only a few incomplete prototypes were built and they were captured by the advancing Allied forces by the end of the war.
In autumn of 1944, it was suggested to use the He 162 for the German “Mistel 5” weapon projects. This configuration would consisted on one unmanned Arado E 337a glide bomb that would be guided by an He 162 connected on top of it. As the Arado E 337a was never built, this project remain on paper only.
At the end of January, there was a proposal to modify a few He 162 to be used as “Behelfs-Aufklarer”, in essence improvised reconnaissance planes, but this was never implemented.
TheVolksjäger Training Versions
As the Volksjäger project got a green light for its implementation and orders of planned production in the thousands, a solution on how to train such large numbers of new pilots was needed. One proposal was to begin training with gliders (including a glider version of the He 162) and, after a short period of time, the pilot (usually from the Hitler Youth) would learn to fly on the training versions of the He 162. The glider version was named He 162 S “Spatz” (Sparrow). According to other sources (M.Balous and M.Bily), the “S” stands for Segelflugzeug (glider).
These gliders had to be designed and built to emulate the He 162’s takeoff and landing properties as much as possible. In order to stay in the air, the gliders were to be connected to a 1 km long cable which was attached to a 150 hp motorized winch. The gliders were to have two seats, one for the future pilot and one for the instructor. One prototype was flight tested in late March 1945 by Ing Hasse. Even the famous German woman test pilot Hanna Reitsch made at least one flight in it. The He 162 S was very similar to the original He 162, with some modifications like larger wings and fixed landing gears. The choice for using gliders as replacement for training planes was based on the general lack of fuel. Around ten of these gliders were ordered and, if testing showed good results, some 200 were meant to be built. But, due to the bad economical situation in Germany at the time, only a few were ever built at Schönhage (Hannover).
The second training aircraft was a fully powered two seat trainer version. There is no official military marking or name for this version, but today it is often known as the He 162 Doppelsitzer (two seater). This version was to be powered by a BMW 003E-1 or E-2 engine. It was to have a second seat for the instructor placed behind the main cockpit. In order to make more room in the unmodified He 162 fuselage, the gun, ammunition and oxygen tanks had to be removed. The production of this version was planned to begin by the end of 1944 and was to be built by DLH (Deutsche Lufthansa) at Oranienburg. Only one incomplete prototype may have ever been constructed.
To help the training of new pilots at the Luftwaffe test center (Rechlin), a simulator model was built. It had the exact same cockpit like an operational He 162 with all instruments. Its primary purpose was to be used for combat and fire simulator training.
Main Armament Proposal
As already stated, the 0.78 in (20 mm) cannons were, by 1944/45 war standards, simply inadequate and the lack of stronger 1.18 in (30 mm) cannons forced the Germans to search for different (somewhat unconventional) weapons for the He 162.
To increase the offensive armament, the 2.2 in (55 mm) R4M air-to-air rocket was proposed to be installed under the He 162’s wings. Another proposal was to arm the He 162 with the SG 118 Rohrblocktrommel weapon system which consisted of three 1.18 in (30 mm) barrels (connected in a circle), each armed with 7 rounds. The last proposal was to use the 3.14 in (8 cm) Panzerblitz missiles. There were planned to use the EZ 42 gyroscopic gun sight on the He 162, but the single prototype was destroyed in an Allied bombing raid. If any of these proposals were ever been implemented or allocated a version name is unknown but very unlikely.
Production
It was hoped by the Luftwaffe military officials that the He 162 would be built in great numbers. They counted on the fact that, by using cheap materials (mostly wood) and by employing many smaller subcontractors (woodworkers and furniture manufactures), the overall costs and time necessary for the production would be reduced.
Several factories were responsible for the production of the He 162 at Heinkel-Nord in Rostock-Marienehe, Heinkel-Sud, Hinterbühl (underground factory), Vienna-Schwechat (prototype production) and Mittelwerke (Nordhausen). In order to increase the production, Heinkel and Junkers made an agreement to use the vast Junkers production capacities. Junkers would be responsible for the production of the majority of the new He 162 planes at Bernburg. Also, a large number of smaller subcontractors were to be included, like EHAG Walldwerk or Pütnitz. The main engine suppliers were Spandau and Zühlsdorf. The armament was to be provided by Deutsche Waffen und Munitionsfabrik at Posnan. The wooden elements would be made at Erfurt, Orla and Stuttgart-Esslingen (these were also building components for the Me 163 and Ta 154). Some 750 man-hours were needed for the He 162, together with 300 man-hours for the engine production. Due to slow production, Hitler gave an order on 27th March, 1945 for the SS to take over the whole Volksjäger project. However, this had only limited (if any) effect on the speed of production.
As it was only built during the last month of the war, when confusion and chaos were ever-present in almost all spheres of political or military life in Nazi Germany, exact information about how many aircraft of this type were built is impossible to find. Depending on the sources, the total production was in the range of 116 to more than 200. According to different Authors: C. Chan (240), D. Mondey (116), F. Crosby (200), A. Ludeke (270), D. Nešić (120). According to the German General Staff Department 6 (Generalstab Abteilung 6), the total number of He 162 built was 116 aircraft. After the war, around many airfields, some 100 He 162 in different conditions were found. Additional 800 aircraft were found in different stages of factory assembly, which also complicates determining the exact number of produced He 162.
On 7th April, 1945 Hitler gave orders to stop any further development and production of the He 162 in favor of the Me 262 and Arado 234. It is hard to say for sure, but as the He 162 was produced until the end of the war, this order seems to never have been fully implemented.
Operational Service
The delivery of He 162 fighters to Luftwaffe front units was limited due to many reasons, including slow production, lack of fuel and spare parts and the Allied advance, but eventually, a few units equipped with this aircraft would be formed.
The first operational unit to be equipped with the new He 162 was Erprobungskommando 162 located at Rechlin-Roggenthin. In April, due to the rapid Allied advance, the unit had to reposition near Munich. This was actually a test unit and, for this purpose, a number of the most experienced German pilots (some of them having experience in flying jet aircraft) were allocated to this unit. Once these pilots had gained enough experience flying the He 162, they were to be used as base for forming the first operational unit, 1./JG 80. Immediately after the start of production, a large training process at the NSFK gliding school began. As there was only one He 162 S glider aircraft available, other simpler gliders (like the DFS SG 38 Schulgleiter) had to be used as a temporary solution. The training process did not go the way the Luftwaffe Officials hoped it would go. It was too slow and, when the first group of new pilots was tested on the Arado Ar 96B (trainer version), the results were disappointing. At this point, the plan to use Hitlerjugend members as He 162 pilots was discarded, which was somewhat expected. The experiment with the young and inexperienced pilots proves that only the most experienced pilots could successfully fly the He 162. Beside pilot training, at the same time, the training of ground support staff was carried out at Fliegertechische-Schule 6 in Neumarkt and Wiedenberg.
In order to form the first operational combat unit with the He 162, an already-experienced unit would be needed. For this purpose, Jagdgeschwader 1 “Oseau” (JG 1) was chosen. It was commanded by Oberst Herbert Ihlefeld and it was equipped mostly with Fw 190 aircraft. On 8th February, 1945, the first orders were given by General der Jagdflieger (General of Fighters) Oberst Gordon Gollob to the 2nd and 3rd Staffels (first Gruppe JG 1) commanders to prepare their pilots to be moved to the Parchim Airbase near Rostock. Once there, the first flight training with the new He 162 was to be carried out. In late February, a group of 10 pilots (from 2nd Staffel) was moved to Vienna for more training. For pilot training, two prototype aircraft were used, as the production of operational “A” variant was slow. Despite being experienced pilots, there were some accidents caused either by pilot errors or due to some mechanical faults. The He 162 M8 was lost due to engine failure on 12th March, but the pilot survived. Only two days later, one pilot was killed when he made a mistake during landing. As there were no other He 162 aircraft available, this group was forced to return to Parchim Airfield. In late March 1945, around 10 pilots of the I./JG 1 (first Gruppe) were moved to the Marienehe factory (near Rostock). They were supplied with a number of He 162 that where previously used by the mechanics and test pilots of this factory. Once the handover was completed, the group with the He 162 returned to its original base of operation.
The RLM’s next plan was to begin re-equipping II./JG 1 with the He 162 as soon as possible. The unit was moved to Rostock at the end of March 1945, where the training should have begun. Other units were expected to be formed (I and II./JG 400, III./JG 1, JG 27 and JG 77), but nothing came of this. In May 1945, a Volksstume Jagdeschwader (in essence, an improvised militia unit) was to be formed at the Sagan-Küpper airfield by using mostly volunteer pilots. However, Allied occupation of this airfield prevented the implementation of this proposal. The only unit beside JG 1 to be supplied (in limited numbers) with He 162 was I.EJG 2 (Ergänzungsjagdgeschwader, auxiliary fighter training unit), but these were probably never used operationally.
By the end of March, JG 1 was supplied with around 58 operational He 162A-2 aircraft with some 25 more on the way. At the same time, I./JG1 was moved to Ludwigslust, where it was supposed to be supplied with new He 162 aircraft. Due to the rapid Allied advance, the unit was moved in April to the Schleswig-Holstein region (Leck airfield), near the Danish border. This unit had orders to defend Berlin from Allied bombers coming from over the North Sea. The I./JG1 was to be ready for operational service by 20th April. The first combat loss happened on 19th April, when one He 162 was shot down after a take-off by an American P-47 Thunderbolt. By the end of April, II./JG 1 was moved quickly to the Leck airfield to join the first Gruppe.
The first operational combat mission of I./JG1 was to attack an RAF front airfield on 20th April. While on their way, the He 162’s were intercepted by a group of Hawker Tempests (3 Sqn. RAF). In this engagement, only one He 162 was shot down and the pilot managed to survive without any injuries. At the same time, one P-51 Mustang scout pilot (12th Tactical Reconnaissance Squadron) reported to have shot down one He 162, but this was never officially confirmed.
The He 162’s first allegedly air victory (and possibly the only one) was achieved by Lt. Rudolf Schmitt from I./JG 1, when he shot down a British fighter. However, this fighter was later claimed to have been shot down by German ground AA fire. While Lt. Rudolf Schmitt may not have made the first air victory, he did successfully manage to use the ejection seat in a combat zone. Due to the Allied advance, on 5th May, 1945, JG 1 received orders to stop any further action and to destroy all operational aircraft. For some reason, the order was later recalled. The Leck airfield would be captured by British forces on the 8th, which ended the He 162’s short operational combat story.
Precise information on the He 162’s combat or deployment is hard to find mostly due the chaotic state in Germany at that time. According to some authors, like Francus G., none were ever used in combat.
Japan’s military attache, in early 1945, was interested in acquiring the license production of the He 162. After a short negotiation, the Germans gave permission for license production. But there was a problem of how to transport or send the necessary documents and sketches from Germany to distant Japan. The only solution was to use radio by converting the sketches into numerical code. Unsurprisingly, this did not work well and only limited information was send before the end of the war in Europe. Due to this reason, Japan never received the complete He 162 sketches.
In Allied Hands
As the British forces captured Leck airfield, they acquired a number of fully operational He 162s. Some 11 planes were selected by the British Technical Intelligence Team to be transported to the UK. Once there, all were sent to the Farnborough airfield, which was the headquarters of the Royal Aircraft Establishment (RAE). The He 162 aircraft were thoroughly examined and divided into groups either for part analysis or for flight testing. On 9th November, 1945, while flying an He 162 (AM61) at the Exhibition of German Aircraft at Farnborough, the pilot Robert A.M. lost his life in an accident.
One of the tested He 162 (marked AM 59 by the British) would be donated to the Canadian Museum in Ottawa together with another one received later that year. Later, two were given to British museums, one to the Imperial War Museum and the second to the RAF Hendon Museum. One would be given to France, possibly either AM 63 or AM 66.
The British also supplied the American with some He 162 captured at the Leck airfield. The Americans also managed to capture some abandoned He 162s across Germany. Some would be tested at the Wright and Freeman Field research centre. One He 162 was even kept in good flight condition up to 1946. This aircraft is today privately owned by the Planes of Fame Museum in California.
The French received or captured (it is not known precisely) five He 162, of which two were airworthy. These two were tested, but one was damaged during landing and the second was lost in May 1948 with the loss of the pilot’s life. One He 162 is preserved and can be seen at the Paris Aviation Museum.
During their advance through Germany, the Soviets managed to capture about seven planes, two of which were airworthy. These would be tested and and analyzed in great details. As the Soviets lacked any advanced jet technology at that time, adopting German captured technology looked like a logical step. Most interesting for the Soviets were the Jumo 004 and the BMW 003 jet engines that would be, in later years, copied and produced in some numbers. There were also some consideration from the Soviet military to copy and produce some of the German jet aircraft, including the He 162. One He 162, with the fuselage marking 02, was tested by the Soviet Flight Research Institute (near Moscow). The second, marked 01, was tested at the Central Aero-hydrodynamics Institute. He 162 02 would be flight tested on several flights in 1946. The results of these tests were disappointing for the Soviets and a decision was made not to further consider them for service, and they did not have any influence on the later Soviet aviation development.
Conclusion
The idea for the He 162 was born out of a mix of desperation, chaos and hope for some miraculous wonder weapons that could turn the air war’s tide to the German side again. It was designed to be cheap and built in great numbers. The impressive fact is that it was designed and built in only a few months, but, on the other hand, it was built in too small numbers, the engines used were often of poor quality and there was a lack of trained pilots, which, along with other problems, meant that the He 162 did not have any major impact on the war itself or on post war jet aircraft development. In the end, it was not the ‘Wunderwaffe’ that the designers hoped for, but it was still impressive, at least because of the speed with which it was designed and built.
Variants
As only a small number of He 162 were built, there were very few operational versions. Beside the prototype series, only the “A” version was built in some numbers.
Prototypes
He 162 V– Prototype series
He 162 A-0– Around 10 pre-production aircraft built used for testing
Main production version
He 162A-1 – Version equipped with two MK 108 cannons, a few were possibly built
He 162A-2 – The main production variant armed with two MG 151/20 cannons
Training versions
He 162S – Two seat glider trainer version, a few built
He 162 Doppelsitzer – Two seat powered trainer version, only one incomplete aircraft built
Experimental prototypes based on “A” versions
He 162A-3 – Proposed version armed with two MK 103 or 108 cannons
He 162A-6 – Proposed version with redesigned and longer fuselage armed with two MK 108 cannons
He 162A-8 – Version equipped with the Jumo 004D jet engine, only a few incomplete prototypes built
He 162A-9 – The A-9 was to be powered by one BMW 003R engine and supported by a second BMW 718 rocket engine. None built
He 162A Mistel 5 – Paper project, a combination of an He 162 and one Arado E 337 glide bomb.
He 162 “Behelfs-Aufklarer” – Proposed version to be built in limited numbers as reconnaissance planes. It was never implemented and remained a proposal only.
Note that the B, C and D designations were not official and are used in this article only for the sake of simplicity.
He 162B – Proposed version equipped with a pulsejet engine (similar to the V-1 flying bomb engine)
He 162B-1 – two engine version
He 162B-2 – single engine version
He 162C – Version with back swept wing, powered by Heinkel-Hirth 011A turbojet engine
He 162D – Version with forward swept wing designs powered by the same Heinkel-Hirth 011A turbojet engine
Operators
Nazi Germany – A few hundred built, but only small numbers were allocated to front units and saw limited combat action.
United Kingdom – Captured a number of operational He 162, 11 would be transported and tested in the UK.
United States – Received a small number of He 162 from the British but also captured some in Germany.
France – Received or captured at least five He 162 aircraft.
USSR – Captured seven completed He 162 which were tested after the war.
Japan – Military officials tried to acquire the license for production of the He 162 but the war’s end prevented this.
Specifications (Heinkel He 162 A-2)
Wingspan
23 ft 7 in / 7.2 m
Length
29 ft 8 in / 9.05 m
Height
8 ft 6 in / 2.6 m
Wing Area
38 ft² / 11.6 m²
Engine
One BMW 003E-1 with 1,760 lbs/800 kg of thrust
Empty Weight
3,666 lbs / 1,663 kg
Maximum Takeoff Weight
5,324 lbs / 2,466 kg
Fuel Capacity
1,045 l
Maximum Speed at 6 km
560 mph / 840 km/h
Range
385 mi / 620 km
Maximum Service Ceiling
39,370 ft / 12,000 m
Climb speed
9.9 m/s
Crew
One pilot
Armament
Two 20 mm fixed forward firing cannons in the lower sides of the fuselage