Denel Rooivalk

South African Flag South Africa (1990)
Combat Support Helicopter – 12 Built

Rooivalk Mk1 with full traditional weapons loadout. Visible is the MISTRAL ATAM launcher, M159 rocket launcher pod, ZT-6 Mokopa ATGM and GIAT 20 mm F2 duel feed cannon. Source DENEL.

The Rooivalk (Red Kestrel) Combat Support Helicopter (CSH) is considered by many as one of the most advanced weapon systems produced by the South African defense industry. It was designed and developed for the hot, humid, and dusty Southern African battlespace based on the lessons learned during the South African Border War (1966-1989) to operate in a high-intensity conventional war. According to the then Minister of Defence, Mr. Joe Modise (1994-1996), the Rooivalk represents a combat helicopter of world-class standard. The Rooivalk Mk1 allows the South African Air Force (SAAF) the needed flexibility to help maintain the country’s national security interest and project force where required, such as in the Democratic Republic of the Congo.

Development

With the South African Border War (1966-1989) operations shifting from low intensity to a high-intensity conventional war in 1985, the South African Defence Force’s (SADF) need for a dedicated attack helicopter capable of defeating enemy armor became paramount. South Africa had also become subject of the United Nations Security Council Resolution 418 on 4 November 1977, which imposed an arms embargo. This isolation would lead to South Africa having to develop an attack helicopter, as none could be sourced internationally (if the need ever arose).

The Atlas Aircraft Corporation, a division of the Armaments Corporation of South Africa (ARMSCOR), not only provided support for SAAF aircraft but also gained significant experience upgrading the SAAF Mirage IIIs in the 1970s. A project study was undertaken to come up with a workable configuration in 1976/8, which placed Atlas in the position to make a helicopter industrialization program. A significant point of debate was whether a small or large helicopter would be best. The latter would win out the subjective assessment, and objective operational analysis clearly showed a light helicopter would lack the range, payload, and survivability required in a high threat environment. The requirements for an attack helicopter included: survival in a high-threat regime, commonality with the existing medium transport helicopter fleet (Oryx/Puma), quick response to the mission task, day and night operability, low pilot workload, a very accurate navigation suite, simple “in-the-field” maintenance, an operational lifespan of 30 years, the ability to come quickly under existing Army command, control and communications systems, be operable in the “‘operational ”window’ (5-15 m above the terrain) for 95% of its lifetime, long-endurance capability, ability to ferry great distances and be built within the existing industrial infrastructure of South Africa. The future attack helicopter would place speed and maneuverability above protection to fulfill the prime objectives of mission success with maximum survival chance for both crew and aircraft.

When the requirement for an attack helicopter came to light, funds were made available to the Council for Scientific and Industrial Research (CSIR) to conduct a feasibility study. A signed contract with the SAAF in 1981 led to the development of the Alpha XH-1 prototype, which was based on the French Aérospatiale SA 326B Alouette III helicopter. The purpose of the Alpha XH-1 was to serve as a learning and capacity-building platform for South African engineers, supporting industries as well as testing various concepts and systems. This development resulted in much of the components, such as the engine, gearbox, and rotor systems, being produced in South Africa. Unlike the Alouette III, the prototype had a semi-monocoque airframe. It featured a GAI Rattler 20 mm cannon on a steerable turret under the aircraft’s nose, controlled by the weapons officer’s Kukri helmet-mounted sight. The Alpha XH-1 was never regarded as anything more than a test platform for hardware development. The Alpha XH-1 flew for the first time on 2 February 1985. It flew only a few times, as the main Attack Helicopter project had surpassed its need. The XH-1 was revealed to the public in 1986.

Meanwhile, Atlas Aircraft Corporation continued with its helicopter industrialization program to build capacity to provide more critical components for the Alouette family and Aérospatiale SA330 Puma helicopters in service with the SAAF. Further development of systems, such as avionics and weapons, required testing, which resulted in the purchase of two Puma 330Js which would serve as testbeds to support parallel development activities. The first of these helicopter’s, Experimental Test Platform 1 (XTP-1), also known as Puma J1, flew in 1986 and featured locally developed avionics and weapon systems, as well as a fully configured flight test engineering station in the cabin that recorded test parameters, as well as the ability to vary several input flight parameters in the development of higher mode autopilot functions. Also included were cockpit workload assessments during simulated anti-tank missions and aerodynamic effects of the stub-wings through the flight envelope. The XTP-1 was revealed to the public in 1987.

 

The Puma J2 loaded with V3 air-to-air missiles, ZT3 anti-tank missiles, and fitted with a belly-mounted 20 mm cannon. Courtesy of: Rooivalk – a legend in the making

The second Puma J, J2, was similarly configured as J1 and flew shortly after J1. J1 was mainly used as the test platform for systems development, and J2 was used to test the weapon systems with actual weapons firing. Extensive testing was carried out on the blast effect of the ZT3 anti-tank missile and recoil force of firing the 20 mm cannon, aerodynamic interaction, and drag between the various mounted weapons, resonance, thermal dissipation, and power consumption. Both Puma Js featured stub-wings mounted on the cabin sides, which carried two 18 round 68 mm rocket pods, two four-tube ZT3 ATGM launchers, in addition to the ventral mounted turret with a 20 mm GA-1 canon linked to the weapon officer’s helmet-mounted sight. Two missile tests were conducted. The first, in December 1988, at the St Lucia test range, was meant to determine the blast effect of the ZT3 missile on the helicopter’s tail boom and the accuracy of the weapons and supporting systems. Of note is the accuracy of the ZT3 anti-tank missile, which hit a stationary target 5km away being just 450 mm off the target center. The second test occurred in 1989 and involved a combination of the 20 mm cannon, 68 mm rockets, and ZT3 missiles in determining the post-launch maneuvers and different types of operations.

In parallel to the Rooivalk development, the Medium Transport Helicopter (MTH) requirement was also being industrialized, and Atlas was being set up to manufacture common parts for both Oryx and Rooivalk, such as the main rotor and tail rotor blades, the full transmission system including gearboxes and engines, and various subsystems to the point where the Oryx, as an upgrade to the Puma, was born based on the Super Puma dynamics

The Rooivalk’s development began under the project name Chickadee in 1984, which became Impose as a later project name. Much of the technologies developed for the XTP-1 would find their way to the Rooivalk eXperimental Development Model (XDM). Its primary purpose was to test the aircraft dynamics, mechanical, aerodynamic, and structural design, flight performance, and to do weapons carriage clearance. The XDM was used in the first phase testing of the dynamic components, which included the engine, air intake system, propulsion system controls, lubrication, and cooling. It was suspended in tie town jigs and repeatedly subjected to startup, shutdown, and transient system operation, with the first test commencing on 21st December 1989. The XDM was rolled out on 15 January 1990, after nearly four years of construction. It flew for the first time on 11 February 1990, as part of its 20 hour endurance testing. By May 1992, it had amassed 180 flying hours. It was also during this time that the horizontal and vertical stabilizers were finalized in their optimized form. The vertical tail configuration is designed for high-speed flight and to optimize lateral stability and low-speed responsive yaw control. The XDM can be distinguished from the other airframes by the rounded ammo bin aft of the cannon, and the exhaust was initially without infra-red suppressors, although, later in the development program, the XDM was fitted with a set of development IR suppressors.

The XDM during the tie-down jig testing. Courtesy of: Rooivalk – a Legend in the Making

The contract for the Advanced Development Model (ADM) was placed in 1988, completed in 1992, with its first phase flight on 22 May 1992. The ADM was used to verify the avionics design and implementation, weapons development, and integration platform. The traditional instruments were replaced by three multi-function displays (MFD), and the avionics system proved to minimize the aircrew workload significantly. The Rooivalk ADM would be the first-ever attack helicopter to fly with an MFD” “glass cockpit”. The ADM featured the MIL-STD-1553B digital databus system and was equipped with ZT3 Ingwe ATGM missiles, as well as a 20 mm cannon mounted to a TC-20 chin turret. The second phase of testing commenced on 23rd July and lasted until 4th December 1992 and involved in-flight operation of the Integrated Management System, the Health Monitoring System, the Automatic Flight Control System, and the Communication System. The third phase of testing was focus on the weapon systems and included the nose-mounted Main Sight System (MSS), 20 mm cannon in August 1993, and ZT3 anti-tank missile in March 1994. Both weapons systems were successfully tested.

XDM again during the subsequent flight trials program. Courtesy of: Rooivalk – a Legend in the Making

The ADM made its international debut at the Dubai air show in 1993, followed by the Malaysia air show in 1993. In 1994, the ADM was on display at the Farnborough International Air show in England. With potential international exports in mind, the Rooivalk was developed according to US military requirements and standards, which would only require small adjustments to make it compatible with US weapons systems such as the Hellfire ATGM. Meanwhile, the SAAF was contemplating an order of 16 Rooivalks with an updated User Requirement Specification which specified a more powerful cannon and longer-range missiles. Although 36 Rooivalks were envisaged to complete three squadrons, cuts to the defense budget and a change in the defense force strategy resulted in only 12 being ordered.

The Engineering Development Model (EDM) was developed as a platform to incorporate lessons learned from the XDM & ADM, to incorporate the SAAF’s updated User Requirement, as well as for doctrine and mission development. Design and development began in March 1993. The completed aircraft rolled out on 17th November 1996 and a flight was presented on 17th February 1997 by Denel. The purpose of the EDM was to qualify the avionics, weapon systems, airframe, and airborne systems before serial production could commence. Additionally, the EDM was used to refine the required logistical support. With the EDM, the ammo bins were moved to each side of the cockpit and the infra-red suppressor exhaust was directed upwards into the main rotor blades to dissipate the heat more efficiently. Additionally, the EDM saw many structural changes, as well as weight reduction. It represented the beginning of the Rooivalk assembly line.

The Rooivalk ADM international debut during the Dubai 1993 air show. Screengrab from Paratus Magazine. Original photo by S. Basch
EDM 70 mm rockets loading (left) and firing (right) tests. Courtesy of: Rooivalk – a legend in the making

In 1994, the Rooivalk was entered into the UK Ministry of Defence (MoD) tender for an attack helicopter. An audit by the MoD in March 1994 allowed Denel Aviation to submit its Invitation to Tender (ITT). Although ultimately unsuccessful, the experience was invaluable for future tender processes.

On 2nd August 2005, Rooivalk 679 sustained damage when it suffered a hard landing testing a newly installed autopilot. The main rotors were damaged, and the tail boom broke off. The Rooivalk’s design philosophy of protecting the crew succeeded, as neither were seriously injured. It was deemed uneconomical at the time to repair and it was subsequently stripped of usable parts. In 2016, Denel was still in talks with the SAAF to make use of Rooivalk 679 as a prototype platform for further development. The full order of 12 aircraft was completed by 2004. The total cost is estimated at R6.2 billion in 2015 for the full development activity and the production run of 12 aircraft.

The first SAAF Rooivalk was delivered on 7th May 1998 and was subsequently upgraded in blocks, starting with 1A, up to its current 1F, which is referred to as Mk1 baseline. The SAAF would only take delivery of six fully operational and military certified Rooivalk MK1s in April 2011. The Rooivalk Mk1 included 130 modifications, such as improved sighting and targeting system, communications systems, gearboxes, self-protection, the ability to fire the Mokopa ATGM and improved reliability of the 20 mm cannon. Additionally, fuel drop tanks were added which became invaluable for self-deployment to the DRC. The remaining five aircraft entered service by March 2013.

In 2015, the South African Department of Defence was considering restarting the Rooivalk manufacturing. The acting chief executive of Denel, Zwelakhe Nshepe, stated in 2017 that the Rooivalk MK1 would hopefully lead to the next generation Rooivalk MK2, which would be aimed at the export market. It features better sights, more firepower, a higher payload, and increased survivability. It was noted that a minimum of 75 airframes would need to be ordered for the project to be financially viable. At the time, Brazil, Egypt, India, and Nigeria were identified as potential target markets.

Denel has approved the Rooivalk Mk1.1 upgrades and was negotiating with the SAAF on the matter as a midlife upgrade, already due in 2016.

South Africa is the only user of the Rooivalk Mk1 CSH, which is assigned to 16 Squadron at Bloemspruit Air Force Base in Bloemfontein.

Design Features

The Rooivalk’s mission was envisaged according to the role at the time of an armed helicopter in a conventional war. This included operations with mechanised forces, deep penetration into enemy territory, air defence suppression, counter helicopter and anti-armor operations, counter-air operations against airbases, helicopter escort missions, maritime patrol, and reconnaissance. Based on those requirements, the Rooivalk design philosophy centred around four pillars, namely not to be seen, if seen not to be hit, if hit to sustain flight and if the flight could not be maintained the pilots had to survive the crash.

Performance

The Rooivalk was designed to exceed the demands required during the first 24 hours of a high-intensity war while in unfriendly territory. The Rooivalk is powered by two Turbomeca Makila 1K2 turboshaft engines which produce 1845 shp (246 shp/t).

It has an empty weight of 5910 kg and a max take-off weight of 8750 kg, which equals a carrying capacity of 2840 kg. Its typical mission weight is 7500 kg.

Its broad performance envelope includes operating in temperatures of between -35° C to +50° C, being able to take-off and land between -3000 ft to +19200 ft, and have a flight altitude of 20000 ft. Its hover over ground effect is 5,029 m, which is comparatively high compared to the AH-64 Apache (3,866 m), Mi-28 Havoc (3,600 m), Ka-50 Kamov (3,600 m), and Eurocopter Tiger (3,200 m). At mission weight, it has a cruising speed of 278 km/h and a top speed of 309 km/h. It can fly sideways at 92 km/h. At sea level, it can ascend 670 m a minute (11 m/s) with a maximum hovering ceiling of 5,545 m and a service ceiling of 6,095 m.

The Rooivalk has a minimum endurance of 216 minutes and 412 minutes with external fuel drop tanks, allowing it to self-deploy some 1260 km. Its combat radius (when fully armed) is 740 km with reserve fuel.

The airframe is rated at +3.5/-0.5 g.

The Rooivalk ranks among the top helicopters with regards to cruise speed, operational range, rate of climb, weapons loadout and power to weight, which are all essential during combat operations.

Aircraft Layout

The airframe has a length of 16.39 m (nose to the rear wheel), height of 5.19 m (ground to rotor head fairing) and width of 6.95 m (from either side of the stub-wings). The diameter of the four composite blade main rotor is 15.58 m and expands to 18.73 m when rotating. The tail rotor is 3.05 m wide.

The fuselage consists primarily of aluminium alloy to save weight and access doors hinged to the central I-beam and made of composite material that allow easy access to the interior.

The aircrew stations are placed in a step, which reduces the glare from the sun associated with tandem designs. Access to either side of each station is via upward hinged flat bulletproof windows. The aircrew stations are ergonomically designed to reduce aircrew workload and fatigue, which enhances endurance and battlefield awareness. The aircrew station for the pilot seated in the rear and Weapon Systems Officer (WSO) seat in front make use of Hands-On Collective and Stick (HOCAS) controls. The dashboard features three MFD displays, which are vital, as the Rooivalk would spend 90% of its time between 5 – 15 m off the ground during a combat mission.

The engines are fitted alongside the main gearbox, with the rear output shaft aligned to drive the gearbox from the rear. The gearbox itself is mounted on a tuned beam (vibration Isolation System) to minimise vibration on the airframe. The engine air intakes are fitted with a highly efficient particle separator (to keep dust and debris out) with a 97% efficiency against particles of 10 microns. Air from the engines is directed upwards through infra-red suppressors into the rotor blade downwash to disperse the heat and reduce its Infra-Red (IR) signature.

The Rooivalk has three internal fuel tanks located in the middle of the airframe, under the stub-wings centre section, each with a 480 kg (total 1440kg) carrying capacity. It makes use of Jet A-1 type fuel.

The stub-wings are fitted on either side of the airframe and have a straight rectangular shape.

The landing gear is of fixed design and consists of two forward wheels on the forward section of the airframe and a tailwheel. The wheelbase is 11.77 m (38ft 7in) and the wheel track 3 m (9ft 10in).

Endurance and Logistics

During the South African Border War, the SAAF made extensive use of Alouette III and Puma helicopters, gaining valuable operational and logistical experience. The Rooivalk was subsequently designed to operate for extended periods with minimal support and maintenance in the field with basic spares which are transportable via Oryx helicopter. The airframe has many large access panels which make access simple, as no tools are needed. The stub-wings and cowling (cover over the engine) are functional as working stations, and no ground support equipment is needed. It can be maintained with a ground crew of four in the field with spares that can be flown in an Oryx. The ground crew’s task is made easier with onboard test functions and line replacement units. The Rooivalk’s overall design also incorporated easy refuelling and re-arming. The engine features highly efficient sand filters which help reduce wear and tear and extends service life.

Avionics and Weapon System

The Rooivalk makes use of the advanced international digital Military Standard (MIL-STD-1760B) Class 2 weapons station and MIL-STD-1553B avionics system. The systems allow total mission modes, target acquisition, flight control, health and usage monitoring, communication, threat detection, and control of flight and fuel.

The avionic system is fully digital and incorporates night vision goggle compatible glass cockpit technology for low light night vision. This allows accurate navigation, pre-programmable tactical flight plans with moving digital map and flight data projection on two liquid crystal multi-function display. The multi-function displays allow the aircrew to switch between navigation, flight control, weapons control, threat warning and imagery from the sensors when required.

Flight control avionics consists of a duplex four-axis digital automatic flight control system. The latter is coupled with ring laser gyros with navigation and position input from a radar altimeter, eight-channel GPS, Doppler velocity sensor, magnetometer heading sensor, air data unit and an omnidirectional airspeed sensor. All of these systems are linked to a dual redundant navigational computer.

The autopilot system makes use of an eight-channel Global Positioning System (GPS) and Inertial Navigation System (INS). The system allows for normal as well as higher mode linkage to the avionics and weapons system. The one-touch feature for auto-hover, altitude hold, follow a planned route and target orientation is based on the main sighting system. The former two features allow the aircrew to recover from vertigo which could occur during night time low-level tactical operations or poor weather.

 

WSO cockpit layout illustration, Courtesy of Rooivalk – a Legend in the Making

The nose-mounted gyro-stabilised sensor turret housing with auto-tracking contains the target acquisition designation sight known as the NightOwl system. The system was developed by Société de Fabrication d’Instruments de Mesure (SFIM), which was absorbed by the Société d’Applications Générales de l’Électricité et de la Mécanique (SAGEM) in 1999/2000. It consists of 3-FOV FLIR with automatic tracking, LLTV and laser rangefinder and designator. The three fields of view, which include thermal and low light displays, have recording function with playback facilities and sight cueing. This allows for pop-up missile engagements based on target location recorded during high threat situations. The missile command and control system is integrated with the avionic system, which provides continuous navigational updates, flight control handover and weapons computing parameters. The weapons system additionally provides weapons and stores management. The aircrew’s helmet-mounted sight displays both flight and weapon data and can both cue the turret-mounted GI2 20 mm cannon and other armaments.

All armament can be used by either the pilot or WSO, although the use of the Mokopa could be laser designated by sight or from an external source. The pilot can, for example, use the cannon and rockets to suppress enemy fire while the WSO fires the Mokopa. The pilot and WSO cue the primary sight via their helmet sight and thereby show the other a target of opportunity or imminent threat. The fire control system (FCS) allows the flight crew to pop up from behind cover, scan the surrounding area, drop back down and identify targets via video cassette recording playback function, select targets and attack or relay target information to another Rooivalk or ground forces via secure data link.

Cockpit Layout

Both cockpits are equipped with two main color MFD with multi-function push buttons for displaying sight images, maps or information at high resolution. There is also a secondary control and display interface unit onboard system.

Helmet Mounted Sight Display

The helmet-mounted sight display (HMSD), or TopOwl, incorporates an integrated measurement system to control the weapons. The helmet makes use of electromagnetic tracking which allows the pilot or WSO to look at a target, thereby directing the weapons on the target. The helmet has an integrated Generation IV image intensifier and FLIR capability which can be switched between with the push of a button. The TopOwl HMSD was developed by Sextant Avionique, which later merged with Thales. The pilot night vision system (PNVS) is located on the top of the nose of the Rooivalk and was developed by Cumulus, which was absorbed by Denel Optronics, and later Cassidian Optronics.

Both helmets have two monocular display modules with integrated CRT which can project Heads-Up Display (HUD) information as well as video images into the crew member’s line of sight. This allows them to retain access to their HMDS information even when using NVGs. The pilot can access real-time imagery from the PNVS while flying NOE.

HMSD symbol legend is projected onto the crewmembers visors. Courtesy of: Rooivalk – a Legend in the making

Communication Systems

The Rooivalk makes use of pre-programmable secure voice, image and data communication for enhanced battlefield communication. The communications suite consists of a Reutech Radar Systems ACR500 transceiver and AC500 controller. The suite includes two dual-frequency hopping Very High Frequency (VHF) and Ultra High Frequency (UHF) transceivers with frequency modulation (FM), amplitude modulation (AM) and digital speech processing, and one High Frequency (HF) radio with secure voice and data channels for Nap of the Earth (NOE) flying. Also included is an Identify Friend or Foe (IFF) transponder.

Main Armament

During its development, the Rooivalk’s weapons system allowed for a wide range of South African weapons. The layout and complement of armaments have remained generally the same. For this section, the initial Rooivalk ADM (1994) will be unpacked, followed by the present (2020) Rooivalk Mk1.

The Rooivalk ADM’s stub-wings each had three weapons pylons. One was on the stub-wingtips for an air to air missile and two underneath. The weapons pylons could be arranged according to mission requirements.

Under the Rooivalk ADM’s nose was a TC-20 hydraulically driven mount for a GA1 20 x 84 mm single feed Rattler cannon. It had a muzzle speed of 720 m/s and a fire rate of 600-750 rpm. Ammunition consisted of 20 x 82 mm HE-I, HEI-T, AP-HEI. Some 400 rounds were carried in an ammunition magazine located under the weapons officer’s station.

The air to air missile was a single South African supersonic passive heat-seeking V3B Kukri with proportional navigation. It has a maximum speed of 1,870 km/h, a range of 5 km, 40 g tolerance with a flight duration of 25 sec. It is the first successful helmet slaved missile in the world.

Rooivalk ADM on display in Farnborough International Airshow, United Kingdom, 1994. Visible is the V3B Kukri, HR-68 rocket launcher and 68 mm SNEB FFAR, ZT-3 Swift ATGM, external 750-litre fuel drop tank and GA-1 20 mm single feed Rattler cannon. With permission from Aviation Central.
The ZT series of ATGM missiles. ZT-3 Swift (bottom), ZT-35 Ingwe with active proximity fuse (middle) and contact probe fuse (top). Screengrab from PARATUS Magazine, April 1994.

The HR-68 rocket launcher pod carries 18 x 68 mm Societe Nouvelle des Etablissements Edgar Brandt (SNEB) unguided Folding Fin Aerial Rocket (FFAR). The rocket is powered by a 31 kg rocket motor which gives a maximum velocity of 450 m/s, and slant range is 1600 m, with an accuracy of 2 mils.

The quarto missile tube for either the ZT-3 Swift or ZT-35 Ingwe laser beam riding anti-tank guided missile (ATGM) have a 4 km and 5 km standoff range, respectively. Both are equipped with a high explosive anti-tank warhead (HEAT). The ZT-3 Swift can penetrate 650 mm of rolled homogenous armor at zero degrees and the ZT-35 Ingwe 1000 mm (with active proximity fuse). The latter is also equipped with a tandem warhead to defeat explosive reactive armor (ERA).

The Rooivalk Mk1 weapons compliment differs significantly from the ADMs. The stub-wings retained the three weapons pylons, however, the stub-wingtip pylon has moved under the wing.

For the Rooivalk Mk1, the cannon was changed to the battle-proven GI2 20 mm (mounted on the Ratel 20 Infantry Combat Vehicle), with a new chin mounting system, which includes a hydraulic-driven elevation and azimuth drive control. It has a fire rate of 720-740 rounds per minute. Its operating envelope is -110 to +110 degrees in azimuth and -55 to + 15 degrees elevation. Reaction time is 1.8 sec from selection to firing at 60 degrees traverse at -45 elevation. It has a slew rate of 90˚/sec. The cannon has two modes of operation, namely quick reaction and accurate mode. The former entails using the helmet-mounted sight for slewing the cannon on target, while the latter makes use of the nose-mounted sight.

TC-20 hydraulically driven mount with a GI2 20 mm cannon (left), ammunition feed belt with APCT rounds (right). Source Denel

The cannon rounds are kept in two sponsons on either side of the forward fuselage and fed into the cannon via a dual-feed system from inside the turret shroud. The primary ammunition used is 20 x 139 mm (HS820) High Explosive Incendiary (HE-I) and Armor Piercing Core Tracer (APCT). The HE-I, which travels at 1050 m/s, is effective up to 2 km. The APCT rounds travel at 1300 m/s and are considered effective up to 1 km and can penetrate 15 mm of RHA at 2 km. The auto-feed mechanism of the 20 mm gun allows to immediately change between the two different ammunition belts (350 rounds each) feeding into the cannon with the flip of a switch. This weapon was selected for ease of logistics. However, problems were encountered with the weapon, as the shockwave from firing would disturb the sight mirrors. This problem was fixed in the Mk1 upgrade.

The M159 rocket launcher pod carries 19×70 mm Forges Zeebrugge (FZ) unguided FFAR. The rocket is powered by a 31 kg rocket motor which gives a maximum velocity of 1250 m/s, and slant range is 9.1 km. The rocket can be fired individually, in pairs or sets of four and the articulated pylons raised or lowered for optimum trajectory. The FZ90 can carry a variety of warheads, which include High Explosive General Purpose (HEGP), Inert Practice, Flash Signature, High Explosive Armor Piercing (HEAP), Multidart and Flechette. Recently, the Rooivalk Mk1 also test-fired the FZ laser-guided rocket variant which enhances the accuracy to less than 1 m for a target at 4-5 km. Given the high cost of laser-guided ATGMs, these FZ laser-guided rockets can be a suitable compromise for a defence force on a budget not facing MBTs.

Originally designed for use on the Ratel ZT3 ICV and successfully incorporated into the Rooivalk ADM, the ZT-35 missile is too slow to be used on an aircraft. Taking 25 sec to reach 4 km exposes the Rooivalk to enemy air defence. Studies showed that exposure over 10 sec dramatically decreases a helicopter’s survivability. The ZT-35 missile has been replaced by the state-of-the-art, long-range, precision-guided 178 mm ZT-6 Mokopa (Black Mamba).

Designed and developed by Denel Dynamics in 1996, the Mokopa was initially designed as the primary anti-armor weapon for the Rooivalk. It has, however, evolved into a multi-purpose missile applicable to both conventional and asymmetrical scenarios. The missile can be fired in the traditional direct lock-on before launch (LOBL), or lock-on after launch (LOAL). With LOAL, the missile flies in the general direction of the target until it detects a designated laser beam illuminating a target within the last eight seconds of flight. The Rooivalk can also launch several Mokopa missiles in rapid-fire mode (eight seconds apart) and designate several targets using different laser codes. A remote laser targeting by another Rooivalk or ground-based designator can also be used to illuminate targets which the Mokopa will then guide towards. Rapid-fire can also be synchronised with remote lasers, each illuminating individual targets, which each Mokopa will then be allocated to and guide towards.

Mokopa and Ingwe size comparison. Source unknown

Making use of semi-active laser guidance, the Mokopa is of a modular design and can carry a penetration, fragmentation, or anti-armor warhead. Unlike the ZT3 Ingwe, the Mokopa is designed to approach a target, such as MBTs, at an angle from above, to hit where it is least armored. The tandem HEAT warhead, which can defeat ERA, is capable of penetrating 1350 mm of RHA armor at zero degrees. A High Explosives (HE) fragmentation warhead has also been developed, allowing the Mokopa to engage soft\lightly armored targets with devastating effect. Making use of a solid-fuel composite rocket motor with a slow-burning rate, it can engage targets up to 10 km away with a circular error probable of 30 cm. The first air-launched test occurred in 1999, followed by the first guided test in 2000. The Mokopa’s firing trials were completed on 21 January 2011 at the DENEL OTB test range. As a side note, the Mokopa can also is configured to make use of mmW or IIR guidance and carry multi-purpose warheads. The mmW is a true fire and forget missile which can be preprogrammed with a target’s location, to which it will guide itself after launch.

Two Mistrals in their launcher. They are carried in protective launch tubes with hinged doors which open when fired. Courtesy of: Rooivalk – a Legend in the Making

For air to air engagements, the Rooivalk Mk1 can be armed with four all aspect, fully digital Matra Mistral heat-seeking missiles. The missiles are carried on ATAM launcher pods on the outermost pylon of the stub-wings. The Mistral can be fired at targets from either the helmet-mounted sight or the main sight. The missiles have a maximum speed of 2,600 km/h, 12 g tolerance, range of 6.5 km, and carry a 3 kg HE tungsten filled warhead with detonation via laser proximity fuse.

Protection

In line with the Rooivalk design philosophy, its foremost protection lies in its agility and stealthy design. The former is achieved by a 52 per cent excess hover power for quick reaction and ability to move sideways at 93 km/h, allowing the Rooivalk to engage targets and disappear behind cover quickly. With regards to stealthy design, particular attention was paid during its development to reduce its radar, IR and noise signature. The radar signature is reduced by making use of carbon fibre and metalised fairings to shield the rotor mast and controls. The canopy surface makes use of an RF reflective material. The IR signature of the engine is reduced passively by angling the exhaust upwards into the rotor blade downwash for quicker heat dispersal. The visual signature of the fuselage only offers a 1.28 m target from the front and 4 m from the top to bottom of the rotor head. Glint is minimised by using flat and single curvature surfaces where possible. The main rotor acoustic noise is reduced by keeping the rotor tip speed low and passive measures to reduce the engine noise at the intake and exhaust. A combination of the aforementioned makes it difficult for enemies to acquire and engage the Rooivalk.

Rooivalk armoured crew seat – Sourced online

Provision was made during its design for dual redundancy of major systems, damage tolerance, and multiple load path use by avionic systems, flight and structural damage. The Rooivalk’s structure and dynamic systems have been designed to tolerate 23 mm high explosive rounds and survive direct hits from a 12.7 mm AP round and keep on working for at least 30 minutes. This allows the Rooivalk a greater chance to remain airborne and flying should it sustain damage. The self-sealing fuel tanks can also survive a direct hit from a 12.7 mm AP round without exploding. The aircrew stations are armoured against 12.7 mm AP rounds, and the seats are crashworthy, which minimizes the likelihood of injury to the crew if a crash occurs within its design performance. The Rooivalk’s crashworthy airframe is designed to withstand a sink rate of 11 m/s. and the tailwheel and landing gears designed to absorb the energy of a sink rate up to 6 m/s.

It is equipped with a Helicopter Electronic Warfare Self-Protection Suite (HEWSPS), which uses the Integrated Defensive Aids Suite (IDAS) from SAAB. The suite provides laser-warning, missile-approach-warning, as well as full multi-spectral detection capability for radar. Additionally, the suite allows for in-flight configuration against known threats.

The laser-warning system covers broadband laser frequency to detect, plot bearing and range for the display of the laser threats.

The radar warning system makes use of low Effective Radiated Power (ERP) pulse-Doppler radar detection from beyond radar detection range. Additionally, it provides ultra-broadband frequency coverage with high pulse density handling and instantaneous internal frequency measurement.

Once a threat is detected, the countermeasure system deploys chaff and flares from dispensers on either side of the rear fuselage to confuse incoming missile IR or radar lock. The system can also be operated manually or semi-automatically.

Rooivalk in Action

As a member of the UN and AU, South Africa is committed to peacekeeping missions in the DRC, Sudan and South Sudan. The eastern part of the Democratic Republic of the Congo (DRC) is characterized by mountainous terrain, which is plagued by rebel factions known for raping, pillaging and murdering civilians and aid workers alike. The UN Security Council resolution 2098 of 2013 and subsequent resolutions authorised the formation of a UN Force Intervention Brigade (FIB) in the DRC, with a peace enforcement mandate. The FIB consists of three infantry battalions, one artillery, one Special Forces and Reconnaissance Company, as well three Rooivalk MK1 and several Oryx helicopters. The countries that made up the UN FIB were South Africa, Tanzania, and Malawi.

Shortly after deploying to the DRC, the white-painted Rooivalks engaged in their first combat mission against M23 rebels at 17:00 on 4 November 2013. Making devastating use of their 70 mm rockets, the Rooivalks engaged rebel positions near Chanzu (close to the Rwandan border), while the Armed Forces of the Democratic Republic of the Congo (FARDC) conducted a ground assault against M23 positions with the assistance of artillery. The operation ended at 18:20, with the Rooivalks firing 38 and 17 rockets, respectively. Such was their physical and psychological impact and ground assault that the M23 rebels called an end to their 20-month long rebellion the very next day.

On 1 December 2015, several Rooivalks based in Goma (eastern DRC) were tasked with supporting a FIB attack on Islamist Allied Democratic Forces (IADF) guerrillas. The Rooivalk attack was preceded by Ukrainian Mi-25 Hind attack helicopters, but due to bad weather, this was somewhat ineffective against IADF ground positions. The Rooivalk, on the other hand, was unhampered and delivered accurate 70 mm rocket and 20 mm cannon fire.

The Rooivalk received high praise by various international defence analysts for its combat performance in the DRC, as it could operate in any weather condition which the Ukrainian Mi-25 Hind could not.

Typically, a Rooivalk flight mission in the DRC lasts two hours and involves intelligence, surveillance, target acquisition and reconnaissance (ISTAR) in addition to convoy and aircraft escort. While on a mission, it is armed with 550 x 20 mm rounds and 20 x 70 mm rockets. When engaging a target, the Rooivalk climbs rapidly and dives at its target firing rocket salvos and, if necessary, its 20 mm cannon. This method works best to breach the tree canopy foliage in the DRC.

While deployed to the DRC between 2013 and 2015, the three Rooivalks fired 199 70 mm rockets and 610  20 mm cannon rounds in anger. The following year saw a steep rise in rebel activity, with the Rooivalks firing 1200 70 mm rockets and 11,000 20 mm round. The majority of these combat engagements were against Allied Democratic Forces (ADF) during the last two weeks of December 2016.

Two SAAF Rooivalk Attack Helicopters serving as part of the United Nations Force Intervention Brigade, escorting a UN delegation in the Democratic Republic of the Congo, 2014. Source MONUSCO/Clara Padovan

Future Prospects

The Rooivalk must be considered in the context of the role for which it was developed, supporting deep raids by heliborne and parachute forces. Fighters would lack the time on station to give effective close support, whereas the ‘combat support helicopter’ could operate from a ‘helicopter administrative area’ closer to the objective, supplied by transport helicopters or aircraft. That set the requirement for good range, endurance and weapons load, as well as ruggedness and ease of support in an austere location. Also, logistics argued for maximum commonality with the Oryx medium helicopter.

The resulting Rooivalk has performed extremely well in the Democratic Republic of Congo, where it has flown armed reconnaissance, escort and close support for the Force Intervention Brigade. It has proved effective, including in poor weather conditions, and reliable, eliciting very positive comments from officers serving with the UN force in the DRC.

The Rooivalk is due for an upgrade, which would require the following changes to the aircraft: A new main sight, upgraded avionics, new computers and replacing some wiring with fiber. They are all practical and affordable. One Hensoldt Optronics Argos variant, for instance, can add a beam generator to the laser designator, allowing the use of both laser-guided and beam riding missiles, greatly expanding tactical capability. An air-to-air missile could be integrated, as could an advanced self-protection suite.

Its performance in the DRC has also brought interest by some other forces in a possible Mk2 variant, so the story of the Rooivalk may not end with the present fleet.

Helmoed-Römer Heitman – South African author, journalist, historian, military analyst and citizen-soldier.

Conclusion

Rooivalk is a highly sophisticated digital aircraft. The investment in digital-based systems provides a weapon system that is capable of achieving ultra-high assurance levels of mission accomplishment in a most demanding operational environment. Furthermore, the hazards of this environment, such as adverse weather, terrain and darkness; as well as the threats posed by the enemy, are significantly reduced because of very effective electronic enhancement. There need be no doubt that the percentage of the purchase price of Rooivalk that is attributable to avionics and electronics is money seriously well spent.

Robert Paul Jonkers – Programme Manager for the Rooivalk (1999-2004)

Videos

Rooivalk Weapons Demo https://www.youtube.com/watch?v=9_vn0gSXaKU

Rooivalk Combat Support Helicopter – SAAF 16 Squadron – Live onboard Cameras https://www.youtube.com/watch?v=8_m-S9PW5vY

Specifications

ROOIVALK CSH MK1 SPECIFICATIONS

(Typical mission loadout)

Crew 2 Fuel capacity (kg) (3 x tanks) 480
Mission weight (t) 7.5 Max. range (km) 740
Power-to-weight ratio (shp/t) 246 Engine power output (shp) 1845
Length (m) 16.39 Cannon calibre (mm) 20
Width (m) 6.95 Rockets calibre (mm) 70
Height (m) 5.19 Air to ground missiles calibre (mm) 127
Ascend rate (m/s) 11 Air to air missiles calibre (mm) 90
Max. flight altitude (ft) 20,000 Ammunition of Cannon 700
Hover over ground effect (m) 5,029 Rockets (2 x pods) 38
Cruising speed (km/h) 278 Air to ground missiles (2 x quarto rails) 8
Max. speed (km/h) 309 Air to air missiles (2 x dual pods) 4

Gallery

AH-2A – No. 678 AFB-Langebaanweg Dec 2017 – By Ed Jackson – artbyedo.com
AH-2A – No. 676 AFB-Durban Feb 2017 – By Ed Jackson – artbyedo.com

Special Thanks

The author would like to acknowledge and thank several individuals. Rob Jonkers, former Programme Manager for the Rooivalk (1999-2004), for doing quality control of the article content and providing permission to source from his book Rooivalk – a legend in the making. Also Justin Cronjé from defenceWeb, which is Africa’s leading defense news portal, for making some of their resources available. Helmoed-Römer Heitman for his contribution on the Rooivalk’s possible future.

Sources

 

 

Re.2000 “Héja”

Hungarian Flag Kingdom of Hungary (1939)
Fighter aircraft – Number used: 70 brought and 185 to 203 built under license

The Italian Re.2000 was known in Hungary as the Héja (Hawk). Source: -: https://forum.warthunder.com/index.php?/topic/273562-reggiane-re2000-falco-and-h%C3%A9ja-ii-hungarian-version/

Despite not being adopted by the Italian Air Force, the Re.2000 would see some export success. Hungary bought a production license and 70 new aircraft for its Air Force. These would be supplemented by locally produced planes, both of which would see action during the Second World War. In Hungarian service, the Re.2000 would be known under the ‘Héja’ (Hawk) nickname.

Hungarian-Italian cooperation

During 1939, Hungarian Air Force (Magyar Királyi Honvéd Légierő) military officials were concerned with the need of acquiring more modern aircraft designs. As, during the 1930s, Hungary was a regular customer of Italian aviation equipment and planes (like the Fiat CR.32, for example), it was logical for the Hungarian Air Force military officials to turn to Italy for the acquisition of new aircraft.

By the end of 1939, Hungary sent a military delegation to purchase 70 fighter and 70 bomber planes. The Italians presented a number of different designs to this delegation, which included the Re.2000, Savoia-Marchetti S.M.79, and Ca.135bis. After a demonstration, the Hungarians were satisfied with the Re.2000’s performance. On 27th December 1939, a contract for the purchase of 70 new aircraft of this type was signed. This contract also included weapons, spare parts, onboard equipment, and a small number of airframes. Radios were not bought, as the Hungarians planned to equip them with domestically built R-13 ones. In addition, a license for domestic production was also obtained. The domestic production of the Re.2000 was to be carried out by MAVAG (Magyar Állami Vas, Acél és Gépgyárak/ Hungarian State Iron and Steel Works). The Re.2000s built-in Hungary were to be powered by domestically produced W.M. (Weiss Manfred) K-14 engines. The Italians were to deliver the first specimens by 15th January 1940.

As there were delays with the shipment of the first planes, the Hungarian Air Force sent a new delegation in April 1940 to Italy to determine what the problem was. To their astonishment, only one Re.2000 had been completed by this time. The Reggiane factory could not produce more planes due to a constant lack of raw materials. This single plane was flown to Hungary in May 1940. In Hungarian service, the first Héja received the serial number V-401 or V.401 (the V stands for Vadász/fighter). The remaining Héjas supplied by the Italians received the serial numbers V-402 to 470.

By the end of 1940, only 7 Héjas had been delivered to Hungary. The slow delivery rate was due to the shortage of materials, but also due to the fact that the Italian Air Force confiscated 9 planes for their own use. These would later be replaced by 9 newly built aircraft. The sources are not clear when the last aircraft arrived in Hungary. According to Gianni C., this happened at the end of 1941, but according to George P., this was on 29th May 1943!

The name

As already mentioned, the Re.2000 was known in Hungary under the Héja nickname. The origin of this name can be traced back to the Italian name given to this plane, “Falco”. In some sources, possibly in order to distinguish between the Italian and Hungarian built planes, the first were marked as Héja I and those built-in Hungary as Héja II. This article will use these two designations (when the precise model is noted by sources) but, for the sake of simplicity, the Héja I will be simply called Héja.

In Hungary

As the first Italian built Héja planes began to arrive in Hungary, they were intended to be given to different pilot training schools. Immediately after the arrival of the Héjas, the Hungarians noted a number of technical or structural problems with these planes. A great issue was the poor state and design of the throttles. These faulty throttles caused a number of accidents, with one Héja being lost in a fire during a landing accident. This issue with the throttles, despite efforts from Hungarian engineers, could not be solved until the end of 1941. Other issues with the Héjas were the poor state of the machine guns, which often jammed during firing or were misaligned, the instability of the canopy panels, and the lower quality of the wing skin. All this caused the Hungarians to make many modifications to the Héja in order to put them into service.

The Hungarian Héja II

With the contract to purchase 70 new fighters, the Hungarians also bought a license for production. The production of new planes was to be done by MAVAG. In order to avoid being dependent on Italian engines and to lower the overall price of the Re.2000, the Hungarians decided to upgrade this fighter with a domestically built engine. The initially planned new engine was a radial 14-cylinder air-cooled WMK-14 giving out 950 hp (or 930 hp, depending on the source). This engine was, in fact, a license-built version of the Gnome-Rhône Mistral Major K 14. One WMK-14 engine was sent to Reggiane to be installed in a Re.2000 in order to see if this modification was possible, but also to test its performance. The Italians, on the other hand, were never interested in this idea and preferred to sell the Re.2000 with its original engine. Due to the low interest and slow production rate of the Re.2000, nothing came from the Hungarian proposal. For this reason, the Hungarians decided that MAVAG should make these modifications.

Side view of the Hungarian Héja II. Source: https://www.sas1946.com/main/index.php?topic=28944.0

In order to improve the potential flight performance of the plane, the Hungarian Ministry of Defence decided to use the stronger WMK-14B 1085 hp engine. For this reason, the manufacturer, Weiss Manfred, was to produce 329 new WMK-14B engines, of which 247 were to be used on Héja’s and the other 82 as spare engines.

The first plane to be powered with this engine was the Héja (V-401) supplied by the Italians. It was modified by MAVAG and then tested. The tests were successful and the order for 100 Héja II was given. The production was to be divided into two batches, a first one of 25 planes and a second with 75 planes after the first one was completed.

The Italians sent the needed documents for the production of the Re.2000 to Hungary in October 1940, which caused some delays for the Héja II production run. The first operational Héja II was built in June 1941 and was successfully tested the same month. By this time, the Hungarians also obtained a license production for the German Me-109 fighter. This plane was much better than the Héja II, but it was estimated that the production of Me-109s in any larger numbers could not be achieved until 1943. For this reason, it was decided to continue Héja II production as a temporary solution.

The preparations for the production of the first 25 Héja IIs began in November 1941. Despite the extra spare parts and airframes supplied by the Italians, the start of production could take place immediately. The reason for this was the lack of proper machine tools and production capacities of MAVAG, but also due to various testing and modifications. The second Héja (V-402) was reequipped with the stronger engine for testing purposes. It was flight tested at the Experimental Institute near Csepel. After a series of test flights, some modifications were required, like improving throttle controls and modifying the rear tailwheel.

Production of the Héja II began only in July 1942. Immediately at the start of production, problems with the Reggiane fuel tank seal were noted. The Hungarian engineers simply replaced it with 22 smaller 20-25 l fuel tanks. To their surprise, this modification actually improved the Héja II’s stability during flight, as it reduced fuel sloshing in the tank. The production of the first 25 planes (with the modified fuel tanks) was completed by October 1942. Before the start of the second series of 75 aircraft, an order for 100 additional Héja IIs was placed. The last Héja II would be built in early March 1944. Officially, the Héja II was accepted for service in late September 1942 by the Hungarian Air Force.

A Héja II (V-495) from the first batch was tested by test pilot Tibor T. in March of 1943. The production of the later series was slowed down due to difficulties with obtaining necessary parts from abroad (due to the Italian capitulation and the desperate state of the German economy). In addition, the WM factory was bombed in early April 1944. The factory was almost completely destroyed, with the loss of nearly all equipment and spare parts. For this reason, the Hungarians were forced to stop the production of the WMK-14 engine. WM was finally destroyed in another bombing raid in July 1944. For this reason, the production of a group of nearly 30 new Héja IIs could not be completed.

Technical characteristics

The Héja I was a regular Re 2000, the characteristics of which will not be repeated.
The Héja II was a low wing, metal construction, single-seat fighter plane. The fuselage consisted of a round frame covered with metal sheets held in place by using flush-riveting. The Héja II wings had a semi-elliptical design, with five spars covered with stress skin. The original Re.2000 fuel tanks, placed in the central part of the wing, were replaced with 22 smaller 20-25 l fuel tanks. The wings were equipped with fabric-covered Frise type ailerons. The rear tail had a metal construction with the controls covered with fabric.

The landing gear system was unusual. When it retracted backward, it rotated 90° before it fell into the wheel bays. For better landing, the landing gear was provided with hydraulic shock absorbers and pneumatic brakes. The smaller rear wheel was also retractable and could be steered if needed.
The Héja II was powered by one WMK-14B 1085 hp engine. With the stronger engine, the Héja II could achieve a maximum speed of 323 mph (520 km/h). A larger 10.5 ft (3.2 m) Weiss Manfred three-bladed and hydraulically controlled variable pitch propeller were used. Due to the installation of the new engine, the front fuselage design had to be changed and extended by 1.3 ft (40 cm). As the new engine had a somewhat smaller diameter, the pilot front field of view was increased. In addition, the engine cowling design was changed.

The pilot cockpit canopy opened to the rear and gave a good overall view of the surroundings. The Hungarian Héja II was not originally provided with the 0.3 in (8 mm) thick armor plate placed behind the pilot seat. The Hungarians tested domestically built ones, but the results of these tests are not clear. Most interior equipment, except the radio, was provided by the Italians.

The two 0.5 in (12.7 mm) Breda-SAFAT heavy machine guns were replaced with Hungarian Gebauer MGs of the same caliber. The Gebauer gun had a firing rate of 1000 rounds per minute. The ammunition for each machine gun was 300 rounds stored in a box magazine. With the installation of these machine guns, the upper part of the front fuselage had to be redesigned.

During the war

With the German attack on the Soviet Union in June 1941, Hungary, together with other Axis allies, joined this offensive. For the attack on the Soviet Union in early August 1941, the Hungarians dispatched the Independent Fighter Group, which consisted of two fighter squadrons equipped with CR.42 planes. The first Héja fighter squadron with seven (or six, depending on the source) planes was formed on 7th August 1941. It was stationed at Sutyska airfield near Vinnytsia, in Ukraine. A few days later, it was moved to Pervomayks and was put in a fighter escort role for Hungarian bombers. The first operational mission was to escort a group of Ca.135 bombers in attacking Nikolayev on the 11th of August. The first air victories were achieved in late August when three Héja fighters engaged a group of five Soviet I-16 fighters near Dniepropetrovsk. The Hungarian fighters managed to shoot down three I-16s with no losses. By the end of August, the Héja fighters had made in 151 sorties with five achieved victories. The Héja would see action on the Eastern front up to late October 1941, when they were recalled to Hungary. One aircraft was lost during the flight back to Hungary when it crashed somewhere over the Carpathian mountains. During its first year of service, the Héja’s were mostly used in bomber escort and occasional ground attack missions. As most of the Soviet Air Force was destroyed early on, there were few air encounters with enemy planes. In total, three Héja were lost, with one additional being damaged.

A side view of a column of three Héja II somewhere in Hungary. Source: https://www.sas1946.com/main/index.php?topic=28944.0
This Héja (V-409) was sent to the Eastern Front in the second half of 1941. Source: http://themodelingunderdog.blogspot.com/2011/04/training-hawk-mavag-heja-ii-in-service.html

In preparation for the new German campaign on the Eastern Front in 1942, the Hungarian Air Force formed the 1st Fighter Group. This Fighter Group had a Squadron equipped with 12 Héja fighter planes commanded by Colonel K Csukas. This Squadron was combat-ready by 5th July 1942. As there were cases of Germans mistaking the Héja for Soviets planes, one Héja and also a CR.42 were sent to several German airfields in order to familiarize German pilots with these planes. Initially, the Germans gave the Hungarian fighters the task of patrolling and escorting reconnaissance and bomber planes near the front. On 13th July, the Héjas were tasked with defending the ground forces concentrating for the attack on Soviet positions.
By the end of July 1942, a second unit equipped with 11 Héja was deployed to the front. Both Héja units were moved to Ilosvoskoye in early August. The first squadron was tasked with a bomber escort mission, while the second with a reconnaissance escort mission. The 1st Fighter Group was in really bad shape due to maintenance problems, with only four Héja being operational by the 8th of August. This forced the Hungarians to ask the Germans for fighter cover for their troops.

In early August 1942, the Héja fighters were hard-pressed to stop the increasing number of Soviet bombing raids into Axis lines. On 7th August, a Soviet IL-2 managed to shoot down a Héja fighter which crashed into the ground. On the same date, Héja fighters intercepted a group of three German He-111 bombers which were accidentally bombing Hungarian lines and managed to shoot down one.

On 20th August, while making a take-off from an airfield near Ilosvoskoye, István Horthy (son of Miklós Horthy) lost his life in an accident. Author Maurizio D. T. notes that the accident was possibly caused due to the installation of a 0.98 in (25 mm) thick armor plate behind the pilot seat. There are also claims that the plane was sabotaged by the Germans due the Miklós Horthy allegedly showing sympathy for the English people, but this is improbable. The Germans were in no position to sacrifice trained fighter pilots or planes. Horthy probably simply crashed due to a pilot error or miscalculation.

This is the plane piloted by István Horthy (the son of Miklós Horthy). It is easily distinguished by the small star and two revolver insignia painted on the front part of the fuselage. István Horthy was killed in an accident during take-off in late August 1942. Source: https://forum.warthunder.com/index.php?/topic/273562-reggiane-re2000-falco-and-h%C3%A9ja-ii-hungarian-version/

By late August, the 1st Fighter Group lost four planes either due to enemy action or accidents and six more were damaged but in a state that could be repaired. By the end of August, Héja pilots managed to shoot down five enemy aircraft, with three more in September. By October 1942, most Héja pilots were recalled to Hungary to begin training on the new Me-109 planes. The remaining 13 Héjas were used on the Eastern Front up to late December, with only six still being operational.

During the Soviet attack on Axis positions around Stalingrad, the Hungarians sent all available planes, including the few working Héja fighters, to stop these attacks. The following days, a pair of Héja fighters sent to escort German bombers were attacked by Soviet fighters but managed to escape. By 15th January, the Héja performed mostly escort missions. The surviving Héjas met their fate when they were destroyed by their crew in order to avoid being captured, as they could not make an escape due to the harsh Russian winter.

No improved Héja IIs were used on the Eastern Front, as these were kept in reserve. As a shipment of more advanced Me-109G arrived in Hungary from Germany in late 1943, the Héja was mostly used for training. But, due to the increase of Allied bombing runs, they were put into action for the defense of Hungary skies.

By March 1944, Germans sent forces to occupy Hungary, as there was information that Hungarian politicians were negotiating with the Soviets for an armistice. During this occupation, the Germans prevented any further work or training on the Héja II. In April, the Allies made major bombing raids against Hungarian factories. This affected the supply of new spare parts, but, despite this, a group of 30 newly built Héja II was tested in April.

This Héja II (serial number V-479) was used mostly for training, as it was obsolete by 1944 war standards. Source: http://themodelingunderdog.blogspot.com/2011/04/training-hawk-mavag-heja-ii-in-service.html

During the Allied Bombing raid by the 15th Air Force on Budapest (13th April 1944), the P-38 escort fighters were attacked by a group of Héja II fighters. During this engagement, one Héja II was damaged. Another group of 8 Héja II was sent to support the defense of Budapest. Four of these attacked Allied bombers but, due to heavy defensive fire, the attack had to be aborted. Two Héja II fighters were damaged and one had to make an emergency landing. The second group of four fighters failed to reach the bombers but ran into a group of P-47s. After a short engagement, one Héja II was shot down and one was damaged.

This was one of the Héja II (piloted by Ferenc Kass) which engaged Allied P-47s during the defense of Budapest in April 1944. Despite being hit several times, the pilot managed to escape and land it without any problems. Source: https://forum.warthunder.com/index.php?/topic/273562-reggiane-re2000-falco-and-h%C3%A9ja-ii-hungarian-version/
Rearview of Ferenc Kass’ Héja II fighter plane. The damaged rear tail is evident here. Source: http://themodelingunderdog.blogspot.com/2011/04/training-hawk-mavag-heja-ii-in-service.html

Due to the lack of spare parts, some 30 Héja II fighters could not be completed. The Hungarians tried to salvage any parts from damaged aircraft, but this was insufficient. In December 1944, there were six operational planes with the training unit ‘Puma’ Fighter Wing. The last Héja II was lost in early 1945 in an accident.

Héja wartime improvements and modifications

Based on the front line experience, in order to provide the pilots with better protection, the Hungarians asked the Italians for the design blueprints of the Re.2000 and Re.2001 0.3 in (8 mm) armored plates. The Re.2001 version was preferred, as it was much lighter at 110 lbs (50 kg), while the Re.2000 one was heavier, at 200 lbs (90 kg). The Italians, for some reason, did not agree to give these blueprints, so the Hungarians were forced to develop their own design. Author Maurizio D. T. mentions that a 0.98 in (25 mm) armor plate was added behind the pilot seat, which affected plane performance.
An additional fuel tank with 100 l was added into the fuselage in order to increase the operational range. It was equipped with a self-sealing coating in order to avoid any fuel leaks which could lead to a fire accident.

In the late part of the war, two planes were modified and equipped with dive brakes and bomb racks for 550 lbs (250 kg) or 1100 lbs (500 kg), in order to be tested for use as dive bombers. For further testing, one additional Héja II was modified for this. The tests appear to have been unsuccessful, as no production order followed for this modification.

By the end of 1942, there were plans to form a Night Fighter Squadron equipped with German radio equipment. As the promised equipment never arrived, no such unit was ever formed.

Production

The production of the first Héja II began in July 1942, with the first 25 completed by October 1942. Before the start of the second series of 75 aircraft, an order for 100 additional Héja IIs was placed. The last Héja II would be built in early March 1944. Depending on the sources used, the production numbers are different. The numbers go from 185, 192 to 203 planes. The difference in number may be caused by the fact that some sources include also the last 30 unfinished airframes.

  • Héja I – 70 planes were purchased from the Italians
  • Héja II – Hungarian built version
  • Prototypes
  • Héja II dive bomber – Three Héja IIs were modified for the role of dive bombers but were not accepted for service
  • Héja II night fighter – There were plans to use the Héja II as a night fighter but due to the lack of necessary equipment no plane was ever used in this role.

Conclusion

The Héja provided the Hungarians with a much needed modern fighter plane. While it did see service, it was never used in any larger numbers due to problems with the delivery of new planes from Italy. Even when the improved Héja II was produced in Hungary, it was also plagued with slow production and distribution to combat units. By the time the Héja II was built in larger numbers, it was already outdated by late-war standards.

Héja II Specifications

Wingspans 36 ft 1 in / 11 m
Length 26 ft 6 in / 8.4 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One WMK-14B 1085 hp engine
Empty Weight 4560 lbs / 2.070 kg
Maximum Takeoff Weight 5550 lbs / 2,520 kg
Fuel Capacity 500 + 100 l
Climb to 6 km (19,700 ft) 6 minutes 10 seconds
Maximum Speed 323 mph / 520 km/h
Cruising speed 255 mph / 410 km/h
Range 560 mile / 900 km
Maximum Service Ceiling 25.700 ft / 8.140 m
Crew 1 pilot
Armament
  • Two 0.5 in (12.7 mm) heavy machine guns

Gallery

Heja, Illustration by Pavel Alexe

Heja II, Illustration by Pavel Alexe

Source

  • Nešić, D. (2008). Naoružanje Drugog Svetsko Rata-Italija. Beograd
  • David M. (2006). The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
  • Maurizio D.T. (2002). Reggiane RE 2000 Falco, Heja, J.20, Instituto Bibliografico Napoleone
  • G. Punka (1994), Hungarian Air Force, Signal Publications
  • George P. Reggiane Fighters In Action. Signal Publication
  • Jonathan T. (1963) Italian Civil And Military Aircraft 1930-1945, Aero Publisher
  • Gianni C. (1966) The Reggiane Re.2000, Profile Publication Ltd.
  • John F.B. (1972) Caproni Reggiane Re 2001 Falco II, Re 2002 Ariete and Re 2005 Sagittario, Profile Publications
  • https://www.valka.cz/HUN-MAVAG-Heja-II-t6986

Re.2005 “Sagittario”

Kingdom of Italy flag Kingdom of Italy (1941)
Fighter Aircraft – 32 ~ 48 Built

The Re.2005 was one of the better and more modern Italian WWII fighter designs. It was developed by Reggiane in 1941. Due to the lack of DB.605 engines, the development and production process of the aircraft was too slow and, by the time of the Italian surrender to the Allies, less than 50 had been built.

Re. 2005 Source: Pinterest

History

Officine Meccaniche Reggiane SA (hailing from Reggio Emilia in Northern Italy) was a WWI era aircraft manufacturer. However, following the First World War, it was not involved in any large aircraft production or design work. Rather as a company, it focused primarily on the Rail and Agriculture sectors primarily building locomotives and agricultural equipment. Its production efforts only returned to aircraft during the thirties when Reggiane became a subsidiary of the much larger Caproni aircraft manufacturer, which was led by the well-known Engineer Gianni Caproni. Thanks to this, Reggiane was aided by Caproni with a larger and more qualified aircraft design department. Reggiane and Caproni were involved with several experimental pre-war designs, like the Ca.405 Procellaria and P.32bis version, in addition to their license production of the S.M.79.

By 1941, the Italian Air Force was in a very desperate state, as it lacked an effective fighter design that could engage the increasing Allied bombing actions against Italian cities. The only modern design, the Macchi C.202, could not be produced in sufficient numbers to make a difference. For this reason, the Italian Air Force initiated the development of the so-called Serie 5 fighter designs that would eventually lead to the Fiat G.55, Macchi C.205, and the Reggiane Re.2005.

One of the greatest problems that the Italian aircraft designers and manufacturers had was the lack of sufficiently strong engines. In 1938, the development of a 1200 hp Fiat A.38 engine began, but many problems appeared and the engine could not be produced in time nor in any great numbers. For this reason, the license for the production of the German DB.601 was obtained. The problem was that Alfa Romeo’s, the manufacturer of this licensed engine, production output of this engine was only around 50 to 60 per month. Due to the lack of an adequate engine, Italian General Francesco Pricolo proposed creating new designs using the German 1475 hp DB.605 engine, which was to be produced by Fiat from 1942 on. The first planes chosen to be equipped with this engine were the Re.2001 and C.202. On 23rd July 1941, a decision was made to save the entire production of the DB.601 engine for the C.202. In addition, around 1000 new DB.605 engines were ordered to be produced by Fiat. Reggiane officials, seeing a new business opportunity, devoted all their available resources in the development of the new Re.2005 model.

The name

In various sources, this plane is marked by different but similar designations. These include RE 2005, Re 2005, or Re.2005. This article has and will use the Re.2005 designation. In early January 1943, the Re.2005 received its ‘Sagittario’ (name of the Constellation Archer) nickname, which is very well known today.

Re.2005 beginnings

In order to design the future Re.2005, a team was chosen under the leadership of Giuseppe Maraschini. His team decided that, instead of simply improving earlier models, they would design and build a brand new aircraft prototype. Carryovers from previous vehicles included the wings, which were similar to previous models but were made of a single piece. The armament was increased to two 0.5 in (12.7 mm) machine-guns and one 0.78 in (20 mm) cannon firing through the propeller hub, with two additional 0.5 in (12.7 mm) machine guns to be placed in the wings. A new outward retracting landing gear was to be installed. The radiators were placed under the fuselage. The building of the wooden fuselage mock-up was completed by the end of October 1941. The wings were completed by early November 1941. Preparation for the construction of two working prototypes (MM.494 and 495) began soon after.

However, there were delays due to the lack of promised DB.605 engines, that were not ready for license production yet. There was also a possibility that all future produced DB.605 engines would be delivered to Fiat and Macchi designs only. Despite these setbacks, the work on an operational prototype continued and, in February 1942, the factory was visited by the High Technical-Military Inspectorate commission. This commission gave good remarks for the Re.2005 design but asked to move the wing-mounted machine guns into the fuselage. As this would cause many technical problems and delays, nothing was done on this matter and the machine guns remained in the wings. By this time, the required shipments containing the armament (Mauser 0.78 in/20 mm MG 151 cannons), canopies, and windscreens (same as on the MC.205) were yet to arrive, as there were constant delays.

Once completed, the first test flight of the MM.494 prototype was made on 9th (or 7th, depending on the source) May 1942. For the main test, pilot Major Tullio De Pranto was hired by Reggiane, for the payment of 140.000 lire. This flight lasted around 5 minutes and was without problems. The following day, Major De Pranto made another flight with the MM.494 prototype. At first, it was fine but then the landing gear mechanism on the right leg broke down, which forced the pilot to make an emergency landing. The prototype was damaged but repaired and the flight tests continued during June and July 1942. By this time, over 6 hours of flight were achieved. In late July, the plane was transported to the Guidonia test center for further testing. There, during dive testing, a maximum speed of some 560 mph (900 km/h) was achieved. But there were again problems with the landing gear and also with the cockpit design and, for these reasons, it was returned to Reggiane for modifications. During August, modifications on the cockpit were made, mostly on the design of glass surfaces and the length of the windscreen, which was considered to be too long for the pilot. In September, the flight tests continued, but there were some issues with the engine malfunctioning and the MM.494 pilot was forced to make an emergency landing. By late September, many pilots had the opportunity to fly on the Re.2005 prototype.

The first prototype, MM.494, in preparation for a series of test flights. Source: Pinterest

At the start of October 1942, the second prototype was moved to the Guidonia test center for testing. There, the problem with the landing gear persisted, in addition to problems with fuselage vibrations that were also noted. By the end of October, the Re.2005 was used in a mock fight with the Fiat G.55. During the firing of its 0.78 in (20 mm) cannons, there were ammunition feed problems. For these reasons, in combination with the previous notes, the MM.495 prototype was returned to Reggiane for further modifications. In late December 1942, an Air Force Commission was formed to examine the Re.2005 prototype overall flying performance, armament, production speed, etc. The Re.2005 was noted to be inferior to the MC.205 but better than the Fiat G.55. While the final decision was not clear, the development of the Re.2005 continued on.

 

The second MM.495 prototype stationed at Reggio Emilia. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

The next step in Re.2005 testing was the addition of bomb loads. During these tests, no major problem was recorded, but the take-off run was increased by some 657 ft (200 m) due to the extra weight. While piloted by Captain Enzo Sant’andrea, instead of releasing the 1410 lb (640 kg) bomb, the release harness mechanism failed and the bomb remained stuck to the plane. He was forced to land with the bomb, but luckily it did not explode and the landing was successful. Various tests were carried out with the original German engine and equipment from April to June 1943.

The Re.2005 prototype was used to supplement a mixed unit in the defense of Rome on 27th May 1943. During this flight, the Re.2005 was piloted by Lieutenant Giorgio Berolaso. While no enemy aircraft were detected, he managed to test the main armament. He later wrote, “ … It was a terrific experience! Such was the recoil that I had the impression that the entire aircraft slowed down…”.

Reggiane fights for production orders

In January 1942. Italian Air Force Officials decided to adopt the Macchi C.202, C.205, and the Fiat G.55 for mass production. The fate of the Re.2005 was, for some time, uncertain. Only in August 1942 did Reggiane receive orders to prepare machine tooling for the possible production of the Re.2005. In October, Reggiane petitioned for the production of 16 Series-0 Re.2005 aircraft. This petition was accepted by Italian Air Force officials and an order for 16 Series-0 (MM.092343-092358) planes was placed in November. Engineer Roberto Longhi was tasked with the construction of the first Series-0 aircraft. As numerous modifications were required, he immediately began working to improve the Re.2005’s performance. The fuselage skin was reinforced, along with the wing spar caps, skins, and internal structure.

As Engineer Roberto Longhi was working to improve the Re.2005, a special Air Force committee rejected it for serial production. Instead, the Re.2005’s improved wings were to be applied to the Re.2002 to serve either as an advanced fighter or as a fighter-bomber. It was also proposed to reequip the Re.2005 with the weaker DB.601 due to a lack of DB.605 engines. For some time, there were fierce discussions between Reggiane officials and the Italian Air Force about the Re.2005. The Reggiane officials even managed to involve Benito Mussolini in this discussion. Eventually, Reggiane managed to obtain a production order for 100 Re.2005 in January 1943, with an additional 18 of the Series-0. In late January 1943, it was increased to 600 aircraft with a monthly production of 70. In order to achieve such high production orders, other manufacturers were to be included in Re.2005 production, like Breda, Caproni, and Aerfer. Eventually, an order for 1000 aircraft was sent with Reggiane, but these numbers were never achieved due to a lack of engines and the war ending for the Italians.

When the production began in early March 1943, it was decided that, from the 24th produced plane onward, bomb racks would be added and the planes were to be used solely as fighter-bomber aircraft.

Technical characteristics

The Re.2005 was designed as a single-engined, low wing, all-metal fighter plane. The fuselage was made using a reinforced sheet metal construction covered with an aluminum alloy skin. The fuselage around the cockpit was additionally strengthened in case of a crash landing.

The landing gear had a simpler design than previous Reggiane designs. It consisted of two outward retracting wheels which were operated hydraulically. The rear tail wheel retracted into the fuselage and was enclosed by two small metal doors. The rear tail wheel could also be steered by the pilot if needed.

To speed up and ease production, the wings were made of one semi-elliptical piece. The wings were made using light alloy materials. They consisted of three double ‘T’ shape spars connected with sheet metal ribs. The split flaps made of metal were extended to under the fuselage. The ailerons (Frise type) were made using a combination of fabric and light alloy materials.

The cockpit had a canopy that could be opened to the right side. For better pilot protection, his seat was made using an 8 mm steel plate. The cockpit was provided with standard Italian equipment, like an Allocchio-Bacchini 30 radio, San Giorgio reflector collimator, Patin telecompass, etc.

Close lock of the Re.2005 cockpit interior. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

The engine used was the German Daimler Benz DB.605A-1 1.475 hp that was being produced under license in Italy as the R.A.1050 RC.58 Tifone (Typhoon). A Piaggio P.2001 three-bladed, mechanically controlled metal propeller was used. The engine was placed in a specially designed mount that was connected to the rest of the fuselage. The Re.2005 oil radiators and coolant were placed on the sides.

The total fuel load was 580 l (or 536 l, depending on the source) stored in four fuel tanks placed in the wings. Access to the fuel tanks was done by removing metal plate panels held in place by screws. Three additional external fuel tanks could be added if needed, one larger with 240 l under the fuselage and two 100 l tanks under the wings.

For Italian standards, the Re.2005 was heavily armed with German supplied cannons. Its armament consisted of one 0.78 in (20 mm) MG 151 cannon firing through the propeller center and two 0.45 in (12.7 mm) Breda SAFAT machine-guns were placed in the front fuselage. Depending on the availability, two 0.45 in or two 0.78 in cannons could be placed in the wings. The total ammunition load was 550-600 (for all three) rounds for the cannon and 700 rounds for the two machine guns. Different bomb load combinations were tested, with a maximum load under the fuselage of 1410 lb (640 kg) and 350 lb (160 kg) under each wing.

 

The center of the propeller has an opening for the internal 0.78 in (20 mm) MG 151 cannon. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

In Operational service

Due to the small number built, the Re.2005 saw only a limited number of actions with the Italian Air Force. All surviving Re.2005 were captured by the Germans, who put them to use. The last operator was the Aeronautica Nazionale Repubblicana, which had only a few Re.2005, but if any were ever used operationally is not known. There were attempts to sell the Re.2005 to Sweden, but nothing came from this.

In Italian Service

The delivery of the Re.2005 to operational units was slow, maximally up to four planes per month. The first unit to be supplied with this aircraft was the 362° Squadriglia which was part of the XXII Gruppo Caccia commanded by Captain Germano La Ferla. The first prototype, MM.494, was given to this unit in early 1943. At the start of April 1943, a group of 20 Italian fighters attacked an Allied B-24 bomber formation and managed to shoot down two bombers. One kill was credited to Re.2005. On 10th April, another attack on an Allied bomber formation was made and the Re.2005 again managed to shoot down one bomber. The next day, two more B-24 were shot down at the cost of one Re.2005. The pilot managed to survive using a parachute. On 28th April, another attack was made by a group of four Re.2005, eleven Macchi C.202 and one French captured D.520. In this action, the Re.2005 pilots shot down two more bombers. By this time, it was apparent to the pilots that the Re.2005 was far superior to the C.200 and C.202. The greatest strength of the Re.2005 was its strong firepower of up to three 0.78 in (20 mm) cannons. From May to June, there were several more flights but without any success.

A group of four Re.2005 belonging to the 362° Squadriglia. Source: http://www.warbirdphotographs.com/vvsregiaavions/regiaindex.html

The 362° Squadriglia was moved to Latina in June 1943. By this time, the 362° Squadriglia had only 8 Re.2005 with 7 operational. On 25th June, this position was attacked by Allied aircraft and four fighters were damaged.

In early July 1943, the 362° Squadriglia, with around 8 Re.2005, was relocated to Sicily in an attempt to stop the Allied advance. In the following days, the Re.2005 managed to shoot down several British Spitfires with the loss of a few aircraft. With the inevitable Axis defeat in Sicily, the Re.2005 crews were moved to Italy. The last two operational Re.2005 were lost in an air raid on the positions of the 371° Squadriglia to which they were temporarily attached.

This Re.2005 (MM.092352) was part of the 362° Squadriglia defending Rome in June 1943. Source: Pinterest

In mid-July, the 362° Squadriglia was operated from Naples with newly supplied Re.2005. By 20th July, this unit had only six Re.2005 but, in the following days two, were lost during bad landings, including the second prototype. Other units were also supplied with the Re.2005 but, in most cases, they were supplied in very limited numbers, for example to 369° Squadriglia. Through August, there were several unsuccessful flight attempts against Allied aircraft. A number of Re.2005 were lost either to Allied action or to other circumstances. By early September, due to the Italian surrender, all available Re.2005 stationed in Naples were destroyed by their crews.

The maximum number of Re.2005 ever operated by 363° Squadriglia was around 9 operational planes. By the time of the Italian surrender, in total, 19 Re.2005 were supplied for operational use to front line pilots. During the period in which XXII Gruppo Caccia was equipped with the Re.2005, it claimed to have shot down some 24 enemy aircraft, with 17 more labeled as possible. In addition, 8 to 13 aircraft were reported to be damaged by this unit. The total losses of Re.2005 amounted to 12 planes, with the deaths of 3 pilots and 4 wounded. While in service, the Re.2005 landing gear proved to be problematic and thus the ground repair crews made several field modifications in order to solve this problem.

The Re.2005 had the best firepower of nearly all Italian fighter designs. With its three 0.78 in (20 mm) cannons, its pilots managed to shoot down many Allied planes during its short operational life. Source. Wiki

In German hands

After the Italian defeat, the Germans rushed to capture any available military equipment and factories they could find. This included the Reggiane factory, along with all surviving Re.2005 in September 1943. Once in German hands, 8 Re.2005 that were under construction were completed. The Germans seemed to be satisfied with its performance and allocated them to the Luftwaffe Luftdienst Kommando Italien in October 1943. At the start of 1944, two additional Re.2005 were completed and given to the Luftwaffe.

The Germans were impressed with the Re.2005’s performance and put to use any surviving aircraft they could find. Source: http://xoomer.virgilio.it/f5avipatches/re2005%20page.html

The use of the Re.2005 by Germans is somewhat confusing, as some authors suggest that they were used in defense of Berlin up to the war’s end ( like D. Mondey). Author M. Di Terlizzi mentions that the MM.495 prototype along with MM.096105 were sent to Germany for evaluation, but what their fate was is not known. Author G. Punka even writes that the second prototype was used in defense of Bucharest. Both cases seem highly unlikely if we take into account the cost of transport, lack of spare parts which would force it to operate close to the Reggiane factory, and the small numbers of captured planes. Even if the Re.2005 were repositioned to defend Berlin, they would have made no difference due to the small number built.
In an Allied bombing raid in March 1944, three Re.2005 were lost. From March to June 1944, three more were damaged, mostly due to accidents, and were returned to Reggiane for repair. By the end of July, five Re.2005 were still operational and used by the Fliger Ziel Staffel 20. This unit was active from June to December 1944. The final fate of the German-operated Re.2005 is not clear but, by the end of 1944, all were probably lost.

Aeronautica Nazionale Repubblicana

The Aeronautica Nazionale Repubblicana had two operational Re.2005 captured at Castiglione del Lago in October 1943. It is highly unlikely that they ever saw any operational service.

Offer to Sweden

In 1942, the Chief of the Caproni commercial company (Compagnia Commerciale) made an attempt to sell the license and 50 incomplete airframes to Sweden. His offer was based on the fact that Italy had sold older Re.2000 and that Sweden had obtained a license for the production of the German DB.605 engine. By the time the Air Ministry and Mussolini allowed this arrangement, in June 1943, it was too late and the whole deal was never achieved.

Proposals and modifications

During the Re.2005’s development process, there were few attempts to overcome the problem of the lack of an adequate engine. Other different modifications were also tested, but with little to no success.

Re.2005 SF/R

In late November 1942, there were proposals to mount an additional jet engine on the Re.2005 which could help it reach a speed up to 466 mph (750 km/h), at least in theory. Due to the extra weight of some 1000 lb (310 kg) and complications with the installation, no Re.2005 was ever fitted with this engine. This proposal is often marked by Re.2005 SF, after the names of the main proponents of this project, Marcello Sarracino and Antonio Ferri. It is also marked simply as Re.2005 R, Reazione (Reaction), by some sources.

Re.2005 wooden version

Luigi Nardi made a proposal to build the Re.2005 aircraft using mostly wood. This would make the production of Re.2005 cheaper. Nardi was involved in building the first wooden wings in March, following with a fuselage in June 1943. Reggiane officials hired Nardi in late 1942 ( officially in early 1943) and gave him a team of 39 men to complete a wooden model. Little to no progress was made by 1943 and, in the end, it appears that no working prototype was ever built.

Twin fuselage Re.2005 version

There was a paper proposal in late 1942 to build a twin-fuselage heavy fighter version of the Re.2005. It was to be powered by two DB.605 engines and the pilot was to be positioned in the left fuselage. This project remains on paper only and no mock-up or working model was ever built. In 1943, Nardi proposed a similar all-wood project, but nothing came of this. If these two projects were related, it is not known. It is unknown if this version received any official designation.

Re.2005 aircraft carrier version

Due to Reggiane’s experience with shipboard aircraft designs, the Re.2005 was chosen to be used for the Aquila aircraft carrier. No progress was ever made for this version and, in the end, nothing came from it.

Re.2004

Due to the lack of DB.605 engines and the priority given to the G.55 and C.205 aircraft, Italian Air Force officials proposed in late 1941 that Reggiane adopt another solution. This included the use of the new Isotta Fraschini Zeta 1.250 hp engine still in development. This new aircraft project was named Re.2004. The development process of the Re.2004 was slow and, by late June 1943, only two prototypes were ordered to be built. The main engine was never successfully completed nor used due to huge problems with the cooling system. It is likely that only wooden mock-ups were ever built of the Re.2004. Some authors, like John F.B, note that the Re.2004 was actually based on the Reggiane Re.2001 fighter design.

Re.2006

In March 1943, the Italians managed to obtain a number of German 1750 hp DB.603 engines. Immediately, there were plans to equip the existing fighter designs with this engine, including the Re.2005. In May 1943, the Italian Air Force ordered Reggiane to construct two new prototypes (MM.540-541) using this engine. By the time of the Italian surrender, only one incomplete (or complete, depending on the source) prototype was built. After the Germans captured the Reggiane factory, they continued work on the Re.2006 by using some components taken from the Re.2005 (the fuselage). The work on it was never finished by the Germans. It was captured by the Allies, who showed no interest in it, and the incomplete Re.2006 was scrapped in April 1946.

Production

Despite promising performance and an official production order for more than 740 aircraft, only small numbers were actually ever built. The number of production aircraft depends on the sources: According to author Christ C. 37 were built, while D. Mondey and Nešić, D claim 48 being built.
Author John F.B. gives information that 2 prototypes, 16 Series-0 and 18 pre-production aircraft were built, in total 36. Author Gregory A. notes that, by September 1943, 32 Re.2005 were built. These include 2 prototypes, 29 Series-0 and a single Series-I aircraft. He also notes that an additional one was under construction but never finished.

  • Re.2005 Prototype – two prototypes (MM.494 and 495) built
  • Re.2005 Series-0 – 16 to 29 were built and used for testing and in combat.
  • Re.2005 Series-I – 1 to 18 built with some structural modifications.

Proposals and modifications

  • Re.2005 SF – Proposed version equipped with an extra jet engine, none built.
  • Re.2005 wooden version – Proposed version to be built using wood, only limited progress made.
  • Twin fuselage Re.2005 – Paper project only.
  • Re.2005 carrier version – Proposed version to be used on the Aquila aircraft carrier, no prototype was ever built.
  • Re.2004 – Experimental fighter project equipped with the Isotta Fraschini Zeta 1.250 hp engine, possibly only a mock-up built.
  • Re.2006 – Proposed fighter plane powered with Daimler Benz DB 603 and to be built using Re.2005 components, only one incomplete model built.

Operators
Italian Regia Aeronautica – Operated less than 22 aircraft during the war.
Aeronautica Nazionale Repubblicana – Operated two Re.2005.
Germany – Rebuild 10 Re.2005 which were used by the Luftwaffe.
Sweden – There were proposals to negotiate a deal with Sweden for license production. Nothing came from this.

Surviving Re.2005

One Re.2005 captured in Sicily was allegedly put on display in the American National Aircraft Show in November 1946. There is little to no evidence that proves that this ever happened. Today, only a part of a Re.2005 is the rear fuselage and tail of  MM.092352362-2,  restored by GAVS Milan. It can be seen at the Gianni Caproni Museum of Aeronautics near Milan.

Conclusion

While the Re.2005 had the potential to be a good fighter design, its development process was plagued by the lack of engines, problems with vibrations, and the indifference of the Italian Air Force officials. While it was used in combat, it was built in small numbers and too late to have any influence on the war.

Re.2005 Specifications

Wingspans 36 ft 1 in / 11 m
Length 28 ft 7 in / 8,7 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One Fiat R.A.1050 RC.58 12-cylinder 1475 hp engine
Empty Weight 5732 lbs / 2.600 kg
Maximum Takeoff Weight 7.960 lbs / 3.610 kg
Fuel Capacity 580 + 440 l
Climb to 8 km (19,700 ft) 7 minutes 50 seconds
Maximum Speed 390 mph / 630 km/h
Cruising speed 319 mph / 515 km/h
Range 776 mile / 1.250 km
Maximum Service Ceiling 39.370 ft / 12,000 m
Crew 1 pilot
Armament
  • Three 0.78 in (20 mm) cannons and two 0.5 in (12.7 mm) heavy machine guns
  • One 1,410 lb (630 kg) bomb, and two 252 lb (160 kg)

Gallery

Re. 2005, Illustration by Pavel Alexe

Source:

  • D. Nešić. (2008). Naoružanje Drugog Svetsko Rata-Italija. Beograd.
  • D. Mondey (2006). The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
  • G. Punka, Reggiane Fighters In Action. Signal Publication.
  • J. W. Thomson (1963) Italian Civil And Military Aircraft 1930-1945, Aero Publisher
  • G. Alegi. (2001) Reggiane RE 2005, SATE Zingonia.
  • M. Di Terlizzi (2001) Reggiane RE 2005 Sagittario, IBN Editore
  • John F.B. (1972) Caproni Reggiane Re 2001 Falco II, Re 2002 Ariete and Re 2005
  • Sagittario, Profile Publications
  • N. Sgarlato (1979) Italian Aircraft OF World War II, Squadron Signal Publication.
  • C. Dunning (1998) Courage Alone The Italian Air Force 1940-1943, Hikoki Publication

Heinkel He 178

Nazi flag Nazi Germany (1939)
Experimental jet-engine powered aircraft – 2 prototypes and 1 mockup

The He 178 has the honor to be the first aircraft that made it to the sky solely powered by a jet engine. It was mainly designed and built to test the new jet engine technology. Two would be built, of which the first prototype made its maiden flight in late October 1939, just weeks after the start of the Second World War.

A photograph of the He 178 taken during its first test flight. Source: airwar.ru

Early German jet engine development

The leading German scientist in jet engine development was Hans Joachim Pabst von Ohain. He began working on jet engine designs during the thirties, and by 1935 managed to patent his first jet engine while working at the University of Göttingen. The following year, the director of this University, seeing the potential of the Hans Joachim jet engine, wrote a letter to Ernst Heinkel (the owner of the Heinkel aircraft manufacturer). Ernst Heikel was very interested in the development of jet-powered aircraft, seeing they had the potential of achieving great speed and range. After a meeting with Hans Joachim (17th March 1936), Ernst immediately employed him and his team (led by a colleague named Max Hahn) to work for his company.

In 1936, Hans Joachim and his team began building the first working prototype jet engine, using hydrogen gas as the main fuel, the HeS 1 (Heinkel-Strahltriebwerk 1). The HeS 1 was not intended as an operational engine, but for testing and demonstration purposes only. It was built and tested in early 1937, and was considered successful, so the research continued. The HeS 2 was the second test jet engine that initially used hydrogen gas fuel, but this would be changed to gasoline fuel. While this engine had some issues, it helped Hans Joachim and his team in gaining important experience in this new technology.

In September 1937, a series of modifications were made in order to improve its performance. By March 1938, the third HeS 3 jet engine was able to achieve 450 kg (1,000 lbs) of thrust during testing, much lower than the estimated 800 kg (1,760 lbs). Further modifications of the HeS 3 jet engine would lead to an increase of only 45 kg (100 lbs) of thrust.

Experimenting with the HeS 3 engine mounted on the He 118

In May (or July depending on the source) of 1939, testing of the improved HeS 3A engine began. At the same time, field testing done by attaching this engine to a piston-powered aircraft was being planned. For this reason, an He 118 was equipped with this auxiliary test jet engine. The He 118 was Heinkel’s attempt to build a dive bomber, but the Junkers Ju 87 was chosen instead. Having a longer undercarriage, the He 118 was able to mount the jet engine without any major problem. In order to keep the whole flight testing a secret, the tests were scheduled to start early in the morning.

Drawing of the He 118 equipped with the experimental HeS 3A jet engine. An improved version of this engine would later be mounted in the He 178. Source: www.fiddlersgreen

The pilot chosen for this test flight was Erich Warsitz. When the He 118 reached the designated height using the piston engine, the pilot would then activate the auxiliary jet engine. During this flight, the He 118 powered by the HeS 3A jet engine managed to achieve 380 kg (840 lb) of thrust. More test flights were carried out with the modified He 118 until it was destroyed in a fire accident during landing. Despite this accident, the final version of the HeS 3B jet engine was intended to be mounted in the Heinkel designed He 178 aircraft. While this engine was far from perfect and did not manage to achieve the designer’s expected thrust, Ernst Heinkel urged its installation in the He 178 as soon as possible.

The He 178 history

Interestingly, the whole He 178 development began as a private venture. It was also under the veil of secrecy and the RLM (Reichsluftfahrtministerium), the German Aviation Ministry, was never informed of its beginning. Ernst Heinkel gathered the designers and technical directors to reveal to them ’…We want to build a special aircraft with a jet drive! The RLM is not to know anything about the 178. I take full responsibility!..’

Heinkel was possibly motivated by a desire to get an early advantage over the other German aircraft manufacturers. The main competitor was the Junkers Flugzeugwerke, which would also show interest and invest resources in developing this new technology.

While Hans Joachim was in charge of developing the proper jet engine, work on the He 178 airframe was led by the team of Hans Regner as main designer and Heinrich Hertel, Heinrich Helmbold, and Siegfried Günter as aircraft engineers. The first He 178 mockup was ready by the end of August 1938. Ernst Heinkel was, in general, satisfied with the design, but asked for some modifications of the cockpit and requested adding an emergency escape hatch door for the pilot on the starboard side. The following year, both the He 178 airframe and the HeS 3B jet engine were ready, so the completion of the first working prototype was possible.

Technical characteristics

The He 178 was designed as a shoulder wing, mixed construction, jet engine-powered aircraft. As it was to be built in a short period of time and to serve as an experimental aircraft, Ernst Heinkel insisted that its overall construction should be as simple as possible. It had a monocoque fuselage which was covered with duralumin alloy. The wings were built using wood and were sloping slightly upwards. The wing design was conventional and consisted of inboard trailing edge flaps and ailerons. The rear tail was also made of wood. The pilot cockpit was placed well forward of the wing’s leading edge.

The jet engine used initially was the HeS 3B, but this was later replaced with a stronger HeS 6 jet engine. The He 178 jet engine was supplied with air through a front nose Pitot-type intake, then through a curved shaped duct which occupied the lower part of the fuselage, leading directly to the engine. The exhaust gasses would then go through a long pipe all the way to the end of the fuselage. At the developing stage, there were proposals to use side intakes but, probably for simplicity’s sake, the nose-mounted intake was chosen instead. The He 178 fuel tank was placed behind the cockpit.

The He 178 was to be equipped with a retractable landing gear with two larger wheels in the front and a small one at the rear. All three landing gear legs retracted into the aircraft fuselage. For unknown reasons, this was not adopted early on and many test flights were carried out with landing gear in the down position. One possible explanation was that the Heinkel engineers may have left it on purpose. They probably wanted to have the landing gear down in order to be able to land quickly if the engine failed.

First test flights

The first He 178 V1 prototype was completed by June 1939, when it was transported to the Erprobungsstelle Rechlin (test center). Once there, it was presented to Adolf Hitler and Hermann Göring. Interestingly, prior to the flight testing He 178 V1, another Heinkel innovative rocket-powered aircraft, the He 176 was demonstrated. On 23rd June 1939, the He 178 pilot Erich Warsitz performed a few ground test runs. During this presentation, the He 178 was not taken to the sky, mostly due to the poor performance of the HeS 3A jet engine.

Following this presentation, He 178 V1 was transported back to the Heinkel factory in order to prepare it for its first operational test flight. The first He 178 test flight was achieved on 27th August 1939 at the Heinkel Marienehe Airfield near Rostock. At this stage, the pilot, Erich Warsitz, was instructed by the Heinkel engineers not to fly this aircraft at high speeds, mostly due to the fixed undercarriage. In addition, the HeS 3B could only provide enough thrust for only six minutes of effective flight. During this flight, there was a problem with the fuel pump but, despite this, the pilot managed to land with some difficulty but nevertheless successfully.

While there are only a few photographs of the He 178 V1 prototype, this was taken during its maiden flight on the morning of 27 August 1939. Source: airwar.ru

The flight is best described by the pilot’s own words. ‘…As the aircraft began to roll I was initially rather disappointed at the thrust, for she did not shoot forward as the 176 had done, but moved off slowly. By the 300-meter mark, she was moving very fast. The 176 was much more spectacular, more agile, faster, and more dangerous. The 178, on the other hand, was more like a utility aircraft and resembled a conventional aircraft …In this machine, I felt completely safe and had no worries that my fuel tanks would be dry within a minute. She was wonderfully easy to hold straight, and then she lifted off. Despite several attempts, I could not retract the undercarriage. It was not important, all that mattered was that she flew. The rudder and all flaps worked almost normally, the turbine howled. It was glorious to fly, the morning was windless, the sun low on the horizon. My airspeed indicator registered 600 km/h, and that was the maximum Schwärzler had warned me. Therefore, I throttled back, since I habitually accepted the advice of experienced aeronautical engineers. The tanks were not full and, contrary to custom, I did not want to gain altitude for a parachute jump should things go awry. It was supposed to be a short flight. At 300 to 400 meters altitude I banked cautiously left – rudder effect not quite normal, the machine hung to the left a little, but I held her easily with the control stick, she turned a little more and everything looked good.

After flying a wide circuit my orders were to land at once, this had been hammered into me, but now I felt the urge to go round again. I increased speed and thought, ‘Ach! I will!’ Below I could see the team waving at me. On the second circuit – I had been in the air six minutes – I told myself ‘Finish off!’ and began the landing. The turbine obeyed my movement of the throttle even though a fuel pump had failed, as I knew from my instruments and later during the visual checks. Because the airfield was so small for such flights I was a little worried about the landing because we did not know for certain the safe landing speed: we knew the right approach, gliding and landing speeds in theory, but not in practice, and they did not always coincide. I swept down on the heading for the runway. I was too far forward and did not have the fuel for another circuit. Now I would have to take my chances with the landing, losing altitude by side-slipping. I was flying an unfamiliar, new type of aircraft at high speed near the ground and I was not keen on side-slipping. It was certainly a little risky, but the alternative was overshooting into the River Warnow. Such an ending, soaking wet at four on a Sunday morning, appealed less. The onlookers were horror-struck at the maneuver. They were sure I was going to spread the aircraft over the airfield. But the well-built kite was very forgiving. I restored her to the correct attitude just before touching down, made a wonderful landing, and pulled up just short of the Warnow. The first jet flight in history had succeeded! …’’ Source: L. Warsitz (2008) The First Jet Pilot The Story of German Test Pilot Erich Warsitz.

An interesting fact is that pilot Erich Warsitz managed to be the first man that flew on both a rocket-powered (He 176) and a jet-powered (He 178) aircraft in history.

Heinkel’s attempt to gain the support of the Luftwaffe

During the following months, Hans Joachim tried to improve the HeS 3B jet engine, which would lead to the development of the HeS 6. This jet engine managed to achieve a thrust of 1,300 lb (590 kg), but due to the increase in weight, it did not increase the He 178’s overall flight performance.

As the He 178 was built as a private venture, Heinkel’s next step was to try obtaining state funding for further research from the RLM. For this reason, a flight presentation was held at Marienehe with many RLM high officials, like Generaloberst Ernst and General Erhard Milch. During the He 178 V1’s first attempt to take off, the pilot aborted the flight due to a problem with the fuel pumps. During his return to the starting point, a tire burst out. The pilot, Erich Warsitz, lied to the gathered RLM officials that this was the reason why he aborted the takeoff.
After a brief repair, Erich Warsitz managed to perform several high-speed circuits flights. During the presentation flight, Erich Warsitz estimated that he had reached a speed of 700 km/h (435 mph), which was incorrect, as later turned out… Interestingly, even at this stage, the He 178 was still not provided with the retractable landing gear. The RLM officials were not really impressed with the He 178’s performance, and for now, no official response came from them.

This was for a few reasons. The Luftwaffe had achieved great success during the war with Poland, which proved that the piston-powered engines were sufficient for the job. In addition, Hans Mauch, who was in charge of the RLM’s Technical Department, as opposed to the development of jet engines. He was against the development of jet engines by any ordinary aircraft manufacturer. Another problem was the He 178’s overall performance. During the test flights, the maximum speed achieved was only 595 km/h (370 mph). Hans Joachim calculated that the maximum possible speed with the HeS 6 was 700 km/h (435 mph). The speed was probably affected by the landing gear, which was still deployed and not retracted.

While the RLM did not show any interest in the He 178, Heinkel would continue experimenting with it. While the He 178 did perform many more flight tests, these were unfortunately not well documented. What is known is that, in 1941, the He 178 (with fully operational landing gear) managed to achieve a maximum speed of 700 km/h (435 mph) with the HeS 6 jet engine.

The He 178’s final fate

By this time, Heinkel was more interested in the development of the more advanced He 280. In addition, the use of the HeS 3B jet engine was completely rejected, being seen as underpowered. The interest in the development of the He 178 was lost and it was abandoned. The second prototype, which was similar in appearance, but somewhat larger in dimensions, was never fitted with an operational jet engine. It was possibly tested as a glider. There was also a third mockup prototype built that had a longer canopy.

This is a wooden mockup of the third prototype. While it is somewhat difficult to spot, the front landing gear wheels are actually made of wood and not rubber. Source: airwar.ru
Front view of He 178 V2. Strangely, more photographs of the second prototype survived the war than of the first prototype. Source: airwar.ru
Rearview from the second He 178 V2 prototype. Source: airwar.ru
This is the second V2 prototype which was to be powered by the HeS 6 jet engine but was never equipped with it. Source: Source: airwar.ru

The He 178 V1 was eventually given to the Berlin Aviation Museum to be put on display. There, it was lost in 1943 during an Allied bombing raid. The fate of the second prototype is unknown but it was probably scrapped during the war. While no He 178 prototypes survived the war, today we can see a full-size replica at the Rostock-Laage Airport in Germany.

An He 178 replica can be seen at Rostock-Laage Airport in Germany. Source: Wiki

Conclusion

Today, it is often mentioned that the He 178 was Germany’s lost chance to get an edge in jet-powered aircraft development. What many probably do not know is that the He 178 was not designed to be put into production, but to serve as a test aircraft for the new technology. We also must take into consideration that the jet engine technology was new and needed many years of research to be properly used. While Germany would, later on, operate a number of jet aircraft, they were plagued with many mechanical problems that could never be solved in time. Regardless, the He 178 was an important step in the future of aviation development, being the first aircraft solely powered by a jet engine

Heinkel He 178 (HeS 6 jet engine) Specifications

Wingspan 23 ft 7 in / 7.2 m
Length 24 ft 6 in / 7.5 m
Wing Area 98 ft² / 9.1 m²
Launch Weight 4.405 lbs / 2.000 kg
Engine One HeS 6 jet engine with 590 kg (1,300 lb) of thrust
Maximum speed 435 mph / 700 km/h
Cruising speed (when towed) 360 mph / 580 km/h
Crew
  • Pilot
Armament
  • None

Gallery

Illustration’s by Ed Jackson

He-178 V1

He 178 V2

Sources

  • C.Chant (2007), Pocket Guide Aircraft Of The WWII, Grange Books
  • D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograds
  • Jean-Denis G.G. Lepage (2009), Aircraft Of The Luftwaffe 1935-1945, McFarland & Company Inc
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book
  • T. Buttler (2019) X-Planes 11 Jet Prototypes of World War II, Osprey Publishing
  • L. Warsitz (2008) The First Jet Pilot The Story of German Test Pilot Erich Warsitz Pen and Sword Aviation

Blohm und Voss Bv 40

Nazi flag Nazi Germany (1943)
Glider-fighter – 6 prototypes

By the middle of the Second World War, the Germans were losing control of the skies over the occupied territories. Even the Allied air attacks on Germany itself were increasing. In an attempt to stop these raids, the Blohm und Voss company presented the Luftwaffe with a new project which involved using cheap gliders in the role of fighters. While a small series would be tested nothing came from this project.

The Bv 40 was designed as a cheap, armed, and armored fighter glider. This is the first prototype (PN + IA) which was lost on its second test flight. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

History

By 1943, the German Luftwaffe (air force) was stretched to limits in an attempt to stop the ever-increasing number of Allied air attacks. The Allied Bombing campaign particularly targeted German war industry. During this time, there were a number of proposals on how to effectively respond to this ever-increasing threat. Proposals like the use of a large number of relatively inexpensive fighter aircraft, that were to be launched from larger aircraft, were considered with great interest. One proposal went even further by suggesting the use of an inexpensively modified glider for this role. This idea came from Dr. Ing Richard Vogt who was the chief designer at Blohm und Voss.

In mid-August 1943, Dr. Ing Richard Vogt handed over the plans of a cheap and easy to build (without the use of strategic materials which were in short supply) glider that could be built by a non-qualified workforce to the German Ministry of Aviation (Reichsluftfahrtministerium – RLM). The pilots intended to fly this glider were to be trained in basic flying skills only. The initial name of this Gleitjäger (glider fighter) was P186 which would later be changed to Bv 40. After receiving the initial plans the RLM responded at the end of October 1943 with a request for six prototypes to be built. The number of prototypes would be increased to 12 December 1943 and again to 20 in February 1944. If the project was successful, a production order of some 200 per month was planned.

One of the few built prototype is preparing for a test flight. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Design

The Bv 40 was designed as a partly armored and armed, mixed construction, fighter glider. Its 0.7 m (2ft 3 in) wide fuselage was mostly constructed using wooden materials, while the cockpit was provided with armored protection. The front armor of the cockpit was 20 mm (0.78 in) thick, the sides were 8 mm (0.31 in), and the bottom 5 mm (0.19 in) thick. Additionally, the cockpit received a 120 mm thick armored windshield.

The wings and the tail unit were also built mostly using wooden materials. The rear tail had a span of 1.75 m (5ft 9in). For towing operation, the Bv 40 was provided with a jettisonable trolley that was discarded once the Bv 40 was in the air. Once it was back to the airbase it was to land using a skid.

What is interesting is that in order to have as small a size as possible, the cockpit was designed so that the pilot had to be in a prone position. While a pilot prone positioned design offered advantages like being a smaller target and having an excellent view at the front, it also caused some issues like a bad rearview. While this design was tested in Germany (like the Akaflieg Berlin B9 for example), it was never implemented. Inside the cockpit, there were only basic instruments that were essential for the flight. In addition, due to the high altitude that it was supposed to operate, the pilot was to be provided with an oxygen supply system and a parachute. The side windows had sliding armored screens with integral visor slots that could offer extra protection.

Close up view of the small pilot cockpit. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

The armament of this glider consisted of two 3 cm (1.18 in) MK 108 cannons. These were placed in the wing roots with one on each side. This was serious firepower which could cause a huge amount of damage to the target it hit. Due to its small size, the ammunition loadout was restricted to 35 rounds per cannon. The ammunition feed system was quite simple; it consisted of a rectangular ammunition feed hatch placed in the middle of each wing. Inside the wings, an ammunition conveyor chute was placed to guide the rounds directly to the cannons. There was also a secondary option which included the use of one cannon together with the ‘Gerät-Schlinge’ 30 kg (66 lb) towed guided bomb. This bomb was to be guided by the Bv 40 toward the enemy bombers and was then detonated at a safe distance. In practice, during testing, this proved to be almost impossible to achieve success.

The front view of the Bv 40. Note the towing cable and the release mechanism just behind it. The pilot was beside he armored cockpit also protected by a 120 mm thick armored windshield. The large box with the round capcel (marked as number 5) is the compass housing. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Other weapon systems were also proposed. For example the use of R4M rockets placed under the wings. There was also a proposal to use the Bv 40 in the anti-shipping role by arming it with four BT 700 type torpedoes or even using 250 kg (550 lbs) time-fused bombs. Due to the extreme weight increase, this was never possible to achieve.

How should it be used?

In essence, the glider was to be towed by a Me-109G to a height of around 6 km before being released. Once released, it was to engage incoming enemy bombers with its two 3 cm (1.18 in) cannons. If circumstances allowed, a second attack run was to be launched. After the attack, the pilot simply guided the glider to the nearby airbase. It was hoped that the small size and armored cockpit would be the pilot’s best defense.

Testing of the Prototypes

Once the first prototype (marked PN+UA) was completed in early 1944, the first test flight made at Hamburg-Finkenwerder was unsuccessful as it was not able to take-off from the ground. A second more successful attempt was made on the 6th (or 20th depending on the source) May 1944 at Wenzendorf. Despite being intended to have an armored cockpit, the first prototype was tested without it. It appears also that during the maiden flight it was towed by another unusual Blohm und Voss design: the asymmetrical Bv 141. But according to most sources, the Me-110 was to be used, which seems more plausible. After the first flight, some modifications to the jettisonable undercarriage were made. On the 2nd June 1944, the first prototype was lost during a crash landing.

The Bv 40 small size is evident here. Source: Pinterest

A few days later the second prototype (PN+UB) made its first test flight. During a dive, it managed to reach a speed of 600 km/h (370 mph). Its final fate is unknown but it was probably scrapped. The third prototype never took off from the ground as it was used for static structural tests. The fourth prototype (PN+DU) was lost during its first test flight but the precise date is unknown. The fifth prototype (PN+UE) made its first test flight on 6th July 1944, but its fate is also unknown. The last prototype (PN+UF) was tested with a new fin section and made its maiden flight on the 27th of July 1944.

During these test flights, the Bv 40 was able to achieve a flight speed of up to 650 km/h (404 mph). During dive testing, the following speeds at different altitudes were achieved: 850 km/h (528 mph) at 4,000 m (13,120 ft), 700 km/h (435 mph) and an astonishing 900 km/h (560 mph) at 5,000 (16,400 ft). Nevertheless, the results of the test flight appear to have been disappointing due to Bv 40’s poor overall flight performance.

The Bv 40 interior of the pilot cockpit. The Pilot was placed in a prone position. While this arrangement was tested on some German aircraft design in practice it was never implemented. Source: https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Rejection of the Project

Once the project was properly revised by the RLM officials, the obvious shortcomings of the Bv 40 became apparent. The Bv 40 was simply deemed too helpless against the Allied fighter cover. In addition, when the report of the first few prototypes was studied, it became clear even to the RLM that the Bv 40 was simply a flawed concept and so it decided to cancel it in mid-August 1944. The next month the Allies bombers destroyed the remaining 14 Bv 40 which were in various states of production.

Not wanting to let their project fail, the Dr. Ing Richard Vogt and the Blohm und Voss designers proposed to mount either two Argus As 014 pulsejets or two HWK 109-509B rocket engines under its wings. Nothing came from this as the Me-328 and Me-163 proved to be more promising (these ironically also ended in failure). There was even a proposal to modify the BV 40 to be used as a Rammjäger (ram fighter) which was never implemented.

Production

Despite initial requests for the production of 200 such gliders only a small prototype series would be built by Blohm und Voss during 1944.

  • Bv V1 – Lost during its second test flight.
  • Bv V2 – Fate unknown.
  • Bv V3 – Used for static testing.
  • Bv V4 – Lost during it’s first flight.
  • Bv V5 – Flight tested but final fate unknown.
  • Bv V6 – Tested with modified fin section.
  • Bv V7-V20 – Lost during one of many Allied bombing raids on Germany.

Operators

Germany – While testing was conducted on a small prototype series no production order was given.

The Bv 40 side view. Source: http://www.histaviation.com/Blohm_und_Voss_Bv_40.html

Conclusion

The Bv 40 on paper had a number of positive characteristics; it was easy to make, could be available in large numbers, was cheap, well-armed and it did not need skilled pilots. But in reality, the poor performance, lack of a power plant, low ammunition count, and its vulnerability to Allied escort fighters showed that this was a flawed concept. This was obvious even to RLM officials who put a stop to this project during 1944.

The Bv 40 drawings. The small rectangles in the middle of the wings are ammunition feed openings. Source: http://www.warbirdsresourcegroup.org/LRG/luftwaffe_blohm_und_voss_bv40.html

Gallery

Illustration by Ed Jackson

Blohm und Voss Bv 40

Blohm und Voss Bv 40 Specifications

Wingspan 25 ft 11 in / 7.9 m
Length 18 ft 8 in / 5.7 m
Height 5 ft 4 in / 1.63 m
Wing Area 93.64 ft² / 8.7 m²
Empty Weight 1.844 lbs / 830 kg
Launch Weight 2.097 lbs / 950 kg
Climb rate to 7 km In 12 minutes
Maximum diving speed 560 mph / 900 km/h
Cruising speed (when towed) 344 mph / 550 km/h
Maximum Service Ceiling 23,000 ft / 7,000 m
Crew
  • Pilot
Armament
  • Two 3 cm (1.18 in) MK 108 cannons
  • Or one 3 cm (1.18 in) MK 108 cannon and a glider bomb

Sources

  • J. Miranda and P. Mercado (2004) Secret Wonder Weapons of the Third Reich: German Missiles 1934-1945, Schiffer Publishing.
  • R. Ford (2000) Germany Secret Weapons in World War II, MBI Publishing Company.
  • Jean-Denis G.G. Lepage Aircraft Of The Luftwaffe 1935-1945, McFarland and Company.
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book.
  • D. Herwig and H. Rode (2002) Luftwaffe Secret Projects, Ground Attack and Special Purpose Aircraft, Midland.
  • http://www.warbirdsresourcegroup.org/LRG/luftwaffe_blohm_und_voss_bv40.html
  • https://www.flugrevue.de/klassiker/kampfgleiter-blohm-voss-bv-40/

Blohm und Voss Bv 222

Nazi flag Nazi Germany (1938)
Transport plane – 13 built with 4 uncompleted aircraft

The Blohm und Voss Bv 222 was the largest World War Two flying boat that ever reached operational service. Even though it started as a civilian project, due to wartime demand, it was quickly put into service with the Luftwaffe during the Second World War.

The Bv 222 during a flight over Germany. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The History of Blohm & Voss

The Blohm & Voss Schiffswerft und Maschinenfabrik (shipbuilding and engineering works) company was founded in 1877 by Hermann Blohm and Ernst Voss. After World War I, Blohm & Voss continued production of ships, but also reoriented to the production of aircraft (especially flying boats). In the following years, the company managed to cooperate with Lufthansa (the German Passenger Airline) and later even with the Luftwaffe.
Early on in the development and production of their first aircraft, they received the ‘Ha’ designation (standing for Hamburger Flugzeugbau, the factory’s station at Hamburg). This would be later replaced by ‘Bv’ (also sometimes marked as ‘BV’), which represented the owner’s initials. Blohm & Voss would build a number of flying boat designs like the Ha 138, Ha 139, Bv 222 and BV 238. During the war, the company was also engaged in developing a number of glide bombs like the Bv 143 and Bv 246 Hagelkorn.

The first prototype of the Bv 222, V1 (reg. D-ANTE), was briefly tested by Lufthansa before being taken over by the Luftwaffe. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The Lufthansa Request

In 1937, Lufthansa opened a tender for long-range passenger transport flying boats. The requirements for this tender included that the aircraft had to be able to travel from Berlin to New York in 20 hours. A few well known German aircraft manufacturers responded to this tender, including Heinkel, Blohm & Voss and Dornier. Whilst both Heinkel and Dornier had enough experience in designing seaplanes, Blohm & Voss was relatively new to this. One of the first Blohm & Voss seaplane designs was the Ha 139. While only a few were built, the company gained valuable experience in building such aircraft. The man responsible for designing the flying boat was Dr. Ing. Richard Vogt (chief designer at the Blohm & Voss) and his assistant R. Schubert.

All three aircraft manufacturers presented their models. Heinkel submitted the He 120 (renamed later to He 220), Dornier came up with the Do 20 and Blohm & Voss proposed the Ha 222 (later renamed to Bv 222). The Lufthansa officials, after detailed considerations, decided that the best aircraft was the Bv 222. An official contract between Lufthansa and Blohm & Voss was signed on 19th August 1937 for three aircraft to be built.
By the end of 1937, the Lufthansa officials requested improvements to the Bv 222. One of these regarded the number of passengers. It now had to accommodate at least 24 passengers on shorter trips and 16 during long voyages across the Atlantic.

Change into a Military Project

The design work on the new aircraft began in January of 1938 and lasted almost a year. This was mainly due to the huge task and the inexperience of Blohm & Voss in designing such large aircraft. Nevertheless, the construction of the first Bv 222 V1 prototype began in September 1938, followed a few weeks later by the V2 and V3 prototypes. Work on the Bv 222 was slow and it dragged on into 1939 and 1940. By this time, due to the outbreak of war, a shortage of skilled labour and the decision to concentrate on the Bv 138, the Bv 222 had low priority.

In July 1940, Blohm & Voss presented a mockup of the Bv 222 exterior and interior to Lufthansa officials. They were generally satisfied but demanded some changes. In early August, despite receiving Lufthansa approval, the Bv 222 project was actually slowly being taken over by the Luftwaffe for its own use.

By the end of August 1940, the Bv 222 V1 prototype was completed, and many taxi and loading tests were carried out. The first test flight was piloted by Captain Helmut Wasa Rodig on 7th September 1940. While the general flight performance was deemed satisfactory, there were some issues, such as instability during horizontal flights and staggering from one side to another when floating on water. While still under development and testing for civilian use, the Bv 222 V1 received the registration D-ANTE.

The Bv 222’s cockpit. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

Technical Characteristics

The Bv 222 was designed as a six-engined, high wing, flying transport plane. Unfortunately, the sources do not provide us with more precise information about its construction. This is mostly due to the small number of aircraft built.

While the sources do not mention if it was built using only metal or mixed construction, the Bv 222’s fuselage was covered with 3-5 mm thick anticorrosive metal framework. Its large size made it possible to build two floors. The upper floor was designed for the crew of the plane. The lower floor was initially designed to accommodate civilian seats, but as the Bv 222 was put into military service, this area was used to store equipment or soldiers. A large door was provided to access the lower floor.

The wings were constructed using a huge tubular main spar. These were used to provide additional room for spare fuel and oil tanks. The fuel was stored in six fuel tanks with a total capacity of 3,450 litres. Four outboard stabilising floats (two on each side) were carried on the wings. These would split into two halves and retract into the wing. The purpose of these stabilising floats was to stabilise the plane during landings on water.
The crew number varied between each aircraft. It usually consisted of two pilots, two mechanics, a radio operator and, depending on the number of guns installed, additional machine gun operators.

The Bv 222 was initially powered by six Bramo 323 Fafnir 1000 hp strong radial engines. Other engines, for example Jumo 207C, were used later during the production run.

The defensive armament varied between each plane and usually consisted of several different machine guns or cannons. The following different types of weapons are known to have been used: 7.92 mm (0.31 in) MG 81, 13 mm (0.51 in) MG 131 and 20 mm (0.78 in) MG 151.

The Bv 222 V2 prototype from the rear. Here we can also see the rear defense turret. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The Bv 222 (V4, V5, V6 and V8) were equipped with the most advanced electronic equipment that the Germans had, such as the FuG 200 surface search radar, FuG 101 A radio altimeter, FuG 25 A friend or foe identification system and the FuG 16 command guided target approach system. The radio equipment used on these four were the Lorenz VP 257 and the Lorenz VP 245 transoceanic relay sets.

First Military Transport Flight Operations

By the end of 1940, Bv 222 V1 was mostly used for testing and correcting any issues. By December of 1940, due to the winter and bad weather, further tests were not possible. As Bv 222 V1 was fully operational and enough fuel was stored, it was deemed a waste of resources to simply wait for the arrival of spring. For this reason, Luftwaffe officials proposed for the Bv 222 V1 to be used in a military transport operation between Hamburg and Kirkenes (Norway). For this operation, the Bv 222 V1 was modified by adding a large side hatch door. During this operation, Bv 222 V1 received a military camouflage paint scheme and received the registration number CC+EQ. By mid August 1941, the Bv 222 V1 achieved a total of 120 hours flight, with some 65 tonnes of cargo and 221 wounded soldiers transported. This mission was a success and the Bv 222 V1 proved to be an effective transport plane.

Bv 222 V5 somewhere in the Mediterranean. Note the left wing’s outboard stabilizing floats designed to provide better balance when floating on water. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

After a period of needed general overhaul and repair, Bv 222 V1 was set for a new transport mission, this time to support the DAK-Deutsches Afrikakorps (German Africa Corps). The main bases of operation were from Athens to Derna in Africa. The mission was carried out from 16th October to 6th November 1941. In total, seventeen flights were carried out, with 30 tonnes of supplies and 515 wounded soldiers and personnel transported. As Bv 222 V1, at this time, was not equipped with any defensive armament, two Me 110s were provided for its escort. While it was a prototype plane, no defensive armament was installed. But, after several encounters with the British Air Force in the Mediterranean, the need for defensive armament became apparent. At this stage, the Bv 222 was lucky, as it managed to emerge from these engagements in one piece. It even managed to survive the attack of three British Beaufighters on a flight from Taranto to Tripoli.

During these transport flights, the improved Bramo 323 engines (which replaced the earlier BMW 132) achieved a solid but satisfactory overall flight performance. But the Bramo 323 engines were deemed prone to malfunctions.

Future Service within the Luftwaffe

During the winter of 1941/1942, Bv 222 V1 was again returned to Blohm & Voss for more repairs but also for fitting its first defensive armament. The armament consisted of several 7.92 mm (0.31 in) and 13 mm (0.51 in ) machine guns. Note that the information about armament in this article is taken from H. J. Nowarra’s book “Blohm and Voss Bv 222”, but other authors state that different armament was used. One MG 81 was placed in the nose, four more MG 81s were placed in the fuselage and two additional DL 131 turrets with MG 131s were placed in the upper fuselage. At the same time, Bv 222 V1 received a new registration code, X4+AH. It was attached to Luft-Transport-Staffel 222 (short LTS 222) which mainly operated in the Mediterranean. The LTS 222 official squadron marking was a Viking longship and it is probably for this reason that the Bv 222 were nicknamed ‘Wikings’.

The Bv 222 V8 placed on a ramp, possibly for repairs. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

During 1942, LTS 222 was reinforced with four newly built Bv 222s of the A-series. V4 (reg. num. X4+DH) was received in mid April, V5 (reg. num. X4+EH) on 7th July, V6 (reg. num. X4+FH) on 21st August and V8 (reg. num. X4+HH) in late September. These four were provided with defensive armament consisting of two DL 151 turrets, each armed with an MG 151 in the upper fuselage, one MG 131 in the nose position and two MG 81 on the fuselage sides.

After many extensive and dangerous transport missions, Bv 222 V1 finally ran out of luck, and was lost in a tragic accident in early 1943. While on a flight to Athens, due to Allied air raids, the pilot tried to land on water. Because of the total darkness, the pilot was unable to see a half sunken wreckage, which damaged the plane so much that it sank in only a few minutes. Luckily, the crew was safely evacuated.

Bv 222 V2 made its first test flight on the 7th August 1941. It was initially used by the Erprobungsstelle Travemünde for testing and improvements. It had its bottom fuselage redesigned to provide better stability when floating in water. In addition, two reserve thrust propellers were attached to each middle engine on both sides, which improved flight performance. It was not used by LTS 222 but was instead given to the Fliegerführer Atlantik unit. As this unit name suggests, Bv 222 V2 (which later included other Bv 222s) was used to patrol the Atlantic. Its main base of operations was the city of Biscarrosse in occupied France. Bv 222 V2 would remain in use up to the war’s end, when it was captured by the Allied forces in May 1945.

The Bv 222 V3 prototype had a much shorter operational service life. It made its first test flight on the 28th November 1941. It was lost on the 30th June 1943 while on a patrol mission across the Atlantic.

Bv 222 V4 was initially used in a transport mission above the Mediterranean. On 10th December 1942, it was damaged by Allied raids. After the necessary repairs, it would be used for the remainder of the war on patrol missions across the Atlantic. In October 1943, it, together with Bv 222 V2, managed to shoot down a British Avro Lancaster bomber over the ocean. The circumstances of this event are not clear even to this day. Bv 222 V4 was sunk by its crew in May 1945 at Kiel.

Most Bv 222s were powered by six 1000 hp Bramo 323 engines. These were later replaced with Jumo 207Cs. http://www.warbirdphotographs.com/luftwaffephotos/index.html

V5 was used for transport of materiel and men above the Mediterranean, until the loss of Bv 222 V1. After that, it was recalled to Germany to be structurally strengthened and equipped with stronger defensive armament. From April 1943, it was used in Atlantic patrol missions, until it was shot down by the Allies in June the same year.

V6 was shot down by the British shortly after it was attached to LTS 222. Bv 222 V8 also had a short operational life, as it was lost in action to Allied fighters on 10th December 1942.

It is interesting to point out that, during the Bv 222’s service in the Mediterranean, the British would attack these aircraft only when they were transporting ammunition and supplies to Africa, but they would not attack them on their way back to Europe as they would be transporting wounded soldiers.

After construction of the first three prototypes, the next four aircraft were reclassified as the A-series (V4, V5, V6 and V8). Interestingly, these would also retain their prototype ‘V’ designation, which can lead to some confusion.

Future Improvements and Modifications

Even as the first series of Bv 222 were under construction, there was a proposal for a new improved civilian version named Bv 222 B, which was to be powered by Jumo 208 engines. Due to the war, this was never implemented and remained a paper project.

As the first series of Bv 222 had some issues with the engines, there were attempts to equip them with better models. For this reason, Bv 222 V7 (reg. TB+QL ) was instead powered by Jumo 207 C 680 hp diesel engines. The idea behind using diesel engines was that the Bv 222 could be refueled at sea by using U-boats. The Jumo 207C engines also proved to have some issues, but it was nevertheless decided to use the Bv 222 V7 as the basis for the C-series. Bv 222 V7 was flight tested in April 1943, and it would remain in service up to the war’s end, when it was destroyed by its crew to avoid capture by Allied forces in May 1945.

Due to the bad wartime situation for the Germans and the lack of materials, only a limited number of C-series aircraft were ever built. Of the nine that were under construction, only about five (beside V7) were ever completed. Two of the C-series aircraft were to be used for a new D-series powered by the Jumo 207 D engines. Due to problems with this engine, production was never implemented.

Bv 222 V2 that was captured by the Allies in Trondheim Fjord. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The first aircraft of the C-series (Bv 222 C-9) was allocated to Fliegerführer Atlantik on the west in late July 1943. After the Allied landings in France, the Germans lost their air bases in this area. For this reason, the long-range patrol missions were carried out from occupied Norway. C-9 was lost in early 1945 (or 1944, depending on the source), when it was shot down by a British Hawker Typhoon. C-10 was lost in a crash in February 1944. C-11 was fully equipped but was never used operationally for unknown reasons. C-12 was tested with rocket assisted engines to help during takeoff. The use of the C-13 aircraft is unfortunately unclear. While the C-14 to C-17 were under construction, they were never completed due to a lack of resources.

While the Bv 222 was primarily designed as a flying boat, there were plans to modify it to be used as a standard transport plane. This was to be achieved by adding landing gear wheels to it. The projects received the P.187 designation. Possibly due to a low priority, this project was under development up to the war’s end and was never implemented.

Flight to Japan

During the war, the Germans had plans to establish a flight line connection with Japan. Original flight plans stated that the starting point for the Germans was Kirkenes and then to Tokyo via the Sakhalin Island. The Bv 222 was in the competition for this mission, but was rejected due to the small number built and because it was not designed for this role. Other aircraft considered were the Ju 290 and the He 177. The aircraft ultimately chosen was the Ju 290, but this planned flight was never attempted and the whole project was dropped.

The side view of the Bv 222. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

Arctic Rescue Mission

During the war, the Germans managed to set up a secret meteorological station in the Arctic. In the spring of 1944, the crew of this station were sick because they had eaten raw meat. A supply mission was conducted using a Fw 200 for transporting a doctor to this base. The pilot tried to land but, during the landing, one wheel of the landing gear broke down. The base sent back a distress call for further aid. For this mission, one of the Bv 222s was chosen and was loaded with a spare wheel and spare parts. Once it was above the base, the parts were successfully dropped by a parachute. The station crew were eventually rescued once the Fw 200 was repaired.

In Allied Hands

By the end of the war, the Americans managed to capture two Bv 222 aircraft, C-11 and C-13. C-11 would be flown to America and was used for evaluation. While it would eventually be scrapped, it gave the Americans valuable information about designing and building such huge flying bots. C-13 was also flown to America, where it would later be scrapped.

One of the captured Bv 222s used by the British. Source: http://www.warbirdphotographs.com/luftwaffephotos/index.html

The British also managed to capture Bv 222 C-12 in Norway. During the flight to the UK, one of the engines stopped working, but the pilot managed to reach the UK. The British also captured the Bv 222 V2 prototype which was also relocated to the UK. These would serve the British in gaining valuable information about the aircraft’s construction.

Production

The only producer of these aircraft was Blohm & Voss at Hamburg. Due to many factors, such as long development and testing time, the substantial resources needed to build them and the pressing need for fighter aircraft, there was only a limited production run. In total, only 13 Bv 222 were ever made. These included three prototypes, four of the A-series and six C-series aircraft. While there were a few more under construction, these were never completed.

Versions

  • Bv 222 V1-V3 – Several prototypes built with different armament and engines tested
  • Bv 222 A – Four aircraft built
  • Bv 222 B – Proposed improved civilian version
  • Bv 222 C – Version powered by the Jumo 207 engine, few built
  • Bv 222 D – Proposed improved C-series to be powered by Jumo 207 D engine, none built
  • P.187 – Proposed land-based version, none built

Operators

  • Lufthansa – Although the original purchaser of this aircraft, only V1 saw limited evaluation and testing service in Lufthansa service
  • Nazi Germany – Operated a small number of these aircraft
  • USA – Captured two aircraft of the C-series which were used for testing
  • UK – Captured two aircraft.

Surviving aircraft

Unfortunately, due to wartime attrition and sabotage by their own crews, not a single BV 222 is known to have survived to this day. There are possibly several wrecks underwater, like the one in Greece, that could maybe one day be salvaged or even restored.

Conclusion

The Bv 222 was the largest operational aircraft built during the war. While it was never used in its original role, it would see extensive service with the Luftwaffe, despite being available only in small numbers. Due to its large transport capabilities, it was vital to the Germans, as they lacked transport planes throughout the war. But, due to the bad military situation in the second half of the war and the need for a large number of fighter planes, the Bv 222 would only be built in limited numbers.

Gallery

Illustrations by Ed Jackson

Blohm und Voss BV 222

Blohm und Voss Bv 222 V7 Specifications

Wingspan 151 ft / 46 m
Length 120 ft / 36.5 m
Height 35 ft 9 in / 10.9 m
Wing Area 2.745 ft² / 255 m²
Engine Six 1000 hp Jumo 270C
Fuel load 3,450 l
Empty Weight 65,430 lb / 29,680 kg
Maximum Takeoff Weight 99,210 lb / 45,000 kg
Maximum Speed 220 mph / 350 km/h
Cruising Speed 190 mph / 305 km/h
Range 3,790 mi / 6,100 km
Maximum Service Ceiling 23,950 ft / 7,300 m
Climb speed Climb to 6,000 m in 9.7 minutes
Crew
  • Two pilots
  • Two mechanics
  • One radio operator
  • Five machine gunners
Armament
  • Five MG 81
  • Six MG 131

Credits

  • Ferenc A. and P. Dancey (1998) German Aircraft Industry And Production 1933-1945. Airlife England.
  • D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograd
  • Jean-Denis G.G. Lepage (2009), Aircraft Of The Luftwaffe 1935-1945, McFarland & Company, Inc.
  • M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline Book.
  • D.Mondey (2006) Guide To Axis Aircraft Of World War II, Aerospace Publishing
  • H. J. Nowarra (1997) Blohm and Voss Bv 222, Schiffer Military History
  • C. R. G. Bain (2019) High Hulls: Flying Boats Of The 1930s And 1940s, Fonthill Media
  • http://fly.historicwings.com/quietly-awaiting-recovery/

Arado Ar 240

Nazi flag Nazi Germany (1938)
Multi-role Fighter – 12 ~ 18 Built

Rear Quarter Drawing of the 240 [Luftnachrichtenhelferin]
The Ar 240 was designed as a possible replacement of the Me 110. While initially it seemed to have great potential, problems with handling and mechanical breakdowns proved to be too much for this aircraft. As it would not be accepted for service, only a small number were actually built. While a few were used by the Luftwaffe, their operational usage was limited.

History of Arado

Werft Warnemünde, later known as Arado, was an aircraft manufacturer that was founded during the Great War, in 1917, as a subsidiary of Flugzeugbau Friedrichshafen. In 1921, this company was purchased by an engineer, Heinrich Lübbe, who was more interested in designing and building ships. In 1924, it was once again engaged in development of aircraft designs, mainly intended for foreign markets. For the position of chief designer, Walter Rethel, who previously had worked for Fokker was chosen.

Werft Warnemünde would be renamed in 1925 to Arado Handelsgesellschaft and renamed again in March 1933 to Arado Flugzeugwerke GmbH. At this time, Walter Blume was appointed as the new chief designer. During his supervision, several projects that were later used by the Luftwaffe were built, including the Ar 66 trainer and the Ar 65 and Ar 68 fighter aircraft.

At the start of the Second World War, Arado was mostly engaged in licenced aircraft production for the Luftwaffe. But work on its own aircraft designs was not discarded. The most important of these upcoming designs were the Ar 96 trainer, Ar 196 reconnaissance plane and the Ar 234, which would become the first operational jet bomber in the world. While these proved a huge contribution to the German war efforts, the Ar 240 design proved to be a failure.

Development of the Ar 240

During 1938, the German Ministry of Aviation (Reichsluftfahrtministerium, RLM) was interested in the development of a new multi-purpose twin engine aircraft that would replace the Me 110. Besides Messerschmitt, which began development of the Me-210, the Arado company would also be involved. In early April 1939 or 1938, depending on the source, the Arado company received a contract for the construction of three prototypes of the new multi-purpose plane initially called E-240. The development of this new aircraft was carried out by an Arado team of designers and engineers led by Walther Blume and by Dipl.-Ing. Wilhelm van Nes.

Interestly, possibly for reasons such as good connections with the Nazi Party or Arado’s good reputation as an aircraft manufacturer, even before the completion of the first prototype, an order for 10 additional prototypes was given by the RLM. While these would be built, a number of problems were identified which would prove to be the downfall of the aircraft.

Technical Characteristics

Front view of the Arado Ar 240 V3 prototype. [Luftwaffe Resource Center]
Close up of the extended flap system [Luftnachrichtenhelferin]
The Arado 240 was designed as a two seater, twin-engined, mid wing monoplane. The fuselage had a monocoque design and stressed-skin. The fuselage was oval-shaped, with the rear part being more round shaped. The rear tail of the Ar 240 consisted of two fins and rudders, but also had dive brakes installed.

The central parts of the wings were rectangular, while the outer part was trapezoidal in shape. The wings were constructed using a two-part spar structure. The Ar 240 used Fowler type flaps, which covered the entire trailing edge. What is interesting is that the Ar 240 flaps were integrated with the ailerons and that this configuration was previously tested on the Ar 198. Another innovation was the use of automatic leading edge slats, but this system was used only on the first few prototypes and abandoned later on. The wings also housed four fuel tanks on each side, which had a total fuel load of 2,300 liters (600 US gallons). The fuel tanks were built using a new self-sealing system that used thinner tank liners, which enabled the aircraft to have a much increased fuel load.

Ar 240 front view. This picture was taken during March 1944. [WarBirds Photos]
The Ar 240’s cockpit interior. [WarBirds Photos]
The cockpit was initially positioned directly over the place where the wing root. After the third prototype, the cockpit was moved forward. The cockpit used a back to back seat configuration, with the pilot positioned on the front seat and the radio operator, who was also acting as the rear gunner, being positioned in the rear seat. The Ar 240 cockpit was completely pressurized. The cockpit was directly connected to the fuselage, but was provided with a jettisonable canopy in case of emergency. The well designed glazed canopy provided the pilot and crewman with an excellent all-around view.

The Ar 240 used a conventional retractable landing gear which consisted of two front wheels and one smaller tail wheel. The two front wheels retracted outward into the engine nacelles, while the third wheel retracted into the rear tail fuselage section.

The Ar 240 was tested with a number of different engine types, as the designer had problems in finding an adequate one. The prototype series was powered by Daimler Benz DB 601A and DB 603 A. The later built A series would also be tested with a number of different engines, including the DB 601 A-1 and DB 603, BMW 801 TJ etc..

Different armaments were proposed for the AR 240, including a pair of remotely controlled defence turrets. The control of these turrets was hydraulic and they were equipped with periscope aiming sights. The bomb load would consist of around 1 to 1.8 tons, placed under the fuselage.

Development and Usage of the Ar 240 Prototype Series

Another view of the V3 prototype. [WarBirds Photos]
Note: Due to differing information depending on the author, the following information was mostly taken from G. Lang. (1996), Arado Ar 240, A Schiffer Military History Book.

The first operational Ar 240 V1 prototype (markings DD+QL), powered by two 1,157 hp DB 601 engines, was completed in early 1940 and was flight tested on the 10th of May the same year. The next flight tests were made on 25th June and 17th July 1940. In May 1941, the engines were replaced with two DB 603 E. More tests were carried out until October 1941, when the prototype was removed from service for unknown reasons. According to M. Griehl, it was destroyed on the 18th April 1941. The test results of the Ar 240 V1 showed that this aircraft had huge problems with the controls and was difficult to fly, a trend which will be inherited on all Ar 240 planes.

The second prototype, V2, is somewhat shrouded in mystery, as the date of its first operational test flight is unknown. A possible date for the first test flight is 15th September 1940. While it is not clear, the V2 prototype probably received the DD+CE markings. Arado test pilots made several flight trials during September 1940. By the end of February 1941, the Ar 240 V2 prototype was relocated to Rechlin for future tests. By May 1941, the V2 prototype received new DB 603 engines. At the same time, it was also fitted with two 7.92 mm (0.311 in) MG 17 and two 20 mm (0.78 in) MG 151/20 cannons. In November 1941, this plane was modified to be used in dive bombing trials. An additional change was the installation of two DB 601 E engines. The final fate of the V2 prototype is not known precisely, but it was probably scrapped.

The Ar 240 V3 (KK+CD) prototype was first flight tested on 9th May 1941. In comparison to the earlier two prototypes, this model had the cockpit moved forward. The rear tail-positioned dive brakes were replaced with a cone and ventral fins. Numerous engines were tested on this aircraft, including two Jumo 203 and DB 601 E. In early 1942, a number of pressure cabin tests were conducted on the V3 prototype. This aircraft also served as a test bed for the new FA-9 remote controlled system developed in cooperation between Arado and the DVL (aviation research institute), but proved to be problematic. V3 would be used operationally as a reconnaissance aircraft over England. It was piloted by Oberst Siegfried Knemeyer, and while his plane was unarmed, thanks to its high speed, he managed to avoid any confrontation with British planes. The fate of this aircraft is not known, as (depending on the sources) it could have been lost in either April 1944 or May 1942.

Row of three Ar 240 prototypes. [Luftwaffe Resource Center]
The V4 prototype was to be tested as a dive-bomber variant. The first test flight was made on 19th June 1941. It was powered by two 1,750 hp DB 603 A engines. It was modified with added dive brakes and was capable of carrying up to eight 50 kg (110 lb) bombs under the fuselage. Its fuselage was also elongated to 13.05 m (42 ft 9 ¾ inches). Many detailed tests with the V4 were carried out in France and in the Mediterranean. The V4 prototype was lost in August 1941 in an air accident.

The V5 (GL+QA or T5+MH) prototype made its maiden flight test in September 1941. What is interesting is that it was not built by Arado but by AGO Flugzeugwerken from Oschersleben. It was powered by two 1,175 hp DB 601 E engines and was provided with a tail cone. It was armed with two wing root MG 17 machine guns and two same caliber MG 81 machine guns placed into two (one above and under the fuselage) FA-13 type remotely controlled turrets. In late March 1942, this aircraft was given to the Aufklärungsgruppe Oberbefehlshaber der Luftwaffe (reconnaissance unit/group belonging to the Commander in Chief of the Luftwaffe). It was then, possibly in late 1942, allocated to Versuchsstelle für Höhenflüge VfH (research station for high-altitude flight).

Ar 240 with tow ropes attached in the Soviet Union during the winter of 1942/1943 [Luftnachrichtenhelferin]
Ar 240 A-01 used around Kharkov in late 1942. [Luftnachrichtenhelferin]
The V6 (GL+QA or T5+KH) prototype was also built by AGO, and while most parts were ready during November 1941, the aircraft was only completed in early 1942. It was flight tested in January 1942, but if this was its first test flight is not clear. It was given to the Luftwaffe in early March 1942 and moved to Oranienburg for future tests. It was similar in appearance and equipment with the previous V5 aircraft. While it was used mostly for testing, it saw front line service during the winter of 1942/43 around the Kharkov area. The plane is listed as destroyed but under which circumstances is not known.

The V7 (DM+ZU) prototype made its first test flight in October or December 1942. It was designed to be used as the basis for the Ar 240 B high-altitude reconnaissance aircraft. It was to be provided with a pressurized cockpit and a heating system. V7 was powered by two 1,475 hp DB 605 A engines, which were specially designed to use a methanol-water injection in order to increase the engine overall performance and output. Armament consisted of two wing mounted MG 17s and a rear mounted remotely-controlled turret armed with the MG 151/20, and two 50 kg (110 lb) bombs. Operational range was 1,900 km (1,180 mi) and it a was capable of climbing to 6 km (19,685 ft) in 10 minutes and 6 seconds.

The V8 prototype was a direct copy of the V7 and possibly made its first test flight in December 1942 or March 1943 depending on the sources. The final fate of this and the previous aircraft is not known.

The V9 (BO+RC) prototype was designed as a Zerstörer (heavy fighter) aircraft. It was to be used as a test base for the planned Ar 240 C version. The V9 had redesigned longer wings and fuselage. It was powered by two DB 603 A engines which were also equipped with a methanol-water injection system. The main armament consisted of four forward and two rear MG 151/20. While this version had a great priority and was even considered for acceptance for production. This was never achieved, mostly due to a lack of necessary equipment and parts. The final fate of this aircraft is not clear, as it was possibly never even fully completed, but some sources also mention that it was lost in a landing accident.

The V10 prototype was designed as a night fighter aircraft, powered by two Jumo 213 engines. The first test flight was made in September of 1943, while more tests would be carried out up to late 1944. Arado reused this aircraft for the new improved version called Ar 440.

The V11 prototype was tested as a heavy fighter-bomber and was to be used as the base of the Ar 240 F aircraft. Due to many delays, it was actually never fully completed. It had the heaviest armament, which included a mix of MG 151 and 30 mm (1.18 inch) MK 103 cannons forward mounted, rear mounted MG 151 and 13 mm (0.5 inch) MG 131 and a bomb load of 1,800 kg (3,970 lbs). V12 was a direct copy of V11 and, as these two aircraft were never completed, both were scrapped. V13 was to be used as a test base of the Ar 240 D equipped with two 2,020 hp DB 614 engines, but none were built.

V14 was probably never fully constructed. It was to be used as a base for the Ar 240 E project and powered by two DB 627 engines. V15 was to be used in a reconnaissance role and equipped with the FuG 202 Lichtenstein radar. The V15 prototype was probably never built.

An Ar 240 during its short operational life in the Soviet Union during the winter of 1942/1943. [WarBirds Photos]
There are two more Ar 240 aircraft only known by their serial numbers (240009 and 2400010). While the usage and fate of the first aircraft is generally unknown, the second was used by the Luftwaffe operationally in the Soviet Union during 1943. It was damaged during a landing in August the same year. Its final fate is unknown.

Development of the ‘A’ Version

An Ar 240 during a flight test. [WarBirds Photos]
After a series of prototypes were built, work on the first Ar 240 A version was also undertaken by Arado. Initially, the Ar 240 A aircraft were to be powered by two 1.750 hp DB 603 A-1 engines equipped with four blade metal propellers. Armament chosen for this version consisted of two MG 151/20 (with 300 rounds of ammunition for each gun) placed in the fuselage floor and two more MG 151/20 (with same ammunition load) placed in the wings roots. There was an option for increasing the fire power by adding two more MG 151/20. For rear defence, two defense turrets equipped with MG 131 machine guns could be placed under and above the fuselage. The bomb load could have different configurations, like: One 1,000 kg (2,220 lbs) or 1,800 kg (3,930 lbs) bomb, two 500 kg (1,100 lbs) bombs, eight 50 kg (110 lbs) bombs or even 288 smaller 2.5 kg (5 lbs) incendiary and fragmentation bombs. As the Ar 240 was never accepted for service, only few of the A version aircraft were ever built.

Ar 240 A-01 (GL+QA possible marking) made its first test flight on 28th June 1942. The test flights were carried out until September 1942, when this aircraft was to be given to the Luftwaffe. After a series of further flight and weapon tests conducted at Rechlin and Tarnewitz, the Ar 240 A-01 was to be allocated to the front. It was used around Kharkov in late 1942. On 16th February 1943, Ar 240 A-01 was lost during a flight due to mechanical failure. Both crew members lost their lives during the fall.

The second Ar 240, A-02 (GL+QB), was completed by September 1942. On 13th September, the first test flight was made. The aircraft was damaged in a landing accident in late January 1943. The final fate of this aircraft is not known.

Many Ar 240 were lost in crash landings.[Luftnachrichtenhelferin]
Ar 240 A-03 (DI+CY) was initially powered by two DB 601 engines, but these were replaced with BMW 801 TJ. This aircraft had a change in the cockpit configuration, with the radio operator/observer facing forward. This aircraft was stationed at Rechlin, where it was tested from May to June 1943. During testing, Ar 240 A-03 showed to have better stability and handling during flight in contrast to previous built aircrafts. From June to late July, it was tested at Brandenburg. After these tests were completed, the aircraft was allocated for operational front use. It was given to the Aufklärungsgruppe 122, a reconnaissance unit stationed in Italy at that time. This aircraft had the same fate as most previous Ar 240, as it was heavily damaged in a crash. As the damage was extensive, it was never repaired.

Ar 240 A-04 (DI+CG) was initially equipped with two DB 601 E engines, but these would be later replaced with DB 603. It made its first flight test in late September 1942. Ar 240 A-04 was allocated to the Aufklärungsgruppe 122 as a replacement for the previous aircraft. Ironically, it suffered the same fate, but it was repaired and sent back to Arado.

Ar 240 A-05 was powered by two 1880 hp BMW 801 TJ engines equipped with a Rateau type turbo supercharger. It was possibly allocated to Aufklärungsgruppe 10 stationed in the Soviet Union.

Proposed Versions

During the Ar 240’s development, the Arado officials proposed several different variants of this aircraft, but as the whole project was not going well beside a few experimental attempts, nothing came from most of them.

Ar 240 B

This was a high-altitude reconnaissance aircraft version that was to be equipped with a pressurized cockpit and a heating system. Nothing came from this project.

Ar 240 C

On 10th March 1942, Arado officials proposed that the Ar 240 should be modified for the bomber role. For this reason, the wings were modified and its size increased. The tail design was also changed, with added tail dive brakes. As the attempt to increase the size of the internal fuel tanks proved a failure, external tanks were to be used instead. The armament consisted of two MG 151/20 and two rear mounted MG 81. It is not clear, but it is possible that at least one aircraft was built.

Ar 240 D

A proposed paper project version powered by two DB 614 engines.

Ar 240 E

A proposed version with reinforced fuselage, added bomb rack for two 500 kg (1,100 lbs) bombs and increased fuel load. Different engines were also proposed for this version, including DB 603 G, DB 627 or BMW 801 J.

Ar 240 F

A proposed heavy fighter/bomber version to be powered by two DB 603 G engines.

Ar 240 mit 7.5 cm Bordwaffen

During the war, Arado and Rheinmetall discussed the installation of a 7.5 cm gun in the Ar 240. In September 1944, it appears that one plane was actually equipped with this weapon, but was probably never operationally flight tested.

Ar 240 TL

In 1942, Dr. Ing. Walther Blume proposed a heavy fighter and night-fighter version of the Ar 240. This version was designated as Ar 240 TL, which stands for Turbinen-Luftstrahltriebwerk (turbojet). This plane was to be powered by two jet engines placed in the fuselage. It remained only a paper project.

Ar 440

With the cancellation of the Ar 240 project, Arado tried to improve the Ar 240’s overall performance by building a new version, named Ar 440. The Ar 240 V10 prototype served as a base for this modification. Beside this prototype, three more were built using already existing Ar 240 components. After some time in testing, the Ar 440 was officially rejected in October 1943 by the RLM.

Overall Performance and Cancellation of the Ar 240 Project

The Ar 240 possessed several advanced characteristics like a pressurized cockpit, remote-controlled defensive turrets, traveling flaps which provided this aircraft with good low-speed overall lift performance and fuel tanks with a new self-sealing system that used thinner tank liners. But, almost from the start of first flight testing, things turned from bad to worse for this aircraft. Almost from the start, the Ar 240 was plagued with extremely bad handling on all three axes. There were also huge problems with the controls during landing, with most aircraft being lost due to this. As the aircraft proved to be dangerous to fly, it was never adopted and the initial orders for production of 40 aircraft were never materialized.

Allied Examination After the War

Strangely, despite being a rare aircraft, the Allies managed to capture at least one Ar 240 during their advance in the West in 1944/45. This aircraft was tested by Allied pilot Captain Eric Brown. He was Chief test pilot of the Royal Aircraft Establishment at Farnborough. He was involved in a British project of taking over of German war research installations and interrogating technical personnel after the war. After the war, he managed to find the single surviving Ar 240 and, after a flight on it, made a report on its performance. The source for this account is Wings Of The Luftwaffe Flying The Captured German Aircraft of World War II by Eric Brown. This aircraft would be given by the Allies to the French and its fate is unknown.

In his report, he stated. “When the Ar 240 was wheeled out of the hangar, I was struck by its angular appearance. The wings, fuselage, and tail unit all seemed to be straight-edged, with very few curves to be seen. The engines looked very large, the airscrew spinners being level with the nose of the cockpit and well ahead of the wing leading edge, while the nacelles protruded well aft of the trailing edge. I had the feeling that, if this aeroplane was as fast as it was reputed to be, then brute engine force must be the answer … The cockpit layout was neat and the instruments were quite logically arranged, while the view was good all around except downwards on either side, where the engines interfered. Take-off was quite long, even with using 20 degrees of flap, and the initial climb rate was just over 600 m/min (2,000 ft/min). Longitudinal stability was poor, lateral stability neutral, and directional stability positive. The rate of climb fell off very little as I climbed to 6,096 m (20,000 ft), where I levelled out and settled into the cruise at what I calculated was a true airspeed of 580 km/h (360 mph). In the cruise, the aeroplane could not be flown hands-off because it diverged quickly both longitudinally and laterally, and would be tiring to fly for a long time. An autopilot was fitted, although not serviceable in my case, but I believe it would have been essential for instrument flying in bad weather. On opening up to full power, I estimated that after three minutes I was hitting an impressive true airspeed of 628 km/h (390 mph), but it was obvious that the Ar 240 was a poor weapons platform. The harmony of control was terrible, with heavy ailerons, light elevators. and moderately light rudders. ….

My assessment of the Arado Ar 240 is that it was an aircraft of outstanding performance for its class and era, but it could not capitalise on this because of inferior, and indeed dangerous, handling characteristics. According to German information, it had a service ceiling of 10,500 m (34,450 ft) and a maximum range of 1,186 miles, so it had great potential as a reconnaissance intruder, and indeed it is claimed that it made such sorties over Great Britain in 1941 and 1944. Be that as it may, there can be little doubt that the Ar 240 was a failure ..”

Production Numbers

While the Ar 240 production was initially to begin in 1941, due to many problems and delays, this was not possible. While there were attempts to start production, by the end of 1942, the RLM officially terminated the program.

How many aircraft were built depends on the source. According to author G. Lang, the problem with identification of the production numbers is complicated by the fact that some prototype aircraft were allegedly modified and used for the few A-series aircraft built. Another issue, according to Lang, is that the highest known serial number production was 240018 (starting from 240000), which suggests that at least 18 were built, but it is not completely clear. Authors Ferenc A. and P. Dancey mention that at least 15 were built by 1944. Eric Brown claims that 12 prototypes were built.

Main Production and Prototypes

  • Ar 240 V1-V14 – Prototypes series used to test different equipment, armament and engines.
  • Ar 240 A – Was to be main production version, but only few aircraft were actually built
  • Ar 240 B – High-altitude reconnaissance version, possibly few built.
  • Ar 240 C – A bomber version, unknown if any were built.
  • Ar 240 D – Proposed version powered by two DB 614 engines.
  • Ar 240 E – Proposed modified Ar 240 version.
  • Ar 240 F – Proposed heavy fighter/bomber version to be powered by two DB 603 G engines.
  • Ar 440 – An improved version of the Ar 240. Only a few were built. The project was cancelled in 1943.
  • Ar 240 mit 7.5 cm Bordwaffen – A proposed version armed with a 7.5 cm gun, possibly one built, but its fate is unknown.
  • Ar 240TL – A jet-powered paper project.

Operators

  • Germany – Operated small numbers of these aircraft, mostly for testing and reconnaissance operations.
  • France – Captured one, but the fate is not known.

Conclusion

While the Ar 240 was, on paper, an excellent design with many innovations and advanced technology, in reality it did not live up to expectations. The plane proved to be dangerous during flight and many were damaged during landing, with fatal outcomes. Because the Ar 240 proved to be difficult to control, the RLM simply decided to stop the project, as it was probably unwilling to waste more time and resources on it.

Arado Ar 240 A-0 Specifications

Wingspan 14.3 m (47 ft)
Length 12.8 m (42 ft)
Height 3.95 m (13 ft)
Wing Area 31 m² (333 ft²)
Engine Two liquid cooled twelve-cylinder 1,750 hp DB 603 A-1
Empty Weight 6,350 kg (14.000 lbs)
Maximum Takeoff Weight 10,500 kg (23,150 lbs)
Fuel Capacity 2,300 liters (607.6 US gallons)
Maximum Speed at 6 km 670 km/h (415 mph)
Cruising Speed 600 km/h (370 mph)
Range 2,200 km (1,370 mi)
Maximum Service Ceiling 11,500 m (37,730 ft)
Climb speed Climb to 6,000 m in 9.7 minutes
Crew Two pilot and the rear radio operator/gunner
Armament
  • Four 2 0mm (0.78 inch) MG 151/20
  • Two 13 mm (0.5 inch) MG 131
  • One 1,000 kg (2,220 lbs) or one 1,800 kg (3,930 lbs) bomb
  • Or two 500 kg (1,000 lbs) bombs,
  • Or eight 50 kg (110 lbs) bombs,
  • Or 288 2.5 kg (5 lbs) incendiary and fragmentation bombs

Gallery

Illustrations by Ed Jackson

Arado Ar 240A-2
Arado Ar 240C-2

Credits

Reggiane Re.2000 Falco

Kingdom of Italy flag Kingdom of Italy (1937)
Fighter Aircraft – 158 ~ 170 Built

The Falco being prepared for a shipboard catapult test launch [Colorized by Michael Jucan]
The Re.2000 was one of many Italian pre-war fighter aircraft developments. Despite having overall decent flying performance, it was never adopted for Italian service. It did see export success, to Sweden and Hungary.

History

The prototype, MM 408, in its natural metal finish. [Rod’s Warbirds]
Officine Meccaniche Reggiane SA (Reggio Emilia in Northern Italy) was a WWI-era aircraft manufacturer. However, after the war, the Reggiane was not involved in any aircraft production or design work. Things started moving only during the thirties, when Reggiane became a subsidiary of the much larger Società de Agostini e Caproni and Società Caproni e Comitti aircraft manufacturer, which was led by well-known Engineer Gianni Caproni. Thanks to him, Reggiane was provided by Caproni with a larger and well qualified aircraft design department. Reggiane and Caproni were involved in several experimental pre-war designs, like the Ca.405 Procellaria and P.32bis, in addition to the licence production of the S.M.79 bomber.

In 1938, the development of the Re.2000 began at the request of the Italian Aviation Ministry (Ministero dell Aeronautica) under the codename “Programme R”, which aimed to upgrade the Italian Air Force (Regia Aeronautica) with new and modern designs. Special care was given to the development of new single wing fighter designs. At that time, several different fighter designs were in various states of development (like the Fiat G.50, Caproni-Vizzola F.5, Macchi C.200 etc.). The Reggiane officials wanted to participate in this, and ordered the design team to begin developing a fighter plane.

The similarities in external design between the Italian and American aircraft are easy to see. [UH.edu]
A team was formed, led by the Technical Director Antonio Alessio and Engineer Roberto Longhi, who immediately began work on the new design. Due to a lack of time to properly design the new fighter, a solution was proposed to simply buy a licence from the Americans, but this was rejected by chief Ing. Caproni. The new design was, surprisingly, soon finished. This was achieved by utilizing some elements of design of an American Seversky P-35 aircraft. The main reason why the Re.2000 was influenced by the American design was Roberto Longhi. He had spent some time working in the aviation industry in America before returning to Italy in 1936. While the two planes look very similar, there were some differences, like the cockpit, landing gear etc.

Technical Characteristics

Re.2000 rear view. [Rod’s Warbirds]
The Re.2000 was designed as a low wing, mixed construction (mostly metal), single seat fighter plane. The fuselage consisted of a round frame covered with metal sheet held in place by using flush-riveting. The Re.2000 wings had a semi-elliptical design, with five spars covered with stressed skin. The central part of the wing held two integral fuel tanks. The front position had a capacity of 455 l (120 US gallons), while the smaller rear one could hold around 240 l (63 US gallons). The wings were equipped with fabric covered Frise type ailerons. The rear tail had a metal construction with the controls covered with fabric.

The landing gear system was unusual. When it retracted, it rotated 90° (a copy from the Curtiss model) before it entered the wheel bays. For better landing handling, the landing gear was provided with hydraulic shock absorbers and pneumatic brakes. The smaller rear wheel was also retractable and could be steered if needed.

Two Italian Re.2000, possibly stationed in Sicily. [Rod’s Warbirds]
The Re.2000 engine was the Piaggio P.XI R.C.40 14-cylinder air cooled radial engine, a licensed derivative of the French Gnome-Rhône Mistral Major 14K, providing 985 hp (840 hp depending on the source), equipped with a three blade variable pitch propeller made by Piaggio.

The cockpit canopy opened to the rear and the pilot had a good overall view of the surroundings. For pilot protection, a rear 8 mm (0.3 in) thick armor plate was placed behind the seat. The pilot was provided with an oxygen tank and a type B.30 radio. The Re.2000 had an option for installing wing gun-cameras, but this was rarely done.

Re.2000 (MM 5068) first series side view. This aircraft was one of the few used by the Italian Air Force. [Rod’s Warbirds]
The Re.2000 possessed weak offensive capabilities, as it was armed with only two Breda-Safat 12.7 mm (0.5 in) heavy machine guns. The machine guns were placed above the front fuselage and fired through the propeller arc. For each machine gun, 300 ammunition rounds were provided. The machine guns could, depending on the combat situation (lack of ammunition, for example), be fired together or individually. There were plans to add two more machine guns (unknown caliber) to the wings but nothing came of this.

The Re.2000 also had two small bomb bays placed in each central wing section. Each bomb bay had a payload of twenty two 2 kg (4.4 lb) anti-personnel or incendiary bombs. The bombs were electrically released individually or in larger groups.

Tense Start

The Re.2000 dashboard. [Rod’s Warbirds]
The first operational Re.2000 prototype (serial number MM.408) was completed in early 1939. It made its first test flight on 24th March (or May, depending on the source) that year, piloted by Caproni test pilot Mario De Bernardi. During this flight, the Re.2000 was shown to have good flying speed and manoeuvrability. There were some modifications requested, like changes in the design of the exhaust and carburettor air intakes. The cockpit design was also requested to be changed from a round windshield to a framed model. These flight tests were followed by armament tests, which also were without any major problems. During this time, the Re.2000 was tested in mock dog-fights against the Italian Macchi C.200 and even a German Me-109E. In these mock fights, the Re.2000 proved to have better handling and maneuverability than its counterparts.

In August 1939, the prototype was moved to the Air Force Guidonia test site near Rome for further testing. The Re.2000 was flight tested by two pilots, Colonels Aldo Quarantotti and Angelo Tondi, who both gave positive remarks on its performance. Maximum speed achieved during these test flights was 515 km/h (320 mph).

Re.2000 side view [Rod’s Warbirds]
Further tests done by the Aeronautical Construction of the Air Ministry, on the other hand, stressed the important structural problems that this plane had. The main issue was the position of the fuel tanks in the wings, which was dangerous for a fighter plane. There was another huge issue with fuel tank leaks due to loosening of the rivets. The low quality of the welding and a number of internal structural defects were also noted. Despite still being in a prototype stage, meaning that these defects could possibly have been addressed, the Re.2000 program was abandoned.

Despite the proposal of the Re.2000 main designers Alessio and Longhi to redesign the fuel tanks and improve the structure of their prototype, the decision for the cancellation of the project was not changed. The small serial production of 12 planes was rejected and the preparation of the tooling equipment for the production of the originally planned 188 aircraft was abandoned.

Strangely, for some unknown reason ,the Aviation Ministry gave permission for the construction of a second prototype (MM.454). Later, this prototype would serve as a base of the Re.2002 aircraft design.

Success Abroad

While the Re.2000 proved to have good flying performance, it was difficult to maintain properly due to the harsh weather conditions in Swedish service. [Rod’s Warbirds]
Despite not being adopted for service, the Aviation Ministry did actually include the Re.2000 for the export market, where it did see some success. Even though the Reggiane lost the order for the Re.2000 serial production, their management decided to go on with production as a private venture. The idea was that, if its own Air Force did not want to adopt it, maybe another country would. Many Nations in Europe would show interest in this design, which included Hungary, Yugoslavia, Spain, Switzerland, UK, Finland and Sweden. In the end, due to the war’s outbreak, only Hungary and Sweden would receive the Re.2000.

Negotiations with the UK

In late 1939, the UK sent a delegation led by Lord Hardwick and Wing Commander H. Thornton to Caproni. The British were interested in buying a number of aircraft designs (Ca.313 and Ca.311), including 300 Re.2000. The order was confirmed in January 1940. What is interesting is that, initially, the Germans did not try to prevent these negotiations. Later, in March, the Germans tried to enforce an embargo on the Italian sale of weapons to the UK. Caproni and Lord Wardwick tried to bypass this embargo by making a deal through a Caproni Portugese subsidiary. But, as Italy attacked the French in June 1940, the negotiations between Italy and the UK were stopped.

In Swedish Service, the “J 20”

The Re.2000 was known in Sweedish service as the J-20 model. [WW2 in Color]
Sweden negotiated with Reggiane to buy a group of 60 Re.2000 aircraft. After some initial negotiations, the deal was made on the 28th November 1940. The price of these 60 aircraft was 18.7 million Swedish Krona, but was instead paid in much needed chrome-nickel metal (of the same value) instead. The 60 Re.2000 were broken into parts and sent by train through Germany and then again re-assembled at Malmen. In Swedish service, the Re.2000 was known as the J 20. While it proved to have good flying performance, due to the harsh weather conditions, it was difficult to maintain properly. During the war, the J 20 were mostly used to patrol the Swedish skies and occasionally intercept German or Allied aircraft. Only one was lost, when it was shot down by a German Do 24 in April 1945. Due to a lack of spare parts, all were removed from service in 1946. One surviving J 20 can be seen in the Swedish Air Force Museum in Linköping.

In Hungarian service, the “Héja”

A Hungarian Heja II is preparing to take a test flight on an airfield near Budapest.

For some time, Hungary acquired aircraft and aviation equipment from Italy (like the CR.32 and CR.42, for example). By the end of 1939, Hungary asked for 70 new Re.2000 in addition to the licence rights for domestic production. Once the deal was completed, the production of the Re.2000 was given to well known manufacturer MAVAG, but the start of the production process was slow. On the other hand, the 70 Italian-produced Re.2000 arrived by the end of 1941. The first Hungarian-produced Héja (Hawk, as the Re.2000 was known in Hungary) was only built and tested in 1942. By the time production stopped, in 1944 around 185-203 aircraft of this type were built.

Re.2000 in Hungarian service. The Italians supplied the Hungarians with 70 aircraft and a production license. [Rod’s Warbirds]
During their Hungarian service, the Héja’s engine was deemed insufficient, and so a new, 14-cylinder WMK-14B 1085 hp engine was used. The heavy machine guns were also replaced with Hungarian Gebauer ones of the same caliber.

The Héja were used on the Easter front with some success, managing to achieve a number of air victories. As a shipment of more advanced Me-109G arrived in Hungary from Germany in late 1943, the Héja was mostly relegated to training. But, due to the rapid Soviet advance in 1944, many were put back into frontline service in the vain hope of stopping the enemy.

Negotiation with Yugoslavia

In early 1940, the Kingdom of Yugoslavia sent an Air Force delegation led by Colonel Pavlović to negotiate an order for 50 Re.2000 aircraft. After a brief demonstration, the delegation was impressed with its performance. In March, a new delegation led by Colonel Rubčića, with two test pilots, was sent to personally test the Re.2000’s performance. In July, Yugoslavia requested a delivery of six Re.2000 aircraft without armament. Due to the outbreak of the war, none were ever delivered to Yugoslavia.

A New Chance in Italian service

The Re.2000 would see some limited service in the Italian Air Force and Navy. Due to an urgent need for modern aircraft, the Italians simply reused 28 aircraft (the numbers are different depending on the source used) which were originally intended for Hungary (20) and Sweden (8). An additional 28 aircraft were built to replace the ones requisitioned, and supplied to the respective buyers.

Shipboard Version

Re.2000 preparing to be launched from a ship catapult. Despite the testing being successful, none were ever used operationally in this role due to rapid war developments in favor of the Allies. [Rod’s Warbirds]
When Italy declared War on the Western Allies, their navy had only a small number of 44 Ro.43 and few Ro.44 floatplanes available. Thus, the Italian Navy finally showed interest in the Re.2000 as a replacement for the older models. For this reason, a Re.2000 was to be modified with catapult mounting points, so that it could be launched by ship catapults. These were piloted not by navy pilots, but instead by the Air Force. Two Re.2000 that were modified for this purpose and were lost in accidents. The first (MM.471), piloted by Cap. Giovanni Fabbri, was lost during the flight to Taranto and the second (MM.485) was damaged during transport.

The first catapult tests were carried out in late 1941 near Perugia, by Giulio Reiner. More intensive tests were carried out in early 1942 on the Italian battleships Roma and Vittorio Veneto. These tests were considered a great success and an order was placed for 10 Re.2000 to be modified for this role.

These Re.2000 saw some modifications, like the removal of the covering behind the sliding canopy in hope of improving rear visibility, a modified windshield was added, new radio and modifications to the fuselage so that it could be launched from ship catapults.

When the testing was completed, the Re.2000 were given to the 1° Squadriglia FF.NN (Forze Navali – Naval force). Two each were given to the battleships Roma, Vittorio Veneto and Littorio. Due to the rapid development of the War in the Medeterain, the Italian navy was no longer able to effectively battle the Allied navy. These Re.2000 were never used operationally on any Italian ships in its intended role. By the time of the Italian surrender (September 1943), these battleships tried to escape to the Allied side but were attacked by the German bombers, and only one Re.2000 (from the Vittorio Veneto) survived the engagement.

Depending on the source, this version was powered by a stronger 1025 hp P.XIbis engine. The Re.2000 design for the shipboard is marked as Series II. In addition, some authors (like Maurizio D.T.) name this version as Re.2000Bis.

The Re.2000 G.A. Long Range Version

The flow of supplies to the Italian colony of Ethiopia with much needed modern weapons and equipment was constantly harassed by the British navy and aviation. One of the problems for the Italians was the lack of proper fighter cover. They attempted to send S.M.82 transport planes carrying parts for CR.42 biplanes. While these attempts did see some success, a proper solution was needed. The best Italian fighter at that time was the Macchi C.200, but it lacked the needed operational range to reach this front. Someone in the Italian Air Force proposed to modify some already produced models with increased fuel load. The Italian Navy (Regia Marina) also showed interest in this project, as they were desperate to replace the aging Ro.43 and Ro.44 aircraft (carried by larger shipps for various missions). For this proposal, the Re.2000 was chosen, despite not being adopted for service.

The prototype of the Re.2000 design for longer operational range was named “G.A” (Grande Autonomia, long range). The Re.2000 G.A had an increased fuel load to 1490 l, which increased the operational range from 840 km (520 miles) to 1.300 km (807 miles). This aircraft was tested by the famous Italian Ace Col. Adriano Mantelli. The flight proved to be successful and without any problems. Despite these results, the loss of Ethiopia to the Allies in May 1941 stopped the long range fighter project.

Re.2000 of the 74° Squadriglia. [Rod’s Warbirds]
The modified Re.2000 aircraft were allocated to the 23° Gruppo Autonomo (independent group) in the spring of 1941. The 23° Gruppo Autonomo consisted of the 70° ,74° and 75° Squadriglia. This unit was stationed at Sicily under the leadership of Major Tito Falconi. As this unit had only a small number of Re.2000, it was reinforced with older CR.42.

To better test the Re.2000 G.A. version’s performance, a special experimental section (Sezione Sperimentale), a part of the 23° Gruppo Autonomo, was formed. This Section was led by Capt. Pietro Calistri. For some time, this unit had a nonoperational status, as the Re.2000 had engine problems and could not be used. As the engine problems were solved, the Re.2000 were mainly used for patrolling the Italian coast, but in a few cases even for bombing British military installations on Malta. The Re.2000 were moved to support the 377° Squadriglia in July (or August depending on the source). At that time, the 377° Squadriglia had around 13 (or up to 17) Re.2000. This unit was stationed at the Trapani Milo airfield in Sicily. From that point, this unit was mostly used for patrol and escort missions in the Mediterranean sea.

The 23° Gruppo Autonomo was, for a very short time, even used in North Africa, but without any Re.2000. In early 1942, the unit was engaged in naval escort and reconnaissance operations, but no enemy fighters were encountered. From March 1942, this unit, under the command of Capt. Marcolini, operated from Palermo in Sicily. Its objective was to protect Palermo from any possible enemy bombing attacks and to scout for enemy ships and aircraft. During one such mission, one British Blenheim bomber was shot down, which may be the only Re.2000 air victory in Italian service.

The 377° Squadriglia was engaged in supporting the Italian attacks on British convoy ships near Malta in June 1942. During this action, no victory was achieved and no losses were recorded. After more than 320 operational missions, the Re.2000 were replaced with Macchi C.200 aircraft in September 1942. The remaining Re.2000s were in such poor repair condition that it was decided to return them to the Reggiane factory. After some were repaired, they were then moved to Treviso to be used as training aircraft, but no flights were ever made. After the Italian surrender, the Germans took over these aircraft, but they were likely scrapped, as there is no record of their use by the Germans.

Future Developments

During the war, the Re.2000 would see some improvement attempts by using a new engine and improving the overall design. There were several such projects, including the Re.2001, Re.2002, Re.2003, Re.2004 and Re.2005.

Re.2001

In the hope of improving the Re.2000’s overall flight performance, in 1939 and 1940, one plane was equipped with a German Daimler Benz DB 601 engine. While it improved the performance, Alfa Romeo was unable to produce large numbers of this engine and, for this reason, only 252 were built. They were used in different roles: fighter, ground attack, shipboard and torpedo attack plane.

Re.2002

The Re.2002 was a fighter-bomber version which incorporated design elements from the Re.2000 and Re.2001. It received two additional light machine guns, bomb racks under the fuselage and under the wings. It was powered by a 1175 hp Piaggio P.XIX R.C.45 engine. Small numbers were produced for the Italians by 1943. The German captured the Reggiane factory and produced additional aircraft.

Re.2003

One Re.2000 was used as a base for the experimental two-seat Re.2003 version. After some testing and an initial order for 200 planes, it was not adopted for service.

Production

Despite being canceled for mass production, Reggiane decided on its own initiative to produce a series of 158 to 170 (depending on the source) aircraft for export sales. Most of these would be sold to Hungary and Sweden. Small numbers (less than 30, including the prototypes) did eventually enter limited service with the Italian navy.

  • Re.2000 Prototype – two prototypes built
  • I Series – Main production version
  • II Series- Shipborne fighter/scout version
  • III Series – Long range version

Prototypes and modifications

  • Re.2001 – Improved version powered with German Daimler Benz DB 601 engine, 252 were built.
  • Re.2002 – Powered with 1175 hp Piaggio P.XIX R.C.45 engine, 225 were built.
  • Re.2003 – Experimental two-seater, one prototype built.

Operators

  • Italy – Operated less than 40 aircraft
  • Hungary – Bought 70 aircraft and a licence production for the Re.2000 under the ‘Héja’ name. Total domestic production was 185-192 aircraft
  • Sweden – Bought 60 aircraft in 1940.
  • UK – Negotiated buying 300 aircraft, but the war prevented this from happening.
  • Other countries like Yugoslavia, Finland, Spain and Switzerland showed interest in buying a number Re.2000, but nothing came from this.

Surviving Re.2000

The remains of the recovered Re.2000 [Warbird News]
Two Re.2000 wrecks were recovered from the bottom of Mediterranean. One shipboard Re.2000 (MM.8287) wreckage was found by the Italian company Micoperi. It was lost in a reconnaissance flight during April 1943. What is interesting is that this plane was modified as an experimental two seater according to author Maurizio D. T. The wreckage was, after a proper desalination process, transported to the Museum of the Italian Air Force at Vigna Di Valle. This plane is currently under restoration. Another Re.2000 (MM.8281) was also recovered in late April 2012.

Conclusion

The Re.2000 had good flying performance but it did have a number of issues. The greatest one was the engine, which demanded a lot of maintenance. There were many problems with the engine overheating. While the larger forward mounted engine did provide the pilot with additional protection from enemy fire, it also affected the pilot’s front view, which was limited. The two heavy machine guns proved to be insufficient and problematic. The biggest issue was the poor quality of the fuel tanks, a problem that was never solved successfully, which was the main reason why it was never adopted for service.

Re.2000 Specifications

Wingspans 36 ft 1 in / 11 m
Length 26 ft 5 in / 8 m
Height 10 ft 4 in / 3.15 m
Wing Area 220 ft² / 20.4 m²
Engine One Piaggio P.XI RC.40 985 hp
Empty Weight 5424 lbs / 2.460 kg
Maximum Takeoff Weight 7143 lbs / 3.240 kg
Fuel Capacity 675 l (180 US gallons)
Climb to 6 km (19,700 ft) 6 minutes 10 seconds
Maximum Speed 320 mph / 515 km/h
Cruising speed 280 mph / 450 km/h
Range 522 mile / 840 km
Maximum Service Ceiling 34.450 ft / 11,500 m
Crew 1 pilot
Armament
  • Two 0.5 in (12.7 mm) heavy machine guns
  • Bomb bay with twenty two 4.4 lb (2 kg) bombs.

Gallery

Illustrations by Pavel

Italian Re.2000 used during catapult launch testings
A Hungarian V.4+V.40 Héja I belonging to the Dongo (Wasp) Fighter Squadron
Swedish J 20 (Re.2000) with 42 marking number

Credits

 

Blohm & Voss Bv 238

Nazi flag Nazi Germany (1942)
Transport Floatplane – 1 Built

BV238 on the Water [Colorization by Michael Jucan]
With the success of the previous Blohm & Voss Bv 222 flying boat, Dr. Ing. Richard Vogt, chief designer at Blohm & Voss, began working on an even larger improved design in the form of the Blohm & Voss Bv 238. As the Bv 238 development began in the late stages of the war, only one aircraft was ever completed and used only briefly.

Dr. Ing. Richard Vogt’s Work

In 1937, Lufthansa opened a tender for a long-range passenger flying boat transport that would be able to reach New York in 20 hours. Blohm & Voss eventually would go on to win this tender. The chosen aircraft was the Blohm & Voss Bv 222, designed by Dr. Ing. Richard Vogt.

During 1941, Dr. Ing. Richard Vogt began working on a new aircraft larger even than the already huge Blohm & Voss Bv 222. In July the same year, he presented to the RLM, the German ministry of aviation (Reichsluftfahrtministerium), the plans for the new Blohm & Voss Bv 238. This aircraft was, in essence, a modified and enlarged version of the Bv 222 powered by six Daimler-Benz DB 603 engines. Three aircraft powered with this engine were to be built, belonging to the A-series. Six more aircraft were to be powered by six BMW 801 engines and these would be designated as B-series.

To speed up the development and avoid wasting resources if the project proved to be unsuccessful, the RLM officials asked for a smaller scale flying model to be built first instead of a working prototype. This scale model plane was named FG 227 (or FGP 227, depending on the source) and was to be built and tested at Flugtechnische Fertigungsgemeinschaft GmbH located in Prague.

The FG 227 scale flying model

To speed up the development and avoid wasting resources, the RLM officials asked for a smaller scale flying model to be built first. How it turned out the FG 227’s overall performance was disappointing and it didn’t play any major role in the Bv 238 development. [Histaviation]
The construction of this scale model was undertaken by a group of Czech students under the direction of well-known glider pilot Dipl.Ing. Ludwig Karch. It was to be powered by six ILO Fl 2/400 engines pushing 21 hp each. As it was meant to be tested on the ground and not in water, the FG 227 was provided with landing gear which consisted of two wheels in the nose and two more wheels placed on each side of the fuselage.

The small scale model, designated the FG 227 [Histaviation]
When the FG 227 was completed, it was to be flight tested. From the start, there were issues with it, as it was unable to takeoff under its own power. After the unsuccessful start, it was disassembled and transported to Travemünde for future testing. During transport, French prisoners of war deliberately damaged one of the wings. Once the damage was repaired, it was flight tested. But during the flight, made in September 1944, all six engines stopped working, which caused an accident where the FG 227 was damaged. After yet another major repair, a few more flights were carried out. The FG 227’s overall performance was disappointing and it didn’t play any major role in the Bv 238 development.

The FG 227’s small scale engines being serviced [Histaviation]
The Bv 238

Rear view of the Bv 238 [Warbird Photographs]
Construction of the first Bv 238 parts began in early 1942. The final assembly was not possible until January 1944. Due to a shortage of materials and the increasing assaults by the Allied Air Forces, the Bv 238 V1 first prototype could not be completed until March of 1945. The first flight test we conducted immediately after its completion. However, sources do not agree on the exact year when this happened. This is the timeline of development and construction according to author  H. J. Nowarra.

Author M. Griehl states that the first flight test was made on the 11th of March 1944. Author C. R. G. Bain states, according to post war testimonies of Dr. Ing. Richard Vogt, that the first test flight was actually made in 1943. According to D. Nešić, the first flight was made in April 1944. The results of this test flight showed that the Bv 238 prototype had surprisingly excellent flying performance. For this reason, it was immediately put into operational service.

Front view of the Bv 238 with the nose hatch doors open [Warbird Photographs]
Throughout the Bv 238 development phase, it was often discussed precisely which role it could fulfill. While it was primarily designed as a transport plane, a new idea was proposed to act as a U-boat support aircraft. This would include carrying supplies, fuel, torpedos and men to the U-boats operating in the Atlantic. Of course, by the time the first prototype was near completion, the war was almost over, so this proposal was realistically not possible. Plans to use it as a long range bomber, carrying six 2,400 kg bombs, also never materialized.

Bv 238 V1 was meant to operate from Shaalsee, and for its service with the Luftwaffe, it received the RO+EZ designation. As the Allied bombing raids effectively destroyed the Blohm & Voss factory in Hamburg, orders came down to hide the Bv 238 from the Allied Air Force. The question was how to hide such a huge aircraft. The Germans did try to do so but the aircraft was eventually found by the Allies who managed to sink it. The circumstances are not clear to this day, as both Americans and the British pilots claimed the kill. According to the most well-known story, it was destroyed by a group of American P-51 Mustangs belonging to the 131st Fighter Group. The kill was made by the leading P-51 piloted by Lt. Urban Drew. According to the testimony of the Blohm & Voss workers, the British, in their advance discovered the hidden craft. Once spotted, the British sent attack aircraft to sink it. Its remains would finally be blown up during 1947 or 1948 to make the scrapping process easier. All the remaining Bv 238 that were under construction were also scrapped after the war.

Technical Characteristics

The Bv 238 was designed as a six-engined, high wing, flying transport floatplane. The Bv 238 fuselage was divided into two decks. On the upper deck, the crew and the inboard equipment were housed. The lower floor was designed as a storage area during transport flights. In theory, there was enough room for around 150 soldiers in the Bv 238. A huge front hatch door was provided for easy access to the fuselage interior.

The wings were constructed using large tubular main spars. The wings were used to provide additional room for spare fuel and oil tanks. The wings were provided with flaps  running along the trailing edge. The large size of the wing construction allowed passageways for the crew to be installed, in order to have easy access to the engines. Unlike the Bv 222, which had a pair of outboard stabilizing floats mounted on each side, the Bv 238 had only two. The Bv 238 was powered by six Daimler DB 603G engines.

For self defense, the Bv 238 was to be provided with two HD 151 twin-gun turrets with 20 mm (0.78 in) MG 151 cannons, two HL 131 V turrets with four 13 mm (0.51 in) MG 131 machine-guns and two additional MG 131s mounted in the fuselage sides. Despite the plans to arm the V1 prototype, this was never done.

The crew number is mentioned as 11 or 12 depending on the source. The sources do not specify the role they performed. It can be assumed, based on what is known from Bv 222, that there were at least two pilots, two mechanics, a radio operator and machine gun operator.

Production

Despite being based on the large Bv 222, the Bv 238 was even larger [Warbird Photographs]
The production of the Bv 238 was carried out by Blohm & Voss factory at Hamburg. Only one completed prototype would be built during the war. There were also at least two to six more prototypes under construction (depending on the source), but due to the war ending, none were completed.

The small number under construction may be explained by the fact that, in the late stages of the war, the Luftwaffe was more in need of fighter planes than transports planes. In addition, there is a possibility that the Bv 238 project was actually canceled by the RLM officials.

Versions

  • Bv 238 A – Powered by Daimler-Benz DB 603 engines, only one built
  • Bv 238 B – Powered by six MW 801 engines, none built
  • Bv 250 – Land based version, none built
  • FG 227 – Scale test model of the Bv 238, used for testing

Land Based Version

There were plans to adapt the Bv 238 for land based operations by adding landing gear wheels. The project was designated Bv 250 but none were ever built. It was planned to provide this version with heavy defence armament consisting of twelve 20 mm (0.78 in) MG 151 cannons. The engine chosen for this model was the six Jumo 222. As this engine was never built in any large numbers, the DB 603 was meant to be used instead.

Escape Aircraft

There are some rumors that the Bv 238 was actually developed as an escape aircraft for high ranking Nazi officials. It was rumored that Martin Bormann had plans to use it to escape Germany in early 1945. Of course, due to Allied Air Force supremacy and the Bv 238’s large size, this may have not been a viable plan if ever attempted.

Conclusion

The V1 Prototype after its maiden test flight [Warbird Photographs]
If it was put into production, the Bv 238 would have had the honor of being the largest flying boat that saw service during the war. While it only performed test flights and was never used operationally, it was nevertheless an astonishing engineering achievement.

Blohm & Voss BV 238 V1 Specifications

Wingspan 196 ft / 60 m
Length 145 ft / 43.4 m
Height 35 ft 9 in / 10.9 m
Wing Area 3,875 ft² / 360 m²
Engine Six 2900 hp Daimler-Benz DB 603
Empty Weight 120,500 lb / 54,660 kg
Maximum Takeoff Weight 207,990 lb / 94,340 kg
Maximum Speed 220 mph / 355 km/h
Cruising Speed 210 mph / 335 km/h
Range 3,790 mi / 6,100 km
Maximum Service Ceiling 20,670 ft / 6,300 m
Crew
  • 11-12 (2 pilots, 9 airmen)
Armament
  • none

Gallery

The sole completed Bv238V1 Prototype by Ed Jackson

Credits

 

Northrop’s Early LRI Contenders

USA flag old United States of America (1953)
Long Range Interceptor Proposals [None Built]

Detailed drawing of the N-144, with cutaway section

Born from the Long Range Interceptor program, the first of Northrop’s contenders were three aircraft that had large delta wings and overall similar shapes and designs. The first, the N-126, started as a modified version of Northrop’s F-89D Scorpion fighter but would become its own unique aircraft by 1954. The second, the N-144, was a large four-engine interceptor design that dwarfed current bombers of the time and could carry an impressive arsenal. The third, the N-149, differed the most from its two siblings. It was much smaller and used General Electric engines over Wright engines. The N-144 was the most successful out of the entire program, but would prove to be too costly and a maintenance nightmare if produced. The N-126 and N-149 would also not meet expectations, as did none of the other competitors in the doomed program.

The LRI Competition

At the start of the Cold War, it was realized that if a Third World War would ever happen, defending the mainland United States from airborne threats would be a top priority. ICBMs and nuclear missiles are the go-to threat everyone imagines when they think of the Cold War, but these wouldn’t be operational until the late 1950’s. In the early years, nuclear weapons would be deployed by strategic bombers and these would be the major threat. Intercepting these long range aircraft would be of the utmost importance if the war went hot in the 1950’s. Developing an aircraft able to reach these bombers and destroy them led to the creation of the modern interceptor. Most countries had begun developing an interceptor of their own. At the forefront was the United States Long Range Interceptor program (LRI). This program originated in early 1952, with Major General L.P. Whitten of the Northeast Air Command noticing that a capable aircraft would be able to takeoff and intercept enemy bombers using the warning time of the Semi-Automatic Ground Environment (SAGE) system, which was an integrated defense network of SAM, radar and fighters across the US and Canada, able to intercept enemy bombers well before they were able to reach the United States. Although the idea was put out, no official requirements for the idea came about until December of 1953, when the Air Council put out extremely demanding needs. The aircraft would need to be airborne in two minutes from getting the scramble alert. Maximum speed would be Mach 1.7 with a range of 1,000 nm (1,850 km). Combat ceiling would be 60,000 ft (18,000 m) with a climb rate of 500 ft/min (150 m/min). The aircraft would be minimally armed with forty-eight 2.75 inch rockets, eight GAR-1A Falcon AAMs or three unguided nuclear rockets. This requirement became known as Weapon System WS-202A. Most companies developed submissions, but McDonnell and Northrop had an early start with a long range interceptor design being conceived very early on, well before an official requirement had been requested. Northrop had three aircraft designs that would fit the requirement for WS-202A; the N-126, N-144 and N-149. All three were visually similar to each other and shared concepts and equipment with one another.

Northrop N-126: The Delta Scorpion

Bottom view of the N-126 Delta Scorpion model [US Secret Fighter Projects]
The first of the designs Northrop submitted was the N-126 Delta Scorpion. This aircraft actually began development months before an official requirement was put out. The design was submitted in February of 1953 and was essentially a Northrop F-89D Scorpion modified with a new delta wing design and Wright YJ67 engines. The aircraft received a performance review sometime in 1953 along with McDonnell’s two-seat version of the F-101 Voodoo. Neither design was chosen for production. The N-126 did show promise, as it came close to meeting the very first requirements and it was supported by the Air Defense Command. However, the predicted first flight in twenty-one months was a bit too optimistic and the design was disliked by the United States Air Force Headquarters, as it didn’t exactly meet requirements compared to the F-101 variant. Northrop pushed this early design and adamantly tried to acquire production.

Front quarter view of the N-126 Delta Scorpion model [US Secret Fighter Projects]
They were quick to begin working on an improved design that would be longer and yield better results. It took over fifty concept designs before they found a suitable improvement. The aircraft itself no longer resembled the F-89D Scorpion it got its name from, but the name would stick until the end of the project. This new design was submitted in August of 1954. The N-126 was now much sleeker, with a forty-five degree delta wing and two underwing Wright J67-W-1 engines (Allison J71-A-11 engines were a weaker alternative choice). The delta wings all three projects used provided lower weight than generic straight wings and minimized drag. The trailing edge of the wing would have a split speed brake on the outer surface, an aileron located in the middle and a feature on the inboard section only referred to as an “altitude flap”. For the landing gear, a bicycle configuration with two wheels on each gear would be mounted directly under the aircraft, with a smaller landing gear being placed under the wings.

For armament, the aircraft would use the required eight Falcon AAMs and forty-eight rockets being mounted in a 20 ft weapon bay. Four external hardpoints would allow extra ordnance to be carried, such as bombs or extra missiles. Alternative loadouts included any combination of four AIR-2A unguided nuclear rockets, six Sidewinders, or two Sparrow guided missiles. The N-126 would use the Hughes E-9A fire control system, one of the few remnants carried over from the F-89. The E-9A would be linked to a long-range search radar that would have a range of 100 nm (185 km). For fuel, one large internal tank and two smaller tanks in the wings would hold 4,844 gal (22,025 l). Extra drop tanks could be mounted under the wings and offer an additional 1,600 gal (7,275 lit). For its predicted mission, the N-126 would be able to launch and engage enemy bombers twenty-seven minutes after scramble. Northrop expected a prototype would be ready for a first flight by June of 1957.

Northrop N-144: The Monstrous Interceptor

Color photo of the N-144 model [US Secret Fighter Projects]
The N-144 was the second design Northrop submitted. It was made to offer the best results in regard to the WS-202A requirements. It resembled the N-126 but was much larger and had four J67 engines. The N-144 dwarfed its siblings, competitors, and even several current bombers of the time. With a wingspan of 78 ft and a length of 103 ft, this was no small aircraft. In comparison, the Convair B-58 supersonic bomber had a wingspan of 56 ft and a length of 96 ft (interesting to note, a plan to convert the B-58 into a long range interceptor was proposed).

Its appearance wasn’t the only thing carried over from the N-126. The E-9A fire control system, its accompanying scanner, and its landing gear design (now with four wheels on the main gear) were all reused in the N-144. The N-144 also had a forty-five degree delta wing like the N-126. The N-126 and N-144 would both have their engines on pylons on the wings. This configuration allowed much more powerful engines to be used and a simpler intake system compared to having the engines be built into the body, not to mention the layout being much safer in the event of a fire.

Top down view of the N-144 model. Note the 45 degree delta wing [US Secret Fighter Projects]
The N-144 utilized many features that would directly improve the aerodynamics of the aircraft. The aircraft would have low wing loading which would increase its cruise altitude and improve takeoff and landings. The addition of a horizontal tail, which isn’t often seen in delta wing designs, gave the N-144 improved handling and stability over designs that lacked the horizontal tail (see the Convair F-102 Delta Dagger for example). When the aircraft would be supersonic, the wing would have a chord flap that would retract into the wing to reduce drag. Area ruling was a feature involving tapering the center of the fuselage which would reduce drag while the aircraft was flying at supersonic speeds. Most current delta wing designs utilized area ruling, but none of Northrop’s interceptors surprisingly did. Northrop ruled that the advantages would only affect supersonic flight, and not provide anything useful during subsonic flight. Having no area rule also made the aircraft simpler in design and easier to produce. Northrop’s studies into the delta wing expected to see performance increase as time went on, with more modifications and better engines being used on the N-144 if it went into production. With these expected improvements, Northrop theorized a 14% improvement in top speed and service ceiling.

Frontal view of the massive N-144 model. The size of its engine pods are evident. [US Secret Fighter Projects]
For armament, the N-144 would still utilize the standard eight Falcon AAMs and forty-eight rockets, but could also carry twelve Falcon AAMs, six AIR-2A Genie (Ding Dong) rockets, 452 2.75 in FFAR rockets or 782 2 in (5.1 cm) rockets internally in any order. External hardpoints could also be fixed for carrying bombs or more ordnance. For fuel, a large fuel tank would be in the wings and fuselage and could carry 6,910 gal (31,419 l) of fuel. Given the size of the aircraft, Northrop advertised that it could be used in alternative roles.

Northrop N-149: The Opposite End

Model of the N-149. The additional fuel tanks can be seen. [US Secret Fighter Projects]
The N-149 was the third and final design submitted by Northrop for WS-202A. Submitted in July of 1954, the N-149 was almost the polar opposite of the N-144. Instead of opting for raw power and utilizing four engines, the N-149 was meant to be the smallest option available while still performing just as well as its competitors. In comparison, the N-126 would be 85 ft (25.9 m)long with a wingspan of 62 ft (19 m), while the N-149 would be 70 ft (21.5 m) long with a wingspan of 50 ft (15.5 m). This size decrease would save cost, space and fuel consumption. The N-149 used the same wing layout as the previous entries and would also retain the E-9A fire control system and accompanying radar. Given the advancements of the N-144’s wings, it is likely the N-149 would also benefit from them as well. The N-149 did not use Wright J67 jet engines like the N-126 and N-144, but would instead use General Electric J79 engines. These engines were longer than the J67 but would benefit the aircraft, given its small size, to achieve the required speed and rate of climb. The bicycle landing gear with outer wing gear was once again used, but now with two wheels on each gear like the N-126. The armament for the N-149 was less than its predecessors, but it would make up for weapons in the amount able to be built. Once again, eight Falcon AAMs and forty-eight 2.75in rockets were standard, but alternative armaments would be a single Sparrow AAM, four Sidewinder AAMs, another 105 2.75 in rockets or 270 2 in rockets. Additional armament could be mounted on four external hardpoints like the N-126 and N-144, however, two of these would be taken up by external fuel tanks. These tanks would be 600 gal (2,730 l). The majority of the fuel would be in a large tank that spanned the fuselage and into the wings and would carry 2,050 gal (9,320 l) of fuel. Northrop expected a first flight of the aircraft by the summer of 1957.

The Program Concludes

Detailed drawing of the N-149 with cutaway

Although Northrop is the center of this article, Boeing, Douglas, Lockheed, Martin, McDonnell, North American, Chance-Vought, Grumman and Convair all submitted designs. When the assessment of all the designs was completed, it was concluded that none of the proposals exactly met up the set requirements. The N-144, however, came the closest to meeting the specification. After assessment, the N-144 had a predicted speed of Mach 1.76, a combat ceiling of 58,500 ft (17,800 m) and a combat range of 1,015 nm (1,880 km).

McDonnell’s design came close, as it could go faster and reach the same altitude, but its range was much less compared to the N-144. Materials Command was not too keen of the N-144 and it is obvious why. The cost, production and maintenance of it would be tremendous. Given its four engines, the aircraft would require much more maintenance compared to its two-engine competitors. Producing such a large aircraft would be extremely costly given its size and engine count. The best option for performance would also be the worst option considering its cost.

Its siblings didn’t meet the specifications as well. No reason was put out as to why the N-126 failed the competition, but given the state of the program, it can easily be assumed it didn’t meet either the range, speed, or altitude requirements. The N-149 did have a specified reason for its rejection, though. After taking off at full power and reaching its maximum height, it would only offer 20 minutes of flight, with 5 minutes at full power for combat. Having your aircraft destroy as many bombers before reaching their target is necessary and only 5 minutes wouldn’t be sufficient to fulfill its duty. Ultimately, WS-202A wouldn’t produce any aircraft. The requirements had gone too high, and the companies wouldn’t be able to produce a cost effective aircraft in time that would meet the expected specifications. The program would go on to become the new LRI-X program in October of 1954, and Northrop would be one of three companies tasked with creating a new interceptor, which their Delta-Wing trio would surely influence in a number of ways.

Variants

  • Northrop N-126 (February 1953) – The 1953 N-126 Delta Scorpion was an improvement upon the F-89D Scorpion by having a delta wing and YJ67 engines.
  • Northrop N-126 (1954) – The 1954 version of the N-126 no longer resembled the F-89 but was now longer and more streamlined.
  • Northrop N-144 – The N-144 would be the second design submitted to the LRI competition. It was much larger than the other two submissions and would utilize four engines.
  • Northrop N-149 – The N-149 was the smallest of the three designs and was meant to be the best performing for its size. It looked visually similar to the N-126 but would carry slightly less ordnance and utilize Gen Elec XJ79-GE-1 jet engines over the Wright J67-W-1s.

Operators

  • United States of America – All three designs would have been operated by the United States Air Force had they been constructed.

Northrop N-126 Delta Scorpion (1954) Specifications

Wingspan 62 ft 3 in / 19 m
Length 85 ft / 25.9 m
Wing Area 1,050 ft² / 97.7 m²
Engine 2x 13,200 Ibs ( 58.7 kN ) Wright J67-W-1 Jet engines
Weights 75,830 lbs / 34,400 kg (Gross)
Fuel Storage 4,844 gal / 22,025 l
Maximum Speed 1,183 mph / 1,903 km/h at 35,000 ft / 10,700 m
Cruising Speed 793 mph / 1,276 kmh
Range 800 nm / 1,500 km
Climb Rate 2.45 minutes to 40,000 ft / 12,000 m
Maximum Service Ceiling 59,600 ft / 18,000 m (Point Interception Role)

56,200 ft / 17,000 m (Area Interception Role)

Crew 1 Pilot

1 Radar Operator

Main Proposed Armament
  • 8x GAR-1 Falcon AAM
  • 48 2.75in (7 cm) FFAR
Alternative Armament Loadouts
  • 4x Ding Dong Unguided Nuclear Rockets
  • 6x Sidewinder AAMs
  • 2x Sparrow AAMs
  • 1x 1,640 lbs (744 kg) bomb

Northrop N-144 Specifications

Wingspan 78 ft 10 in / 24 m
Length 103 ft 6 in / 31.5 m
Wing Area 1,700 ft² / 158.1 m²
Engine 4x 13,200 Ibs ( 58.7kN ) Wright J67-W-1 Jet engines
Weights 113,700 lbs / 51,500 kg (Gross)

91,600 Ibs / 41,550 kg (Combat)

Fuel Storage 6,910 gal / 31,420 l

44,940 Ib / 20,390 kg

Maximum Speed (Mach 2.04) 1560 mph / 2520 km/h at 34,000 ft / 10,000 m
Cruising Speed (Mach 1.06) 810 mph / 1300 km/h
Range 1,015 nm / 1,880 km
Climb Rate 1.9 minutes to 40,000 ft / 12,000 m
Maximum Service Ceiling 63,000 ft / 19,202 m (Point Interception Role)

60,000 ft / 18,288 m (Area Interception Role)

Crew 1 Pilot

1 Radar Operator

Main Proposed Armament
  • 8x GAR-1 Falcon AAM
  • 48 2.75in (7 cm) FFAR
Alternative Armament Loadouts Internal Storage

  • 12x Falcon AAM
  • 6x AIR-2 Genie (Ding Dong) Missiles
  • 452 2.75 in FFAR
  • 782 2in (5.1cm) Rockets

External Hardpoints

  • Unknown type of bombs mounted on 4 hardpoints.

Northrop N-149 Specifications

Wingspan 50 ft 10 in / 15.5 m
Length 70ft 6 in /21.5 m
Wing Area 700 ft² / 65.1 m²
Engine 2x 9,300 Ibs ( 41.3 kN ) Gen Elec XJ79-GE-1 Jet engines
Weight 43,400 Ibs / 19,700 kg
Fuel Storage 2,050 gal / 9,320 lit

13,310 Ibs / 19,690kg

Maximum Speed (Mach 1.51) 1160 mph / 1860 km/h at 35,000 ft / 10,700 m
Cruising Speed (Mach 1) 770 mph / 1230 km/h
Range 770 nm / 1,430 km
Climb Rate 3.1 minutes to 40,000 ft / 12,000 m
Maximum Service Ceiling 55,700 ft / 17,000 m (Point Interception Role)

52,800 ft / 16,000 m (Area Interception Role)

Crew 1 Pilot

1 Radar Operator

Main Proposed Armament
  • 8x GAR-1 Falcon AAM
  • 48 2.75in (7 cm) FFAR
Alternative Armament Loadouts Internal Storage

  • 1x Sparrow II AAM
  • 4x Sidewinder AAMs
  • 105x 2.75in (7 cm) rockets (original 48 on top of this)
  • 270x 2in (5.1 cm) rockets

External Hardpoints

  • 4x Hardpoints for additional weapons (2 are used for fuel tanks)

Gallery

Northrop N-126 – Artist Impression of the Delta Scorpion in USAF Prototype Stage
Northrop N-144 – Artist Impression of the N-144 the in Late Prototype Stage
Northrop N-149 – Artist Impression of the N-149 in service with the 171 Fighter Interceptor Squadron, Michigan, circa 1960s

 

3-Way drawing of the N-126 Delta Scorpion [US Secret Fighter Projects]
3-Way drawing of the N-149 [US Secret Fighter Projects]
Underside quarter view of the N-126 model [US Secret Fighter Projects]

3 view drawing of the N-126 Delta Scorpion
A photo of the N-126 Delta Scorpion in wind tunnel testing

3-Way drawing of the N-149 [US Secret Fighter Projects]
Colored photo of the N-149 model. Note the tail has been slightly damaged. [US Secret Fighter Projects]
Rear view of the N-149 model. Damage to the tail is evident here. [American Secret Projects: Fighters & Interceptors, 1945-1978]
Credits