In the later stages of the Second World War, it was becoming apparent to both the Luftwaffe (English German Air Force) and the German Government that the Allied air forces were gaining air superiority. This realization saw them turn to new and fantastical ideas in a desperate attempt to turn the tide of the war. Some of these represented new improvements to existing designs, the introduction of the newly developed turbojet engine, and even more esoteric and experimental methods. In many cases, these were pure fantasies, unrealistic or desperate designs with no hope of success. Few of them reached any significant development, and among them were the works of Alexander Martin Lippisch. While Lippisch helped develop the Me 163, the first rocket-powered interceptor, his other work remained mostly theoretical. One such project was the unusual P 13a, ramjet-powered aircraft that was to use coal as its main fuel source. While some work was carried out late in the war and soon faced insurmountable technical problems, thus nothing came of the project.
Artistic presentation of how the P 13a may have looked. Source: Luftwaffe Secret Jets of the Third Reich
History
Before the start of the Second World War, aviation enthusiast and engineer Alexander Martin Lippisch, was fascinated with tailless delta wing designs. Lippisch’s early work primarily involved the development of experimental gliders. Eventually, he made a breakthrough at the Deutsche Forschungsinstitut, where he worked as an engineer. His work at DFS would lead to the creation of the rocket-powered glider known as the DFS 194. As this design was a promising experiment in a new field, it was moved to Messerschmitt’s facility at Augsburg. After some time spent refining this design, it eventually led to the development of the Me 163 rocket-powered interceptor. While it was a relatively cheap aircraft, it could never be mass-produced, mostly due to difficulties associated with its highly volatile fuel. In 1942, Lippisch left Messerschmitt and ceased work on the Me 163 project. Instead, he joined the Luftfahrtforschungsanstalt Wien (English: Aeronautic Research Institute in Vienna) where he continued working on his delta-wing aircraft designs. In May 1943 he became director of this institution, and at that time the work on a supersonic aircraft was initiated.
In the later war years, among the many issues facing the Luftwaffe, was a chronic fuel shortage. Lippisch and his team wanted to overcome this problem by introducing alternative fuels for their aircraft. Luckily for his team, DFS was testing a new ramjet engine. They were designed to compress air which would be mixed with fuel to create thrust but without a mechanical compressor. While this is, at least in theory, much simpler to build than a standard jet engine, it can not function during take-off as it requires a high airflow through it to function. Thus, an auxiliary power plant was needed. It should, however, be noted that this was not new technology and had existed since 1913, when a French engineer by the name of Rene Lorin patented such an engine. Due to a lack of necessary materials, it was not possible to build a fully operational prototype at that time, and it would take decades before a proper ramjet could be completed. In Germany, work on such engines was mostly carried out by Hellmuth Walter during the 1930s. While his initial work was promising, he eventually gave up on its development and switched to a rocket engine instead. The first working prototype was built and tested by the German Research Center for Gliding in 1942. It was later tested by mounting the engine on a Dornier Do 17 and, later, a Dornier Do 217.
The Dornier Do 217 was equipped with experimental ramjets during trials. Source: tanks45.tripod.com
In October 1943, Lippisch won a contract to develop the experimental P 11 delta-wing aircraft. While developing this aircraft, Lippisch became interested in merging his new work with a ramjet engine. This would lead to the creation of a new project named the P 12. In the early stage of the project, Lippisch and his team were not completely sure what to use as fuel for their aircraft, but ramjets could be adapted to use other types of fuel beyond aviation gasoline.
Unfortunately for them, LFW’s facilities were heavily damaged in the Allied bombing raids in June 1944. In addition to the damage to the project itself, over 45 team members died during this raid. To further complicate matters, the scarcity of gasoline meant that Lippisch’s team was forced to seek other available resources, such as different forms of coal. This led to the creation of the slightly modified project named P 13. In contrast to the P 12, the cockpit was relocated from the fuselage into a large fin. This design provided better stability but also increased the aircraft’s aerodynamic properties. The overall designs of the P 12 and P 13 would change several times and were never fully finalized.
The P 12 and 13 small-scale models, in both configurations, were successfully tested at Spitzerberg Airfield near Vienna in May 1944. The project even received a green light from the Ministry of Armaments. In the early stages of the project, there were some concerns that the radical new design would require extensive retraining of pilots. However, the wind tunnel test showed that the design was aerodynamically feasible and that the aircraft controls had no major issues. Based on these tests, work on an experimental aircraft was ordered to begin as soon as possible.
A proposed P 12 aircraft. Its designs changed greatly over time, before being finally discarded in favor of the letter P 13. Source: The Delta Wing History and Development
The DM-1 Life Saver
While working on the P 12 and P 13, Lippish was approached with a request from a group of students from Darmstadt and Munich universities. They asked Lippisch to be somehow involved in the P 12 and 13 projects. Lippisch agreed to this and dispatched one of his assistants under the excuse that for his own project, a wooden glider was to be built and tested. The previously mentioned student’s and Lippisch’s assistant moved to a small warehouse in Prier and began working on the Darmstadt 33 (D 33) project. The name would be changed to DM 1 which stands for Darmstadt and Munich.
At this point of the war, all available manpower was recruited to serve the German war effort. For young people, this often meant mobilization into the Army. One way to avoid this was to be involved in some miracle project that offered the Army a potentially war-winning weapon. It is from this, that numerous aircraft designs with futuristic, and in most cases unrealistic, features were proposed. Many young engineers would go on to avoid military service by proposing projects that on paper offered extraordinary performance in combat.
The students and Lippisch managed to nearly complete their DM1 test glider when the war ended. Source: airandspace.si.edu
While it was under construction, preparations were made to prepare for its first test flight. As it was a glider it needed a towing aircraft that was to take it to the sky. A Sibel Si 204 twin-engine aircraft was chosen for the job. However, this was not to be done like any other glider, being towed behind the larger aircraft. Instead, the DM-1 was to be placed above the Si 201 in a frame, in a similar combination as the Mistel project. The estimated theoretical speeds that were to be reached were 560 km/h (350 mph).
Allegedly, there were four different proposals for the DM’s that were to be fully operational. The DM 2 version was estimated to be able to reach a speed of 800-1,200 km/h (500 – 745 mph). The DM 3’s theoretical maximum speed was to be 2,000 km/h (1,240 mph) while the fate of the DM 4 is unknown. Here it is important to note that these figures were purely theoretical, as there were no supersonic testing facilities to trial such a design. It is unclear in the sources if these additional DM projects even existed, even if in only written form. We must remember that the whole DM 1 glider idea was made to help the students avoid military conscription and that Lippisch himself never saw the DM 1 as any vital part of the P 13.
In any case, the glider was almost completed by the time the war ended and was later captured by the Western Allies. Under the US Army’s supervision, the glider was fully completed and sent to America for future evaluation. It would then be given to the Smithsonian Institution.
A DM 1 test glider being under construction. Source: hushkit.netThe Siebel Si 204 was to be used as a carrier for the DM 1 glider for the expected first-flight tests. Due to the end of the war, this was never achieved. Source: www.silverhawkauthor.com
Work on the P 13
As the work on the P 13 went on, the name was slightly changed. This was necessary as different variations of the P 13 were proposed. The original P 13 received the prefix ‘a’ while the later project’s designation continued alphabetically for example P 13b. After a brief period of examination of the best options, the P 12 project was discarded in favor of P 13. The decision was based on the fuel that the aircraft should use. What followed was a period of testing and evaluation of the most suitable forms of coal that could be used as fuel. Initial laboratory test runs were made using solid brown Bohemian coal in combination with oxygen to increase the burn rate. The fuel coal was tube-shaped, with an estimated weight of 1 kg, and encased in a mesh container through which the granulated coal could be ejected. The testing showed serious problems with this concept. While a fuel tube could provide a thrust that on average lasted 4 to 5 minutes, its output was totally unpredictable. During the testing, it was noted that due to the mineral inconsistency of the coal fuel, it was impossible to achieve even burning. Additionally, larger pieces of the coal fuel would be torn off and ejected into the jet stream. The final results of these tests are unknown but seem to have led nowhere, with the concept being abandoned. Given that Germany in the last few months of the war was in complete chaos, not much could be done regarding the Lippish projects including the P 13a.
As more alterations to the original design were proposed its name was charged to P 13a. Here is a drawing of a P 13b that was briefly considered but quickly discarded. Source: The Delta Wing History and Development
In May 1945, Lippish and his team had to flee toward the West to avoid being captured by the advancing Soviets. They went to Strobl in Western Austria, where they encountered the Western Allies. Lippisch was later transported to Paris in late May 1945 to be questioned about his delta wing designs. He was then moved to England, and then to America in 1946. The following year, American engineers tested the DM 1 glider at the wind tunnel facility of the Langley Field Aeronautical Laboratory. The test seems promising and it was suggested to begin preparation for a real flight. A redesign of the large rudder was requested. It was to be replaced with a much smaller one, where the cockpit would be separated from the fin and placed in the fuselage. Ironically Lippish was not mentioned in this report, as technically speaking he was not involved in the DM 1 project. Nevertheless, he was invited for further testing and evaluation of this glider. If this glider and the Lippish work had any real impact on the US designs is not quite clear.
Despite no aircraft being ever completed, one full-size replica of this unusual aircraft was built after the war. It was built by Holger Bull who is known for building other such aircraft. The replica can now be seen at the American Military Aviation Museum located in Virginia Beach.
An interesting full-size replica of the P 13 located at the American Military Aviation Museum. Source: Wiki
Technical characteristics
DM 1
The DM 1 glider was built using wooden materials. Given that it was constructed by a group of young students, its overall design was quite simple. It did not have a traditional fuselage, instead, its base consisted of a delta wing. On top, a large fin was placed. The cockpit was positioned in front of the aircraft within the large vertical stabilizer. To provide a better view of the lower parts of the nose, it was glazed. The landing gear consisted of three small landing wheels which retracted up into the wing fuselage. Given that it was to be used as a test glider, no operational engine was ever to be used on it.
The DM 1 side view. In contrast to the later P 13a design, the pilot’s cockpit position was placed above the wings. This was necessary as the engine was to be added. Source: airandspace.si.eduA DM 1 was captured by the Allies after the war. Its unique shape is quite evident in this photograph. Source: WikiA good example of DM 1 (to the right) and P 13a models that showed the difference between these two. The P 13a could be easily distinguished by its engine intake and the different position of the pilot cockpit. Source: Wiki
A good example of DM 1 (to the right) and P 13a models that showed the difference between these two. The P 13a could be easily distinguished by its engine intake and the different position of the pilot cockpit. Source: Wiki https://imgur.com/a/QW7XuO5
P 13a
The P 13 is visually similar but with some differences. The most obvious was the use of a ramjet. This means that the front, with its glazed nose, was replaced with an engine intake. Here, it is important to note, that much of the P 13a’s design is generally unknown, and much of the available information is sometimes wrongly portrayed in the sources. The P 13a never reached the prototype stage where an aircraft was fully completed. Even as the war ended, much of the aircraft’s design was still theoretical. Thus all the mentioned information and photographs may not fully represent how the P 13 may have looked or its precise characteristics, should it have been finished and built.
The exact ram engine type was never specified. It was positioned in the central fuselage with the air intake to the front and the exhaust to the back. As the main fuel, it was chosen to use small pieces of brown coal which were carried inside a cylindrical wire mesh container. The total fuel load was to be around 800 kg (1,760 lbs). Combustion was to be initiated by using small quintiles of liquid fuel or gas flames. The overall engine design was changed several times during the work on the P 13 without any real solution to the issues of output consistency. Given that the ramjets could not work without an air thrust, an auxiliary engine had to be used during take-off, though a more practical use would be to tow the P 13 until it could start its engine. A rocket takeoff ran the risk of the engine failing to ignite, leaving the pilot little time to search for a landing spot for his unpowered aircraft.
An illustration of the proposed P 13a engine interior. The use of coal as fuel may seem like a cheap alternative but given that this kind of technology was never employed may be an indication of its effectiveness. Source: theaviationgeekclub.com
The wing construction was to be quite robust and provided with deflectors that would prevent any potential damage to the rudders. The wing design also incorporated a sharp metal plate similar to those used for cutting enemy balloons cables. These proposed properties of the wings are another indicator that the P 13 was to be used as an aircraft rammer. Another plausible reason for this design was the fact that given it had no landing gear the aircraft design had to be robust enough as not to be torn apart during landing. The wings were swept back at an angle of 60 degrees. The precise construction method of the wings (and the whole P 13 a on that matter) are not much specified in the sources. Given the scarcity of resources in late 1944 it is likely that it would use a combination of metal and wood.
A drawing of the P 13a interior. Its overall construction was to be more or less standard in nature. This could not be said for the aircraft’s overall shape design. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
The fin had to be enlarged to provide good flight command characteristics. In addition, given that the position of the cockpit was in the fin, it had to be large. The fin was more or less a direct copy of one of the wings. So it is assumed that it too would share the overall design. The fin was connected to the aircraft by using four fittings.
The cockpit design was to be simple and cheap to build. The pilot was to have plenty of room inside the large fin. The cockpit was provided with a large glazed canopy that provided a good view of the front and sides. The seat and the instrument panel were bolted to the cockpit floor and walls. These could be easily detached for repairs. The instrument panel was to include an artificial horizon indicator, altimeter, compass, and radio equipment, Given that it was to operate at a high altitude oxygen tanks were to be provided too. Despite being intended to fly at high altitudes the cockpit was not to be pressurized. Another unusual fact was that initially the P 13 was to have a crew of two, but this was quickly discarded.
A possible example of how the inside of the pilot cockpit may have looked. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
Here it is important to note that the version of the P 13 with the large fin is often portrayed as the final version of this aircraft. However, Lippisch never fully decided whether he should go for this version or the second that used a smaller fin with the pilot cockpit placed above the engine intake. Depending on the proposed version they are drastically different from each other. Lippisch, for unknown reasons, presented the British intelligence officer with the version that used the smaller fin and the American with the second version.
During its development phase, many different alterations of the P 13 were proposed. Isource: D. Sharp Luftwaffe Secret Jets of the Third Reich
Landing operations were a bit unusual. To save weight no standard landing gear was to be used. Instead, Lippisch reused the Me 163 landing procedure. As the P 13 was immobile on its own, a small dolly would be used to move the aircraft. Once sufficient height was reached the dolly was to be jettisoned. In theory, this was an easy process, but in practice, this operation offered a good chance of failure and was much less safe than conventional landing gear. Sometimes the dolly either failed to eject or it bounced off the ground hitting the Me 163 in the process, with often fatal consequences.
The Me 163 which did not have traditional landing gear, had to be prior to the flight, transported to the airfield before launching into the sky. Source: warbirdphotographs.com
The aircraft was to land with the nose raised up from the ground. This limited the pilot’s view of the ground. In addition due to its small size and in order to save weight, nontraditional landing gear was provided, instead, it carried a landing blade skid. To help absorb the landing impact, additional torsion springs were to be used. This bar had to be activated prior to the landing, it would emerge from beneath the aircraft fuselage, with the rotation point located at the front. Once released it was to guide the aircraft toward the ground. After that, the torsion springs were to soften the landing. This whole contraption seems like a disaster just waiting to happen and it’s questionable how practical it would be.
A drawing that showed how the P 13a was to land using a guiding landing blade skid. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
One interesting feature of the P 13 was that it could be easily disassembled into smaller parts which would enable effortless transport. Another reason was that due to the engine’s position in order to make some repairs or replacement of the engine, the remaining parts of the wing and the large fin had to be removed.
Was it an aircraft rammer?
The precise purpose of the P 13a is not quite clear, even to this day. Despite being briefly considered for mass production, no official offensive armament is mentioned in the sources. So how would the P 13a engage the enemy? A possible solution was that it would be used as a ram aircraft that was supposed to hit enemy aircraft damaging them in the process. In an after-the-war interrogation by British officers, Lippisch was asked if the P 13 was to be used as an aerial ram aircraft. Lippisch responded the following “
“.. The possibilities of using the P.13 as a ramming aircraft had been considered but Dr Lippisch did not think that athodyd propulsion was very suitable for this purpose owing to the risk of pieces of the rammed aircraft entering the intake. This would be avoided with a rocket-propelled rammer…”
This statement contradicts the building description issued by the LFW issued in late 1944. In it was stated the following about this potential use. “…Due to tactical considerations, among other things, the speed difference of fighters and bombers, preferably when attacking from behind, though the thought was given to the installation of brakes .. and although ample room for weaponry is present, the task of ram fighter has been taken into account – so that the ramming attack will not lead to the loss of the aircraft, thanks to its shape and static structure.”
This meant that this concept may have been considered by Lippisch at some point of the project’s development. The P 13 overall shape resembles closely to aircraft that was intentionally designed for this role. That said, it does not necessarily mean that the P 13 was to ram enemy aircraft. The use of such tactics was considered but their use was discarded, as it was seen as a futile and flawed concept. The project itself never got far enough to have an armament decided for it.
The precise method of how to engage the enemy aircraft is not clear as the P13a was not provided with any armament. It is sometimes referred to in the sources as it was to be used as a ram aircraft. Source: theaviationgeekclub.com
Conclusion
The Lippisch P 13 is an unusual aircraft project in nearly all aspects. Starting from its shape, which proved, at least during wind tunnel tests, that the concept was feasible. On the other hand, its engine seems to have simply been abandoned after discouraging test results. It is unlikely that such a combination would have worked to the extent that the P 13 designer hoped it would. During the testing, they could not find a proper solution to providing a constant thrust with sufficient force to reach a speed that was expected of it. So the whole concept was likely to be doomed from the start.
The DM 1 however, while it was never seriously worked on by Lippisch himself, managed to save a group of young students who used the project to avoid being sent into combat.
DM-1 Specifications
Wingspans
5.92 m / 19 ft 5 in
Length
6.6 m / 21 ft 7 in
Height
3.18 m / 10 ft 5 in
Wing Area
20 m² / 215 ft²
Engine
None
Empty Weight
300 kg / 655 lbs
Maximum Takeoff Weight
460 kg / 1,015 lbs
Maximum Speed
560 km/h / 350 mph (gliding)
Landing speed
72 km/h / 45 mph
Release altitude
8,000 m (26,240 ft)
Crew
1 pilot
Armament
None
Theoretical Estimated Lippisch P 13 Specifications
Wingspans
5.92 m / 19 ft 5 in
Length
6.7 m / 21 ft 11 in
Height
3.18 m / 10 ft 5 in
Wing Area
20 m² / 215 ft²
Engine
Unspecified ramjet
Maximum Takeoff Weight
2,300 kg / 5,070 lbs
Maximum Speed
1,650 km/h / 1,025 mph
Flight endurance
45 minutes
Fuel load
800 kg / 1,760 lb
Crew
1 pilot
Armament
None mentioned
Illustrations
The Lippisch DM-1, unnecessary to the overall project, it none the less allowed a group of students to escape military service.
A possible silhouette of the P13.
Credits
Article written by Marko P.
Edited by Henry H.
Ported by Marko P.
Illustrated By Medicman11
Source:
A. Lippisch (1981) The Delta Wing History and Development, Iowa State University Press
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putham
B. Rose (2010) Secret Projects Flying Wings and Tailless Aircraft, Midland
D. Sharp (2015) Luftwaffe Secret Jets of the Third Reich, Mortons
Kingdom of Hungary (1939)
Fighter Aircraft – One prototype
In their search for a new fighter, the Magyar Királyi Honvéd Légierő MKHL (English: Royal Hungarian Home Defence Air Force), approached the Germans for help. Initially, a deal was made with the German Heinkel company for the delivery of new He 112 fighters and a production license. However, nothing came of this deal, which led to the Hungarians attempting to develop their own fighter, partially based on the He 112.
In the late 1930s, the Hungarian Air Force was slowly in the process of rebuilding its combat strength by the acquisition of new aircraft. For a modern air force, they needed better fighter designs, which they were then seriously lacking. Luckily for them, they began to improve their relations with Germany, so it was possible to acquire new equipment from them. In June 1938, a Hungarian delegation was sent to the Heinkel company, and the pilots that accompanied this delegation had a chance to fly the He 112 fighter. This aircraft was Heinkel’s response to the Reichsluftfahrtministerium’s (English: German Ministry of Aviation) request for a new fighter. While generally a good design, it ultimately lost to Messerschmitt Bf 109. While the He 112 project was canceled by the RLM, to compensate for the huge investment in resources and time to it, Heinkel was permitted to export this aircraft to foreign buyers. Several countries such as Austria, Japan, Romania, and Finland showed interest, but only a few actually managed to procure this aircraft, and even then, only in limited numbers.
He 112 the unsuccessful competitor of the Bf 109. Source: www.luftwaffephotos.com
The Hungarians were impressed with the He 112 and placed an order for 36 such aircraft. For a number of logistical and political reasons, the decision to sell these aircraft to Hungary was delayed. A single He 112 was given to Hungary in February for evaluation but was lost on its first flight. Realizing that the Germans would not deliver the promised aircraft, the Hungarians instead decided to ask for a license. This was granted and Heinkel also delivered two more He 112 B-1s. When the license arrived in Hungary in May 1939, a production order for the 12 first aircraft was given to Weiss Manfréd aircraft manufacturer.
The first He 112 to reach Hungary, it was lost in an accident during its maiden test flight. Source: D. Bernard Heinkel He 112 in Action
A New Fighter
Despite the best Hungarian attempts to put the He 112 in production, this was prevented by the war between Poland and Germany. At the start of the Second World War, RLM officially prohibited the export of any German aircraft engines and equipment. This meant that the vital Jumo 210 and DB 601 engines would not be available. Based on this fact, all work on the Hungarian He 112 had to be canceled.
The Hungarian Air Force only operated a few He 112, which saw limited service before being reused as training aircraft. Source: www.destinationsjourney.com
As the Hungarians had the license for the He 112, some parts could still be domestically produced. In essence, this offered the Hungarians the chance to develop a new fighter, based on the He 112 blueprints. Not wanting to waste this opportunity, the Hungarian Ministry of War Affairs issued a directive to commence developing a new domestic fighter by reusing some components from the He 112. The whole project was undertaken by WM’s own chief designer Bela Samu, who began development in early 1939. To speed up development, the He 112 wing design was copied, but given the comparatively underdeveloped Hungarian aircraft industry, the wing was to be built of wooden materials instead of metal, as it was on the He 112. Other differences included using an oval-section fuselage, different armament, a new engine, and a cockpit redesign.
The first prototype was completed quickly by the end of 1939. In its prototype stage, the aircraft was painted in a light gray livery, earning it the nickname Ezüst Nyíl (English: Silver arrow) from the personnel that worked on it. Once it was issued to the Air Force for testing, it received the standard Hungarian camouflage scheme, and the designation V/501 was also allocated to it. The maiden test flight was undertaken close to Budapest on the 23rd of February 1940. The flight proved successful and a maximum speed of 530 km/h (330 mph) at a height of 5 km (16.400 ft) was achieved. Some issues were detected, the most problematic proved to be the strong vibration caused by the exhaust system. Despite this, the project development pressed on.
The WM 23, possibly at an early stage of development. It was powered by a 1,030 hp WM K-14B engine which gave it comparable power to the He 112. Source: www.destinationsjourney.com
Short Service Life
Despite the time and effort put into the project, it all went for nothing as the prototype was lost in an accident in February, or April, depending on the source, 1942. During a test flight at high speeds, one of the ailerons simply broke off. The pilot lost control of the aircraft and had to bail out. The uncontrolled plane hit the ground and was utterly destroyed, and with it, the whole project was canceled.
Beyond this major setback, another reason why this project was canceled was the start of the license production of the German Bf 109G fighter. It was much easier, and faster, to commence production of this aircraft, thanks to German technical support, than to completely develop new tooling and equipment for the WM 23.
Technical Characteristics
The WM 23 was a mixed-construction single-engine fighter heavily inspired by the German He 112. Given its somewhat obscure nature, not much is mentioned in the sources about its overall construction. Given the urgency of the project, instead of the monocoque fuselage, the Hungarian engineers decided to use a simpler oval-section fuselage which consisted of welded steel tubes and then covered with plywood. The wings, as mentioned, were taken from the He 112, but had one huge difference, being made of wood, including its control surfaces.
The landing gear was another part more or less taken directly from the He 112. They consisted of two larger landing wheels that retracted into the wings, and one semi-retractable tail wheel. But based on the photographic evidence, their overall design changed during the prototype’s development. On the prototype, possibly at an early stage, a V-shaped front landing gear strut was used. This was later replaced by a large single-leg landing gear. The cockpit was equipped with a sliding canopy that slid to the rear.
The WM 23 was powered by a 1,030 hp WM K-14B (sometimes marked as 14/B) engine. This engine was developed based on the license of the French Gnome and Rhone 14K engine, a fourteen-cylinder radial engine equipped with a single-stage, single-speed supercharger. As mentioned, during the fifth test maximum achieved speed was 530 km/h (330 mph).
While the prototype was never fitted with an offensive armament, the Hungarians had plans for a potential armament In the wing, two 8 mm (0.33 in) machine guns were to be installed. In addition, two 12.7 mm (0.5 in) heavy machine guns were to be added atop the engine compartment. Lastly it was to have a payload of two 20 kg bombs (44 lbs).
There are very few surviving photographs of the WM 23. While showing promising performance, the destruction of the only prototype and the commencement of the Bf 109G’s production in Hungary ultimately lead to the cancelation of this project. Source: D. Bernard Heinkel He 112 in Action
Conclusion
The WM 23 was an interesting Hungarian attempt to domestically develop and build a fighter aircraft that was greatly influenced by the He 112. It showed to be a promising design, with the prospect of entering serial production. However, the loss of the single prototype put an end to this project. By 1942, the Hungarians simply did not have the time to start over again with the WM 23, so they abandoned it in favor of the license production of the German Bf 109G.
WM 23 prototype Specifications
Wingspans
31 ft 5 in / 9.6 m
Length
29 ft 10 in / 9.1 m
Height
10 ft 9 in / 3.3 m
Wing Area
199 ft² / 18.5 m²
Engine
One 1,030 hp strong WM K-14B
Empty Weight
4,850 lbs / 2,200 kg
Maximum Take-off Weight
5,733 lbs / 2,600 kg
Maximum Speed
330 mph / 530 km/h
Crew
1 pilot
Proposed Armament
Two 12.7 mm (0.5 in) heavy machine guns and two machine guns 8 mm (0.33 in) machine guns plus a bomb load of 20 kg (44 lbs)
Credits
Article written by Marko P.
Edited by Henry H.
Ported by Marko P.
Illustrated By Carpaticus
Illustrations
The WM-23’s factory test colorsWM-23 with Hungarian Airforce livery
Source:
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
D. Bernard (1996) Heinkel He 112 in Action, Signal Publication
G. Punka, Hungarian Air Force, Signal Publication
R.S. Hirsch, U, Feist and H. J. Nowarra (1967) Heinkel 100, 112, Aero Publisher
C. Chants (2007) Aircraft of World War II, Grange Books
J. R. Smith and A. L. Kay (1990) German Aircraft of the Second World War, Putnam
Nazi Germany (1940)
Light Transport and Trainer – Number built: 1,175
While often seen as less exciting than their combat counterparts, transport and auxiliary aircraft provided vital services in moving cargo, and training new pilots. Light transports which could combine both duties were thus extremely desirable during the war as theaters stretched across continents and pilot attrition was high. Luckily for the Luftwaffe, the Siebel company provided them with a simple but effective aircraft that could easily fulfill both roles. This was the Si 204, which saw wide-scale use both during, and after, the conflict.
The Si 204. Source: www.airwar.ru/
Siebel company history
The story of Siebel began back in 1936 when Hans Klemm opened a new aircraft factory the, Flugzeugbau Halle GmbH. This company would go on to produce license-built aircraft, including the Focke-Wulf Fw 44, and Heinkel He 46. Between 1936 and 1937, a new project led by Hans Klemm was initiated. This was a light twin-engined transport aircraft designated as Fh 104. While the work was going on, Klemm decided to hand over the factory to well-known aircraft enthusiast Fritz W. Siebel. The same year the name was changed to Siebel Flugzeugwerke Halle GmbH. Under new management, the work on the renamed Siebel Fh 104 continued. The Siebel Fh 104 would prove to be a solid design and was pressed into Luftwaffe service as a communication and liaison aircraft. In 1942 the production of this aircraft was terminated, by which time only some 46 were built. The Siebel factory would survive the war and even produce a few new aircraft designs. It would continue to exist up to 1968 when it was merged with Messerschmitt-Bolkow GmbH.
The first aircraft to come out of the o Siebel Flugzeugwerke production was the Siebel Fh 104 Source: hwww.armedconflicts.com
The Siebel 204
Following the success of the Fh 104, Siebel received a request from the Luftwaffe officials in 1939 to design and build a new twin-engine, 8-passenger transport aircraft. So Siebel and his team of engineers began working on such a design. While they may have used the experience gained while working on the Fh 104, their next project was a completely new design. The first prototype Si 204 V1 (D-AEFR) was completed in early 1940, and was flight tested on the 25th of May the same year. Sources disagree about the year when the maiden flight was made. For example, D. Nešić and M. Fratzke mentioned that it happened in 1941 while M. Griel placed it in 1940. The test flight proceeded without any major issues, so the development of this aircraft carried on. In October 1940 the Si 204 V2 (D-IMCH) was flight tested. Both of these would serve as bases for the pre-production A-0 series which were to be operated by the German Lufthansa airline. The first prototype was scrapped in 1942 while the second remained in use up to early 1944 when it was lost in an accident.
Following its successful testing, the first production version known as Si 204A was built. It was powered by two 360 hp, or 465 hp depending on the source, Argus As 410 engines. The Si 204A-0 and A-1 were put into production in 1941, the precise numbers are not clear but were likely limited. As the war dragged on these were mainly used for crew training, a role to which they proved well suited.
The Luftwaffe was generally satisfied with the Si 204A’s performance as a trainer but requested that a new version of it be built. This version was dedicated to various crew training tasks including; radio navigation, instrument flying, bombing, and communication. Other requests were made regarding its front canopy design and stronger power units. For this reason, the engines were replaced with two 600-hp Argus As 411 12-cylinder engines. Additionally, the original stepped canopy was replaced with a fully glazed canopy.
The new version was to be designated Si 204D. The fate of the skipped B and C versions is unclear, but these were likely only paper projects. The Si 204V3 and V4 served as bases for the Si 204D aircraft. Both were flight tested in early 1941, withhe V3 being lost in an accident during mid-1942 while the fate of the V4 is not known.
Technical characteristics
The Si 204 was designed as a low-wing, twin-engine, all-metal transport, and training aircraft. Its fuselage was made of round-shaped formers each connected with a series of metal bars. These were covered with sheet metal plating. On the fuselage sides, there were four rectangular windows.
The wings and tail units were also of an all-metal construction. The wings were built using only a single spar. The dihedral tailplane was divided into two fins and rudders, which were located on their tips.
In the last months of the war, due to shortages of resources, Siebel attempted to replace some metal components using wooden materials. The end of the war prevented any of these wooden components from ever being used.
The pilot and his assistant were positioned in the front. As many German bombers had a fully glazed canopy, to help with the training and adaptation of new pilots, the Si 204 was also equipped with such a designed canopy. It largely resembled the one used on the He 111. Thanks to it the pilot had an excellent view during the flight.
As mentioned earlier, Si 204D was powered by two 600 hp Argus As 411 12-cylinder engines, these used two variable pitch blade propellers. The maximum speed achieved with these engines was around 364 km/h. With a fuel load of 1.090 liters, the maximum operational range was around 1.800 km.
The landing gear was more or less a standard design. It consisted of three wheels. The landing gear retracted back into the engine nacelles. These were not fully enclosed and part of the wheels was exposed. The tail wheel was not retractable.
While initially designed as a passenger transport aircraft, the Si 204 would be primarily used for crew training. For this reason, its interior compartment could be equipped with different training equipment depending on the need. Including radio, radar, or navigation equipment.
The Siebel 204D side view. Its overall design is quite similar to the German he 111 bombers. Source: www.airwar.ruSiebel pilot cockpit interior. The pilot and his assistant had an excellent view of the surrounding thank to the large glazed cockpit. Source: www.airwar.ruThe Siebel 204D had standard landing gear. The two front wheels retracted back into the engine nacelles. These were not fully enclosed and part of the wheels was exposed. Source: www.airwar.ru
Production
Despite being Siebel’s own design, the factory itself lacked production capabilities as it was already heavily involved in the manufacturing of other designs including the Ju 88. The actual production was redistributed to two occupied foreign factories. The first were the SNCAC factories located in Fourchambault and Bourges in France, which came under German control after the successful end of the Western Campaign in 1940. The second production center was located at the Czechoslovakian Aero factory, which was also occupied by the Germans even before the war started. Other companies like BMM and Walter were also involved in the production of this aircraft.
The production numbers were initially low, for example, the SNCAC only managed to build five aircraft per month during 1942. From 1942 to 1944 this company produced some 150 Si 204D aircraft. Czechoslovakian production capabilities proved to be better, managing to manufacture some 1007 such aircraft by the end of the war. The total production of all versions during the war is around 1.175 aircraft according to H. A. Skaarup. This number, as is the case with many German production numbers, may be different in other sources.
Service
As mentioned earlier the Si 204 was mainly used for crew training for various roles, transportation, and glider towing. While there is quite limited information on their precise service life, it appears to be quite a successful design and was praised by the Luftwaffe pilots. By the end of the war, some were even equipped with various radar equipment including FuG 217R and FuG 218V2R tail warning radars to train night fighter pilots. Interestingly the Si 204 was employed for the training of further Me 262 pilots.
It is often mentioned that the Si 204 was the last Luftwaffe aircraft to be shot down. Near Rodach in Bavaria, just a day before the Germans capitulated to the Allies. That kill is accredited to Lieutenant K. L. Smith, a pilot of a P-38 Lightning from the 474th Fighter Group. How valid this claim is difficult to know precisely due to the general chaotic state in Germany at that time.
During its service life, the Si 204 proved to be an effective aircraft, completely suited for its designated role. Source:www.airwar.ru
Combat adaptation attempts
For fighting against Partisan movements in occupied Europe, older or modified aircraft were often reused, preserving the more modern aircraft for the front line use. The Si 204 was seen as tempting for such a modification, so the Siebel engineers tried to develop a fully armed combat version of this aircraft. To fulfill this role some extensive modifications were needed.
Inside its front fuselage, two 13 mm MG 131 heavy machine guns were placed. Each was supplied with 500 rounds of ammunition, stored in a metal ammunition bin. These were to be operated by the pilot. For this reason, he was provided with a Revi 16A-type gun sight. For protection against enemy aircraft, on top of the fuselage, a fully glazed turret armed with one 13 mm MG 131 was added. The turret movement was electrically controlled. Elevation was -10 to +80 while it could achieve a full 360 rotation.
The interior of the Si 204 received a bombing bay that could carry 12 70 kg bombs. External bomb racks with a capacity ranging from 50 to 500 kg were added. The pilot seat received armor plates for his protection from enemy fire on the Si 204E. Due to its relatively slow speed, using this aircraft against a well equipped enemy was dangerous, so it was to be restricted to night bombing action only.
In 1944 two prototypes were completed and tested. Besides these two, the number of Si 204E’s built is unknown. Given its experimental nature, possibly only a few prototypes were ever completed. Allegedly these saw limited action fighting the Belarusian Partisans. The extent to which they were used in this role if used at all, remains unknown.
The Siebel 204E could be easily distinguished by its glazed turret, located on the fuselage top. This version is somewhat obscure as it is not known how many were built and if they ever saw action in combat. Source: www.silverhawkauthor.com
Carrier proposal
With the Allies slowly getting the upper hand in the air over Europe, the Luftwaffe became ever more desperate to find a solution to this problem. Mass production of cheap fighters was seen as a possible solution. One such project was proposed by Professor Alexander Lippisch, best known for designing a series of glider fly-wing designs. He was also involved in designing various bizarre aircraft projects, including the unusual P 13a aircraft.
A drawing of Professor Alexander Lippisch P 13a fighter. Source: D. Sharp Luftwaffe Secret Jets of the Third Reich
While working on the P 13, Lippish was approached with a request from a group of students from Darmstadt and Munich universities who wanted to avoid conscription to join his work. Lippisch agreed to this and dispatched one of his assistants under the excuse that for his own project, a wooden glider was to be built and tested. They together managed to build an experimental DM-1 glider.. However, this aircraft was not to be towed like any other glider. Instead, the DM-1 was to be placed above the Si 201 on brackets and carried. However, nothing came of this project, and no such attempt at deploying the glider was made as the war ended.
Professor Alexander Lippisch’s work involved designing unusual and unorthodox aircraft designs including the Li DM 1. Source: Professor Alexander Lippisch’s work involved designing unusual and unorthodox aircraft designs including the Li DM 1. Source: www.fiddlersgreen.net
After the war
When the war ended, the Si 204 would see more service in the hands of many other nations. The advancing Allies managed to capture a number of fully operational aircraft. These were immediately put to use either as transport, liaison, and evaluation purposes. At least one Si 204D was extensively used by the British pilot Captain Eric Brown, who was the chief test pilot of the Royal Aircraft Establishment at Farnborough. He was involved in a British project tasked with taking over German war research installations and interrogating technical personnel after the war.
He was generally impressed with the Si 204D’s overall performance, performing many flights on it. He later wrote about its performance. “The Si 204D was really a viceless airplane to handle, with inherently good stability about all three axes and good harmony of control. It was very well equipped for its tasks, and the later model I flew had an autopilot fitted. Like all German aircraft of that era, it was a mass of electrics, with extensive circuit breaker panels, and all very reliable. However, the one thing the Germans never got right was wheel brakes, and the Sievel was no exception..”
A group of six or more Si 204 was captured by the Allies. Source: www.asisbiz.com
The Siebels that were moved to Farnborough were extensively used during 1945 for various roles, like communication, providing navigational guidance, and transporting pilots to various captured Luftwaffe airfields. The last operational flight of the Si 204D at this base was recorded at the start of 1946.
After the war, the Si 204 saw the most common use in French and Czechoslovakia, which actually continued to produce this aircraft. In French service, these were known t as NC 700, powered with As 411 engines, NC 701 ‘Martinet’, powered by two Renault 12S engines, and NC 702, a modified version of the Si 204A. In total the French constructed over 300 aircraft of this type. Some would see service in French Asian and African colonies. The last operational flight was carried out in 1964. Two NC 702’s would be given to Maroko in 1960, but their use and fate is unknown.
After the war, the French sold 7 NC 701 to Poland. They were used mainly for mapping photography. These were operated until the mid-1950s’ before being put out of service.
By mid-1960 some 5 French-built Siebels were given to the Swedish National Geographic Institut. These were mainly used for taking meteorological photographs.
The second country that produced the Si 204 was Czechoslovakia. They were built in two versions, the C-3 for the army and C-103 for civilian use. Both were mainly operated in their original transport roles. From 1945 to 1950 some 179 would be built.
The Soviets also managed to capture an unknown number of operational Si 204. These were briefly pressed into service before being replaced by domestic-built designs.
Switzerland also operated at least one Si 204D. This aircraft and its crew escaped from Germany on the 7th of May 1945 and landed at Belp near Bern. The Si 204D would remain in Switz use under the B-3 designation.
Soviets operated an unknown number of Si 204. Their use was brief as it was replaced with new Soviet-built designs. Source: www.armedconflicts.comDuring late 1945 and early 1946 the Si 204 were used by the Western Allies for transport and evaluation. Source: www.airwar.ru
Production Versions
Si 204 – Prototype series
Si 204A – Transport and training version built in small numbers
Si 204B and C – Unknown fate, but likely paper projects only
Si 204D – Model with a new glazed cockpit and powered with a stronger engine
204E – Experimental modification for combat operational use
Flying carrier – One Si 204 was to be modified as a carrier for the Doctor Alexander Lippisch experimental all-wing fighter, but was never fully implemented
Operators
Germany – Most produced planes were used by the Luftwaffe primarily used for crew training
Czechoslovakia – Produced some 179 additional aircraft for military and civilian use
France – Over 300 modified aircraft (with French engines) were produced in France and saw wide service up to 1964.
Soviet Union –Operated some captured Si 204
Poland – Brought 7 NC.701 from France after the war
Macoro – Operated two French NC 702
Sweden – Operated five French-built Siebels
Switzerland – Used at least one Si 204 under the designation B-3
American and Great Britain – Both briefly operated a number of captured Si 204 after the war
Surviving aircraft
Today there are a number of partially or wholly survived aircraft Si 204. For example, the French Aviation Museum in Paris had one Si 204A and another located in the Escadrille du Souvenir close to Paris. One Si 204 is located at Sweden Lygvapen Museum.
Conclusion
While Germany in the Second World is better known for designing and producing a series of combat aircraft, their auxiliary aircraft are often overlooked. The Si 204 was one such case, despite its successful design, it is rather poorly documented in the sources. Its design was a success which can be seen in its after-war use, most notably by the French up to the mid-1960.
Si 204 D Specifications
Wingspans
21.33 m / 70 ft
Length
12 m / 39 ft 3 in
Height
4.25 m / 14 ft
Wing Area
46 m² / 495 ft²
Engines
Two Argus As 411 engines
Empty Weight
1.500 kg / 3.300 lbs
Maximum Takeoff Weight
3950 kg / 8,710 lbs
Climb Rate to 1 km
In 3 minute 30 seconds
Maximum Speed
364 km/h / 226 mph
Cruising speed
340 km/h / 210 mph
Range
1,800 km / 1,120 miles
Maximum Service Ceiling
7,500 m / 24,600 ft
Crew
Pilot and his assistants plus eight-passenger
Armament
None
Illustrations
Si-204DSi-204E
Credits
Article written by Marko P.
Edited by Henry H. & Stan L.
Ported by Marko P.
Illustrated By Ed Jackson
Sources
D. Nešić (2008), Naoružanje Drugog Svetskog Rata Nemačka Beograd
H. A. Skaarup (2012) Axis Warplane Survivors
D. Mondey (2006). The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
D. Donald (1998) German Aircraft Of World War II, Blitz Publisher
J. R Smith and A. L. Kay (1972) German Aircraft of the Second World War, Putnam
Jean-Denis G.G. Lepage (2009), Aircraft Of The Luftwaffe 1935-1945, McFarland & Company Inc
Captain E. ‘Winkle’ Brown (2010) Wings of the Luftwaffe, Hikoki Publication
M. Griehl (2012) X-Planes German Luftwaffe Prototypes 1930-1945, Frontline books
T. H. Hitchcock (1998) Jet Planes Of The Reich The Secret projects, Monogram Aviation Publication
An artistic drawing of what this unusual aircraft might have looked like source: www.nevingtonwarmuseum.com
The German military industries during the Second World War are often seen as highly developed, and producing highly sophisticated, superior weaponry to that used by the Allies. The reality is quite different, as they began to implement the mass use of slave labor and were chronically short of several key resources. Regardless, bright engineering minds and desperation led to the introduction of a series of new technologies, some being the first of their kind. The German aviation industry was credited with creating some advanced and innovative, but ultimately scarce aircraft designs such as the Me 262 jet fighter. With this reputation, many theories on German hyper-advanced, secretive aircraft projects began to spread after the war. Among them, was the theory that they had created a series of supersonic, flying saucers.
The Myth of German Technological Superiority
In the decades after the Second World War ended, in media and popular culture, German military technology and industry were often presented as significantly superior to the Allies. This is perhaps the most obvious when mentioning the German Wunderwaffe (Eng. wonder-weapon). These weapons ranged from flying bombs, ballistic missiles, jet engines, and super-heavy tanks. In essence, from the German perspective, the Wunderwaffe presented any weapon that would help them turn the tide of the war. Probably the best examples that were used in greater numbers were the V-2 rockets and the Me 262 jet fighter. In the case of the V-2, these were used en masse to bomb targets in Great Britain and continental Europe. Descending at a speed of nearly 6000 km/h, they could not be tracked and struck without warning. The Me 262 was able to achieve speed far superior to that of ordinary piston-powered aircraft., and with its armament of four 3 cm cannons, it could easily take down heavy Allied bombers.
Before we go any further we must discuss the history and truthfulness of these wonder weapons and their origin. It is important to point out that the German war industry prior to and during the war struggled with numerous industrial shortcomings. It was unable to produce enough quantities of weapons and materiel to satisfy the German Army’s demands. This can be best seen in the pre-war tank production when during the invasion of Poland, only a limited number of modern Panzer III and IV were available. The lack of anything better forced the German armored formation to rely on the weaker Panzer I and II tanks. The effective heavy tanks, such as Tigers, due to their complexity and price, were built in limited numbers. Even the Panther, of which some 6,000 were built, which was much cheaper and easier to build, could never be produced in such numbers to fully replace older designs. The Army itself, while generally portrayed to be highly motorized, was actually heavily dependent on horses for the transportation of artillery and supplies.
Regarding the term Wunderwaffe, it is almost entirely associated with German propaganda. The term was more actively used when the war began to turn bad for the Germans, especially after defeats like the one at Stalingrad. In theory, any weapon or vehicle could be categorized as a Wunderwaffe. Ranging from an assault rifle to a jet-powered aircraft. Some were just paper projects or simple proposals that were intended to enter production but they actually never did.
Now the question would be were these weapons truly superior to the Allied ones? A simple answer is no, but every single of these Wunderwaffe had pros and cons, so making a simple conclusion about their effectiveness and use would revive extensive research and work that is beyond this article. But we can briefly consider the effectiveness of the two previously mentioned weapons systems, the V-2 and the Me 262. While the V-2 was quite advanced for its day, it was plagued with many problems. The reliability of the rockets was not guaranteed with some of them exploding during take-offs. Precision was their weakest point, and by late 1944, when they were used en mass, the Germans simply lacked the means to observe their effectiveness against targets in Great Britain and could not correct the aim of the rockets. The Me 262 was also far from perfect, given the technological novelty of many of its components, it too suffered from poor reliability. Both weapons were also introduced too late to have any real impact on the war.
The first mass-produced jet fighter in the world was the Me 262. Source: Wiki
The Germans lost the war, which obviously showed that the concept of the Wunderwaffe was just a desperate attempt to increase the morale of its people and to fight the ever-increasing fear of a possible defeat. But despite it, these weapons continued to tickle the imagination in modern-day culture. To some extent, some mysteries would emerge after the war, that were either fabricated or were to some extent real. The probably best-known, and most infamous is the German flying disc project which employed the unusual circular wing design.
A Brief History of Circular Wing Design
While the circular wing design may be seen often wrongly connected to the unidentified flying object its actual origin is more earthly in nature and goes way back to the 18th century. One of the first recorded proposals for using a circular wing design to create a flying contraption was presented by Swedish scientist and philosopher Emanuel Swedenborg. He published his work in a scientific journal in 1716, but his proposal ultimately led nowhere. Nearly two centuries later in 1871 when French inventor Alphonse Penaur tested his own flying model. Encouraged by this success in the following years he began working on a new aircraft design that was to have elliptical wings and be powered by two smaller steam engines. But he committed suicide in 1880 and never fully implemented this new project. In the 1910s a wealthy weaver, Cedric Lee and his friend George. T. Richards began working on a circular wing glider. After a series of flight tests, they noticed that the glider had a good overall flying performance. Inspired by this success, they hired an engineer, James Radley, to help them build their new propeller-driven circular-wing aircraft in 1913. This aircraft also performed well during its test flight, but during the landing, the engine stopped and the aircraft crashed. While the pilot was unharmed the aircraft was a complete loss. Both Cedric Lee and George. T. Richards continued working on improving their design, but after a few more crash landings, they gave up on their project. In the 1940s, the American Army and Navy experimented with using a few different semi-disc wing designs These were the Boeing B.390 and the XF5U-1. While boths were surely interesting aircraft, their overall design proved to be a failure and none would be accepted for service.
Cedric Lee and George. T. Richards incomplete experimental circular-wing aircraft. Source: B.Rose and T. Buttler Secret project Flying Saucer AircraftThe Boeing B.390 design, while being a much simpler design than the XF5U-1, proved to be an unsuccessful design. Source: B.Rose and T. Buttler Secret project Flying Saucer Aircraft
The Flying Disc Project
The history of German flying disc projects is rather poorly documented, and in many cases, outright fabricated. They were allegedly related to German attempts to develop a vertical take-off and landing (VTOL) aircraft. It is surrounded by a veil of secrecy, and quackery, and probably that is the main reason why it is often connected to mythical or even supernatural origins. It is worth mentioning that the sources regarding these developments are quite unreliable, as they are mostly based on stories told by eyewitnesses and individuals. The reliability of these eyewitnesses and individuals should be taken with a great grain of salt. We must take into account that many of the written sources were made decades after the alleged events occurred. Another vital point to consider is the reliability of the main individuals that were allegedly involved in such projects. One such person was Rudolph Schriever, who after the war, gave an account of his reputed involvement in the development of a secret flying disc aircraft.
According to his story, the German Reichsluftfahrtministerium RLM (Ministry of Aviation) appointed a young aircraft design engineer and pilot, Rudolph Schriever, to work at the Heinkel-Rostock design office. In reality, he had no verifiable claims to German military service, relating to aviation or otherwise, and his only known employment was for the US Army as a truck driver after the war. It’s also not quite clear, but in some sources there is a mention of a certain Otto Habermohl, supposedly also involved from the start. Not to be beaten out by Schriever, there is not only any evidence for his credentials, but he doesn’t seem to have existed at all.
At that time, different engineers wanted to solve the issue of reducing the space needed to launch and recover aircraft. One solution was to launch an aircraft directly, and vertically into the sky. In this case, such aircraft would not need a long runway and instead could take to the sky from a single launching point. But this concept, while tested over the years, was never successfully implemented during the war.
Schriever claims to have approached this problem with a somewhat unusual solution. He made plans using a disc-shaped aircraft powered by jet engines using the so-called Coanda effect. This effect was named after the Romanian Henri Marie Coanda, an aerodynamic engineer. He discovered that when using a jet stream that is applied tangentially against a convex surface it creates a lift force that could be further increased by circulation. Schiriever claimed to have presented his idea to Ernst Heinkel, who was said to have liked the concept. This supposedly led to the start of work on a small prototype. He claims that after some work, the prototype was completed in early 1941. This prototype received the simple V1 designation without any prefix for the aircraft type. This should not be confused with the V1 flying bomb, as the V stands for Versuchs (experimental or trial model) which was quite commonly used by the Germans especially in the aviation industry to describe experimental or pre-production models. This prototype supposedly consisted of a disc-shaped wing design powered by an electrical rotary fan, no power source is given.
In 1942, this prototype was allegedly flight tested. No precise information about its overall performance exists. The assembly of this prototype named V2 was said to have begun in nearly 1943. By that point, Schriever claimed that some design work was moved from Germany to occupied Czechoslovakia. Škoda factories near Prague are assumed to have provided assistance to this project, though he did not specify in his testimony. A few other companies were also mentioned to be to some extent involved in this project, this includes Junkers, Wilhelm Gustloff, and Kieler Leichtbau. The fate of the V2 prototype is not clear.
The testing of the Schriever flying disc was supposedly observed by a group of some 25 eyewitnesses from the Flight school which was stationed near this airfield. One of these eyewitnesses gave testimony to a German aeronautical magazine Flugzeug in 1987. The truth of these claims cannot be completely verified with certainty. If we consider the fact that more than 40 years have passed since this incident to the moment they gave the interview. They reportedly saw a strange disc-shaped aircraft. This aircraft was described as disc-shaped with an estimated diameter between 5 to 6 m with the height of an average man. They also reported that it had an aluminum color. And that while being on the ground held in position by four landing gear legs. It managed to reach a flight of around 300 m of distance at 1 m of height. In the event the witness was not being intentionally misleading, it is likely they saw a helicopter being tested, several designs of which were researched and built during the war.
This piece of equipment is often mentioned to be the Rudolph Schriever demonstrator for the whole concept.It shares a notable resemblance to a torque converter. Source: B.Rose and T. Buttler Secret project Flying Saucer Aircraft
Name of the project
Beside the names given to the prototypes, this whole project appears to not have received any official designation, which was somewhat odd. It is often simply referred to as the Heinkel-BMW or by its name of the inventor Schriever, or even as the Schriever-Habermohl flying disc. Also sometimes it is also referred to as Flugkreisel (Flying top). This article will use the Heinkel-BMW flying disc designation for the sake of simplicity only.
Further Work
By 1944, the whole team that worked on this project was supposedly moved to Czechoslovakia. The entire personnel were not stationed at one facility but instead relocated to various small cities in that occupied country. Allegedly, this was done to avoid any of them being killed in the Allied bombing raids. The main base of operation was said to be the Praha-Kbely Airfield. According to Schriever, by this time, other aircraft design engineers began joining the program. One of them was SS Lieutenant Helmut Zborowski who was then appointed commander of this base. Given his position, Helmut would be most likely directly involved in the project. Others included Dr. Richard Miethe who may have been involved in the German rocket development. He may have been involved in the Peenemunde rocket research center, but his work there was never verified and so far no connection has been proven. Lastly, there was Klaus Habermohl and surprisingly an Italian, Dr. Giuseppe Belluzzo, who specialized in the work of turbines. The involvement of these two in the supposed project is unclear. Dr. Giuseppe Belluzzo claimed after the war that he was involved in the disc-shaped aircraft project but there is no proof of this. Klaus Habermohl is another strange person that allegedly worked on this project. What is bizarre is that no actual proof was ever found that this was a real person that existed. Lastly, the role of Joseph Andreas Epp, who was an engineer, was a supposed consultant to the Heinkel-BMW flying disc program. After the war, he claimed to have greatly influenced the German disc-shaped aircraft project, but if this is true, or was just an attempt to gain fame are unknown, the latter option seems more possible.
Schierver claimed that, together this team decided to proceed and built a third,even larger aircraft. The necessary component for the aircraft was to be supplied by Heinkel while Bayerische Motoren Werke AG – BMW was to have been responsible for providing the necessary engines. During the construction of the V3 prototype, one member of the team proposed using an experimental radial flow gas turbine engine which was adopted. The V3 was said to have been completed in the autumn of 1944. It was said to be almost double the size of the previous prototype with a diameter ranging from 12.2 to 15.1 m. No specific model of jet engine was mentioned. Supposedly, this aircraft was capable of achieving subsonic speed and could take off vertically.
Alleged drawing of the V3 prototype, note there are a few slightly different drawings of this alleged prototype. Source: www.nevingtonwarmuseum.com
As the war was by this point obviously lost, the Germans tried to delay the inevitable, and out of desperation, the SS became more involved in Wunderwaffe projects. This flying disc was said to be one of them, with their supposed involvement helping to add another layer of esotericism. Supposedly, soon the new V7 prototype was under construction. The fate of the V4, V5, and V6 prototypes is unknown. The last prototype, the V7 was reportedly designed to be larger than its predecessor by having a diameter of 18.3 to 21.3 m. This prototype was to be powered by gas turbine engines, from the start. At some point the work on the prototype was supposedly taken over by Richard Miethe.
Technical characteristics
Given the general obscurity and poor source materials, the precise construction of this bizarre aircraft is unknown. The available information should be regarded as illegitimate as it is technically incorrect, extremely inconsistent, and often fantastical.
The aircraft itself was envisioned as a circular-rotary wing design likely made of metal and powered by several smaller jet engines. It consisted of a centrally positioned crew cabin, which was surrounded by a large rotary wing assembly, resembling a huge fan. These were surrounded by a huge likely metal ring. What holds this ring in place is not clear according to a few drawings of it that exist.
The V7 had a diameter of 18.3 to 21.3 m. To provide stability it is often suggested that this aircraft received a stabilizing fin added close to the central cockpit. The central cockpit appears to be hemispherical and was fully glazed, providing the crew with a good upper all-around view. The lower view would be greatly restricted by the large rotary wing and present extreme difficulty in landing. How they would resolve this issue is not clear. It is possible that at the bottom of the cockpit, additional windows were to have been added. The crew consisted of two to three crew members whose roles were not specified.
Beneath the large rotary wings, at least four jet engines were to be used to power the whole assembly. These provided lift during take-off and landing. Allegedly, horizontal flight could be achieved by adding additional engines possibly connected to the lower part of the cockpit unit. Several different possibilities could have been used for this project. Ranging from Jumo 004, Jumo 211/b, BMW 003 engines, Walter HWK109 rocket engine, or the Argus pulsejet. Its alleged maximum speed achieved was 1,200 km/h or up to 2,000 km/h at a height of 12,400 m. Given its nature, and that none of the engines would have sufficient performance for supersonic flight, both numbers seem unrealistic, to say the least. Even in Rudolph Schriever’s own testimony after the war, he claimed that the prototype only managed to achieve some basic flights. There is no record that any kind of armament was tested on this aircraft.
The Fate of the Project
Like most parts of this aircraft, its final fate is unknown. Hard to verify, and often absurd claims, mention that it climbed to heights of 12.200 m or managed to reach supersonic speed. Given that it was supposedly in its early development phase when the previously mentioned test flight was made, it is dubious that such a flight was possible even with all of the other issues.
The V7 was said to have been destroyed by the Germans to prevent its capture. Or the Germans failed in this and the Soviets managed to capture it, with no evidence existing in either case. There was also said to be a V8 prototype that was under construction by the war’s end. Another interesting but unconfirmed information is that some members of the team who worked on this flying disc including Richard Miethe actually managed to surrender to the Western Allies. This seems unlikely and was possibly fabricated by Miethe, who was known to have been involved in some different conspiracy theories, so his background is also not verifiable.
The alleged photograph was taken by Joseph Andreas Epp while he was driving toward the Prag airport in (possibly August) 1944. The part of the picture to the right is the same photograph that just increased in size and focused on the aircraft itself. Source: H. Stevens, Hitler Flying Saucers
Ironically, the Germans actually managed to develop and built in small series a rocket-propelled VTOL aircraft, the Ba 349. While quite an unusual design, it was a real, and more practical aircraft in contrast to fictitious flying disc projects. By the time it was flight tested in March 1945, it proved to be a failure.
The experimental and unusual rocked-powered Ba 349 Source: Wiki
Production
After the war, Joseph Andreas Epp claimed that at least 15 various prototypes were built and tested by the Germans. This number also includes another similar project that runs parallel to the alleged Heinkel-BMW project.
V1 – Small prototype model
V2 – Second prototype whose fate is unknown
V3 – Tested in late 1944
V4-6 – Possibly paper projects
V7 – Larger fully operational prototype
V8 – Alleged improved V7 prototype
Is the whole story actually True?
Not surprisingly the entire story about Rudolph Schriever’s work is in all likelihood, a complete fabrication. Author, G. Rendall (UFOs Before Roswell) gives a quite detailed account of the Schriever’s involvement, or better said, lack thereof in the German flying disc program.
The connection between Schriever and the Luftwaffe is not clear. While he is often described as having the title Flugkapitan (Flight Captain) this was not an official military rank but instead an honorary title given to civilian test pilots for their service. This usually includes testing a prototype aircraft and testing newly built planes. Schriever, allegedly thanks to his idea of a flying disc, and pilot skill was said to be summoned to Heinkel. In reality, there is no evidence to support this, neither him being an engineer nor a test pilot. His first public appearance and general mention of his flying disc project occurred when he gave an interview to the Der Spiegel news magazine on the 30th of March 1950.
Schriever may have been influenced to come up with his story by the Italian post-war flying disc stories. In the late 1940s Italian engineers showed great interest in designing similar aircraft. One engineer Francesco de Beaumont proposed a disk-shaped aircraft design powered by four jet engines. Another engineer Giuseppe Belluzzo in his own story given to the magazine Il Giornale d’Italia, was he mentioned Italian and German flying disc development.
Francesco de Beaumont proposed a disk-shaped aircraft proposal. Source: B.Rose and T. Buttler Secret project Flying Saucer AircraftA drawing of the Rudolph Schriever flying disc was published in the German newspaper Der Spiegel in March 1950 Source: H. Stevens, Hitler Flying Saucers
In any case, according to Schriever’s interview, he allegedly became involved in the flying disc program in 1942. Quite interesting is the fact that according to Schriever’s own words, this aircraft was successfully flight-tested. He continued to work on this project up to the end of the war when he had to flee with the whole documentation and plans. He set up a small workshop and the documents were stored there. In 1948 he claimed that they had been stolen by an unspecified foreign agency and never found. Despite claiming to be involved in the secret flying disc program as an engineer, Schriever after the war worked as a simple truck driver. As there is no proof of the Heinkel-BMW flying disc, the whole story seems like a fabrication invented by Schriever. As in his later interview, he claimed to be involved in other projects; it is likely that he was seeking attention possibly from the Allies or simply just bored during a time when Germany was undergoing a slow, painful recovery. To add to the likelihood of the latter, at that time German engineers were highly in demand by the Allies and the Soviets. The US army even organized special operations to bring many German scientists to America, yet Schriver’s claims of the disc aircraft were completely ignored. If being recruited was Schriever’s intention, he failed in that regard. In the end, Schriever’s story ended with his death in 1953, as reported by the German Newspaper, Deutsche Illustrierte
The Real German Circular-wing aircraft
As it is often the case, the reality is often quite disappointing for those who believe in the extraterrestrial and esoteric origins of German flying source projects. Likely the only circular-wing design that reached some operational level was the Arthur Sack Sack AS-6. While even this aircraft had a rather obscure history, it is known that one prototype was completed and tested. Given that this was mostly a one-man project built using salvaged components, it should not come as a surprise that it led nowhere. During testing, the aircraft failed to take off and after a number of improvements, attempts to fly the aircraft were eventually discarded. The only prototype would be destroyed in an Allied bombing raid. The Horten Ho 229 could technically also be classified as a flying disc aircraft, though by any technical definition, it is a flying wing. Despite some effort put into its development, it remained at the prototype stage. There were many other projects but few went beyond a mock-up stage.
While Arthur Sack’s work was never implemented in mass production, his unusual design was often mistakenly taken as some advanced and secret German World War II project, which ironically, it never was. Source: all-aero.comThe unusual Sack AS-6 circular-wing aircraft. Source: alkeeins.blogspot.comFew prototypes of the unusual Horten Ho 229 were built and tested during the end of the war. Source: www.ww2-weapons.comFocke-Wulf wooden mock-up of a VTOL aircraft that has some resemblance with a flying disc. Source: B.Rose and T. Buttler Secret project Flying Saucer Aircraft
Conclusion
Based on the few available information what conclusion could be made regarding this unusual design? Given its supposed secrecy and some element of Wunderwaffe allure, there is no doubt that the project is by all indications, fictional. Given the fact that the Germans allegedly spent years developing such aircraft but did not advance beyond the prototype stage, probably an indicator that the whole concept was likely flawed if it existed in the first place.
In the case of Rudolph Schriever’s work, it is quite certain that his entire involvement in such design was purely made-up after the war. Why he would do so is unclear. It is possible that he tried to get the attention of the Allies. In this regard, he failed, as the Allies probably saw,if they ever bothered in the first place, that the whole story was fake and invented from the start. It is much more likely that Rudolph Schriever simply wanted to do a publicity stunt, as he was probably extremely bored being a truck driver in post-war Germany. In the end, it’s likely that Rudolph Schriever never suspected that his story would have gone so far, being propelled by the flying saucer craze of the 1950s.
Alleged Heinkel-BMW V7 Specifications
Wingspans
18.3 to 21.3 m
Engine
Multiple unspecified jet engines
Maximum Speed
1.200 to 2.000 km/h / 745 to 1240 mph
Maximum Service Ceiling
12.400 m
Crew
2 to 3
Armament
None
Illustration
Artist impersonation of the Heinkel-BMW Flying disc
Credits
Article written by Marko P.
Edited by Henry H.
Ported by Henry H.
Illustrated by Medicman 11
Source:
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
R. Ford (2000) German Secret Weapons of WWII, MBI
B.Rose and T. Buttler (2006) Secret project Flying Saucer Aircraft, Midland
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putnam
H. Stevens, Hitler Flying Saucers. Adventures Unlimited Press
M. Fitzgerald (2018) Hitler Secret Weapons Of Mass Destruction, Arcturus
G. Rendall (2021) UfOs Before Roswell, Graeme Rendall
In the years prior to the Second World War, in Europe, there was significant interest in the development of aircraft intended to be used for breaking various world records. International competitions and exhibitions of new aircraft technology were quite common in this period. While at first glance this may seem like a hobby or sports event, in reality, these were often used for propaganda purposes to glorify a nation’s own aviation industry as superior to those of other countries. Achieving the greatest possible speed was often regarded as a clear measure of engineering supremacy over other countries. Germany was one of these, which took up the task in the late 1930s to achieve the greatest possible speed. They successfully achieved with the Me 209, an excellent record-setter, but completely unsuited for military use.
History of the Me 209
Due to restrictions imposed by the Western Allies, the Germans were partially limited from researching certain aircraft technologies. This did not stop them, however, as German aviation enthusiasts and aircraft manufacturers found numerous ways to bypass these restrictions. In the early 1930s the German aircraft industry worked at full capacity in order to increase the production of ever-needed new aircraft designs, but also introduced a series of new technologies. When the Nazis came to power in 1933, huge investments were made in order to build one of the most modern air forces in the world. Thanks to these resources, the Germans introduced a series of excellent aircraft designs that would dominate the skies over Europe in the first years of the war.
Some of these aircraft were specially modified so that they could be reused as propaganda tools. Their purpose was to achieve as many world records as possible. On the other hand, these were never actually accepted for service. One aircraft developed by Heinkel, the He 100, managed to achieve great success by reaching a speed of 764 km/h. However, this was not enough in the minds of the leading officials of the Reichsluftfahrtministerium – RLM ( German Air Ministry) who wanted something more imposing to show to the world. Adolf Hitler himself wanted to show off the superiority of the German aviation industry. So to win worldwide prestige in aviation, in 1937 Messerschmitt was instructed by the RLM to begin developing an experimental aircraft that set the world speed record. Given its specialized nature as a high-speed record-breaker, Messerschmitt received production orders for three prototype aircraft.
Willy Messerschmitt and his team of engineers began working on such a project, codenamed P.1059 in the early stage of development, soon after the requisite was made and the first working prototype was now under the designation Me 209 V1 (D-INJR).
The Me 209 mock-up in its early development stage. Most evident is the unusually rear-positioned pilot cockpit. Source: ww2fighters.e-monsite.com
The Prototype Development
The Me 209V1 prototype made its maiden flight at the start of August 1938. This flight was rather short at only 7 minutes. It was flown by the Messerschmitt chief engineer J. H. Wurster who was also a pilot. It was initially planned to use the experimental DB 601ARJ engine. As it was not yet available, a more orthodox 1,100 hp DB 601A engine was used instead. Almost from the start, the Me 209V1 was shown to be a troublesome design. Numerous issues were detected during flight testing. Some of these included the aircraft’s tendency to abruptly dive in mid-flight, the controls being heavy and hard to work with either in the air or on the ground, cockpit ventilation was poor, engine overheating problems were evident due to insufficient cooling, and cockpit visibility was quite limited. During landings, the Me 209 showed that it had a high sinking rate which usually led to a harsh landing, potentially causing damage to the landing gear. Despite all of this, which would in other circumstances lead to a sure cancellation of the project, the RLM officials urged that the Me 209 development should go on.
The side view of the Me 209V1 prototype. Interestingly the Messerschmitt workers did not even border apply any paint job to it. The natural aluminum color is quite evident in this photograph.
The second prototype Me 209 V2 (D-IWAH) was completed in early 1939. It was flight-tested for the first time on the 8th of February 1939. At that time Wurster gave up his position as the Messerschmitt test pilot to Fritz Wendel. On the 4th of April, there was an accident where this aircraft would be lost. After a short flight, the pilot Fritz Wendel was preparing for a landing approach on Haunstetten airfield. Suddenly, and without warning, the engine stopped working and the aircraft rapidly lost altitude. In another version of this event, the engine stopped working shortly after take-off. Regardless of which event was true, the aircraft was lost but surprisingly the pilot Fritz Wendel survived the forced landing without injury.
The Me 209V2 aircraft during its construction. While it was to be used for breaking the world record, its early demise meant the V1 had to be used instead. Source: ww2fighters.e-monsite.com
In the meantime, with the loss of the V2 aircraft, the testing continued using the first prototype which was finally equipped with the DB 601ARJ engine. This engine was rated for 1800 PS on take-off, with its emergency power setting reaching 2,465 PS.
A New World Record
As the V2 was lost and the other two prototypes were still under construction, it was devised to use the V1 aircraft for the anticipated world record flight. On the 26th of April 1939, while piloted by Fritz Wendel, the Me 209V1 reached a phenomenal speed of 755 km/h. It would take nearly 30 years before the record was beaten by a modified American Grumman F8F-2 in 1969.
German Minister of Propaganda Joseph Goebbels was quick to exploit this successful flight. Goebbels propaganda machine soon published this news as a great success of the German aviation industry. To hide the experimental nature of the Me 209, in propaganda news it was renamed Bf 109R. This was also done to deceive the general foreign public that this was an actual operational fighter. Shortly after that, all further work on beating the speed record was strictly forbidden. Following this success, Me 209 V3 (D-IVFP) was completed and flight-tested in May 1939. Its flight career would end shortly as its frame was mostly used for various testing and experimentation duties.
Technical Characteristics
The Me 209 was a low-wing, all-metal, single-seat, experimental record-breaking aircraft. Unfortunately due to its experimental nature, not much is mentioned about its precise construction in the sources.
The fuselage and the wings were made of a metal frame covered in aluminum sheets. The rear tail unit had an unusual design with the rudder being greatly enlarged. This was done to help the aircraft design cope with propeller torque.
The Me 209 landing gear consisted of two landing gear units that retracted outward towards the wings. The Me 209 used a more common type of landing gear that retracted inward to the wings. To the rear, a sliding skid was placed at the bottom part of the large tail fin. The skid was connected with a spring to the tail unit and could be completely retracted to reduce the drag.
The cockpit was placed quite to the rear of the aircraft fuselage. This design had a huge flaw, as it severely restricted the pilot’s front view. The canopy of this cockpit opens outwards to the right. It was likely taken directly from Messerschmitt’s early design of the Bf 109. In an emergency, the canopy could be jettisoned.
The Me 209 was to be powered by the DB 601ARJ engine, a twelve-cylinder, liquid-cooled V-12 engine. This engine used a Messerschmitt P8 three-bladed propeller. The engine cooling system was rather unusual. As the Messerschmitt engineer wanted to avoid using a standard radiator to avoid unnecessary drag, they came up with a new design. The engine was cooled with water, which was nothing unusual, but the way the water itself was cooled was quite a new and complicated process. The hot water steam from the engine was redistributed to the wings through pipes. Once in the wings, through a series of specially designed openings, the hot water stream would be condensed back to a liquid state. The cooled water would then be brought back to the engine, where the process would be repeated again and again. The negative side of this system was the constant loss of water due to evaporation, which depending on the conditions like speed may differ widely from 4 to 7 liters per minute. Due to this huge loss in a short amount of time, the aircraft had to be equipped with a 200 (or 450) liter water container. With this water load capacity, the Me 209 had an endurance time of only 35 minutes.
The Me 209 cockpit canopy opens outwards to the right. This design had a flaw as it could not be left open during takeoff or landing. In an emergency, the canopy could be jettisoned. Source: ww2fighters.e-monsite.comThe Me 209 was to be powered DB 601ARJ engine which used a Messerschmitt P8 three-bladed propeller Source: aviadejavu.ruThe rear view of the Me 209V1, where the enlarged vertical stabilizer could be seen. Its purpose was to help the aircraft cope with propeller torque. Source: ww2fighters.e-monsite.com
Attempt To Develop a Combat Version of Me 209
In May 1939 the Me 209 V4 (D-IRND) was flight tested. While the previous prototypes were to be used for beating international world records, the V4 was an attempt to adopt the Me 209 for potential military use. It was not requested by the RLM but instead a Messerschmitt private venture.
This prototype would receive a military code CE-BW in 1940. Its design was modified to include new and enlarged wings. The racing engine was replaced with a military model, the 1,100 hp DB 601. Due to the limitations of the wing-mounted cooling system, it had to be replaced with conventional radiators, which were changed several times in the Me209 V4’s development. The wing design was also changed as it was somewhat larger and longer than that used on the original Me 209. These were also provided with an automatic leading-edge slat.
In addition to its new purpose, it was to be equipped with offensive armament. The sources disagree on its precise armament. According to, D. Myhra (Messerschmitt Me 209V1) it consisted of two 7.92 mm MG 17 machine guns placed above the engine, a 2 cm cannon that would fire through the propeller shaft, and two 3 cm Mk 108 cannons to be installed in the wings. The potential use of this wing-mounted armament is quite questionable for a few reasons. The installation of such a cannon would not be possible given the limited room inside the wings. In addition, the MK 108 would be introduced to service in the later stages of the war, years after the Me 209 V4 was tested.
Authors J. R. Smith and A. L. Kay (German Aircraft of the WW2) on the other hand mentioned that the wing armament was to consist of two MG 17 machine guns, but this had to be abandoned as there was no room in the wings for them.
During testing of the much modified Me 209V4 it was shown to have weaker general flight performance than the already produced Bf 109. Attempts to further improve it by installing a stronger engine failed, as the Me 209 was still underpowered as its airframe was designed around a phenomenally powerful engine. Despite all this work the Me 209V4 was simply not suited for use as a fighter and thus the project had to be abandoned.
The Me 209V4 was a failed attempt to introduce to service a new and improved fighter aircraft that would potentially replace the Bf 109. It was not requested by the RLM but was instead Messerschmitt’s own private venture. Source: www.luftwaffephotos.com
The Fate of the Me 209 prototypes
Following the completion of its original goal, the Me 209V1 aircraft was given to the Berlin Air Museum in April 1940. While initially the Messerschmitt workers simply kept the natural aluminum color for the Me 209. This was not appropriate for an exhibit; it would be repainted in dark blue with its code painted to its fuselage sides. Interestingly during its brief service, the Me 209 was often nicknamed by its crew as Fliegend Eber (Eng. flight boar).
The Me 209V1 just prior to being allocated to the Berlin Air Museum in April 1940. The pilot is Fritz Wendler, and next to him it is Willy Messerschmitt. Source: ww2fighters.e-monsite.coml
In 1943 the Berlin Air Museum was hit during an Allied bombing raid and many aircraft were lost. The Me 209V1 was damaged but its fuselage was left relatively intact. It and other exhibits were moved to Poland for safekeeping, where it was simply forgotten. It was not until 1967 that Norman Wiltshire from the International Association of Aviation Historians actually discovered its remains during his visit to the Polish Air Museum in Krakow. The preserved Me 209V1 fuselage is still located at the Polish Museum, despite many attempts by the Germans to buy it back. The Me 209V3 was completely destroyed in one of many Allied bombing raids of Germany, while the V4 was scrapped at the end of 1943.
Me 209 fuselage at the Polish Aviation museum in Krakow, Poland Source: www.wikiwand.com
Japanese Interest
Despite being obvious from the start that the Me 209 would not enter production, a Japanese attaché showed interest in the project. In 1943 he approached the RLM officials with a request for technical data and that one aircraft to be shipped to Japan. In the end, it appears that nothing came of this and no Me 209 was ever sent to Japan.
An Me 209 but not a Me 209
As the war progressed, Messerschmitt engineers were trying to design a new piston-powered aircraft that would replace the Bf 109. That would initially lead to the creation of the Me 309 which proved to be a failure, and in 1943 a new project was initiated named Me 209. This project, besides having the same name, had nothing to do with the original Me 209 record holding aircraft. The first prototype of this new design was designated Me 209V5 in order to avoid confusion with the previous Me 209 aircraft design. It used many components of the already existing Bf 109G and had a fairly sound design. The few prototypes built would receive the designation Me 209A (sometimes referred to as Me 209II) designation. Despite their improved performance over the Bf 109G, the Luftwaffe opted for the Fw 190D instead, which proved to be a better use of the Junkers Jumo 213 engine.
The Me 209A, besides the name, had nothing in common with the first Me 209 aircraft. Source: www.luftwaffephotos.com
Production
Production of the Me 209 was carried out by Messerschmitt at Ausburg. The RLM ordered three prototypes to be built which were completed by 1938. The fourth prototype was Messerschmitt’s own project which ultimately proved to be a failure.
Production Versions
Me 209 V1 – First prototype was successfully managed to break the world speed record.
Me 209 V2 – Lost in a landing accident
Me 209 V3 – Third prototype that did see limited use
Me 209 V4 – This prototype was intended to serve as a base for a new fighter, but due to its poor performance, this project was canceled.
Conclusion
Despite its problematic design, it managed to reach an extraordinary speed of 755 km/h and thus set a record that would take decades to be beaten. For this alone, the Me 209 held a great place in aviation development and achievement history. That same could not be said for its attempt to be modified and used as a fighter aircraft. Despite a series of modifications and improvements, it was simply unfit to be used in this role.
Me 209V1 Specifications
Wingspans
7.8 m / 25 ft 6 in
Length
7.3 m / 23 ft 8 in
Wing Area
10.6 m² / 115 ft²
Engine (early rating)
1,800 hp DB 601ARJ
Maximum Takeoff Weight
2,512 kg / 5,545 lbs
Maximum Speed
755 km/h / 470 mph
Flight duration
35 minutes
Crew
1 pilot
Armament
None
Me 209V4 Specifications
Wingspans
10 m / 32 ft 11 in
Length
7.24 m / 23 ft 9 in
Wing Area
11.14 m² / 120 ft²
Engine
1,100 hp DB 601A
Maximum Takeoff Weight
2,800 kg / 6.174 lbs
Maximum Speed
600km/h / 373 mph
Cruising speed
500 km/h / 311 mph
Climb rate per minute
1,125 m / 3,690 ft
Maximum Service Ceiling
11,000 m / 36.080 ft
Crew
1 pilot
Armament
One 2 cm cannon and two 7.92 mm MG17 machine guns with additional weapons that were to be installed in the wing
Gallery
Me 209 v1Me 209 v4
Credits
Article written by Marko P.
Edited by Henry H. and Ed
Ported by Henry H.
Illustrated by Ed
Source:
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
R. Jackson (2015) Messerschmitt Bf 109 A-D series, Osprey Publishing
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putham
D. Myhra (2000) Messerschmitt Me 209V1, Schiffer Military History
M. Griehl () X-planes German Luftwaffe prototypes 1930-1940, Frontline Book
E. M. Dyer (2009) Japanese Secret Projects Experimental Aircraft of the IJA and IJN 1939-1945, Midland
Nazi Germany (1935)
Fighter Aircraft– 20 to 22 Bf 109A and 341 Bf 109B Built
When the Nazis came to power in Germany during the early 1930’s they sought to modernize their armed forces with more modern military equipment. The founding of a new air force, the Luftwaffe as it was known in Germany, was one of the main priorities of the new regime. Massive resources were channeled into the construction of a great number of airfields and other forms of infrastructure necessary for the air force. In addition, many new and thoroughly developed military aircraft designs were requested. Among these new designs was the Bf 109, which would go on to later become the most widely produced fighter aircraft in the world.
The Bf 109B (R. Jackson Messerschmitt Bf 109 A-D series)
Rise of the Luftwaffe
After the collapse of the German Empire following their defeat in the First World War, the Allies prohibited the development of many new military technologies, including aircraft. The Germans bypassed this prohibition by focusing on developing gliders which provided necessary initial work in aircraft development and crew training. Another solution was to develop civil aircraft that could be relatively quickly rebuilt and modified for military use. The efforts to hide these developments were finally discarded when the Nazis came to power in 1933. One of the first steps that they undertook was to openly reject the terms of the Treaty of Versailles that prohibited the Germans to expand their army and develop new military technologies.
The founding of the Luftwaffe was seen as a huge military priority among Nazi officials. The Luftwaffe would then begin a massive reorganization and expansion project that would see it expand into a formidable fighting force. Much of the Luftwaffe’s attention and energy during this period was focused on developing a new fighter aircraft to replace the then obsolescent Ar 68 and He 51 biplanes. For this reason, in 1934 the Reichsluftfahrtministerium RLM (German Air Ministry) issued a competition for a new and modern fighter plane that could reach speeds of 400 km/h. For this competition, four companies were initially contacted including Arado, Focke-Wulf, and Heinkel. Besides them was a rather small and less-known manufacturer, Bayerische Flugzeugwerke BFW (Bavarian Aircraft Works,) which was under the leadership of Willy Messerschmitt. Despite lacking the experience of their contemporaries in military aviation designs, this small company despite its inexperience would go on to win the contract and build what would become Germany’s then-most modern combat aircraft
The man behind the design
Wilhelm Emil ‘Willy’ Messerschmitt was from his early years interested in aviation. When he was 13, he met Friedrich Harth who was an enthusiast and a pioneering glider designer. He would become a mentor and help Messerschmitt develop his passion for building gliders, together designing and building several gliders. When the First World War broke out in 1914, Harth was drafted into the Army, and in 1917 Messerschmitt would follow. Fortunately for both of them, however, they were stationed at the same flight training school near Munich and were thus able to continue their work. Both of them survived the war and went back to doing what they both loved: designing and building gliders. As gliding was something that became highly popular in Germany after the war, Messerschmitt undertook further education by enrolling in Munich Technical College. With this knowledge, Messerschmitt managed to design and build his first glider in 1921, which he designated simply as S9. After gathering sufficient financial resources, Messerschmitt and Harth together opened a flying school in 1922. This did not last long, however, and the following year disagreements between Messerschmitt and Harth arose.
Messerschmitt then decided to work on his own and opened a small aviation company which he named Flugzeugbau Messerschmitt. His first proper aircraft design was the M17. It was a small all-wood, high-wing, sport aircraft powered by a British Bristol 29 hp engine. This aircraft was quite successful and even managed a 14-hour flight from Bamberg to Rome in 1926. The pilot was a World War One veteran Theodor Croneiss. A little-known fact, this was actually the first flight of such a small aircraft over the Alps ever attempted successfully. The M17 would later be lost in an accident when Messerschmitt himself was learning how to fly an aircraft. He crashed, losing the aircraft but surviving the hard landing, after which Messerschmitt spent some time in hospital. This did not greatly affect Messerschmitt’s new company as his next design M18 also proved to have good overall performance. Now in partnership with Croneiss, they managed to make a deal with Lufthansa, a German civil airline, to use the M18 for passenger transport.
The high wing, sport aircraft M17, was the first Messerschmitt aircraft design. (www.histaviation.com)
Messerschmitt’s company received a number of production orders for their M18 aircraft. However, Messerschmitt lacked the money, resources, and production capabilities to actually deliver these aircraft. At some point, he came in contact with the Bavarian government in hope of finding a solution to his problem. He got an answer, that the Bavarian government was willing to help with one condition, Messerschmitt would have to merge his own company with the Bayerische Flugzeugwerke BFW. This company itself was in the midst of a huge financial crisis but possessed a great number of skilled workers and equipment that could greatly help Messerschmitt in his future work. While both companies would be technically independent, Messerschmitt was to give first production rights for any of his new designs to BFW. BFW on the other hand would provide the necessary manpower and equipment. Messerschmitt agreed to this condition and was positioned as chief designer of both companies. Representation of the company was relocated from Bamberg to Ausburg.
In 1928 Messerschmitt focused his work on a civil design intended for transporting passengers. His next design was the 10-passenger transport aircraft designated M20. During a flight test, part of the wing fabric cover peeled away, and pilot Hans Hackman possibly in a panic decided to bail out at a height of 76 m. His parachute failed to open properly and he died. This led to the cancellation of production orders for the M20 by Lufthansa. Messerschmitt developed an improved second M20 prototype which was presented to, and tested by Lufthansa officials. After an evaluation, the aircraft was deemed safe and a production order for 12 improved M20. However, tragedy would strike in two serious accidents involving the M20 aircraft, in which 10 people were killed. The first accident happened near Dresden in October 1930, where two pilots and six crew members were killed. The second occurred in April of the next year, with the death of both pilots. To make matters even worse, German Army officers were among the casualties. This affected Messerschmitt’s further work, who despite developing more aircraft designs failed to gain many production orders for them. While his own company did not suffer much, BFW was not so lucky and was forced into bankruptcy in 1931. In the next few years, Messerschmitt’s work was relatively stable as he saw some success selling his aircraft aboard. With better financing, he managed to acquire sufficient funds to reinstate BFW in May of 1933. The name was changed to BFW AG, a publicly-traded company. Unfortunately for Messerschmitt, a newly appointed Secretary of State for Air, Erhard Milch, opposed the idea of BFW operating under Messerschmitt. Erhard Milch’s hatred for Messerschmitt was personal, as the test pilot who flew on the doomed M20 prototype was his friend. He never forgave Messerschmitt who he deemed responsible for the accident. He forced BFW AG to accept production orders for Heinkel aircraft designs. This was also partly done to provide adequate financial resources so that the company could operate successfully.
Despite this distrust by Nazi officials, Messerschmitt was contacted in the summer of 1933 by the RLM to design a sports aircraft to represent Germany on the Challenge de Tourisme Internationale. Seeing a new opportunity Messerschmitt took great care in fulfilling this order. His ultimate design would be the highly successful Bf 108 (initially designated M37.) This aircraft would be crucial in the later stages of Bf 109 development. With the success of the Bf 108, Messerschmitt managed to gain support from some top Luftwaffe officials. One of these was the newly appointed Hermann Goring who replaced Erhard Milch in the position of commander-in-chief of the Luftwaffe. While there were still some who wanted the Bf 108 to be canceled, with the support of Hermann Goring they could do little about it.
The highly successful Bf 108. (www.luftwaffephotos.com)
A new fighter
In March of 1933 RLM issued a document (designated L.A. 1432/33) that laid the foundations for the development of the future German fighter aircraft. In it a shortlist of general characteristics that this aircraft should meet was given. It was to be designed as a single-seat fighter that must be able to reach speeds of at least 400 km/h at a height of 6 km. In addition, that height had to be reached in no more than 17 minutes. The maximum service ceiling was set at 10 km. Armament was to consist of either two machine guns each supplied with 1,000 rounds of ammunition or one cannon with 100 rounds of ammunition.
In February 1934 this document was given to three aircraft manufacturers, with these being Arado Heinkel and BFW AG. The last to enter the competition was Focke-Wulf who received this document in September of 1934. While not completely clear as some sources suggest, Messerschmitt and the BFW AG were not initially contacted but were later included in this competition. Realizing this competition as a great opportunity, Messerschmitt gathered the best team he could find. Some of these included the former Arado fighter designer Walther Rethal, who became Messerschmitt’s deputy. Another prominent figure was Robert Lusser who took a great part in the Bf 108 development. He would also later play a great part in the future Bf 110 aircraft design.
According to RLM conditions, all interested companies were to provide a working prototype that was to be tested before a final decision was to be made. Arado and Focke-Wulf completed their prototypes, the Ar 80 and Fw 159, by the end of 1934. Heinkel and Messerschmitt’s prototypes took a bit longer to complete. Messerschmitt and his team set a simple but ambitious plan. Their aircraft would be simple, cheap, and possess lightweight overall construction. It was to be powered by the strongest engine they could get their hands on. Work on this new fighter began in March 1934, at this early stage, the project was designated as P.1034 (while sometimes in the sources it is also mentioned as Bf 109a). A simple airframe mock-up was completed shortly in May the same year, but the work on a more complex and detailed mock-up took some time. By January 1935 it was finally ready. The engine chosen for it was the Jumo 210A. As this engine was not yet available, the license-built 583 hp Rolls-Royce Kestrel engine was used temporarily instead. Ironically this engine was available thanks to the good business relationship between Heinkel and the British Rolls Royce motor company. Thanks to this cooperation the Germans managed to purchase a number of these engines.
The first prototype named Bf 109 V1 (registered as D-IABI) was flight tested by Hans Dietrich Knoetzsch at the end of May 1935. The first flight was successful as no problems were identified with the design. While later prototypes would be tested with a weapon installation, the V1 was not outfitted with any armament.
The Bf 109 V1 (registered as D-IABI). (www.asisbiz.com)
Messerschmitt designation
Before we continue, it is important to clarify the precise designation of this aircraft. Sometimes it is referred to as Me 109 (or as Me-109). While technically speaking this is not completely incorrect given that it was designed by Messerschmitt and his team. The Bf stands for Bayerische Flugzeugwerke, the company which constructed the aircraft. While the 109 has no specific meaning, it was just next in the line after the 108 design.
In 1938 this company would be renamed Messerschmitt AG and all future designs from this point on would receive the prefix ‘Me’. The older designs including the 108 and 109 would retain the Bf prefix during the war. It is worth pointing out that both the Bf and Me designation was used in Messerschmitt’s own archives. In German service prior to and during the war, it was not uncommon to see both designations being used. So using either of these two designations would be historically accurate, this article would use the Bf 109 designation for sake of simplicity but also due to the fact that in most sources this designation was used.
The Bf 109 trials
As no major issue was noted in its design, the Bf 109 V1 was to be transported to the test centers located at Rechlin and Travemunde starting in October 1935. Here, together with all competitor designs, they would be subjected to a series of evaluations and tests. The Ar 80 and Fw 159 proved inadequate almost from the start after many mechanical breakdowns and even crashes, which ultimately led to both being rejected. The He 112 and Bf 109 on the other hand proved to be more promising designs. The Bf 109 had a somewhat bumpy start as the Rechlin airfield was unfinished and had a rough runway. During a landing, one of the Bf 109’s landing gear collapsed. Despite what appeared at first glance to be catastrophic damage, turned out to be only minor.
The He 112 V1, was used for the trials held at Rechlin and Travemunde. (www.luftwaffephotos.com)The Bf 109V1 was damaged during a failed landing. (R. Jackson Messerschmitt Bf 109 A-D series)
The second prototype was completed and tested by the end of 1935. The V2 (D-IILU or D-IUDE according to some sources) was powered by a domestically developed 680 hp Jumo 210A engine. It was moved to Travemunde for evaluation and testing in February 1936. The V2 was put into a series of test flights where it showed superb flying performance, in contrast to the other competitors. Unfortunately, during one test flight undertaken in April, part of the pilot’s canopy peeled away, forcing the pilot to make an emergency landing. A decision was made to not repair this prototype but instead to use its fuselage for ground testing and experimentation.
That same month that the V2 was damaged, the V3 (D-IQQY) was flight tested. This prototype served as the test aircraft for the installation of offensive armament. There is a disagreement between sources, as J. R. Beaman and J. L. Campbell mentioned that the armament was actually tested on the V2 aircraft. Regardless of which prototype was first armed, it possessed two 7.92 mm MG 17 machine guns. These were placed above the engine, close to the cockpit. The engine was once again changed, this time with the installation of the even more powerful 700 hp Jumo 210C. Another experimental feature was the installation of a FuG 7 radio unit. This necessitated adding a triple wire antenna, which was connected to the top of the fin, and the edges of the stabilizers to the cockpit. This aircraft would be extensively used for testing, and would later serve as the basis for the first production version. Later prototypes were used to test various additional equipment and weapon installations. For example, prototypes V4 to V7 were used to test various different armament arrangements. The V5 was used to test the installation of an automatic reload and firing system, among other features.
The V3 in a flight. (en.topwar.ru)
During the initial evaluation flights carried out on both the Bf 109 and He 112, the latter was favored by many test pilots. Heinkel at that time was among the largest and most well-known German aviation manufacturers. It supplied the new Luftwaffe with a series of aircraft, and thus was well connected to RLM top officials. Further examination of the Bf 109 showed that the aircraft had several persistent issues. The most serious problems were the Bf 109’s tendency to widely swing to the left during landing and take-off. Another major issue was the design of landing gear, which was too narrow and generally weak. This in turn would often lead to crash landings. In retrospect, these two problems would never be fully resolved, but with sufficient training and experience, these problems could be overcome by the pilots. Other complaints included the limited visibility due to the canopy’s small design. The cockpit interior was also regarded as too cramped. The Bf 109 was also notorious for its high wing loading, which was pointed out by the test pilots.
Most of these complaints do not necessarily indicate a flawed design. We must take into account that the test pilots were mostly experienced in older biplanes. This new single-wing fighter concept was completely strange to them. For example, the biplanes had a simple and open cockpit, so complaints regarding the Bf 109 cockpit design represented a refusal to adapt to newer technologies rather than a bad design.
During the series of test flights, the performance of the two competitors was quite similar, with some minor advantages between them. In the case of the Bf 109, it was slightly faster, while the He 112 had lower wing loading. In addition, the He 112 had a better-designed and safer landing gear assembly. As the He 112 had to be constantly modified in order to keep pace with the Bf 109, the RLM commission was getting somewhat frustrated. Despite Heinkel’s connections and experience in designing aircraft, the Bf 109 was simply more appealing to the RLM commission, given that it was simpler, faster, and could be put into production relatively quickly. At that time the Germans were informed by the Abwehr intelligence service that the British were developing and preparing for the production of the new Spitfire. RLM officials were simply not willing to risk taking a chance on an aircraft design that could not quickly be put into production. Thus the Bf 109 was seen as the better choice under the circumstances.
Technical characteristics
The Bf 109 was a low-wing, all-metal construction, single-seat fighter. In order to keep the production of this aircraft as simple as possible, Messerschmitt engineers decided to develop a monocoque fuselage that was divided into two halves. These halves would be placed together and connected using simple flush rivets, thus creating a simple base on which remaining components, like the engine, wings, and instruments would be installed.
The central part of the fuselage was designed to be especially robust and strong. Thanks to this, it offered the aircraft exceptional structural integrity. It also provided additional protection during emergency crash landings. The fuselage itself and the remainder of the aircraft were covered with standard duralumin skin.
Its wings also had an unusual overall design. In order to provide room for the retracting landing gear, Messerschmitt intentionally used only a single wing spar which was positioned quite to the rear of the wing. This spar had to be sufficiently strong to withstand the load forces that acted on the wings during flight. The wings were connected to the fuselage by four strong bolts. This design enables the wings to have a rather simple overall construction with the added benefit of being cheap to produce. During the Bf 109 later service life, the damaged wings could be simply replaced with others on hand. The wings were also very thin, which provided the aircraft with better overall control at lower speeds but also reduced drag which in turn increased the overall maximum speed. At the wing’s leading edge were slats that automatically opened to provide better handling during maneuvers at lower speeds. This had a secondary purpose to greatly help the pilot during landing. The tail unit of the Bf 109 was a conventional design and was also built using metal components. It consists of a fin with a rudder, and two vertical stabilizers each equipped with an elevator.
The cockpit was placed in the center of the fuselage. It was a fully enclosed compartment that was riveted to the fuselage. The Bf 109 cockpit itself was quite cramped. Most of the available space was allocated to the control stick. Left and right of the pilot were two smaller control panels with the main instrumental panel being placed in front of him. While the side control panels were a bit small, their overall design was more or less the standard arrangement used on other aircraft. The front instrumental panel contained various equipment such as the compass, and an artificial horizon indicator. Messerschmitt engineers also added an ammunition counter, which was somewhat unusual on German fighters. Another innovative feature was the installation of a FuG 7 radio unit. In front of the cockpit, a firewall was positioned to shield the pilot in case of an engine fire.
The overall framework for the canopy was fairly small, but despite this provided decent all-around visibility for the pilot. Its main drawback was limited forward visibility during take-off. The canopy opened outwards to the right. This was a major issue as it could not be open during the flight. To overcome this, it was designed to be relatively easily jettisoned. In case of emergency, the pilot would actuate a lever positioned in the rear. It was connected to two high-tension springs. When activated, the lever would release the two springs, which in turn released the canopy, which would then simply fly away due to airflow.
The Bf 109 canopy opens outwards to the right, this causes problems as it was unable to be open during the ground drive or in flight. (R. Jackson Messerschmitt Bf 109 A-D series)
When designing the Bf 109 great care was taken for it to have a simple design. This is especially true for the engine compartment. The engine was easily accessible by simply removing a series of panels. The engine was mounted on two long ‘Y’ shaped metal bars and held in place by two quick-release screws. The necessary electrical wires were connected to a junction box which was placed to the rear of the engine. All parts inside the engine compartment were easily accessible and thus could be replaced in a short period of time. The Bf 109 “L” shaped fuel tank was located aft of the pilot’s seat and slightly underneath it. It too had easy access by simply removing a cover located inside the center of the wing. The total fuel capacity was 250 liters.
Once the Bf 109 was accepted for service, a small production run of the Bf 109B-0 was completed. It was powered by a 610 hp Jumo 210B, and served mainly to finalize the later production version. The Bf 109B-1 was powered by a 635 hp Jumo 210D engine and had a fixed-pitch two-blade wooden propeller. Later during the production, it would be replaced with a new all-metal two-bladed variable pitch propeller. This engine was equipped with a two-stage supercharger. The maximum speed achieved with this engine at the height of 3,350 meters (11,000 ft) was 450 km/h (280 mph). The engine oil cooler, which was initially placed close to the radiator assembly, would be repositioned under the right wing.
The Bf 109 had a simple engine housing that could be easily removed if the engine needed to be removed. (R. Cross, G. Scarborough, and H. J. Ebert (Messerschmitt Bf 109 Versions B-E)
The Bf 109 possessed quite an unusual landing gear arrangement. The landing gear was mainly connected to the lower center base of the fuselage, which meant that the majority of the weight of the aircraft would be centered at this point. The two landing gear struts retracted outward towards the wings. The negative side of this design was that the Bf 109, due to its rather narrow wheel track, could be quite difficult to control during taxiing. Messerschmitt engineers tried to resolve this issue by increasing the span of the two wheels. This actually complicated the matter as it necessitated that the two wheels be put at an angle. In turn, this created a weak point where the wheels were connected to the gear strut, which could easily break during a harsh landing. This also caused problems with the Bf 109 tendency to swing to the side prior to take-off. When the pilot was making corrections to keep the aircraft headed straight, excessive force could be applied to the pivot point of the landing gear leg, which sometimes cracked.
The Bf 109 possessed a quite unusual landing gear that retracted outward towards the wings. (www.worldwarphotos.info)
The first series of the Bf 109 were only lightly armed, with two 7.92 mm electrically primed MG 17 machine guns. While this may seem like underpowered armament, we must not forget that in the period between the wars, mounting larger caliber guns in fighters was rare. Larger calibers at this time used were usually 12.7 mm. The two machine guns were placed in the upper fuselage, just forward of the cockpit. The port-side machine gun was slightly more forward than the starboard. This was done to provide more space for ammunition magazines. These were fully synchronized to be able to fire through the propellers without damaging them. In the early stages, the ammunition load consisted of 500 rounds for each machine gun, but this was later increased to 1,000 rounds.
The MG 17 was used as the main armament of the early Bf 109’s. (airpages.ru)
However, the double MG 17 layout was eventually deemed somewhat weak, so Messerschmitt was instructed to increase the offensive firepower. As Messerschmitt initially did not want to add any armament in the wings, another solution was needed. The installation of a third machine gun inside the centerline of the engine block was tested. While this would be initially adopted, this installation proved to be problematic mostly due to overheating and jamming problems. So this machine gun was often not installed and removed on those aircraft that had it. A possible installation of a 20 mm cannon in its place was also tested. This was the 20 mm MG FF cannon, which was in fact a license-built version of the Swiss Oerlikon cannon. While it was tested on a few prototypes, it too proved unusable due to excessive vibration. On the other hand, the installation of two non-synchronized machine guns in the wings proved to be more promising, and this was implemented and installed on the later Bf 109E. For the reflector gunsight, a Revi C/12C type was used.
Main armament side view. (Bf 109B LDv.228-1 Document)The left machine gun was slightly moved forward in order to avoid problems with ammunition supply. (Bf 109B LDv.228-1 Document)
The Bf 109A and B versions
The Bf 109 A version is somewhat of a mystery in the sources. Usually this version, besides a few mentions, is rarely described in the sources. According to Messerschmitt’s own documents, a small series of 20 to at least 22 aircraft of this version were built. It appears that in every aspect, it was the same as the later B version. The only major difference between these two versions was that the A was solely equipped with the two machine guns in the upper engine cowling.
This is probably why most sources barely mentioned the A version, likely lumping them in with the B version. To further complicate matters author D. Nesić mentioned that while version A was planned to enter production, it was abandoned due to its weak armament.
Once the Bf 109 was accepted for service, a small pre-production run of 10 Bf 109B-0 was completed. It was powered by a 610 hp Jumo 210B, and served mainly to finalize the later production version. The Bf 109B-1 was powered by a 635hp Jumo 210D engine. This engine was fitted with a fixed-pitch two-blade wooden propeller. It was armed with three machine guns, with two placed above the engine compartment, and the third fired through the centerline of the engine and propeller hub. During the production run of the B-1, some minor changes were introduced. The three-wire radio antennas were replaced with a single one. To provide better cooling of the machine guns, several vent ports were added. The Bf 109B-1 was then replaced with the Bf 109B-2. The 109B-2 was initially powered by a 640 hp Jumo 210E but was replaced with a stronger 670 hp Jumo 210G. The wooden propeller was upgraded to a new completely metal, variable-pitch, two-bladed propeller.
During early production, three-wire radio antennas were used. These would be replaced with a single one. (www.luftwaffephotos.com)
While at first glance, the infamous Bf 109 seems to be a well-documented aircraft, this is not quite the case. Namely, there are significant differences in the sources regarding the precise designation of the B series. For example sources like R. Jackson (Messerschmitt Bf 109 A-D series) and J. R. Smith and A. L. Kay (German Aircraft of the WW2) divided the B series into three sub-series: the B-0, B-1, and B-2.
On the other hand sources like R. Cross, G. Scarborough and H. J. Ebert (Messerschmitt Bf 109 Versions B-E) mentioned that in the Messerschmitt archives, no evidence for the existence of a B-2 series was found. In addition, while the Jumo 210G may have been tested on the Bf 109B series, there is also little evidence that it was actually installed in them. This is also supported by sources like Lynn R. (Messerschmitt Bf 109 Part-1: Prototype). This particular source indicated that all alleged modifications to the B-2 were actually implemented on the B-1 aircraft.
Early Bf 109 operational use
The Bf 109 was shown to the general public for the first time during the 1936 Olympic Games held in Germany. The following year several Bf 109’s (including the V10, V13, two B-1, and one B-2) participated in the international flying competition held in Zurich, Switzerland, easily winning several awards including fastest dive, climbing, and flew a circuit of the Alps, etc. The event was not without incident, as the Bf 109 V10 had an engine problem, and its pilot Ernst Udet, was forced to crash land it.
In Spain
When the Spanish Civil War broke out in 1936, Francisco Franco, who was the leader of the Nationalists, sent a plea to Adolf Hitler for German aid in providing military equipment including aircraft. At the early stages of the war, nearly all of Spain’s mostly outdated aircraft were in the hands of the Republicans. To make matters worse for Franco nearly all forces loyal to him were stationed in Africa. As the Republicans controlled the Spanish navy, Franco could not move his troops back to Spain safely. Franco was therefore forced to seek foreign aid. Hitler, seeing Spain as a potential ally, was keen on helping Franco and agreed to provide assistance. At the end of July 1936, some 86 aircrew personnel, together with 6 He 51 and 20 Ju 57 were secretly transported to Spain. This air unit would serve as the basis of the so-called German Condor Legion which operated in Spain during the war. The Ju 52 transport aircraft proved instrumental in transporting the Francoist forces to Spain. The operation was a success, but the enemy was quite busy with their own preparations.
On the other side, the Republicans were greatly supported by the Soviets, providing them with some 30 I-15 fighters in late 1936. Additionally, the Republicans operated a number of Soviet SB-2 bombers. The few He 51 fighters of the Condor Legion were outdated and outnumbered by the enemy air force, so a request was made to send additional and more modern aircraft. Seeing an opportunity to test the performance of the Bf 109 in real combat situations, it was agreed to send a few to Spain. One of the first Bf 109 V4 to be sent to Spain was unfortunately damaged in an accident. Several delays later on the 14th of December, the Bf 109 V3 arrived in Spain. These arriving aircraft were initially used for a few weeks for testing and training. Initial evaluation of these early aircraft proved to be more than satisfactory, and additional aircraft of this type was requested. Besides the V3 and V4, the V6 was also sent to Spain. The fate of the V5 is not clear; some sources mentioned (like R. Jackson) that it was also used in the Spanish Theater. Lynn R. (Messerschmitt Bf 109 Part-1: Prototype) on the other hand informs us that the V5 was used during 1937 for weapon trials and thus not sent to Spain.
In early 1937 the first of the Bf 109s began to arrive. It is unclear which exact version was first issued for service, these were either version A or B. Author Lynn R. ( Messerschmitt Bf 109 Part-1: Prototype) mentioned that the first aircraft used were of the A version. He indicated that this was the case for several reasons, one of which was the use of only two machine guns. In addition, these were not equipped with the later-developed automatic cycling gun mechanism, which alleviated ammunition jam and misfeed issues. In total, at least 16 aircraft of the early Bf 109 would be sent in this shipment. Sources like R. Jackson (Messerschmitt Bf 109 A-D series) mentioned that only the B version was used in Spain.
During the Spanish Civil war, initially only smaller quantities of Bf 109A and B were available for service. (me109.airwar1946.nl)
In March 1937, with the arrival of the first group of the new Bf 109, two fighter groups were formed. These were the I and II/Jagdgruppe J.88 under the command of Lieutenant Günther Lützow. Interestingly, these aircraft were initially to be given to JG 132 stationed at Döberitz-Elsgrund. Due to the urgent need to reinforce the Condor Legion, JG 132 pilots with the Bf 109 were transported to Spain instead. Besides markings, they also received numerical designations beginning with 6-1, 6-2, and so on. The precise method which was used to determine the numbering designation is not clear. For example, the V3, which arrived second, received the 6-2, and later 6-1 designation. The Bf 109 that served with the Condor Legion received a large black circle on the fuselage for identification. Two additional black circles with a large white “X” were painted on the wings. An additional black X was painted on the rear tail.
The Bf 109 that saw service during the Spanish Civil War could be easily distinguished by their unique markings. Those received a large black circle marking on the fuselage. Two additional black circles with a large white “X” were painted on the wings. An additional black X was painted on the rear tail. ( www.luftwaffephotos.com)
Initially, it was planned that the Germans would act as instructors for their Spanish allies. As the Spanish had problems piloting the newly supplied aircraft, many German instructors would themselves see extensive combat action during the war.
Lützow was also the one who achieved the first kill of the Bf 109B that was used in Spain. He managed to shoot down a Republican I-15 on the 6th of April 1937. Three more victories were achieved during that month. At the end of April, the II.J/88 provided protection for bombers that raided the small town of Guernica. Initially, the few Bf 109 that were available did not have much effect on the war efforts of the Nationalists. The Republicans had nearly 150 modern Soviet fighters and thus had a clear advantage. During the heavy fighting at Madrid in July 1937, the Bf 109 engaged the enemy I-16’s for the first time in the conflict.
In July of 1937, a Bf 109 from the II.J/88, managed to shoot down three SB-2 bombers, one Aero A.101 light bomber, and three I-16. But the J.88 also suffered its first casualty of the war, a Bf 109B which was piloted by Guido Honess was shot down by an I-16 on the 12th of July. On the 17th, another Bf 109 was shot down but the pilot Gotthard Handrick managed to survive. The next day, another Bf 109 was lost but the pilot was only lightly wounded.
In August 1937, the Nationalists launched an offensive toward Republican-held positions around Santander. The heavy fighting that lasted up to October saw extensive use of air forces on both sides. The Nationalists were reinforced with the I.J/88 under the command of Harro Harder. By late October this commander managed to bring down 7 enemy aircraft. At the end of 1937, an incident of note occurred where a Bf 109A piloted by Otto Polenz was forced to land on Republican-held territory. His aircraft was captured almost intact and shipped to the Soviet Union for examination. During the German Invasion of the Soviet Union in 1941, this particular aircraft would be recaptured.
The captured Bf 109A was shipped to the Soviet Union for examination. Ironically it would be recaptured by the Germans in 1941. (Lynn R. (1980) Messerschmitt Bf 109 Part-1: Prototype to ‘E’ Variants, SAM Publication)
On the 16th of December, the Republicans launched an offensive toward the city of Teruel. Given the severe winter, the J.88 was unable to provide air support and the city fell to the Republicans. From late January and early February on, thanks to better weather, the German Bf 109s were once again active. On the 7th of February 1938, Wilhelm Balthasar managed to alone shoot down four SB-2 bombers alone during one flight. He too was forced to a harsh landing having received numerous hits by the bomber’s defensive fire, but Balthasar survived the landing.
By April 1938 the Nationalists realized that a direct attack on Madrid would be almost impossible without heavy casualties, and decided on another approach. They instead focused on the southern parts of Spain. The J.88 too was repositioned there and took on the enemy aircraft. Several Bf 109s were lost during this time, but most of these were either to mechanical breakdowns or pilot errors. For example, on one occasion two Bf 109s collided in midair on the 4th of April. While one pilot was killed, the second managed to escape by using a parachute. The following month saw extensive fighting on the ground and in the air. The Bf 109 pilots, thanks to their better machines and experience, achieved a series of victories over their opponents. On one occasion in late July 1938, three squadrons of Bf 109 took on a group of 40 I-15 and I-16. After a long engagement, the enemy lost six planes, while the Nationalists lost none. The Germans pilots were achieving so many victories that they had to invent excuses in order to not be sent back to Germany. According to official regulations, once a pilot had achieved 5 kills, he was to be replaced by another pilot. This regulation was clearly ignored as pilots like Werner Molders achieved some 14 victories. Other pilots were also very successful, Otto Bertram achieved four victories during August. While Werner Molders scored 8 victories through this period. During 1938, an additional 26 Bf 109B-1 with coded numbers, ranging from 6-19 to 6-45 arrived in Spain.
By early 1939, the Nationalists managed to gain almost complete air supremacy, thus air to air combat became a rare event. The J.88 aircraft were from this point on mostly used for ground attack operations. The last J.88 air victory of the war was achieved on the 5th of March when an I-15 was shot down. Out of some 130 Bf 109s that saw service in Spain, between 20 to 40 aircraft were lost (depending on the source). Not all were lost in air combat, most were lost due to mechanical breakdowns, pilot errors, or hard landings.
While the Republicans would fly in loose formations with any proper tactics, the Germans would employ a so-called Schwarm (swarm) tactic. This basically consisted of using a group of four aircraft, which would fly in a reverse ‘V’ shaped formation, with some 200 meters separating each aircraft. When attacking, these would be divided into two groups of two aircraft. Which were intended to provide each other with cover in the event enemy fighters gave chase.
In German Service
While the Bf 109 was initially used for various tests and participated in sporting events, these aircraft were soon allocated to Luftwaffe units. The first such unit to receive the Bf 109 B-1 was the Jagdgeschwader (fighter squadron) JG 132 in February of 1937, being supplied with 25 aircraft. Due to some delays in production, the second unit equipped with the Bf 109, II./JG 234, was formed nearly nine months later. In early 1938, the production of the Bf 109 was greatly increased which provided a sufficient number of aircraft to equip additional units.
The early Bf 109s were prepared to see potential action during the political crisis regarding the German relationship with Austria and later Czechoslovakia. Even by the end of 1937, the pressure on Austrian politicians was great as the Germans wanted to install a more friendly government. All these political machinations ended in March 1938 when German troops entered Austria without any resistance.
The German request for territories belonging to Czechoslovakia was initially met with fierce resistance from the Western Allies, France, and the United Kingdom. These tensions could have easily cascaded into open war. This particularly caused huge concern in the RLM, as the German Air Force was not yet ready for a war. The situation was so desperate that even some He 112 were accepted for service. In the end, the Western Allies backed down, not willing to go to war, and allowed the Germans to take disputed Czechoslovakian territory.
As the new and improved models of the C and D versions began to be available, the Bf 109B were slowly being allocated to secondary roles, such as training. In this role, some would survive up to 1943. By the time of the invasion of Poland in September, the majority of Bf 109 in use were the D version, with ever-increasing numbers of the new E version. While some Bf 109B were still present in frontline units, their fighting days were over.
Production
For the upcoming Bf 109 production, initially BFW AG was responsible. As it lacked production capabilities given that it was already under contract (made earlier with RLM) to build several other aircraft types, another solution was needed. When BFW AG completed all previously ordered aircraft, it was to focus its production capabilities on the Bf 109.
To increase overall Bf 109 production, other manufacturers were also contracted. Some 175 were built at Erla Maschinenwerk from Leipzig, with 90 more by Fieseler, and only 76 aircraft by BFW. The production run of the Bf 109A lasted from December 1936 to February 1937. In 1937 some 341 Bf 109B would be built.
Production Versions
Bf 109 V – Prototypes series aircraft
Bf 109 A – Proposed production version built in small numbers
Bf 109 B-0 – A small pre-production series
Bf 109 B-1 – Production version
Bf 109 B-2 – Slightly improved B-1 version incorporating a new propeller. Note that the existence of this particular version is disputed in sources.
Surviving Aircraft
Today only one Bf 109B-0 V-10 is known to have survived. Given its rather low production numbers, this is not surprising. It is in a private collection of the “Bayerische Flugzeug Historiker” Oberschleissheim in Munich, Germany.
Conclusion
Despite focusing mainly on civilian aircraft, Messerchmitt and his team of engineers managed to design a fighter that bested all the other well-established manufacturers for Luftwaffe’s new fighter program. The Bf 109 was inexpensive to build and possessed good overall flight capabilities. While a good design, there was plenty of room for improvement, mainly regarding its armament and engine, which would be greatly improved in subsequent iterations.
Me 109B-1 Specifications
Wingspans
9.9 m / 32 ft 4 in
Length
8.7 m / 28 ft 6 in
Height
2.45 m / 8 ft
Wing Area
16.4 m² / 174 ft²
Engine
Jumo 210D
Empty Weight
1,580 kg / 3,483 lbs
Maximum Takeoff Weight
1,955 kg / 4,310 lbs
Maximum Speed
450 km/h / 280 mph
Cruising speed
350 km/h / 220 mph
Range
690 km / 430 miles
Maximum Service Ceiling
8,200 m
Crew
1 pilot
Armament
Initially three 7.92 mm MG 17 machine guns, later changed to four same type machine guns
Illustrations
Credits
Written by Marko P.
Edited by Stan L. Henry H.
Illustrations by Hansclaw
Source
D. Nesić (2008) Naoružanje Drugog Svetsko Rata-Nemačka. Beograd.
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books.
R. Jackson (2015) Messerschmitt Bf 109 A-D series, Osprey Publishing
J. R. Smith and A. L. Kay (1972) German Aircraft of the WW2, Putham
R. Cross, G. Scarborough and H. J. Ebert (1972) Messerschmitt Bf 109 Versions B-E Airfix Products LTD.
J. R. Beaman and J. L. Campbell (1980) Messerschmitt Bf 109 in action Part-1, Squadron publication
Lynn R. (1980) Messerschmitt Bf 109 Part-1: Prototype to ‘E’ Variants, SAM Publication
Romanian operated He 112s. (http://www.luftwaffephotos.com)
During the 1930’s the Aeronautica Regală Română ARR (Romanian Royal Aeronautics or Airforce) was in great need of more modern aircraft design. Their fighter force was poorly equipped with obsolete aircraft such as the PZL P.11 and P.24, being of dated Polish origin. Thus the Romanians were in desperate need of better designs. Luckily for them, the Heinkel factory was more than willing to supply them with one of their failed competitors for the new German fighter, the He 112. The Romanians were impressed and placed an order for 30 such aircraft which would remain in use up to 1946.
A brief He 112 history
Prior to the Second World War, the Luftwaffe was in need of a new and modern fighter that was to replace the older biplane fighters that were in service, such as the Arado Ar 68 and Heinkel He 51. For this reason, in May 1934 the RLM issued a competition for a new and modern fighter plane. While four companies responded to this request, only the designs from Heinkel and Messerschmitt were deemed sufficient. The Heinkel He 112 was a good design that offered generally acceptable flight characteristics and possessed a good basis for further improvements. The Bf 109 on the other hand had slightly better overall flight performance and was much simpler and cheaper to build. Given the fact that the Germans were attempting to accelerate the production of the new fighter, this was seen as a huge advantage over the He 112. Ultimately it would not be accepted for service, and only 100 or so aircraft would be built. These would be mainly sold abroad, with those remaining in Germany used for various testing and evaluation purposes.
He 112 the unsuccessful competitor of the Bf 109. Source: (luftwaffephotos.com)
While the He 112 project was canceled by the RLM, to compensate for the huge investment in resources and time to it, Heinkel was permitted to export this aircraft. A number of countries such as Austria, Japan, Romania, and Finland showed interest, but only a few actually managed to procure this aircraft, and even then, only in limited numbers.
Technical Characteristics
The He 112 was an all-metal single-engine fighter. The monocoque fuselage consisted of a metal base covered by riveted stress metal sheets. The wing was slightly gulled, with the wingtips bending upward, and had the same construction as the fuselage with a combination of metal construction covered in stressed metal sheets.
During its development life, a great number of different types of engines were tested on the He 112. For the main production version, He 112 B-2, the 700 hp Jumo 210G liquid-cooled engine was used, and some were equipped with the 680 hp Jumo 210E engine. The He 112 had a fuel capacity of 101 liters in two wing-mounted tanks, with a third 115-liter tank placed under the pilot’s seat.
The landing gear was more or less standard in design. They consisted of two larger landing wheels that retracted into the wings and one semi-retractable tail wheel. The He 112 landing gear was wide enough to provide good ground handling and stability during take-off or landing.
The cockpit received a number of modifications. Initially, it was open with a simple windshield placed in front of the pilot. Later models had a sliding canopy that was either partially or fully glazed.
While the armament was changed during the He 112’s production, the last series was equipped with two 7.92 mm MG 17 machine guns and two 2 cm Oerlikon MG FF cannons. The ammunition load for each machine gun was 500 rounds, with 60 rounds each for the cannons. If needed, two bomb racks could be placed under the wings.
In Romanian Hands
While Heinkel was desperately trying to sell more of the He 112 fighters, a potential new customer arose in the Balkans. This was Romania, which during the 1930s was severely lacking in aircraft, and the strength of its Air Force was worryingly low in comparison to most European countries. Its main fighter at this time was the obsolete P.Z.L P.11 and P.24 fighters which were acquired from Poland. A smaller number of these were purchased, with the majority being built under license. In an attempt to find the solution to this urgent problem, Romanian King Carol II himself went to visit several potential aircraft manufacturers in Europe. The Germans in particular were quite keen to have a good relationship with Romania, mostly due to its rich oil fields. The Romanians were very interested in acquiring the new Bf 109 fighter, but as it was slowly entering production in Germany, it was not yet audible in sufficient numbers for export. As a temporary solution, the He 112E, an export model based on the B version, was proposed instead. One He 112 was acquired in 1938 and was extensively tested by both the Romanian Air Force pilots and by the engineers at Industria Aeronautică Română I.A.R. (Romanian Aeronautic Industry). While some issues, such as rather poor rudder response and handling during flight, were noted, due to the urgent need for a modern fighter and a lack of alternatives, the initial order for 24 was increased to 30 aircraft. These were the He 112V-1 and B-2 versions equipped with the Jumo 210E and G engines.
The B-series was in many aspects a complete redesign of the previous series. Including the introduction of a new tail unit, and modification of the fuselage, to name a few. (luftwaffephotos.com)
Prior to shipment, a group of Romanian pilots arrived in Germany to be sufficiently trained to operate this fighter. This transition to a new, low-wing aircraft, with a fully enclosed crew cockpit and retractable landing gear, was not easy for the Romanian pilots who needed time to adapt to the new design. Once the whole training process was completed the 30 aircraft were sent to Romania. They arrived during a period of late August to early October 1939. During their flight from Germany to Romania, one He 112 was lost in an accident, while a second was damaged but later repaired at I.A.R. The Romanians tested the newly arrived He 112 against the domestically developed I.A.R.80 fighter. The Romanian aircraft proved to be a better design overall, but the He 112, thanks to its good overall handling and firepower, were also deemed satisfactory.
The newly acquired He 112 prior to the flight to Romania in 1939. (D. Bernard )
The 5th Fighter Group
The Romans used the 29 He 112 to equip the Grupul 5 Vânătoare (5th Fighter group). This unit consisted of the Escadrila 10 and 11 (10th and 11th Squadrons), later in October 1939 renamed to Scadrila 51 and 52. The main purpose of this unit was to protect the capital from any potential aerial threat. In April 1940, Germany sent one replacement aircraft for the one lost in transit the previous year, so technically Romanian operated 31 He 112’s in total. In May 1940, the He 112 was first presented to the Romanian public during a military parade.
The Romanian-Hungarian War
In Summer the rising tension between Romania and Hungary over Transylvania reached a critical point. Transylvania was part of Hungary but was lost after the First World War when it was given to Romania. In 1940, the Hungarian Army began preparing for a possible war with Romania. As neither side was willing to enter a hastily prepared war, negotiations began to find a possible solution. But despite this, there were some minor skirmishes. Hungarian aircraft made several reconnaissance flights over Romania. The Romanians responded by repositioning 12 He 112’s to the border but these failed to achieve any success against the enemy reconnaissance operation. On the 27th of August, an He 112 managed to intercept a Hungarian Ca 135 severely damaging it and forcing it to land. Ultimately, at the end of August, Romania asked Germany to arbitrate the issue regarding the disputed territory. Hungary managed to get to the northern part of Transylvania. On the 12th September 1940, one He 112 was lost when during a training flight, the aircraft caught fire from the engine compartment, and the pilot lost control and crashed ground, losing his life in this accident.
In Combat
Following the start of the Second World War with the Soviets, on the 22nd of June 1941, the 24 available (the remaining aircraft were under repairs) He 112’s were repositioned to the Focșani-North airfield in mid-June 1941. Their main task was to attack a Soviet Airfield and other ground targets. While not particularly designed for this role, thanks to its strong armament and even a small bomb load, it had enough firepower to deal serious damage. But the pilots were not trained in this manner nor the aircraft was sufficiently protected, lacking armor to protect the pilot and self-sealing fuel tanks. Occasionally they provided support cover to Romanian bombers. The Romanian main fighter in service at that time was the I.A.R. 80, so the He 112 was to fulfill secondary combat roles.
The He 112 began their first combat actions of the war against the Soviets by flying in an escort mission for the Romanian Potez 63 bombers on the 22nd of June 1941. These were heading toward the Soviet airfields at Bolgrad and Bulgarica. The attack on Bolgrad was successful despite strong Soviet anti-aircraft fire. As the Romanian air group was approaching the Bulgarica airfield they were met with resistance of some 30 Soviet I-16 fighters. One He 112 piloted by Teodor Moscu attacked two I-16 that were in the process of taking off from the airfield. Moscu managed to shoot down one I-16 on his first run. While he was pulling off from his attack another I-16 attacked his He 112. Moscu managed to shoot down this aircraft too, but his He 112 was badly damaged and losing fuel. He managed to reach a Romanian airfield and land the damaged fighter. Teodor Moscu was officially credited with achieving the first air victory for the Romanians during the War with the Soviets.
The He 112 on their first combat mission protecting the Potez 63 bombers on the 22nd of June 1941. (D. Bernard)
On the 23rd, the He 112’s mostly performed ground attack operations against Soviet targets. The same day, some 12 He 112 attacked the Bolgrad airfield. The Soviets responded by sending 7 I-153 fighters. After a brief clash, the Soviet fighters managed to shoot down one He 112. On the 24th, two He 112 were damaged in an accident. On the 28th of June, an He 112 was lost when it was shot down by Soviet anti-aircraft fire. The same day another He 112 was lost when the pilot made a mistake during landing, ultimately leading to an explosion with the aircraft and the pilot being lost. One more was badly damaged when it caught fire after battling a Soviet fighter.
On the 2nd of July, two more fighters were lost again due to Sovie ground anti-air efforts. Three days later the He 112s once again attacked the Bulgarica airfield, attacking the Soviet aircraft with bombs, cannons, and machine gun fire. One I-153 that attempted to take off, but was intercepted and shot down. One He 112 was damaged in the process. Later that day, the He 112’s provided a bomber escort mission where they engaged a group of 12 Soviet fighters. In this engagement, the Romanian pilots managed to bring down 4 enemy fighters but lost one He 112 in the process.
On the 7th of July, two He 112’s attacked a column of Soviet cars near Comrat. The He 112s managed to destroy several of these cars. An interesting event occurred on the 12th of July. On that day, a He 112 was operated by Ioan Lascu while searching for targets in the area of Valea Hârtoapelor. The pilot quickly spotted an enemy armored column and proceed to attack it with bombs. After that, he went for another run and attacked them using the He 112 two cannons. This time the Soviets returned fire and the He 112 was hit by tank gunfire. The He 112 burst into flames and hit the ground, killing the pilot in the process.
In mid-july, the Soviets launched an attack in an attempt to destroy the Romanian Țiganca-Porumbiște bridgehead. Both the Romanians and the Soviets sent substantial air forces to this battle. Thanks to some 150 aircraft, the Romanians managed to repel the Soviet attack. The He 112 saw extensive action during this battle, losing one He 112 and another aircraft being damaged.
By the end of July, only 14 He 112 were reported operational while 8 were under repairs. With the arrival of the domestically built IAR 80 fighters, the He 112 was relocated to Romania in August 1941. These were temporarily allocated for defending the Romanian skies. With the great losses suffered by the 5th Fighter group, its 52nd Squadron was disbanded and its surviving aircraft relocated to the 51st. Out of necessity, the He 112 were in October, once again brought back to the front in the Odessa region, which finally fell to the Axis by mid-October. The He 112 equipped units were placed in this area carrying out either patrolling or reconnaissance missions above the Black Sea. Enemy aircraft were rarely encountered. Only one aircraft, an I-153, was shot down in the spring of 1942 in this area. This was actually the last kill achieved by the He 112 during war. Due to its inexperienced pilot, one He 112 was lost in this area.
In Late October the Romanians issued a war report where the He 112 performance was described. While the diving speed was excellent, the low horizontal and climbing speed was deemed quite poor. The fuel tanks and the pilot seat were not armored which led to unnecessary losses in men and material. The possibility to carry six 12 kg bombs was deemed satisfactory. The quality of ammunition used was poor as too often targets that were hit, did not receive any major damage.
Many He 112s were shot down due to their unprotected fuel tanks and unarmored pilot seat. (albumwar2)
Retirement from the frontline service
Combat around Odessa would be the last major engagement of the Romanian He 112. At the start of July 1942, the 5th Fighter Group was to be equipped with the I.A.R.80 fighters. By this time the remaining He 112 were mostly stored awaiting repairs. On the 19th of July during a Soviet night bombing raid over Bucharest, one He 112 took to the sky attempting to intercept the Soviet Bombers. This was the Romanian Air Force’s first use of fighters in a night raid attack. Even in this role the He 112 would be quickly replaced with the Me 110 twin-engine fighter.
In 1943 the surviving He 112 were placed under the Corpul 3 Aerian (3rd Corps) and acted as training aircraft on several different air bases. When the Romanin switched sides in August 1944, some 9 of the 19 available He 112 were still used as trainers where they awaited the end of the war. The last two surviving Romanian He 112 aircraft were finally scrapped in 1946.
After its retirement from front-line service the surviving He 112 were used as advanced training aircraft. (worldwarphotos)
This He 112 from the 52nd Squadron survived the war, but it and all remaining aircraft would be scrapped as they were at that point obviously obsolete and beyond repair. (worldwar2.ro)
In Soviet Aircraft Role
An interesting story related to He 112 in Romanian service was that they achieved some success in cinematography. Namly for the filming of the Italian-Romanian film ‘White Squadron’, where the He 112 were reused as Soviet fighters in September 1942. These were painted in simple gray color and received a large black star. It is unusual to use a black instead of a red star, but given that this was a black-and-white movie this was not a major issue.
A set of He 112s ready for a film appearance. (T.L. Morosanu and D. A. Melinte)
Conclusion
The He 112 provided the Romanian Air Force with a capable fighter until a proper replacement could be found. With its armament, it performed generally well in ground attack operations. Due to its inadequate protection, many were brought down quite easily by enemy return fire. Due to attrition, their service life would be severely limited to only a few months of the war before being brought back to Romania to perform a secondary but vital training role. .
He 112B-2 Specifications
Wingspans
29 ft 10 in / 9.1 m
Length
30 ft 2 in / 9.22 m
Height
12 ft 7 in / 3.82 m
Wing Area
180 ft² / 17 m²
Engine
One 700 hp Jumo 210G liquid-cooled engine
Empty Weight
3,570 lbs / 1,620 kg
Maximum Take-off Weight
4,960 lbs / 2,250 kg
Climb Rate to 6 km
In 10 minutes
Maximum Speed
317 mph / 510 km/h
Cruising speed
300 mph / 484 km/h
Range
715 miles / 1,150 km
Maximum Service Ceiling
31,170 ft / 9,500 m
Crew
1 pilot
Armament
Two 20 mm (1.8 in) cannons and two machine guns 7.92 mm (0.31 in) machine guns and 60 kg bombs
Credits
Article written by Marko P.
Edited by Henry H. and Pavel. A
Ported by Henry H.
Illustration by Godzilla
Source:
Duško N. (2008) Naoružanje Drugog Svetsko Rata-Nemаčaka. Beograd
J. R. Smith and A. L. Kay (1990) German Aircraft of the Second World War, Putnam
D. Monday (2006) The Hamlyn Concise Guide To Axis Aircraft OF World War II, Bounty Books
T.L. Morosanu and D. A. Melinte Romanian (2010) Fighter Colours 1941-1945 MMP Books
D. Bernard (1996) Heinkel He 112 in Action, Signal Publication
R.S. Hirsch, U, Feist and H. J. Nowarra (1967) Heinkel 100, 112, Aero Publisher
C. Chants (2007) Aircraft of World War II, Grange Books.
Number built: 1 prototype plus 12 production aircraft
The most modern Yugoslavian domestically developed fighter IK-3. (http://www.airwar.ru/image/idop/fww2/ik3/)
The Kingdom of Yugoslavia, despite its rather undeveloped industry and infrastructure, still possessed several aircraft manufacturing companies. During the 1930s, these produced a series of aircraft that would be adopted for military use. These were mostly training aircraft but there were also several fighter designs that would see service with the Kingdom of Yugoslavian Royal Air Force (RYAF). Among them was the IK-3 fighter, created by the well-known Yugoslavian aircraft engineers Ljubomir Ilić, Kosta Sivčev, and Slobodan Zrnić.
History
During the 1930s, the RYAF was mainly equipped with old and obsolete biplane fighters. While this would be eventually solved by the introduction of more modern, foreign designs like the Bf 109 and the Hawker Hurricane, some Yugoslavian aircraft engineers wanted to develop domestic fighter designs. This motivated two aircraft engineers from Ikarus, Ljubomir Ilić and Kosta Sivčev, to start working on such a design. They were already involved in designing a new high-wing fighter named IK-2. This aircraft proved to be superior to older biplane fighters that were in RYAF service. But after a small production series of 12 aircraft, it became obvious that this aircraft would quickly become obsolete, in contrast to other nations’ low-wing fighters.
The IK-2 fighter aircraft. (http://www.vazduhoplovnetradicijesrbije.rs/index.php/istorija/565-ikarus-ik-2)
For this reason in 1933, Ljubomir Ilić and Kosta Sivčev began working on improved fighters on their own initiative. While initially, they tested various ideas, eventually both agreed that a low-wing design was the best option. While having experience in fighter design, these two quickly realized that this project would require more work than the two engineers could achieve on their own. So they asked another engineer Slobodan Zrnić to assist in their work. All three of them worked on this project under the veil of secrecy. Finally, in 1936 they had a finalized project which was presented to the RYAF officials. After some time spent considering this new proposal, the RYAF gave the green light for it at the end of March 1937. A deal was made for the construction of a single prototype for testing and evaluation. While the IK-2 was built by Ikarus, the construction of the new aircraft was given to Rogožarski instead. Given the experience this company had working with wooden airframes, the new fighter was to have a primarily wooden construction to reduce costs and speed up development time.
Name
This project would receive the IK-3 designation. At that time it was common practice that any newly developed aircraft was to be named based on the designer’s initials. In this case, I stood for Ilić and K for Koča, which was Kosta Sivčev’s nickname. The number 3 represents the third fighter project of these two engineers.
Construction of the Prototype
After one year of work, the first prototype was completed. In appearance and design, this was quite a modern aircraft. It was built using a mixed construction and was powered by a 925 hp V-12 Hispano-Suiza 12Y29 engine. It was flight tested for the first time on the 14th of April, 1938. An initial series of test flights were carried out near the capital of Belgrade at Zemun. The test pilot at this early stage was Captain Milan Bjelanović. These flight tests lasted up to the late summer of 1938. During this time, there were no major problems reported with its design, and the aircraft was given to the RYAF for future testing.
The IK-3 first prototype was tested in 1938. (http://www.airwar.ru/image/idop/fww2/ik3/)
A commission of several RYAF officials was elected for the planned army testing and it was agreed that the whole process should last 100 flight hours. For this, the aircraft was to be fully armed which included a centerline mounted 20mm cannon which fired through the propeller hub, and two 7.92 mm machine guns placed in the upper engine cowling.
Following the conclusion of the testing by the RYAF, a report was issued in which its performance was deemed sufficient. The armament was installed and functioned without any major issues, however, it was desirable to add two more machine guns in the wings. The aircraft offered good overall flying performance though its controls were noted to be somewhat problematic and some changes were requested. To resolve this it was asked to improve the design of the flaps, by increasing their deployed angle and size. The canopy was of rather poor quality and was reflective, forcing some test pilots to fly the aircraft with open canopies. The engine had overheating problems which required extensive work before finally being solved by adding an improved cooling system. During these trials, the maximum speed achieved was slightly over 520 km/h. While not bad, the RYAF commission wanted it to be increased to at least 540 km/h, which was not achieved on this aircraft. Overall, this aircraft was deemed worth developing further by the RYAF commission, which gave a recommendation for a small series of 12 aircraft to be produced.
The production of the IK-3
Following the production orders for the IK-3, an accident happened that threatened the realization of the project. On the 19th of January 1939, an accident occurred during a test flight, and test pilot Captain Milan Pokorni was killed, and the plane was lost. A commission was formed to examine what went wrong. After analyzing the wreckage it was determined that the IK-3 prototype’s structural design was not at fault, nor did the pilot make any mistakes. Prior to this accident another pilot Dragutin Rubčić, had a harsh landing, damaging the aircraft in the process. Why this was not properly examined before another take-off by Captain Milan Pokorni is unclear. In another account, during a dive, the canopy broke free which probably made the pilot enter a climb. This seemingly caused enough force to be put on the already damaged aircraft, resulting in structural failure.
While this accident did not lead to the cancellation of the whole project, it did cause huge delays in the delivery of new aircraft. The RYAF officials wanted the aircraft to be thoroughly examined and tested before any further production order was given. Finally, in November 1939, the project received a green light again.
The second prototype, which was also the first aircraft of the first production series, was completed in December 1939. This aircraft was examined in detail over the next few months. As no major issues with the prototype were found, the production of additional 5 aircraft was completed by the 17th of April 1940. The other six aircraft could not be completed as the IK-3’s propellers had to be imported. As there were delivery problems with the last six aircraft, instead of the hydraulically controlled Hispano-type propeller, they were equipped instead with Chauviere-type propellers. It used pneumatic commands which necessitated changes to the engine and its compartment. These were finally completed in July 1940. Once all were available these were allocated to the 51st Fighter Group in July 1940. These were divided into two six-aircraft strong squadrons (the 161st and 162nd) stationed at Zemun airfield near the capital Belgrade.
Members of the 51st Fighter Group in front of their IK_3 during the summer of 1940. (https://nasaborba.com/rogozarski-ik-3-ponos-srpskog-ratnog-vazduhoplovstva/)
Second series proposal
In march 1940, the Rogožarski company proposed to the RYAF another production run of 25 to 50 new IK-3 aircraft. It was to incorporate a number of improvements like self-sealing fuel tanks, a redesigned radiator, adding radio equipment, armor for the pilot seat, an aerodynamically improved engine cowling, and a new gunsight. The company proposed that these could be completed in a period of 9 months. To speed up the developing process, one IK-3 (serial number 7) was selected to be converted as the prototype of this new series. This aircraft was completed by the end of March 1941. It was flown in early April, managing to reach a speed some 15 to 20 km faster than the standard IK-3. Its further development was stopped due to the outbreak of the war.
The second IK-3 prototype was also the first aircraft of the small production series. (http://www.airwar.ru/image/idop/fww2/ik3/)
Further IK-3 modification proposals
Some accounts claim that the aircraft was tested with a DB 601 from one of the RYAF’s imported German fighters. According to eyewitness accounts, this model was fully completed and tested. If this was true, it was not confirmed by any historical documentation or photographic evidence. At the same time a Hurricane aircraft was tested with this engine (known as LVT-1). It is possible that an eyewitness simply confused these two.
Another proposed project was the IK-3/2 two-seater trainer. It was planned to add another position to the rear of the pilot, reduce the armament to two machine guns, and move the cooling radiator some 50 cm to the rear. As a number of modern Bf 108 aircraft were acquired, this project was dropped with no prototype ever constructed.
In service, prior to the war
The newly produced IK-3 entered service at the end of 1940 and was used primarily in training flights. They were especially used to test their performance against the Bf 109, which was also in service with the RYAF. The Bf 109 offered better horizontal and climbing speed. In comparison, the IK-3 possessed better horizontal maneuverability, possessing a smaller turning radius of 260 m, the Bf 109 on the other hand had a turning radius of 320 m. The IK-3 also had a somewhat more stable armament installation, providing better accuracy during firing. As the pilots who flew on the IK-3 were not entirely accustomed to flying on modern airplanes, harsh landings were quite common. This necessitated that many IK-3 were often in workshops awaiting repairs of their landing gear units.
The IK-3’s Achilles Heel was its landing gear unit which was of poor quality. This led to a quite common breakdown of the landing gear during landings. This aircraft was damaged in this way a day before the outbreak of the war. The Germans would capture it and later, in 1942, send it to be scrapped. (http://www.airwar.ru/image/idop/fww2/ik3/)
The sixth produced IK-3 would be lost in an accident that happened on the 3rd of September 1940. During a mock dogfight with a Potez 25, pilot Anton Ercigoj lost control of the fighter and fell into the Danube river. The pilot was killed on the spot and the aircraft could not be salvaged. While it was not clear how the accident happened, it was speculated that it did occur due to the pilot being too tired from previous flights.
In War
Just prior to the outbreak of the so-called April war, from the 6th to 17th April 1941, between the Kingdom of Yugoslavia and the Axis forces, only 6 IK-3 were combat-ready. The remaining 5 aircraft were awaiting repairs. Three were located at the Rogožanski workshop in Bežanijska Kosa, and two more at the Zemun Airfield. The war began with massive Luftwaffe bombing raids on vital military, communication, infrastructure, and civilian targets. The capital, Belgrade, was a primary target of strategic bombing and was majorly hit. The whole 6th Fighter Regiment, to which the 51st Fighter Group belonged, was tasked to defend Northern Serbia and parts of Croatia and Bosnia from any potential enemy attacks. The 51st Fighter Group reinforced the 102nd Fighter Squadron equipped with Bf 109 and was tasked with defending the Northern sector. Its primary defense point was the capital Belgrade.
The 51st Fighter Group was informed of a possible enemy attack almost an hour before it occurred. At 0645, the unit was informed of two approaching enemy aircraft formations. Five minutes later, all available IK-3s took to the sky to defend the capital. One aircraft, due to engine problems, had to abort the flight and went back to the base.
During the first engagement, some 5 to 6 enemy aircraft (at least one Ju 87) were shot down. One IK-3 was shot down and three more were damaged. Two of these were badly damaged and they were not used in combat after this point. The defenders were then left with only three operational IK-3 aircraft. Late that morning, another bombing raid was launched by the enemy. While only three IK-3 were available at this point, their attack was supported by the Bf 109s from the 51st Group. While the Yugoslavian fighters reported no losses, they managed to take down one Bf 109 and damaged two Ju 87. During the first day of combat, the Germans used nearly 500 bombers which dropped some 360 tonnes of bombs on Belgrade.
The following day, enemy activity came in the form of smaller formations that attacked specific targets. The Ik-3s once again saw action, managing to shoot down more enemy aircraft. While they received no losses, many aircraft were badly damaged by enemy return fire. For example, the IK-3 fighter piloted by Milisav Semiz received 56 hits. The engine itself received some 20 direct hits. While fully covered in engine oil the pilot managed to land safely at the Zamun airfield, the aircraft had to be written off. This unit was reinforced with one IK-3 of the second series. Due to heavy enemy activity, the unit was repositioned some 50 km away from Belgrade at Ruma. For the next few days due to bad weather, the IK-3 was not used. On the 11th of April, the Yugoslavian positions were discovered by a Me 110, which proceeded to attack the airfield. It failed to do any damage, but one IK-3 began a pursuit of it. Eventually, it managed to close in on it and shoot it down. Later that day, two IK-3s took to the sky and managed to shoot down two Ju 87s.
At 1700 hours, due to an enemy ground advance, it was decided to move the available units to Bosnia. The retreat was to commence on the 12th of April, but due to sudden enemy advances and poor weather, the evacuation could not be achieved. The unit commander and pilots agreed to burn down any surviving aircraft to prevent them from falling into enemy hands. This action basically marked the end of the IK-3 service with the RYAF.
Remains of the burn-down IK-3 at Ruma airbase. (N. Miklušev Maketar Plus)
In total both the 161st and 162nd squadrons reported some 15 air victories. These included two Ju 88, one Do 17, two Ju 87, two Bf 109, three Me 110, and one He 111. The remaining claims remain a mystery.
In German hands
The victorious Germans managed to capture a number of operational and damaged IK-3s fighters. Most were captured at Rogoarski repair workshops, with a few more at the Zemun airfield, all being abandoned. This included the IK-3 with serial numbers 2151 (which was actually the second prototype) 2152, 2153, 2157, 2158, 2160, and 2161. Most of these would be left exposed to the elements, near the capital Belgrade, until 1942 when they and many other captured aircraft were scrapped. At least one IK-3 was transported back to Germany. It is unlikely that it was used for testing, and some sources suggested but instead placed in the Berlin Aviation Museum. Its fate is unknown but likely lost when the museum was bombed by the Allies in 1944.
A captured IK-3 near the Capital of Belgrade after the April war. (http://www.airwar.ru/image/idop/fww2/ik3/)Many captured Yugoslavian aircraft were gathered at the Zemun airfield. There at least three IK-3s could be seen together with some Hurricanes and Caproni aircraft. Most if not all of these would be left exposed to the elements and finally scrapped in 1942. (N. Miklušev Maketar Plus)
Technical characteristics
The IK-3 was a low-wing, mixed-construction single-seat fighter. Its fuselage consisted of welded chrome-molybdenum tubes supported with wooden stringers, and covered in duralumin skin. The rear part of the fuselage was covered in plywood and canvas. The wings were mostly made of wood with some metal links added for better structural stability. The IK-3 wings were covered with birch plywood which was in turn covered in bakelite. The ailerons were made of metal, but covered with canvas. While the trailing edge flaps were made of duralumin, assembly was made using the same materials as the wings.
The IK-3 was powered by a 925 hp, V-12 Hispano-Suiza 12Y29 liquid-cooled engine. It used a Hamilton-type constant-speed propeller. The cooling airflow was adjustable by changing the angle of the grills located on the radiator intakes.
The canopy initially was made by using concave-convex side panels. These proved to be problematic as they distorted the pilot’s vision and were replaced with simpler flat sides. The instrument controls panel and command were directly copied from French designs. The first prototype and the later first-moved aircraft of the second series were only equipped with radios.
The IK-3 was designed as a low-wing mix construction single-seat fighter. (http://www.airwar.ru/image/idop/fww2/ik3/)
The landing gear was of a conventional design consisting of two front legs which retracted outwards, with the tail wheel being fully retractable. To provide better landing, the front landing gear units had shock absorbers. The IK-3 landing gear was of rather poor quality and it often broke down during landing, and led to many aircraft being constantly under repair.
Initially, the armament consisted of one 2 cm HS 404 cannon placed behind the engine, and two 7.7 mm M.31 Darne machine guns, positioned above the engine. This was used on the prototype for firing testing. Later production models were rearmed with one 2 cm Oerlikon M.39 cannon supplied with 60 rounds of ammunition. The 7.7 mm machine guns were replaced with two 7.92 mm Browning machine guns. The ammunition load for each machine gun consisted of 500 rounds.
The IK_3 was fairly strongly armed with one 2 cm cannon and two machine guns. The cannon is actually firing through the propeller center, which is visible in this photograph. (https://nasaborba.com/rogozarski-ik-3-ponos-srpskog-ratnog-vazduhoplovstva/ )
Production
Despite its advanced design, only one prototype and 12 aircraft would be built. This took an extended period of time to be completed from December 1939 to July 1940. While proving to be one of the better domestically developed aircraft, the RYAF was reluctant to order more IK-3 fighters as it was heavily dependent on imported parts.
Production Versions
IK-3 Prototypes – Two prototypes were completed
IK-3 – Production version
IK-3 II Series – One aircraft converted to this version
IK-3 powered by a DB 601 engine – Allegedly one aircraft was modified this way, but the evidence is lacking
IK-3/2 Series – Proposal for a two-seater trainer, none ever completed
Conclusion
Despite being a very capable design, the IK-3 saw only limited production. This was mainly the case due to many of its parts having to be imported, something that could not be easily done in war-torn Europe. When used in combat, despite the limited number of operational aircraft, they performed well, with claims for 10 enemy aircraft at the loss of only one IK-3. Ultimately they could do little to turn the tide of the war, and most were either captured or destroyed by their own crews to avoid being captured.
IK-3 Specifications
Wingspans
10.3 m / 33 ft 4 in
Length
8 m / 26 ft 3 in
Height
3.5 m / 10 ft 9 in
Wing Area
16.5 m² / 178 ft²
Engine
925 hp V-12 Hispano-Suiza 12Y29 liquid-cooled engine
Empty Weight
2.070 kg / 4.560 lbs
Maximum Takeoff Weight
2.630 kg / 5.800 lbs
Maximum Speed
520 km/h / 325 mph
Cruising speed
400 km/h / 250 mph
Range
600 km / 370 miles
Maximum Service Ceiling
9,400 m
Fuel
330 Liters
Crew
1 pilot
Armament
One 2 cm cannon and two 7.92 mm machine guns
Gallery
IK-3 Prototype – 1940IK-3 51.Grupa, 6.Lovacki Puk No.2158 Br.9 April 1941IK-3 161.Eskadrilla, 51.Grupa No.218 April 1941IK-3 161.Eskadrilla, 51.Grupa No.2159 Br.10 – April 1941Possible markings for captured IK-3 being tested by a German research unit
A diagram of the improved rocket interceptor. (Nevingtonwarmuseum)
When the Me 163B entered service, it was a unique aircraft by virtue of its rocket engine. It was used as a short range interceptor for German air defense, and while it could achieve extremely high speeds, its overall design left much to be desired. These faults included a highly restrictive view from the cockpit, a lack of retractable landing gear, and limited operational endurance. In order to address some of these issues, Messerschmitt engineers developed the Me 163C.
History
While the Me 163B Komet proved to be a remarkable design, it was quite dangerous to fly and there was plenty of room for improvement. In order to make the whole aircraft as cheap as possible, some limitations had been introduced. To save weight, the aircraft had rather small dimensions which, in turn, limited the fuel load that could be stored inside. This led to a limited powered flight time of fewer than 8 minutes. In combat operations, this proved to be insufficient, but there was little that the German engineers could do to improve this. Adding internal or external auxiliary fuel tanks was not possible given the design restrictions.
Me 163B rocket interceptor, accepted into limited service. (militaryimages.net)
The position and layout of the cockpit also offered a number of issues. Most importantly, it provided the pilot with a limited field of view behind his aircraft. Another issue was the lack of retractable landing gear. The Me 163 was instead forced to use a two-wheeled detachable dolly. This was intentionally done in order to reduce weight.
Once the aircraft was in the air, the dolly was jettisoned. There were accidents regarding this system when, for example, the dolly refused to be detached from the aircraft, or even worse, when it bounced off the ground and hit the aircraft from below. On landing, the Me 163 was to use a simple retractable landing skid, placed beneath the fuselage. After landing, the aircraft was immobile and became an easy target for enemy fighters. For this reason, a normal retracting landing gear unit was desirable, but once again for the same reason as the fuel load, this could not be implemented.
To redress the previously mentioned issues, engineers at Messerschmitt began working on an improved version, the Me 163C. It incorporated a longer fuselage, an improved cockpit, and had an engine with two combustion chambers. The development of this version likely started in late 1944 or early 1945.
Production and service
The precise development history, and how many aircraft of this version were built, are the subject of considerable speculation. The fact that there are no photographs of it complicates the matter further. Most sources mentioned that only a few incomplete airframes were built by the Germans. In some sources, for example B. Rose’s Secret Projects Flying Wings and Tailless Aircraft, it is mentioned that three prototypes were completed and flight-tested in early 1945. Source E. T. Maloney and U. Feist on the other hand, mentions that only a few pre-prototype airframes were built by the time the war ended in Europe. So there are two completely different accounts in the sources.
Technical characteristics
The Me 163C, like its predecessor, was designed as a high-speed, rocket-powered, swept-wing, tailless aircraft. Given its experimental nature and its late development into the war, not much is known about its precise technical characteristics. Its overall construction would probably be similar to the previous version, with its fuselage being built of metal, and possessing wooden wings. The semi-monocoque fuselage was longer and was now 7 m compared to the original 5.84 m length.
The Me 163C was to be powered by an improved Walter 109-509C or an HWK 109-509A-2 rocket engine. In the case of the first engine, it could generate a thrust of some 1.500 kg. An auxiliary HWK 509 rocket engine would be used to provide additional endurance once the aircraft reached its cruising altitude. The maximum speed of the Me 163C was estimated at 915 km/h while the operational range was 125 km.
While the introduction of retractable landing gear was desirable, the Me 163C was not to be equipped with one, but it still received some modifications in this regard. It was to have a fully retractable tail wheel located at the bottom of the tail assembly.
The cockpit was completely redesigned. It received a fully glazed bubble-type canopy. This offered the pilot a much improved all-around view. In addition, there were provisions for pressurization equipment.
The armament used on this aircraft is not quite clear in the sources. It would have consisted of either two 2 cm MG 151 with 100 rounds of ammunition for each cannon, two 30 mm MK108 cannons with 60 rounds, or less realistically, four 30 mm MK108 cannons with 40 rounds of ammunition.
Note the redesigned canopy, auxiliary engine, and extended fuselage. (www.walterwerke.co.uk)
Cancelation of the project
While the precise development of this aircraft is unclear, most sources agree on the reasons why it was not adopted, beyond the obvious end of the war. Basically, there were two main reasons for this. First, was the lack of landing gear. The Me 163C still had to take off and land using the take-off dolly and the landing skid. This was far from perfect as the dolly, as mentioned, could potentially damage the aircraft itself after release, and the use of a sliding skid made the aircraft immobile after landing. Lastly, the auxiliary engine only extended the operational flight by an additional 1-minute, which was deemed insufficient. It was for these reasons that the Me 163C would not be adopted, and instead the development of the much improved Me 163D was prioritized.
Conclusion
Given its experimental nature, it’s late introduction, and the disagreement between sources, it is quite difficult to make the final decision on the general properties of this aircraft. Given that the project was canceled by the Germans, it is likely that besides a few experimental prototypes, no actual production aircraft were be assembled. Regardless it served as a stepping stone for the next version, the Me 163D, which was built, but it too would not be adopted for service due to the end of the war.
Me 163C Specifications
Wingspans
32 ft 2 in / 9.8 m
Length
23 ft 1 in / 7 m
Height
3 m / ft in
Wing Area
220 ft² / 20.41 m²
Engine
Walther HWL 509C-1 liquid fuel rocket engine with a max thrust of 1.500 kg
Empty Weight
4,850 lbs / 2,200 kg
Maximum Takeoff Weight
11,680 lbs / 5.300 kg
Maximum Speed
570 mph / 915 km/h
Operational range
78 mil / 125 km
Engine endurance
12 minutes
Maximum Service Ceiling
40,000 ft / 12,200 m
Crew
One pilot
Armament
Two 20 cm MG 151 (100) / Two 30 mm MK108 cannons 60
Me 163C
Credits
Article written by Marko P.
Edited by Henry H. and Medicman11
Ported by Marko P.
Illustrations by Carpaticus
Source:
D. Nešić (2008) Naoružanje Drugog Svetsko Rata-Nemcaka. Beograd.
E. T. Maloney and U. Feist (1968) Messerschmitt Me 163, Fallbrook
M. Emmerling and J. Dressel (1992) Messerschmitt Me 163 “Komet” Vol.II, Schiffer Military History
J.R. Smith and A. L. Kay (1990) German AIrcraft of the Second World War, Putnam
W. Spate and R. P. Bateson (1971) Messerschmitt Me 163 Komet, Profile Publications
M. Ziegler (1990) Messerschmitt Me 163 Komet, Schiffer Publishing
D. SHarp (2015) Luftwaffe secret jets of the Third Reich, Mortons Media Group
M. Griehl (1998) Jet Planes of the Third Reich, Monogram Aviation Publication
B. Rose (2010) Secret Projects Flying Wings and Tailless Aircraft, Midland
Empire of Japan (1943) Experimental Glider Tank – One Mock-up Model
While tanks can provide excellent offensive firepower, they can’t always be easily transported to where they are needed. In the case of Japan during WW2, this was usually achieved by using ships and rail lines to transport them to where they were needed. Facing difficult terrain and disrupted shipping routes, the concept of a flying tank became a promising concept to the Japanese military hierarchy. By transporting tanks via the air, they could potentially offer benefits to the airborne troops, who were often left without proper heavy support. An exploration of this concept would lead to the creation of the Maeda Ku-6 tank glider.
The Concept of Airborne Operations
The American M22 Locust light airborne tank. (Source: Wikimedia)
The practice of dropping airborne troops behind enemy lines offers many tactical advantages, as they can attack weak points and enemy supply lines. This in turn would force the opposing side to redistribute its own forces away from the front to deal with this problem. On the other hand, airborne forces often lack proper artillery or armor support, making them vulnerable to well-equipped and directed enemies. Some nation armies responded to this by employing glider transportable light field artillery and even recoilless, high caliber guns. Transporting armored vehicles proved a more daring task to implement. Most tanks could not be easily carried inside a transport plane or even parachuted due to their weight and size. The American and British responded by developing lightly armored and armed tanks, such as the M22 Locust or the Light Tank Mk VII Tetrarch. The Soviet Union, on the other hand, designed an auxiliary glider contraption that would be used to transport a heavier tank, the Antonov A-40. This principle would also be tested by the Japanese Army during the war, which led to the creation of the Maeda Ku-6 project.
Antonov’s flying tank was unsuccessfully tested by the Soviets. (Source: Wikimedia)
Airborne Japan
The Japanese began the development of cargo glider designs for military use in 1937. Following the successful use of gliders by the Germans during their conquest of the West in May 1940, the Imperial Japanese Army began developing new gliders in June 1940. In response to this, the Imperial Japanese Navy began its own project soon after. In Japanese terminology, these were designated Kakku (English: to glide).
Both the IJA and IJN had and used parachute infantry units. It is important to note that these were relatively small units that were rarely employed in their intended role. For these reasons, their equipment was more or less the same as that of ordinary infantry formations. They saw the most active service during the fight for the Dutch East Indies in 1942. These were mainly used to capture various vital strategic points, such as airfields or weakly defended positions deep in the enemy’s rear line. Following the end of this campaign, the Japanese did not use paratrooper units in their primary role.
Japanese paratrooper IJN units had two notable deployments: in the successful Battle of Manado from 11th to the the12th January 1942, on Celebes Island, also known as Sulawesi, and in the Battle of Timor from19th February 1942-10th February 1943, where IJN paratroopers suffered heavy casualties. Their IJA counterparts were used more as a commando unit and were only ever airdropped during the invasion of Sumatra in February 1942.
Map of Japanese expansion by 1942. Some of these offensive operations also included the use of parachute units, albeit to a limited extent. (Source: https://www.pinterest.com/pin/389350330265435193/)
In 1943, attempts were made to increase their firepower, though, it is unclear how much impact the experiences from the airborne operations of February 1942 had. It was proposed to use specially designed glider tanks that could be flown to their designated target and thus provide necessary firepower to otherwise weakly armed paratrooper formations. In addition, this vehicle could be airlifted to any other theater of war without a need for them to be transported by ships, which were by this time, seriously endangered by the US Navy.
The Maeda Ku-6
The project was initiated by the Army Head Aviation Office in collaboration with the Fourth Army Research Center. The first drawings of this new design were soon ready and were allocated to the Maeda research center for the construction of a working prototype. In the early stage of development, the new tank was to be transported by a specially designed glider. But as Maeda was unable to create a glider that could transport a light tank, and so another solution was needed. Maeda engineers suggested another approach to this problem. As no glider could be developed to carry a tank, maybe the tank itself could be modified to use a glider.
While Maeda was responsible for the glider development, the design of the tank was given to Mitsubishi Heavy Industries. It is unclear if it was a completely new tank design or if Mitsubishi reused some of the existing vehicles that were in service. According to the Japanese Army and Navy Aircraft Complete Guide, the Type 98 light tank was used for the project. This tank was intended as a replacement for the Type 95 Ha-Go, but this was never achieved as it was built too late and in very small numbers.
The Type 98 light tank on which the Ku-6 was allegedly based. (Source: Wikimedia)
Name of the Project
According to E. M. Dyer, the new light tank was designated as So-Ra (Sora-Sha), which could be translated as the “sky” or “air” tank. The whole project would be designated Kuro-Sha, with the Ku and Ro, meaning the number ‘6’, taken from the Ku-6 glider designation. Lastly, the Sha stands for “tank”. An older source, J. E. Mrazek, mentions that the tank design originated in late 1939. According to Mrazek, the tank was initially designated ‘special Tank project 3’. It received the Sora-Sha designation before being changed to Kuro-Sha (English: Black Vehicle).
Technical Specification
The Ku-6 was designed as a tank transport glider. While not specified, it is likely that the Ku-6 would have been made out of wood. Due to the losses of the original documents, not much is known about its overall design. Over the years, historians based on available information devised two different designs of how this contraption may have looked.
The tank itself, due to its nature of use, had to be as light as possible. This means it would have been lightly armored and armed. The So-Ra’s total weight was slightly above 3 tonnes and would have been operated by two crew members. The driver was positioned in the front of the vehicle. He was also responsible for piloting the whole glider. Behind him, in the turret, was the commander, who was responsible for operating the main armament. This small crew would have greatly affected the tank’s overall performance. Given the limitation in size and weight, adding more crew members was not possible. In normal circumstances, the driver’s vision ports would have been small and protected. In this case, he would need to have a good and unobscured overall view of his surroundings. For this reason, he was to be provided with three large viewports. The armor was to be less than 12 mm thick. While its armament consisted of one 37 mm gun, along with a machine gun, a possible installation of a flame thrower was also considered.
The wooden mock-up of the Japanese airborne tank project. (Source: https://www.armedconflicts.com/Maeda-Ku-6-t41347)
As the tracks would cause massive drag during take-off, specially designed sleds would be attached to them to facilitate an easier take-off. According to the first proposals, the tank itself was designed to act as an improvised glider fuselage and the wings and the tail assembly would be attached to it. The tank crews would be provided with wired controls installed inside the vehicle in order to pilot it. In front of the tank, a towing cable would be added to connect it to the glider tug.
In the first version, the wings were to be attached to the So-Ra sides with the tail assembly to the rear. (Source: https://www.armedconflicts.com/Maeda-Ku-6-t41347 https://imgur.com/a/xaLcNcO)
The second version is completely different. Above the tank, a larger wing with a twin tail boom was added. These two components would be connected by struts. In both cases, once the tank hit the ground, the wing assemblies could be easily removed, which meant that the tank could immediately go into action with relative ease.
The second version was completely different in appearance. (Source: https://www.armedconflicts.com/Maeda-Ku-6-t41347)
It is unspecified which material would be used during the whole wing assembly. Given its rather late introduction and Japanese limited resources at this point, wood would likely be used. With the whole wing assembly, the Ku-6 had a length of between 12.8 to 15 m (depending on the source) with a width of 22 m and a height of 3 m. The wing area was around 60 m².
The maximum towing speed at heights of 4 km was 250 km/h. The maximum speed that could be achieved during the gliding flight itself was 174 km/h. The decent speed at 4 km altitude was 2.8 sec/m while at lower heights closer to the ground it was 2.6 sec/m. It is important to note that these are projected figures.
Testing and Project’s Fate
Due to the slow pace of work, the first operational glider prototype was completed in 1945. The tank itself was not ready by this time. As a temporary solution, a wooden mock-up of it with ballast was intended to be used instead. The prototype was taken to the sky by a Mitsubishi Ki-21 medium bomber. Almost from the start, the Ku-6 (according to E. M. Dyer the second variant was used) proved to have poor overall flight characteristics, and the pilot had a poor view. Lastly, as it was specially designed to carry the So-Ra, its transport capacity for other vehicles was very limited. The IJA officials quickly became disinterested in the Ku-6, focusing instead on the Ku-7 general purpose glider which looked more promising. Another aspect that we must take into account was the poor state of the Japanese Army in 1945. By this point, it was so battered and depleted, that undertaking an airborne operation was an impossible task. In the end, the Ku-6 would be terminated and the fate of the single prototype is unknown, but it was either scrapped or lost during Allied bombing raids.
The prototype was taken to the sky using a Mitsubishi Ki-21 aircraft. (Source: Wikimedia)The Ku-7 was a more orthodox glider design. While they were built in small numbers, they would be mainly used for testing and were not used operationally by the Japanese Army. (Source: https://listverse.com/2015/09/29/10-goofy-warplanes-of-world-war-ii/)
Conclusion
The Ku-6 seems like an interesting concept that could have offered a number of benefits to the Japanese in the early years of the Pacific theater. By 1943, when the project was initiated, the war situation for Japan had rapidly deteriorated, with the Allies pressing on all sides. In reality, the Ku-6 proved to be too flawed in design. It was difficult to control and the pilot had poor visibility. Given that it was a glider, it would make an easy target for Allied fighters which, by its construction time, had almost complete air supremacy.
Specification Maeda Ku-6
Wingspan
22 m / 72 ft 1 in
Length
15 m / 42 ft
Height
3 m / 9 ft 8 in
Wing Area
60 m² / 645 ft²
Maximum Takeoff Weight
4.200 kg / 9.260 lbs
Maximum Gliding Speed
174 km/h / 108 mph
Maximum Towing Speed
250 km/h
Crew
Two pilot/driver and the commander /gunner
Maeda Ku-6 hypothetical side wing configurationProposed version with the top wing construction.
Credits
Written by Marko P.
Edited by Henry H. & Medicman11.
Illustrated by Godzilla
Sources
D. Nešić (2008), Naoružanje Drugog Svetsko Rata-Japan, Beograd
E. M. Dyer (2009) Japanese Secret Projects Experimental Aircraft of the IJA and IJN 1939-1945, Midland
J. E. Mrazek (1977) Fighting Gliders of World War II, ST Martin Press
S. J. Zaloga (2007) Japanese tanks 1939-45, New Vanguard
Tomio Hara’s Japanese Tanks 1978
Japanese Army and Navy Aircraft Complete Guide
L. Ness (2015) Rikugun Guide To Japanese Ground Forces 1937-1945, Helion and Company