Hafner Rotabuggy

UK Union Jack United Kingdom (1943-1944)
Rotor Kite Transport – One prototype

During the Second World War, airborne troops became an essential component of modern military strategy. They allowed armies to wreak havoc on unprotected rear areas by destroying critical targets, such as the enemy’s vital command structures, and the infrastructure supporting their army. However, one major drawback was that once on the ground, these troops were lightly equipped and moved at a walking pace. However, an engineer named Raoul Hafner proposed an innovative solution: airlifting light vehicles using unpowered rotary wings, similar to those later used in helicopters. His concept involved towing the vehicle, behind a truck or light aircraft until lift off. Once airborne, it would be released, and the pilot would use autorotation to fly the vehicle to the landing zone. A prototype was built and tested, but with the advent of larger gliders, the project was ultimately abandoned.

The experimental Hafner Rotabuggy. Source: www.macsmotorcitygarage.com

An Airborne Dilemma

With the abundance of US-supplied military vehicles, the British sought ways to incorporate them into various roles, and experiments. Among those interested was Raoul Hafner, a rotor kite enthusiast. Rotor kites were essentially unpowered rotary-wing aircraft that shared many design features with later helicopters. While helicopters can take off under their own power, rotor kites cannott, instead, they need to be towed by a larger aircraft, or a suitable ground vehicle. Once airborne, they rely on airflow over their rotary wings to generate lift and remain airborne. This can be achieved by descending to generate speed and lift, having a strong wind to keep the rotor wing turning, or remaining tethered to another vehicle for the entirety of the flight. Although this technology was inexpensive to build, it was never implemented on a larger scale.

Hafner was born in Austria in 1905. In his early twenties, he developed an early interest in rotorcraft design, and in 1928, he collaborated with Bruno Nagler on an early helicopter prototype. In the early 1930s, Hafner emigrated to the United Kingdom, where he began working on gyroplanes there, he designed and built a functional prototype known as the Hafner A.R.III Gyroplane. Hafner continued refining his designs, but with the outbreak of World War Two, he was briefly held in state custody due to his Austrian origin.

Raoul Hafner would go on to play a vital role in the history of helicopter development. However, his early work was primarily focused on an unpowered variant known as the rotor kite. Source: en.wikipedia.org

Upon his release, Hafner began working on a solution to Britain’s shortage of materials needed for parachute construction. His goal was to develop an inexpensive, one-man rotor kite to carry an infantryman deep behind enemy lines. The core principle behind his concept was that, given the scarcity of materials required for parachute production, a small, easy-to-build, and simple-to-control rotor kite could serve as a cost-effective alternative. These kites were designed to be towed into the air by another aircraft and then released near the designated target. Once released, the pilot/paratrooper would glide down slowly before proceeding to their objective. Hafner followed with a small prototype series of these aircraft, designated the Hafner Rotachute. While his work showed promise, it ultimately resulted in only a limited number of experimental prototypes, with no further large-scale implementation.

The so-called Hafner Rotachute was an experimental attempt to develop an alternative to parachutes. While the concept was intriguing, it never progressed beyond a small prototype production run. Source: en.wikipedia.org

He soon expanded on that idea, if he could devise a way to land soldiers, why not include light vehicles as well? Paratroopers, who were often dropped behind enemy lines to wreak havoc among key targets, were frequently left vulnerable as they were lightly armed and had limited mobility. The challenge, however, was that airdropping even light vehicles was no simple task. Hafner theorized that his rotor kite design could be expanded and enlarged to allow for the airlifting and deployment of light vehicles. If successful, this would provide paratroopers with a means of transportation, increasing their effectiveness in combat.

The overall design was intended to be as simple as possible. A standard light vehicle, left mostly unmodified, would be partially enclosed within an aerodynamic fuselage, likely made of plywood, to provide lift and protect the crew from the tow aircraft’s propeller wash, and the wind. A rotary assembly would be mounted on top, while a large tail section at the rear would ensure lateral stability. Upon landing ,assuming a safe descent, the crew would discard the fuselage, leaving the vehicle fully operational and ready for use without issue.

In 1942, with this idea in mind, he approached the Central Landing Establishment, later renamed the Airborne Forces Experimental Establishment, to present his proposal. While, at first, the concept of attaching a makeshift rotary wing to a lightweight wheeled vehicle may seem dangerous and wasteful, it would be phenomenally valuable should it succeed. Developing an effective method for transporting such vehicles over long distances would have provided significant combat advantages. This was especially crucial at a time when the Allies were considering various plans and strategies for invading occupied France, plans where airborne units played a star role. Thus the Central Landing Establishment saw potential in this idea, and Hafner received approval to move forward with its development. Now, Hafner needed to find a suitable light chassis for the job. Fortunately for him, he didn’t have to search for long, the answer was already in the hands of the UK’s ally across the Atlantic.

A Well-Known Icon

In the 1930s, the leadership of the US Army closely observed the rapid military developments unfolding in Europe and the Pacific. In response, the Army sought to modernize its forces, starting with an increase in mobility for its reconnaissance units and couriers, which at the time primarily relied on horses.

Initially, as in Germany, motorcycles were introduced for this role. While they were an improvement over horses, they had significant limitations, primarily their limited carrying capacity, as they could only transport the driver, one additional passenger, and a very small amount of cargo. It became clear that a larger, more capable vehicle was needed.

This led to the  development of small, relatively inexpensive, all-wheel-drive light vehicles. Throughout the 1930s, the Army conducted extensive testing and evaluation of several different designs. After these trials, a final decision was made to adopt Willys-Overland Motors’ design, known as the Willys MB, but generally, it was simply referred to as the  Jeep, as the Army’s standard lightweight reconnaissance vehicle. Unbeknownst to them at the time, they had just created one of the most iconic military vehicles in history.

The Willys MB would become one of the most iconic military vehicles in history. Source: en.wikipedia.org

While Willys was set to produce these new vehicles, the immense demand and the need to utilize the vast production capacity of its competitor, Ford, led to the company also receiving orders to manufacture the vehicle. Although Ford was allowed to make some modifications, the overall design had to remain to ensure all mechanical components for the vehicles were interchangeable. Between 1941, when production began, and 1945, over 600,000 of these vehicles were produced. They saw widespread service across the globe during and after the war, with a significant number still in use today.

Initially designed for reconnaissance operations, their sheer numbers and popularity led to their adaptation for various roles. These included medical evacuation, combat, self-propelled rocket launchers, and long-range raiders for missions against enemy rear positions. They were also used as command vehicles, among many other roles.

The vehicle was widely exported to Allied nations, including the UK, which received tens of thousands. Even the Soviet Union acquired them and eventually developed its own variant. Given the vast stockpile of these vehicles, it is unsurprising that Hafner chose to test his idea using one of them.

The Jeep saw extensive use by British special forces in North Africa, where it played a crucial role in raids targeting enemy rear positions. Source: wikipedia.org

Name

The unusual vehicle was known by many nicknames. It received the Air Ministry designation ML 10/42 Special Rotating Wing Glider. It was also called the Malcolm Rotaplane, Flying Jeep, and Blitz Buggy. Eventually, it became best known simply as the Hafner Rotabuggy. For the sake of simplicity, this article will refer to it as the Rotabuggy.

Building and Testing the Vehicle

After receiving approval, the next task was to find a suitable chassis, and someone capable of building the vehicle or aircraft. Given the abundance of options, Hafner decided to utilize the US-supplied Jeep light reconnaissance vehicle. For the construction of the working prototype, he approached R. Malcolm Ltd., a small company that had been building aircraft components during the war.

Once the base components were selected, the construction of the working prototype began. It was likely completed by mid-1943. The first flight trials of the Rotabuggy were scheduled for November 1943. These trials were planned to be conducted using a Diamond T 4-ton 6×6 truck as a tug vehicle. This was seen as a simple, cost-effective, and safe option, given the prototype’s early development stage, far too early for tests with aircraft. The flight tests were carried out on the 16th November, 1943. Despite numerous attempts, the crew was unable to get the Hafner Rotabuggy off the ground, as they could not achieve the necessary speed to generate lift.

The Rotabuggy’s shape in its early experimental phase was still evolving. Experimenting with the design led to many changes, such as the introduction of much larger tail fins. Source: www.nevingtonwarmuseum.com

Further tests were carried out on 27th November. This time, a stronger, albeit unspecified, tug vehicle was used. The initial test was successful, as they managed to lift the Rotabuggy into the air. The first flight test using a tug aircraft, specifically a Whitley Bomber, was conducted in December 1943. However, the first design problems were identified during this test flight. At a speed of 80 km/h (50 mph), the vehicle experienced strong vibrations, forcing an early end to the flight.

Subsequent tests with a similar tug vehicle showed that the vibrations persisted at speeds of 70 km/h (45 mph) and higher. Additionally, during one test flight, one of the rotors struck the tail fin, damaging it in the process. Following these tests, the Rotabuggy was temporarily grounded for various repairs and modifications.

By February 1944, the Rotabuggy achieved a speed of 112 km/h (70 mph), and many more tests were carried out throughout 1944. On September 11th, 1944, the first major test flight was undertaken. At a height of 120 m (400 feet), after being towed by a Whitley bomber, the small buggy was released. After some brief difficulty controlling the aircraft, the pilot managed to land the vehicle, though with some effort.

In later stages, it would look visually much different, having a fully enclosed cockpit. Source: www.macsmotorcitygarage.com

Fate

Given the extensive testing, it was clear that there was significant interest in this project. However, despite more than a year of development, the project was ultimately canceled. The primary reason for this was not the new concept itself but rather the fact that the British had begun mass-producing gliders, such as the Waco CG-4, which could carry a Jeep within its fuselage. As a result, the Rotabuggy was no longer needed.

While his Rotabuggy project reached an unsuccessful dead end, this was not the end of Hafner’s story. Given his expertise in rotor aircraft development, he was appointed Chief Designer and head of the newly established Helicopter Division at Bristol. Hafner’s work at Bristol was highly successful, and he played a pivotal role in advancing early British helicopter design. His contributions were instrumental in the development of aircraft such as the Type 171 Sycamore, and the large tandem-rotor Bristol Belvedere.

He was also among the first aircraft engineers to receive the Dr. Alexander Klemin Award, a prestigious honor in the field of vertical flight aeronautics. Tragically, in 1980, Hafner disappeared at sea when his boat went missing and was never found.

Technical characteristics

The Rotabuggy fuselage was an extension added to the U.S. Jeep, designed to enable controlled flight. During testing, it was concluded that the Jeep could be dropped from a height of up to 2.35 m (7.7 ft) without suffering any major mechanical breakdowns. It could thus theoretically survive rough landings on unprepared ground.

Essentially, it consisted of a standard Jeep with four metal bars arranged in a pyramidal shape at its base. To enhance structural integrity, two additional metal bars connected the front and rear pairs. Atop this framework, a rotor unit was intended to be installed.

Another metal frame was attached to the rear section, consisting of at least four long stringers reinforced with smaller crossbars. Surrounding this structure, a series of almost circular frames, decreasing in size toward the tail section, were added to shape the fuselage.

A clear view of the Rotabuggy’s internal framework, which consists of at least four long stringers reinforced with smaller crossbars and enclosed in a plywood skin. Source: www.macsmotorcitygarage.com

The structure forming the base of the fuselage was then covered with plywood for aerodynamics. The sides and top were essentially flat, without any noticeable features. Large windshields were added at the front and on the crew’s side doors, providing excellent, almost all-around visibility. This gave the crews a clear view, more than sufficient for landing the aircraft. While little data for its flight characteristics survive, its estimated rate of sink at a speed of 77 km/.h (48 mph) was 4.9 m/s (960 ft/min)

Large windshields were added at the front and on the crew’s side doors, providing excellent, almost all-around visibility. This gave the crews a clear view of their surroundings. Source: rafbeaulieu.co.uk
The rear part of the fuselage was essentially flat, featuring only a slight curve. Source: /www.nevingtonwarmuseum.com

To help provide lateral stability, a large tail assembly was added to the vehicle’s rear. It consisted of two fairly large vertical stabilizers. Interestingly, there were no rudders on these fins. Lastly, a small landing skid was located at the end of the vehicle’s tail.

 

The tail assembly features two large fins that provide much-needed lateral stability. Source: www.nevingtonwarmuseum.com

The crew consisted of two members: a driver and a pilot. The driver was seated on the left side, as in the original Jeep configuration. The pilot sat in the opposite seat and was responsible for controlling the rotor blades, which were used to lift the vehicle off the ground. To control the vehicle, the pilot was provided with a control column, a rotor tachometer, and a set of basic and glider navigational instruments. Once on solid ground, the vehicle would be driven like a regular Jeep.

The Rotabuggy used rather long rotor blades, with a diameter of 14.22 meters (47 feet). There were some issues with this length, as on at least one occasion, they damaged the rear tail assembly, luckily without injuring its crew.

The control column for the aircraft. Source: aviadejavu.ru
The Rotabuggy used rather long rotor blades. There were some issues with this length, as on at least one occasion, they damaged the rear tail assembly. Source: aviadejavu.ru

Surviving Aircraft

Since it never progressed beyond the prototype stage, it is not surprising that the vehicle did not survive to the present day. The prototype was eventually refurbished back to a standard Jeep . However, being such an intriguing design concept, a replica was built by the Wessex Aviation Society. can now be seen at the British Museum of Army Flying in Middle Wallop, Hampshire.

While the prototype did not survive, the Wessex Aviation Society managed to modify a Jeep and create a modern replica of the Hafner Rotabuggy. Source: www.reddit.com

Conclusion 

The Hafner Rotabuggy was surely an interesting and unique attempt at utilizing the relatively new rotorcraft design. In theory, this concept would allow for an alternative method of airdropping men and materials, including vehicles.

While the Rotabuggy had some issues, such as severe vibration during flight, it was generally considered a mechanically sound design. However, its main drawback was that, despite its novelty, it did not offer significant improvements over the gliders already in use. As stronger and more capable gliders were developed, which could transport both personnel and lightweight vehicles, the Rotabuggy became obsolete.

Although its service life was short, the project played a vital role in shaping Hafner’s future work in rotary-wing aircraft, ultimately contributing to the development of various helicopter designs.

Hafner Rotabuggy  Specifications

Length 2.9 m / 9  ft 6 in
Height 2.06 m / 6  ft 9 in
Main rotor Area 15.9 m² /  173 ft²
Engine None / ( 60 hp in Jeep)
Empty Weight (for Jeep only) 964 kg / 2,125lbs
Maximum Takeoff Weight 1,411 kg / 3,110 lbs
Maximum estimated speed 241 km/h / 150 mph
Cruising estimated speed 130 km/h / 80 mph
Crew Two – The pilot and the driver
Armament
  • none

Illustration

 

Credits

  • Article written by Marko P.
  • Edited by  Henry H.
  • Illustration by Oussama Mohamed “Godzilla

 Source:

   

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.