Tag Archives: WWI

Albatros D.III

German Empire Flag German Empire (1916)
Fighter Plane – 1,866 Built
The Albatros D.III was a bi-plane fighter manufactured by Albatros Flugzeugwerke Company in the Aldershof district of Berlin, Germany. The plane helped secure German air superiority and several top German aces flew the D.III, including Manfred von Richthofen – The Red Baron.  It was armed with 2 7.92mm LMG 08/16 machine guns which were an air cooled and synchronized version of Germany’s MG08.

Design of the D.III

Designed by Robert Thelen, the D.III was based off of the D.I and D.II that preceded it, utilizing the same basic fuselage.   This fuselage design was semi-monocoque, meaning that the skin of the aircraft, which was plywood, could bear some weight and add structural rigidity.

Albatros D.III - The Red BaronAfter seeing the success of the French Nieuport 11 and 17, the Idflieg which was the bureau overseeing German aviation development at the time requested that the new D.III adopt a sesquiplane layout similar to the Nieuports. A sesquiplane configuration consists of a modified biplane design with shorter and and narrower lower wings with the advantage being less drag at speed. As a result, the top wing was lengthened, and the lower wing’s chord was shortened, meaning the wing measured less from leading edge to trailing edge. The bracing, between the top and bottom wings was reconfigured to a “V” shape leading owing to the single spar used in the lower wings. Because of this the British coined their own nickname for the D.III: “The V-strutter.”

Water Cooled Mercedes Power

The D.III utilized a water-cooled Mercedes inline 6 cylinder 4 stroke engine appropriately designated as the D.IIIa. The water cooling and overhead camshaft yielded more horsepower than the radial engines that were more common, with the D.IIIa pumping out 170 hp. In the interest of weight savings the crankcase was aluminum, whilst the separate cylinders were steel and bolted onto the crankcase. Unlike previous designs each cylinder had a separate water jacket.

Flaws Emerge

Several problems were discovered during the D.III’s introduction. The first of which was the placement of the aerofoil shaped radiator above the cockpit. Although it was well placed to avoid battle damage, it tended to scald the pilot if there was a leak or puncture in the radiator for any reason. The design was changed to relocate the radiator right of the cockpit.

Albatros D.III - Wrecked at FlandersAnother issue had to do with several lower wing failures. Even The Red Baron himself, Manfred von Richthofen experienced this with a crack appearing on his new D.III and was forced to make an emergency landing.  Initially this puzzled engineers and was attributed to poor workmanship during manufacturing, but in reality the lower wing was experiencing excessive flexing under aerodynamic load. The eventual cause was determined to be the wing’s spar which was located too far aft. As a result of the changeover to the sesquiplane layout, only a single spar was used in the lower wing. Modifications were made to the design and existing aircraft to strengthen the wing. In spite of the modification pilots were advised to avoid steep or prolonged dive maneuvers.

Performance

The D.III was well regarded among pilots from its introduction despite having heavier controls. It offered improved stability, maneuverability, and climbing ability over the preceding D.II. Downward visibility was also much improved thanks to the narrower lower wing.

Bloody April

Albatros DIII - Climbing

The Albatros D.III was the most dominant fighter in the air during April 1917. The British forces attacking at Arras, France pushed for strong air support in the battle, but were their pilots were not nearly as well trained as the German pilots. To make matter worse, the British planes in use such as the Sopwith Pup, Nieuport 17, and Airco DH.2 were vastly inferior to the D series aircraft in use by the Germans. The British would go on to lose 275 aircraft. By contrast the Germans only lost 66 aircraft during the conflict.

Albatros D.III Specifications

Wingspan  9 m / 29 ft 6 in
Length  7.33 m / 24 ft 1 in
Height  2.9 m / 9 ft 6 in
Wing Area 23.6 m² / 254 ft²
Engine 1 water cooled inline Mercedes D.IIIa engine
Maximum Take-Off Weight 886 kg / 1,949 lb
Empty Weight 659 kg / 1,532 lb
Maximum Speed 175 km/h / 109 mph
Range 480 km / 300 mi
Maximum Service Ceiling 5,500 m / 18,000 ft
Crew 1 (pilot)
Armament 2 x 7.92 mm LMG 08/15 machine guns

Gallery

Sources

Albatros D.III. (2016, March 1). In Wikipedia, The Free Encyclopedia., Avistar.org (n.d.) Albatros D.III Images: Albatros D.III – Flying by DeciBit, Albatros D.III – Side View by Serge Desmet / CC BY-SA 1.0

Sopwith Camel B3889 - Side Profile View

Sopwith Camel

british flag Great Britain (1917)
Fighter Plane – 5,490 Built
The legendary Sopwith Camel was the successor to the earlier Pup. The Camel utilized a biplane design and twin synchronized Vickers machine guns. It first flew in late 1916 as the British continued to develop faster and more powerful fighters to keep pace with  German advances in aeroplane design. The Camel was deemed far more difficult to fly than the preceding Pup and Triplane, but despite this would go on to shoot down more German aircraft than any other Allied plane.

Development

After combat losses, it became apparent that the Pup and Triplane were no longer competitive against the German Albatross D.III.  Sopwith Chief Designer Harry Smith recognized the need for a new fighter to be developed. While being designed, the Camel was referred to as the F.1 or the “Big Pup.”

Sopwith Camel - Front ViewAs was standard at the time, the airframe was a wood boxlike structure, with aluminum cowlings around the nose and engine area. Metal wire rigging was used throughout the construction to enhance fuselage and flight surface rigidity. A conventional fabric covered body and plywood cockpit area ensured weight savings were maximized. The nickname of “Camel” came from a “hump” shaped metal fairing that covered the machine guns in order to prevent freezing at altitude. The F.1 was also sometimes referred to as the “Sop,” short for Sopwith. The lower wings featured a dihedral of 3 degrees, meaning the wings are angled upwards and are not perpendicular to the fuselage. However to simplify construction the top wing was flat, giving the plane a unique “tapered gap” between the upper and lower wings. Also the top wing features a cutout section above the cockpit for pilot visibility.

The Camel

After its introduction in June 1917, the Camel became notorious for being difficult to fly. Rookie pilots crashed many times upon takeoff. Part of the reason was the fact that the center of gravity of the plane was very close to the nose owing to the plane’s sizeable powerplant relative to the size of the airframe.  However the fact that 90% of the weight of the aircraft was in the front third of the aircraft gave it great maneuverability, with the weight of the engine, pilot, and armaments centered within the wing root section of the fuselage.

Sopwith Camel Replica - ParkedThe Camel lacked the variable incidence tailplane and trimming that had enabled the Triplane to fly “hands off” at altitude. This meant that a pilot would have to constantly apply pressure to the control stick to maintain level flight at low altitude or speed. Great physical strength and endurance was required to fly the Camel at length.

The Camel had a rotary engine, not to be confused with a radial engine or a rotary wankel. With a rotary engine, the entire engine and crankcase spins relative to the fuselage, with the propeller directly connected to the crankcase. Thus engine speeds in RPM exactly the match the RPM of the propeller. The torque of the relatively powerful rotary engine combined with the weight distribution of the aircraft led to a constant “pull” to the right, a phenomenon common to rotary engines.  Although not necessarily a desired feature, pilots used this to their advantage for turning in dogfights. However, in the event of a stall the Camel would go into a dangerous spin.

The difficulty of flying the aircraft is obvious from the fact that about half of all Camels lost during the Great War were due to non-combat related incidents.  Early on there were many pilot casualties on their first solo fights after training, so a two-seat, dual control version was developed to mitigate the dangers of training on the aircraft.

The Numbers

A staggering 5,490 Camels were produced. Most were deployed to the Western Front. After the war they did not see much use in service. Remarkably only 7 are known to exist as of 2016, however there are many flying replicas of the aircraft.

The Camel is credited with downing 1,294 German aircraft, more than any other Allied plane. Among the plane’s kills is the famed German ace Rittmeister Manfred von Richthofen also known as the “Red Baron.”

Power

The Camel was powered by a variety of rotary engines and by design was able to be fitted with engines from other manufacturers such as Bentley. The primary engine used was the 130 HP Clerget 9B, a French design produced in France and Great Britain which also saw service in the Pup and Triplane.

The most powerful engine available was the Bentley BR1 which produced 150 HP thanks to its aluminum cylinders and pistons as well as a dual spark ignition. It was also significantly cheaper than the Clerget.

Sopwith Camel Specifications

Wingspan  8.5 m / 28 ft 11 in
Length  5.7 m / 19 ft 8 in
Height  2.6 m / 9 ft 6 in
Wing Area 21.5 m² / 231.42 ft²
Engine 1 air-cooled Clerget 9B 110 HP or 130 HP
Maximum Take-Off Weight 659 Kg / 1.453 lb
Empty Weight 422 kg / 930 lb
Maximum Speed 185 km/h / 115 mph
Range 350km / 217 mi
Maximum Service Ceiling 5,790 m / 19,000 ft
Crew 1 (pilot)
Armament 2 synchronized 7.7mm Vickers machine guns
4 20lb Cooper bombs

Gallery

Sopwith Camel B6313 - March 1918
Sopwith Camel B6313 – March 1918
Sopwith Camel B6313 - 6-1918 '3 Stripe' - Side Profile View
Sopwith Camel B6313 – June 1918 – ‘3 Stripe’
Sopwith Camel B6299 - B Flight, 10 Naval Squadron RNAS
Sopwith Camel B6299 – B Flight, 10 Naval Squadron RNAS
Sopwith Camel B6390 'Black Maria' - Raymond Collishaw
Sopwith Camel B6390 ‘Black Maria’ – Raymond Collishaw
Sopwith Camel B6313 - October 1918 - '6-Stripe'
Sopwith Camel B6313 – October 1918 – ‘6-Stripe’
Sopwith Camel B6313 - Oct 1917 Side Profile View
Sopwith Camel B6313 – October 1917
Sopwith Camel B3889 - Side Profile View
Sopwith Camel B3889 – July 1917
Sopwith Camel F6034 - Side Profile View
Sopwith Camel F6034 – September 1918
Sopwith Camel B6344 - October 1917
Sopwith Camel B6344 – October 1917

Sources

Sopwith Camel. (2016, April 1). In Wikipedia, The Free Encyclopedia, Avistar.org (n.d.) Sopwith Camel 1917, Sherman, S. (2012). Sopwith Camel, Franks, N. (2001). American aces of World War I. Oxford: Osprey Aviation. Images: Sopwith Camel – Front View Lineart by Voytek S / CC BY-SA 1.0, Sopwith Camel – Replica in Flight by D. Miller / CC BY 2.0, Sopwith Camel – Replica Structure by TSRL / CC BY-SA 3.0

Sopwith Triplane N6290 Dixie - Side Profile View

Sopwith Triplane

british flag Great Britain  (1916)
Fighter Plane – 147 Built
The Sopwith Triplane was a creation of Britain’s Sopwith Aviation Company around 1916. Its three stacked wings gave it good maneuverability and stability in flight relative to other planes of the day. The aircraft had the nicknames Tripehound, Trihound, Triplehound, or Tripe and it was popular among pilots. The Triplane first saw service with Royal Navy Air Squadron No.1 in late 1916. Many orders were placed by the RNAS as well as the Royal Flying Corps. Some aircraft were also acquired by the French Navy. One each was sent to Greece and Russia for evaluation. Only two original examples of the Tripe exist today.

Design

Sopwith Triplane Blueprint - Front ViewThe most noticeable aspect of the Triplane is its three wing design, which was one of the first of its kind. In the interest of pilot field of view Chief Engineer Herbert Smith decided to use a narrow chord design, meaning the wings were short as measured from leading edge to trailing edge. Because of the lift lost when narrowing the chord, the third wing was added to the design. All three wings have functional ailerons and the tailplane is a variable incidence type which means it can be trimmed enough for the pilot to fly hands-off. In early 1917 a smaller tailplane was introduced improving maneuverability. The Triplane was fitted with a single Vickers gun.

The Tripehound

Sopwith Triplane Flying

WIth the Tripehound’s entry into active service late in 1916, it quickly proved popular among pilots with its relatively superior maneuverability and speed. The first adversaries the Tripehound went up against were German Albatros D-IIIs which it greatly outclassed in climbing and turning ability, as well as being 15 mph faster. Every engagement with the enemy demonstrated the Triplanes’ superior power.

Clerget Power

Clerget 9 Cylinder Engine HeadThe Triplane was powered first by a Clerget  9B, 9 cylinder rotary engine developing 110 HP (82 kW). This powerplant was built in both France and Great Britain by numerous manufacturers. Later, 130 HP 9B engines were fitted, further enhancing the Triplane’s dominance, although the engine was tuned perhaps too aggressively as it was prone to overheating.

 

 

Sopwith Triplane Specifications

Wingspan  8.07 m / 26 ft 6 in
Length  5.73 m / 18 ft 10 in
Height  3.20 m / 10 ft 6 in
Wing Area 11 m² / 118.4 ft²
Engine 1 air-cooled Clerget 9B 110 HP or 130 HP
Maximum Take-Off Weight 698 Kg / 1,541 lb
Empty Weight 499 kg / 1,101 lb
Maximum Speed 188 km/h / 117 mph
Range 2 hours and 45 minutes
Maximum Service Ceiling 6,248 m / 20,000 ft
Crew 1 (pilot)
Armament 1 synchronized 7.7mm Vickers machine gun

Gallery

Sopwith Triplane Prototype N500 Side Profile View
Sopwith Triplane Prototype N500 – June 1916
Sopwith-Triplane-Prototype-N500-Brown-Bread-Side-Profile-View
Sopwith Triplane Prototype N500 – June 1916 repainted as “Brown Bread”
Sopwith Triplane N5387 Peggy - Side Profile View
Sopwith Triplane N5387 “Peggy” – August 1917
Sopwith Triplane N533 Black Maria - Side Profile View
Sopwith Triplane N533 “Black Maria” – July 1917
Sopwith Triplane N6290 Dixie - Side Profile View
Sopwith Triplane N6290 “Dixie”


Simulated Dogfight in a Triplane

Sources

1 Franks, N. (2004). Sopwith Triplane aces of World War 1. Oxford: Osprey., Images:Sopwith Triplane Flying at Duxford 2012 by AirwolfhoundCC BY-SA 2.0 , Clerget 9B Engine Head by Andy Dingley / CC BY-SA 3.0