Tag Archives: Top Gun

1.-F-14A-VF-1-BuNo-162597_03 Tomcat

Grumman F-14 Tomcat

usa flag USA (1974)
Tactical Fighter Plane – 712 Built

The F-14 Tomcat is the most iconic Cold War US Naval fighter, next to the McDonnel Douglas F-4 Phantom. It is also a replacement for the F-4 Phantom and the failed F-111B, incorporating the lessons and experiences acquired during Vietnam as well, like the F-15 Eagle. It has a similar origin to that of the F-15, but it is also the result of two additional factors. First, the Navy’s quest to find a Fleet Air Defence asset, with long-range and high-endurance interceptor characteristics to defend the aircraft carrier battle groups, mainly against long-range anti-ship missiles launched from Soviet bombers and submarines, in addition to intercepting those same Soviet bombers. It also needed a more capable radar and provision for longer range missiles. The role of then Secretary of Defence Robert McNamara was also crucial in this case, as he directed the Navy to take part in the Tactical Fighter Experimental program. But the Navy stepped out in fears that the USAF’s need for a low-attack aircraft would hamper the fighter abilities of the new airplane. Second, the ongoing TFX F-111B project was facing a large number of issues in the late 60s that made both the Navy and Grumman, which happened to be the builder of the F-111B alongside General Dynamics, to consider a new option with better capabilities and less operational and development issues. The F-111B proved unsuitable for the conditions of the Vietnam War and had no long-range missile capability. The Naval Air Systems Command (NAVAIR) also had a role, as it issued requirements for a tandem two-seat, twin-engine fighter with mainly air-to-air capacities capable of reaching speed of up to 2.2 match and able to operate with a new generation missiles. It was also directed to have a secondary Close Air Support (CAS) role and incorporate an internal M61A1 20mm Vulcan cannon, correcting the mistake made with the previous Phantom F-4, as it had no internal gun for close-range combat. A feat achieved by the Tomcat was that it had its first flight 23 months after the contract was awarded, making the of the Tomcat a milestone in the development of new air assets. NASA also had an important role during the development stage as it did with the F-15 through the Langley Research Centre, mainly related to the F-14’s most advanced feature: the geometrically variable wings. But it also played a role in the overall design of the fighter, working very closely with Grumman providing the company with technical assistance and data.

Characteristics

F-14B Tomcat aircraft from VF-101 circa 2004

The F-14 Tomcat is a double-seat tandem, twin-engine, double-tail, all-weather carrier-based fighter and interceptor and later gaining multi-role capability, with numerous remarkable features. The glove-mounted swept wings have variable geometry capability, in the same manner as the General Dynamics F-111, the Mig-23 Flogger, and the Panavia Tornado. When the wings were positioned rearwards, it was fitted for high-speed intercept missions. When swept outwards, the wings naturally increased drag, allowing lower speed flight and a lower stall speed. The control of the wing movement was automatic with manual control if needed. The flat area between the engines nacelles, at the rear of the fighter, purposed to contain fuel and avionics components, such as the controllers for the wing-sweep mechanism, flares and chaff and other flight assist functions. This results in a wide space between the two nacelles giving the Tomcat it’s characteristic shape. Its design is based in the aforementioned requirements, which required the new fighter to carry a combination of AIM-9 Sidewinder short-range missiles, AIM-7 Sparrow medium-range missiles, and long-range AIM-54 Phoenix missiles, alongside the 20mm M61A1 Vulcan cannon. As Grumman was awarded with the contract in 1968, it incorporated two features of the unsuccessful F-111B project: the two Pratt & Whitney TF-30-P3 engines and the required AWG-9 radar for the AIM-54 Phoenix. If one observes carefully, it can be concluded that there are many similarities between the F-111 and the F-14, not only the geometrically variable wings.

The F-14 Tomcat became the Naval equivalent of the F-15, as it was equally as capable as the Eagle, with the addition role of an embarked fighter, performing maritime air superiority, fleet defense, long-range interception, and tactical aerial reconnaissance missions. Despite the quite similar structure of the Eagle, the two fighters are very different, and not only because of their purposed missions. The F-14 reportedly relied more on airborne surveillance and identification systems for beyond visual range firing.
The F-14 structure is made of 25% titanium, such as the wing structure, pivots, and both upper and lower wing flight surfaces, with electron beam welding used in their construction. The same fuselage, in combination with the wing, provide the F-14 with exceptional performance in combination with the capability provided by the variable sweep wings, provided the between 40-60% of the airframe’s lift. In fact, it allowed a Tomcat to land safely after suffering a mid-air collision that removed more than the 50% of its right wing. The wings, with their variable geometry, allowed the aircraft to reach an optimum lift-to-drag ratio according to the variation in speed, which in turn permitted the aircraft to perform various missions at different speeds. The aircraft’s twin tail configuration helped it in maneuvers at high angles of attack and contributed in reducing the height of the aircraft, making it more conducive to storage in the limited height of an aircraft carrier’s lower decks. The powerplant also allowed the Tomcat to have a good performance, but it suffered from teething problems in its early years, later requiring modifications. The Tomcat had its first flight in December 1970. The first versions were powered by two Pratt & Whitney TF-30-P412A turbofan engines, yielding speeds of up to 1,563 mph (2,517 km/h) at high altitude. But this initial engine was deemed as unreliable as it caused 28% of the Tomcat’s accidents, mainly due to compressor stalls. As a result, the powerplant had to be improved, and later versions had the were replaced with the General Electric F-100-GE-400 turbofan engine. The Tomcat also had advanced avionics that gave it superior air-to-air and later on, enhanced air-to-ground capability.

An F-14D Tomcat attached to the “Bounty Hunters” of VF-2 makes a sharp pull-up in full afterburner circa 2003

The F-14, was subject to numerous improvement programs in avionics and engines, as well as weaponry. For instance, in 1994, the Low Altitude Navigation and Targeting Infrared System for Night (LANTIRN) was incorporated on the right wing glove pylon, which enhanced the Tomcat’s CAS and air-ground attack capabilities. In addition to the pod, other upgrades in avionics and cockpit displays allowed the usage of precision-guided weaponry, enhanced defensive systems, displays and control devices and even structural improvements. A Global Positioning System and Inertial Navigation System (GPS-INS) was integrated in the LANTIRN pod. Between the late 80s and early 90s, the Tomcat was able to operate with free-fall iron bombs, thus having limited ground-attack capabilities that were enhanced by the aforementioned improvements in avionics. Many proposed improved versions were drafted, but they were ultimately rejected given technical assessments and political reluctance to develop and introduce them, considering that new and more advanced and/or comparatively lower costs alternatives were already introduced or were at their late stage of development.

Tomcats in Combat

F-14D Tomcat on the deck of the USS John C. Stennis

The F-14 saw its good share of action after being introduced in September 1974, with the first missions being implemented in the last days of the Vietnam War, providing top cover for the evacuation air route through combat air patrols. During the Cold War and in the North Atlantic, it was a routine for the F-14 to execute long-range interceptions of Soviet bombers and maritime reconnaissance aircraft that were flying too close to the aircraft carrier groups, such as the Tupolev Tu-95, Tupolev Tu-16 Badger, Tupolev M-4 Bison, Antonov An-12 Cub and Illyushin Il-38 May. In addition, NATO exercises in the Northern region of the Atlantic usually garnered the attention of the Soviets, while their routine flights from the Kola Peninsula to Cuba prompted these interceptions on a weekly, if not daily basis. The F-14 also saw some action in the Lebanese Civil War, with combat air patrols while American nationals were evacuated in 1976, and again between 1982 and 1986, with further combat air patrols and Tactical Air Reconnaissance Pod System (TARPS) missions to spot artillery positions firing against the international peacekeeping force and to provide naval gunfire support with intelligence on targets. During these operations, many F-14s were attacked by Syrian anti-aircraft fire that never managed to strike any targets, prompting retaliatory strikes where the F-14 provided cover to attacking airplanes, and also prompting the battleship USS New Jersey to open fire against Syrian AA batteries. Syrian Migs engaged but did not attack the Tomcat. Tomcats also took part in the failed operation to free the American hostages in Iran.
It was in Libya where the F-14 became very famous, during a series of incidents between the USA and Libya throughout the 80’s, where the F-14 managed to shoot down 4 Libyan aircraft, 2 Sukhoi Su-22 Fitters, and 2 MiG-23 Floggers, while also sinking a corvette and a patrol boat, and damaging many more, including surface-to-air missile (SAM) sites. During these incidents, the F-14 provided combat air patrols and interceptions, supporting various missions, such as Operation Arid Farmer, Prairie Fire and El Dorado Canyon, even outmanoeuvring 2 MiG-25 Foxbats that were intercepted. During these interventions, Tomcats were also attacked by SAMs and air-to-air missiles fired by Libyan air assets, suffering no casualties. Similar incidents took place in Somalia in 1983, where two F-14s were attacked by SAMs while performing photo-reconnaissance over the port of Berbera, being confused with Ethiopian MiG-23s. Photo-reconnaissance, damage assessment, and combat air patrols were also executed by Tomcats during the Invasion of Grenada. During the hijacking of the Italian cruise ship Achille Lauro, the F-14s monitored activities around the vessel alongside combat air patrols, managing also to force the airliner carrying the terrorists that hijacked the ship to land in a NATO air base in Italy. During the “Tanker War”, an episode of the Iran-Iraq, the F-14 provided Navy vessels with combat air patrols and escort missions, alongside fighter cover during Operation Nimble Archer and Operation Praying Mantis.

F-14D on the deck of the USS Harry S. Truman in the Persian Gulf circa 2005

The last scenarios where the F-14 saw action was in Iraq during Desert Shield and Desert Storm, where it provided combat air patrols in protection of naval and land forces deployed at sea and in Saudi Arabia, deterring Iraqi advances. Escort for attack aircraft, long range defence of naval assets, combat air patrols, and TARPS patrols were among the additional missions carried out by the Tomcats during the campaign, pinpointing SCUD launchers, and performing battle damage assessments. A single F-14 was lost due to a SAM missile, while an Mi-8 helicopter was the only air kill achieved by the Tomcat, as Iraqi air assets tended to flee when engaged by the Tomcat, being shot down by other fighters instead. After the 1991 Gulf War, Tomcats enforced no-fly zones and executed bombings with advanced ordnance, such as the GBU-24 Paveway III and GBU-10/16/24 laser-guided bombs, making use of the LANTIRN pod and of night vision systems for the first time. During the Second Gulf War and its aftermath, and during Operation Enduring Freedom in Afghanistan, Tomcats executed strike and CAS missions, deploying the JDAM bombs for the first time in combat and against high profile targets. They also acted as Forward Air Controllers for other air assets. Another scenario was in the Balkans, where the F-14 was also deployed, using laser-guided bombs and performing combat air patrol, escort, strike missions, Forward Air Controllers and TARPS tasks.

As Iran was a key US ally up until the 1979 Revolution, it received F-14s to ward-off Soviet MiG-25 reconnaissance flights over Iran. After the Revolution and the following Iran-Iraq War, the Iranian Tomcats saw extensive combat, scoring several air kills, reportedly 160, and managing to intimidate its adversaries, against the loss of 16 Tomcats due to combat and accidents. This was an impressive feat as the Tomcats were not operational and crews lacked training and experience. Reportedly, Iranian Tomcats were escorting Russian bombers performing air strikes against ISIS in 2015, the last to remain in active service.
US Navy Tomcats were retired from service in September 2006, marking the end of an era to a plane that has reached an almost mythical fame in service. They were replaced by the Boeing F/A-18E/F Super Hornet. 712 units were produced between 1969 and 1991, of which 79 were delivered to Iran in the second half of the 70’s.

Design

Tomcat of VF-101 circa at an airshow 2004

The F-14 is composite-construction fighter, with aluminium around 25% of the structure and boron among its structural components, with glove-mounted wings, powered by 2 Pratt & Whitney TF-30-PA412A on the earlier F-14A, and 2 General Electric F-110-GE-400 on the F-14B and F-14D, located within two engines nacelles on either side of the aircraft. These engines are fed by two rectangular air intakes placed at each side of the fuselage, located right just aft of the second crewman’s position. These intakes are equipped with movable air ramps and bleed doors to regulate airflows and to prevent disruptive shockwaves. A bleed system was also installed to reduce engine power during missile launches. The nacelles and engine exhausts are widely separated by a flat area containing avionics systems. A small flat and rectangular radome, fuel tanks and the air brakes are also located midship. A fuel dump is located at the very rear. It has machined frames, titanium main longerons and light alloy stressed skin, with the center fuselage possessing fuel-carrying capacity. The radome at front hinges upwards to allow access to radar.
Although the shape of the Tomcat’s airframe significantly contributed to its lift and light maneuverability, it was still one of the largest and heaviest fighter in service with the US Navy. Another outstanding characteristic of the F-14 is the geometrically variable wings, which are swept and can variate from 20° to 68°, and up onto 75° to overlap the horizontal stabilizers and facilitate storage in the aircraft carrier hangars. The wings can be automatically or manually varied inflight and by the Central Air Data Computer, that gives the variation according to the speed. The wings on asymmetric configuration manage to keep the plane flying and to land; even landings with an angle of 68°in case of emergencies. At high-speed interception, they are entirely swept back, while in low-speeds they are swept forwards. The wing pivot points in the wing gloves are spaced enough to allow instalment of weaponry by a pylon on each side, and the centre of lift moved less, reducing trim drag, at the point of allowing the required high-speed of 2.0 Mach. There are no ailerons and wing-mounted spoilers provide control during roll. There are full-span slats and flaps. The superior and inferior surfaces of the wings are of titanium, with the wing carry-through is a one-piece electron beam-welded aluminium alloy structure with a 6.71m span. Fins and rudders are of light alloy honeycomb sandwich. The aft part of the Tomcat is also where the two twin tails are placed, right at the top of the engine nacelles, in the middle, and with the horizontal stabilizers placed side to side of the aft area of the nacelles. The tails have multiple spars, honeycomb trailing-edges and boron/epoxy composite skins. The landing gear is of the characteristic tricycle type, with the forward gear being beneath the nose, and the rear gears which are retractable, located at the “shadow” of the wings. This area was reinforced in order to withstand with the force that landing and taking-offs from aircraft carriers usually require. An arresting hook is placed beneath the rear fuselage area, in a small ventral fairing.

F-14D Super Tomcat maneuvers in the Persian Gulf circa 2005

The cockpit is placed at the forward fuselage of the fighter, having two seats in tandem where the crew consisting of a pilot and radar intercept officer are seated. The seats are Martin-Baker GRU-7A ejection seats. Flight controls are hybrid analog-digital type with the pilot being the one only in charge of controls. The avionics within the cockpit comprise of a Kaiser AN/AVG-12 HUD along a AN/AVA-12 vertical and horizontal situation display, communications and direction-finders embedded in the AWG-9 radar display, the Central Air Data Computer (CADC) made by GarretAiResearch with a MOSFET-based Large-Scale Integration chipset MP944. This is reportedly one of the first chip microprocessors in history. In addition, a Northrop AN/AXX-1 Television Camera Set (TCS) for long-range target identification, mounted in the undernose pod and having two cockpit selectable Fields of View (FOV), which replaced the original AN/ALR-23 IRST with idium antimonide detectors. This device allows pilots to visually identify and track objectives within distances of 97 km (60 mi). Information gathered from the pod can be recorded by the Cockpit Television System (CTS). An AN/ALR-45 radar warning and control system, a Magnavox AN/ALR-25 radar warning receiver, a Tracor AN/ALE-29/39 chaff and flare dispenser device, which is installed at the very rear, and a Sanders AN/ALQ-100 deception jamming pod. The canopy is a bubble-shape that provides 360° view, being beneficial in air-to-air combat, which is complemented and enhanced by a set of four mirrors for each crew member.

The wings do not carry any weapon stations, but the wing pivot point beneath the wing glove and the fuselage itself are the areas where the payload is carried. The normal configuration of weaponry was 4 AIM-54 Phoenixes, 2 AIM-7 Sparrows and 2 AIM-9 Sidewinders, but this configuration varied depending of operational needs. In addition, bombs such as Mk-80 free-fall iron bombs, Mk-20 Rockeye II cluster bombs, JDAM precision bombs and Paveway laser-guided bombs were also part of the payload, mainly in case of CAS and strike/attack missions. AGM-88 HARM and AGM-84 HARPOON were tested and deemed possible for use in the Tomcat. For close-quarter-combat, the F-14 is fitted with an internal multi-barrel M61A1 Vulcan Gatling gun of 675 rounds, located at the left area of the nose. TARPS pods for reconnaissance, LANTIRN targeting pod and 2 external fuel tanks are also among the payload that the Tomcat could carry in missions.

The F-14 Tomcat owes its exceptional performance to the combination of powerplant, avionics, the swept variable wings and the fuselage. For instance, the relatively wide airframe provided the Tomcat with 40-60% of its aerodynamic lifting position in conjunction with the wings, thanks to the structure’s components that reduced weight while increasing resistance to G forces. In addition, the range, payload, acceleration and climb were enhanced by these factors. The engine gave the Tomcat remarkable acceleration, speed and climbing characteristics, with a maximum speed of 1,584 mph (2548 km/h). The wings also provided good capability, such as variable speeds, enabling the Tomcat to accomplish a wide array of missions, and better capacity to hold at a designated area for a prolonged period of time. Agility is also a strong suit for the Tomcat, being able to perform high-performance maneuvers, thanks to the pitch authority resulting from the design of the airframe. The deadly and spectacular characteristics of the F-14 are complemented by the very capable and advanced avionics systems that enabled it to carry out its missions, enhanced by the aforementioned improvements in this area. The Hughes AN/AWG-9X radar with integrated Identification Friend-Foe (IFF) can track up to 24 targets thanks to the Track-While-Scan (TWS), Range-While-Search (RWS), Pulse-Doppler Single-Target Track (PDSTT), and JAT (JAT). 6 targets located within distances of up to 97km (60 mi) can be engaged through the TWS while devising and executing fire control solutions for these targets. While the Pulse-Doppler mode allows firing of cruise missiles thanks to the same radar detecting, locking and tracking small objects at very low altitude. For self-defence and situational awareness, the F-14 is fitted with electronic countermeasure (ECM), Radar Warning Receivers (RWR) which could calculate direction and distance of enemy radars and even to differentiate between the varied types of radars, chaff/flare dispensers, a precise inertial navigation system, and fighter-to-fighter data link. These were complemented later by the installation of a GPS device to enhance navigation. Upgrades in avionics allowed the F-14 to depend less on USAF AWACS or other air assets with target designators, as during Desert Storm and the interventions in the Balkans the Tomcat depended of other air assets to identify its targets.
The Tomcat’s capacity to receive upgrades along its flight and combat capacities were made evident during its service time, as new avionics were fitted in the early 90’s, and as the Tomcat in American and Iranian hands was capable of scoring and outperforming adversarial air assets, let alone their capacity to damage and sink naval assets and AA assets of the adversary. It even managed to avoid missile fire and to retaliate under US Navy service, with the exception of the one unit that was shot down during Desert Storm.
A legendary and fearsome cat beyond the screens: naval power in the air
Grumman has had a tradition of designing and building some of the most legendary and almost unmatched naval fighters in history, like the Grumman F6F Hellcat. The F-14 Tomcat was a continuation of such traditions, being considered the best naval interceptor built ever made. It also honored its predecessor, the venerable Phantom F-4 II, as it maximized US naval power by taking it into the air. Like an enraged cat protecting its territory and even fighting back, it was able to defend the aircraft carrier groups and the airspace it was ordered to defend, and even to strike back against its aggressor when needed. Its sole presence was so imposing that after Iraqi air assets suffered heavily at the hands of the Tomcat with both the U.S. and Iran, they usually elected to flee when Tomcats were detected. But like a cat ambushing its prey, the enemy air assets fled from the Tomcat only to be destroyed by other fighters. The Libyans and Syrians who opened fire with their SAM missiles against the Tomcat had to watch in shock how the Tomcats paid them back either by attacking the AA themselves or by directing fire against such positions. What is more astonishing is that losses from SAMs were almost zero, with only one F-14 lost during Desert Storm. In other incidents, the missiles never scored a hit. The Tomcat also let its might to be felt during the series of crises between the US and Libya in the 80’s, destroying 4 fighters and delivering a heavy blow to Libyan naval assets and AA artillery. Even downgraded versions of the Tomcat, facing limited supplies and logistics, managed to yield very impressive performance. During the Iran-Iraq War it scored a large number of air kills with few losses of its own, evidencing that even with trimmed claws, it was able to terrify and eliminate its prey.

But the F-14 was also able to impose itself without firing a single shot. When not hunting, it was able to guard the skies and waters it was tasked to protect. It managed to monitor the surroundings of a hijacked cruise line ships, and to force an airliner carrying the terrorists who hijacked the vessel to land in a base where they were apprehended. It also enforced the no-fly zone over Iraqi skies after the First Gulf War and punished the Serbians hard along with other air assets during the Kosovo intervention. It also intercepted aircraft that were a serious threat for its aircraft carriers. The Tomcat was also an avid sentinel, as it executed very effective and successful surveillance of enemy territory and assets.
The Tomcat was further immortalized in the movie Top Gun, where it was the main star of the film. Despite this well-deserved fame and exceptional performance, the Tomcat saw service only until the early days of the 21st century, as it was deemed “outdated” given its age, and was admittedly very expensive to maintain, operate, and upgrade. Like the F-15, it was a product of the experiences the US faced during the Vietnam War. Considering the performance the Tomcat had and its very active service throughout its career, it fulfilled its purpose. If the Tomcat were further modernized with the proposed versions by Grumman, it could have been an overhauled Cold War-era air asset still able to deliver a powerful punch in the modern era. Yet financial restrictions and the emergence of new technologies doomed this fighter to be retired from service sooner than its half-brother the F-15. The mark it left in aviation and history will be hardly matched in the future: many remain as monuments or museum pieces, as a memory from a bygone era. The remaining Tomcats still in service are those of Iran as of this writing.

Variants

  • F-14 Prototypes (YF-14A) – The first 12 F-14A were used initially as prototypes. Two were lost during trials.
  • F-14A – It is the first basic version of the Tomcat, powered by two Pratt & Whitney TF-30-P412A turbofan engines, and equipped with the AWG-9 radar for the AIM-54 Phoenix missiles originally intended for the F-111B. This version received upgrades in electronics, such as AN/ALR-67 Countermeasure Warning and Control System (CWCS), a LANTIRN pod and Programmable Tactical Information Display, improved engines, and a Digital Flight Control System which enhanced flight safety and control in the 90’s, and new precision strike munitions. 478 F-14A models were delivered to the US Navy, with 79 delivered to Iran. The 80th F-14A intended for Iran was delivered to the US Navy instead. There were plans for replacing the TARPS pod with a TARPS Digital Imaging System.
  • F-14B (or F-14+ / F-14B Upgrade or “Bombcat”) – Both an upgraded version of the F-14A and also a very limited new-built version of the same airframe, initially denominated as F-14A+. The previous engine was replaced with new General Electric F-110-GE-400 engines, enhancing capability and maneuverability while eliminating throttle restrictions or engine trimming, and even the need for afterburner launches. The avionics were similar to that of the F-14A except in the newly acquired advanced ALR-67 Radar Homing and Warning (RHAW). Further avionics were fitted during a life extension and upgrade program, including: Fatigue Engine Monitoring System, AN/ALR-67 Countermeasure Warning and Control System, Gun Gas Purge redesign, Direct Lift Control/Approach Power Compensator, AN/AWG-15F Fire Control System, Engine Door Tension Fittings and an Embedded GPS Inertial (EGI) navigation system. Other upgrades comprised a MIL-STD-1553B Digital Multiplex Data Bus, programmable multi-Display indicator group, another AN/AWG-15H fire control system, a AN/ALR-67D(V)2 Radar Warning Receiver, and Mission Data Loader, among others. It took part in the 1991 Gulf War. Further upgrades packages made the airplane to be denominated also a F-14B Upgrade “Bombcat”. 48 F-14A airframes were upgraded to the F-14B standard, while 38 new F-14B examples were manufactured. The upgraded airframes were denominated as F-14B after a proposed enhanced F-14B interceptor was rejected.
  • F-14D Super Tomcat – This was the final version of the legendary Tomcat, after the F-14B version was restricted by the Navy, prompting further modifications and upgrades to existing airframes and building some new ones under this standard. It was powered by 2 General Electric F-110-GE-400 engines, which provides the fighter with a higher top speed, improved thrust and quicker response. It also provided more endurance and striking range, increased climb rate and no need to use afterburner, although safety concerns were the main reason for this. New avionics were installed in this version, including a more powerful AN/APG-71 radar, better controls and digital displays that facilitates better control and navigation by automation and simplicity, decreased Weapon Replaceable Assemblies (WRA), new signal processors, data processors, receivers and antenna. IRSTS and the Air Force’s Joint Tactical Information Distribution System (JTIDS) were installed, enhancing security of digital data and voice communication and providing accurate navigation capabilities. A proposed new computer software to allow operation with AIM-120 AMRAAM missiles was considered but not implemented. In the mid 2000’s, a Remotely Operated Video Enhanced Receiver (ROVER III) upgrade was fitted in some F-14D airframes. 37 new units were built and delivered, while 18 F-14A were modified to the new standard. This was the most capable and powerful version of the Tomcat.
  • F-14B interceptor versions and F-14C – The F-14B was intended to be an enhanced version of the previous F-14A with better Pratt & Whitney F-401 turbofan engines that was rejected. The F-14C was a proposed enhanced version of the F-14B (or F-14A+ for clarity) with better avionics and weapons, better radar and fire control systems. Although rejected, many of the intended improvements were later on incorporated in other operational versions. A proposed enhanced interception version based on the F-14B to replace the Convair F-106 Delta Dart was also cancelled.
    F-14D Super Tomcat (proposed) improved versions
    These were proposed versions of the F-14D by Grumman to the US Navy and Congress, which were ultimately rejected.
  • F-14D Quickstrike – A proposed enhanced version of the F-14D Super Tomcat fitted with navigational and targeting PODS, additional hardpoints and a radar with ground-attack capacities, intended to replace the then retiring Grumman A-6 Intruder.
  • F-14D Super Tomcat 21 – As the Quickstrike was rejected by the US Congress, Grumman proposed the Super Tomcat 21 version as a cheaper version to the Navy Advanced Tactical Fighter programme. Among the proposed improvements were a better AN/APG-71 radar, new and more powerful General Electric F-100-129 engines capable of providing supercuise speeds of up to 1.3 Mach and having thrust vectoring nozzles, along enhanced control surfaces and fuel capacity. They would have improved takeoff and landing approaches at lower speeds.
  • F-14 Attack Super Tomcat – It was reportedly the last of the Super Cat proposed enhanced versions, with even more improvements in control surfaces, fuel capacity and an Active Electronically Scanned Array (AESA) radar from the also cancelled McDonnell-Douglas A-12 Avenger II attacker.
  • F-14 Advanced Strike Fighter (ASF) – Another rejected proposed version proposed under the Navy Advanced Tactical Fighter programme, as it was deemed too costly. The Navy then decided to pursue the F/A-18E/F Super Hornet.

Operators

  • United States of America
    The US Navy was the main operator of the Tomcat, which began operating it in 1974 in squadrons VF-1 “Wolfpack” and VF-2 “Bounty Hunters” embarked in the aircraft carrier USS Enterprise. It began operations during the American evacuation of Saigon, being also very active in performing fleet defence interceptions especially in the North Atlantic, escorting many Soviet bombers and maritime reconnaissance airplanes. During the Lebanese Civil War it executed combat air patrols and TARPS missions to detect targets for naval gun fire. Noteworthy to point out that it began its career also as a photo-reconnaissance platform, as it replaced the RA-5C Vigilante and RF-8G Crusaders in such missions. Tomcats were attacked by Syrian air assets and AA without any losses and often fleeing once engaged by the F-14s. It also had a very limited role during the failed operation to free the American hostages in Iran.
    Libya and the Mediterranean Sea was one of the areas where US Navy-operated Tomcats saw intensive action, as incidents and tensions between the US and Libya were common during the 80’s. The F-14s contained and pushed back Libyan air assets, as they managed to shoot down 2 Sukhoi Su-22 Fitters and 2 MiG-23 Floggers, and even to outmaneuver 2 incoming MiG-25 Foxbats. They also managed to destroy two Libyan naval units and damage another two, whilst additionally taking out several SAM sites. It was during these incidents that the F-14 proved its value and capacities, by successfully defending the aircraft carrier group, avoiding enemy fire and even returning fire. The F-14s were also active in Somalia, where they were attacked by mistake, and in Grenada, where they supported intervention on the island. The F-14 also had a remarkable anti-terrorist action, as it monitored activity near the hijacked Italian cruise Achille Lauro, and then managed to intercept the Egyptian airliner carrying the terrorists that hijacked the cruise ship, forcing it to land at a NATO air base in Italy, where the terrorists were apprehended by Italian and American security forces.
    The Persian Gulf was another area where the US Navy Tomcats saw a good share of action, with the combat air patrols and escort missions it provided to US air and naval assets, as well as with fighter cover during two retaliatory operations after Iran attacked and threatened commercial and US Navy vessels. With the First Gulf War, Tomcats executed combat air patrols protecting allied forces in the area and preventing a potential Iraqi incursion into Saudi Arabia, along with escorting attack aircraft, long range defence of naval assets, combat air patrols and TARPS patrols. Tomcats also identified individual SCUD missile-launchers. During this conflict, a single F-14 was shot down by a SAM missile, with one of the crew falling prisoner to the Iraqis. The F-14 managed to score a single air kill, a Mi-8 helicopter, as its sole presence usually prompted Iraqi air assets to flee, only to be shot by other American air assets in the area, such as the F-15. In the period between the 1990 and 2003 wars, it enforced the no-fly zone and took part in punitive air strikes against Iraqi assets as well, using advanced ordnance like GBU-24 Paveway III and GBU-10/16/24 laser-guided bombs, and making use of the LANTIRN pod and night vision technology for the first time. Further CAS and strike missions were executed during the Second Gulf War in 2003 and afterwards, using JDAMS bombs for the first time against important military and governmental targets, acting also as Forward Air Controllers for other warplanes. In Afghanistan they had similar missions, spearheading Operation Enduring Freedom and taking off from the Indian Ocean in some of the longest range missions for Tomcats.
    And a final area where the Tomcats saw considerable action was in the Balkans, where they used laser-guided bombs, conducted combat air patrols, escorts, strike missions, Forward Air Controllers and TARPS missions. As they were not fitted with LANTIRN pods, F/A-18s had to assist in pinpointing the designated targets.
    The first US Navy female pilot had her first flight in an F-14 Tomcat.
    The US Navy retired the F-14 from service in 2006, with its role being taken now by the F/A-18E/F Super Hornet.
  • Iran
    Iran is the only foreign operator of the F-14 Tomcat, as it received 79 units in the late 70’s thanks to its strategic alliance with the US in the region during the Cold War and up until the Iranian Revolution of 1979. They saw extensive action in the 1980-1988 Iran-Iraq war, engaging Iraqi air assets on numerous occasions. It is reported that the Iranian Tomcats scored 160 air kills, which included: 58 MiG-23, 33 Dassault Mirage F-1, 23 MiG-21, 23 Su-20 and Su-22, 9 Mig-25, 5 Tu-22, 2 MiG-27, one MiL Mi-24 helicopter, 1 Dassault Mirage 5, 1 B-6D (Xian H-6), 1 Aerospatiale Super Frelon helicopter, and two unspecified aircraft. The only losses in combat were 3 Tomcats downed by Iraqi air assets and 4 losses from SAMs, 2 that disappeared and 7 that were lost to non-combat incidents. During this conflict, the F-14 Tomcat demonstrated its capabilities, at the point of intimidating and deterring the Iraqi Air Force, and despite being a downgraded version of the Tomcat in terms of avionics. By 2015, an estimated of 20-30 airframes remained on active duty with the Islamic Republic Iran Air Force (IRIAF), and were reported to escort Russian Tu-95 Bear bombers carrying out bombing against ISIS terrorists’ positions.

 

F-14D Specifications

Wingspan  64 ft / 19.55 m (wings extended)

38 ft / 11.65 (wings swept)

Length  62 ft / 19.1 m
Height  16 ft / 4.88 m
Wing Area  565 ft² / 52.49 m²
Engine  2 x General Electric F-100-GE-400 afterburning turbofans
Maximum Take-Off Weight  74,350 lb / 33,720 kg
Empty Weight  43,735 lb / 19,838 kg
Loaded Weight  61,000 lb / 27,700 kg
Climb Rate  over 45,000 ft/min (230 m/s)
Maximum Speed  At high altitude: Mach 2.34 ( 1,544 mph / 2,485 kmh )
Range  575 mi / 926 km for combat radius; 1,840 / 2,960 for ferry
Maximum Service Ceiling  50,000 ft / 15,200 m
Crew  2 (pilot and radar intercept officer)
Armament
  • 1 X 20mm M61A1 Vulcan 6-barrel rotary cannon
  • 10 hardpoints – six under the fuselage, two under the nacelles, and two on the wing gloves, all allowing up to 6600 kg (14,500 lb) of ordnance and fuel tanks. The payload was varied in deployment and type, usually being 6 AIM-7 Sparrow, 4 AIM-9 Sidewinder and/or 6 AIM-54 Phoenix (and MIM-23 Hawk in the case of the IRIAF). Up to 6622 kg (14,599 lb) of air-to-ground were also carried, including Mk 80 free-fall iron bombs, Mk 20 Rockeye II cluster bombs, Paveway laser-guided bombs, and JDAM precision-guided munition bombs. 2x 267 1010 l fuel tanks were carried as well.
  • The fighter/naval interceptor had avionics both part of its structure and carried in the hardpoints. Among those at the hardpoints were the TARPS and the LANTIRN targeting pods. Among its onboard avionics were a Hughes AN/APG-71 radar, an AN/ASN-130 inertial navigation system (INS), Infra-Red Search and Track (IRST) and Track Control System (TCS). It also had a AN/ALR-45 and AL/ALR-67 (F-14D) RWR, a AN/ALQ-167 ECM pod and a AN/ALQ-50 towed decoy (the two last ones in the F-14D).

Gallery

1.-F-14A-VF-1-BuNo-162597_03 Tomcat
F-14A VF-1 “Wolfpack” BuNo 162597 circa 1987 loaded with AIM-9s, AIM-7s, and AIM-54s
F-14B Tomcat aircraft from VF-101 circa 2004
An F-14D Tomcat attached to the “Bounty Hunters” of VF-2 makes a sharp pull-up in full afterburner circa 2003
Tomcat of VF-101 circa at an airshow 2004
F-14D Tomcat aircraft of VF-124 flying over part of California circa 1991
F-14D Tomcat makes a near supersonic fly-by above the flight deck of the USS Theodore Roosevelt on July 28, 2006 just prior to its retirement in September 2006
Test fire of AIM-54C Phoenix from F-14D “Jolly Rogers” circa 2002
F-14D on the deck of the USS Harry S. Truman in the Persian Gulf circa 2005
F-15D Tomcat on the deck of the USS John C. Stennis
F-14D Super Tomcat maneuvers in the Persian Gulf circa 2005
Tomcat in formation with Croatian Air Force MiG 21s circa 2002
Tomcat on display, note it’s low height profile to facilitate carrier operations and storage
A Tomcat with its wings fully extended for low speed maneuvers
F-14A as viewed from rear, note the space between the engines affording the Tomcat significant lift from its airframe
The 6 barrel, 20mm vulcan cannon with its panels removed

Sources

Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Chambers, J. R. (2000). Partners in Freedom. Contributions of the Langley Research Center to US Military Aircraft of the 1990’s (NASA monograph NASA SP-2000-4519). NASA History Division: Washington DC, USA.,  Cooper, T. (2006). Persian Cats. Air&Space., Donald. D. (2009). Aviones Militares, Guia Visual [Military Aircraft. Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial Libsa (Original work published in 2008)., Dudney, R. S, &. Boyne, W. J. (January 2015). Airpower Classics. F-14 Tomcat. Air Force Magazine, 98 (1), 76., GlobalSecurity.org (2016). F-14 Tomcat. GlobalSecurity.org., Goebel, G. (2016). [1.0] Creating the Tomcat. AirVectors.net., Goebel, G. (2016). [2.0] Iranian Tomcats / Tomcat Improvements. AirVectors.net., Lemoin, J. (2002). Fighter Planes. 1960-2002., N.R.P. (2015). Origins – The Story of the Legendary F-14 Tomcat., National Naval Aviation Museum (2016). F-14A Tomcat. National Naval Aviation Museum., Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., Sponsler, G. C., Gignoux, D., Dare, E., & Rubin N. N. (1973). The F-4 and the F-14., U.S. General Accounting Office. (1972). The F-14 Aircraft., F-14 Tomcat operational history. (2017, June 14). In Wikipedia, The Free Encyclopedia.Grumman F-14 Tomcat. (2017, June 19). In Wikipedia, The Free EncyclopediaImages: Tomcat Gun by Jeff Kubina / CC BY-SA 2.0, Tomcat Rear Engines by kevinofsydney / CC BY 2.0Tomcat Wings Extended by D. Miller / CC BY 2.0Tomcat Display by Eric Kilby / CC BY-SA 2.0Side Profile Views by Ed Jackson – Artbyedo.com,  Note: Images not credited are in the Public Domain