Tag Archives: Su-30

Sukhoi Su-27 Flanker

Soviet Union / Russian Federation (1985)
Fighter Plane – 1,946 Built

Russia might not be the Superpower it once was. But its recent assertiveness indicates that it is willing to return to the stage as a great power, aiming at asserting its own interests at is neighbouring areas. One of the tools to do so is air power, which and although diminished in contrast to its former Cold War scale, is still considerable. The Su-27 and its different variants in service with the Russian Air Force are among the spearhead elements pushing forwards Russia’s interests. And this is not surprising, considering that the Su-27 and its variants are among the most advanced and top-quality technology jet fighters any nation can possess. The Su-27 can be traced back to the same year the F-15 Eagle was under concept and development (1969). The Soviets realized that the features of the F-15 and its technological advancement would threaten Soviet air power, thus prompting the General Staff to issue the requirements for wasit would be the Soviet answer to the Eagle. The new fighter was purposed to be for a long-range fighter, with good short-field performance (or the ability to take off and land on short airstrips, as well as to use austere runways), remarkable manoeuvring and agility, capable of reaching speed up to Mach 2+ speed and capable of carrying heavy weaponry. The Su-27 was purposed, at the same time, at countering not only the Eagle but also the F-14 Tomcat, as well as to complement the Mig-29, as the latter’s role was as tactical superiority fighter, dealing with NATO fighters and strike aircraft. It would operate also as bomber escort. As the requirements proved to be very complex and costly, they were split into two different ones: one for a lightweight fighter (whose outcome was the abovementioned Mig-29), and another for a heavyweight fighter (whose outcome was the Sukhoi Su-29). This fact explains why both airframes are very similar. The first flight took place in 1977.

The Su-27 ‘Flanker’ (as it came to be denominated by NATO) is a very though rival of the F-15. This is possible thanks to the low wing loading and the basic flight power controls, which bestows the fighter agility and good control, even at low speeds and high angle of attack of 120°, at the point ofbeing capable of performing the famous Pugachev’s Cobra manoeuvre. The structure is very similar to that of the Mig-29, clearly being a product of having a parallel development and starting from a similar requirement, although being larger than that of the Mig. The wing is a swept wing cropped delta type, having the tips cropped for missile rails or ECM pods, and blending with the central fuselage at the leading-edge extensions. The horizontal tailplanes are also of delta configuration, taking part of the Su-27 tailed delta wing configuration. Being the first Soviet aircraft in incorporating a fly-by-wire technology, its exceptional characteristics in terms of agility and manoeuvrability are in part thanks to this technology. The engines provide the Su-27 high speed (2500 km/h; 1,550 mph), being slightly lesser than that of the F-15 Eagle; these engines are a couple of Saturn/Lyulka AL-31F turbofans with afterburners. They are installed in two separated pods, each harboring a tail. Hence, it has a twin tail configuration; this and the engine pods configuration make it to be similar to the F-14 Tomcat. This resemblance is reinforced by the fact that there is a space between the pods, increasing the lifting surface and hiding weaponry from the enemy radars.

The last element making the Su-27 an equal to the F-15 is the avionics installed on it. The radar is a Phazotron N001 Myech pulse-doppler radar with ‘track while scan’ and look-down/shoot-down capabilities, complemented by a OLS-27 infrared search and track at the nose, with a range of between 80-100 km. The armament of the Su-27 is no less important, comprised by a 30mm Gryazev-Shipunov Gsh-3101 located at the starboard wingroot, and up to 10 hardpoint with capability of carrying up to 6000kg (13227,73 Lbs), which includes up to six medium-range R-27 (AA-10 ‘Alamo’ in NATO code) and 2-4 short-range heat-seeking R-73 (AA-11 missiles ‘Archer’ in NATO code). Armament deployment tends to vary from version to version, being this the most “standard” configuration.

The Su 27 has proven to be a very good platform for further development, enhancing the characteristics of the basic model as new variants and subvariants are being introduced at the point of constituting new models by themselves. There is even a version which is a strike fighter/fighter-bomber capable of taking ground and naval targets.

One of the first versions that followed is the Su-30 family, known as ‘Flanker-C’ by NATO and based on the Su-27UB training version. This version has enhanced range, thrust vectoring which in turn enhances manoeuvrability while having the same powerplant of the basic model. The avionics are enhanced as well, having an autopilot for all flight stages and low altitude flight in terrain-following radar mode, individual and group combat capabilities against air and ground/sea-surface targets. The automatic control systems interconnected with navigation systems allows automatic mode for route flight, target approach, recovery to airfield and landing approach.

The version that follows is the Su-33, which is the naval version of the Su-27 and is often denominated as Su-27K (‘Flanker-D’), operated by the Russian Navy from the sole carrier it has (the Admiral Kuznetsov). Developed since the Soviet era, it became the first conventional airplane (along with its test pilot, Viktor Pugachev) in landing in the deck of a carrier in November 1989. It was purposed with replacing the less capable Yakovlev Yak-38 and to operate from the projected aircraft carriers, thus requiring the needed structural modifications: reinforced structure and undercarriage, enlargement of leading edge slats, flaperons and similar surfaces, canards, modified rear radome, folding wings and new powerplants (2 x Saturn/Lyulka AL-31F3 with slightly increased thrust). The Su-33 symbolized the Soviet efforts of creating its own fleet of aircraft carriers, which was not materialized as the End of the Cold War took place, as well as to have their own naval-based air power to enhance strategic projection. 1996 marked the year when the Su-33 became fully operational with interception missions, although having limited ground-attack capabilities. Thedetected  limits and issues with the combination fighter-warships , and the budget cuts limited the naval operation of this version, yet air-to-air refuelling and real-life fire trainings have taken place. A two-seat version (SU-27KUB) might emerge any time.

The next version is the Su-32/34, which is the abovementioned strike fighter/fighter-bomber, purposed at replacing the Su-24. Equally based on the Su-27 airframe, its mission is to deal at tactical level with ground and naval targets, more specifically tactical bombing, attack, reconnaissance and/or interdiction. It can operate alone or in groups, under any weather condition and under any environment saturated with AA defences and EW countermeasures. It features canards, a new nose and a side-by-side-seating allowing two pilots, new powerplants (Saturn Lyulka AL-31FM turbofan engines), and a range of 4000 km (2,500 mi). The cockpit provides ample space for the crew to rest, being also pressurized and having at its rear a galley and a toilet. Its electronics – a Helmet Mounted Display System, Khibiny Electronic countermeasures, and a very ample and capable radar complemented by a second radar at the rear – allows the Su-32/34 to scan an area of 200-250 km, to attack four targets either at sea, air or land, and even to be warned against attackers behind and engage them without turning. This version has seen extensive action in Syria.

The version that followed is the Su-35 (‘Flanker-E), an all-weather air superiority and supermanoeuvrable multirole fighter, featuring a structure composed of high-strength composites and Aluminium-lithium alloys, increasing fuel volume while reducing weight. The tail fins are larger, having carbon-fiber-reinforced polymer square-topped tips. Canards were removed while the powerplant was new, two Saturn/Lyulka AL-31FM turbofan engines, which is larger and with more thrust. This version also has new avionics, such as the fire-control system and the N011 Pulse-Doppler radar that allows the fighter to track up to 15 airborne targets and guide six missiles at the same time. The rear radar – a Phazotron N-012 – also complements the fire-control system. LCD screens are also a feature, while the seat is inclined with a 30° angle to allow the pilot to tolerate more -g forces. It can carry a new array of weapons, like napalm; dumb bombs (free-fall iron bombs) and cluster ammunition; air-to air and air-to-surface missiles, with the payload being increased as two new underwing pylons are installed. It has air-to-air refuelling capabilities, increasing operational range (4000 km / 2,222 mi). Only 58 units are in service with the Russian Air Force.

The Su-37 (‘Flanker-F’ and ‘Terminator’) is the most recent version, based on the Su-35, being a single-seat supermanoeuvrable multirole jet fighter, with upgrades such as avionic suite, fire-control systems and thrust vectoring noozles. It also features canards, and improved fire-control systems, with an upgraded N-011M BARS passive scanned array radar, tracking 15 airborne targets and guiding 4 missiles at the same time, complemented by a N-012 rearward facing radar, having also updated electronic warfare support measures, and 12 hardpoints allowing air-to-air and/or air-to-surface missiles. Moreover, the cockpit has 4 LCD multi-function displays, providing air data/navigation, system status, weapons/systems selection and tactical situation information. HUD, an ejection seat with 30° angle of inclination, and a steering with a side-stick and pressure-sensing throttles help the pilot in controlling and navigating the aircraft. This version, however, remained as a technology demonstrator, with a single unit being the only sample of this model.

Russia is not the only country producing the Sukhoi-27, as China, given the airframes that received 8or the technology and license to build them) has developed its own version of the Su-27. The first one is the Shenyang J-11 (NATO code Flanker-B+), which is based on the Su-27SK, in operation with the Chinese People’s Liberation Army Air Force (PLAAF). This version is fitted with Chinese-made improvements to the airframe and avionics (such as radars and avionics suites), as well as weaponry (such as the PL-12 medium-range active radar homing air-to-air missile, and anti-ship missiles). The powerplant was reported to be in principle a Chinese Shenyang WS-10 Taihan (based on the CFM56), yet it seems there is the aim of upgrading the J-11 fleet with either Saturn-117S or Salyut AL-31F-M1.

The second one, being a variant of the Chinese J-11, is the Shenyang J-15 Flying Shark. This version is purposed for aircraft carrier service and equally based on the Su-27K/Su-33, thanks to an unfinished prototype China acquired from, Ukraine. And just like the J-11, is equipped with Chinese avionics, powerplants and weaponry. Since its introduction in 2013, the J-15 has been operating from China’s sole carrier Liaoning, mainly on testing and taking-off/landing drills. This would be the main Chinese carrier-based air defence and attack asset when the carrier – and additional expected units – enter in service with the Chinese People’s Liberation Army Navy (PLAN).

The last Chinese-made version of the Su-27 is the Shenyang J-16, which is a strike fighter and multi-role fighter/bomber based on the J-11B and the Su-30MKK units sold to China by Russia. Of course, this version is equipped with Chinese avionics and powerplants, as well as weaponry, which includes: super and subsonic anti-ship missiles, satellite guided bombs, cruise missiles and ECM jammers. There is even an electronic warfare variant that lacks Infra-red search and track and the 30mm gun.

The Su-27 has seen action after 1985, year in which was introduced in the Soviet Air Force and after entering officially in service in 1990. The first operational even took place in 187, when a Su-27 intercepted a Norwegian P-3 Orion maritime patrol aircraft over the Barents Sea, colliding with it after executing some close passes. During the 1992-1993 Abkhazia War, Russian Su-27 operated against the Georgian forces, with a Su-27 lost due to friendly fire as it was intercepting a Georgian Su-25 on CAS mission. The Su-27s were used again over the skies of Georgia, this time during the 2008 South Ossetia War to gain air superiority over the scenario at Tskhinvali. It is rumoured that the Su-34 also took part during this conflict. Su-34 were also used to bomb ice dams in Vologda Oblast to prevent floods. In 2013, a couple of Su-27 were intercepted by four Japanese Mitsubishi F-2 after entering briefly Japanese air space and flying near Rishiri Island and the Sea of Japan before turning back. Another Su-27 was close to collide with a USAF Boeing RC-135. The S-35 is also in use by the Swift and Russian Knights acrobatic teams. The sole S-37 has been used for flight tests, demonstrations and air shows presentations.

Su-27 in use by other nations have seen some action too. In Ethiopia, during its war against Eritrea, the Ethiopian Sukhois reportedly shot down 4 Eritrean Mig-29 and damaging one; being tasked also with combat air patrols, escort, AA suppression, and even bombing Islamists garrisons. In Angola, one Su-27 was reportedly shot down by a SA-14 man-portable air defence missile system during the civil war. Indonesian Su-27s, meanwhile, were used on exercises with Australia, the US and other countries of the region, as four units took part in such. The most recent action of the Su-27 has been in Ukraine, during the conflict that is currently taking place there, with Ukrainian units tasked with air defence, combat air patrols and escort/interception of civilian flights flying over Eastern Ukraine.

The scenario where the Su-27 have seen some action is in Syria, with a squadron of Su-27M3 deploying as part of the Russian air campaign at this country. Some Russian Air Force Su-30SM have been deployed as well for the same campaign, performing escort and target illumination. The naval version (Su-24K/Su-33) saw very limited action during the 90’s, with those on-board the Admiral Kuznetsov carrier taking part in Russia’s air campaign over Syria as well, alongside the Su-34, which in turn executed precision strikes against both rebel and ISIS targets, forced to fly armed with missiles after a Su-24 was shot down by Turkey. Four Su-35S also took part in the operation.

The Chinese fighters have seen also limited action, mainly for interception of US reconnaissance and patrol aircraft, and tests and drills for take-off and landing on carrier decks (for the Chinese naval version).

The Su-27 and its variants were considerably produced, reaching a number of 809 (Su-27); near 540 (Su-30), with 18 (SU-30MKM), 134 (SU-30MKK/MK2) and 225 (SU-30MKI); 35 (Su-27K/Su-33); 107 (Su-32/34); 15 (Su-27M); 58 (SU-35S) and 4 (Su-35 for China); 1 (Su-37); 235 (J-11); 20 (J-15); and 624 (J-16). Russia (and Sukhoi) are not the only producers, as Irkut Corporation, Komsomolsk-on-Amur Aircraft Production Association (KnAAPO), Shenyang, and Hindustan Aeronautics Limited, all produce the Su-27 and its different variants, including those manufactured abroad Russia with license or being copies of airframe, like the Chinese case. A considerable number of nations are users of the Su-27 and either version, making this aircraft a strong competitor in the international defence industry. In Russia, the Su-27 will be replaced by the 5th generation fighter Sukhoi PAK FA.

Design

The Su-27 airframe is similar to that of the Mig-29, only that its size is larger. In fact, the fuselage has a very characteristic shape at the longitudinal view, with more than half of the forward section being ‘above’ the wing, harbouring the nosecone, the cockpit and canopy, as well as the airbrake (placed behind the cockpit). This one is located at the same area of the wing-edge extensions. This forward area is having a hunchback shape, which gives a great advantage for the pilot, as the height provides a good view, alongside the bubble shape of the canopy. There, a K-63DM series two ejection seat (with an inclination of 17°) is installed, alongside analogue instruments, HUD and head down display data from the radar and the IRST, as well as sensors for the helmet-mounted target designation system and indicators. At the very frontal part of the canopy, there is a small radome or protuberance, where IRST device is installed. Interestingly, the inferior section of this area is not straight; in fact, it has a slight inclination forward. The rear part of the main fuselage is where the engine nacelles, nozzles, air intakes and the vertical stabilizers are located. The landing gear is of tricycle configuration, with the rear wings being retractable to the wing section, and the forward gear being placed below the rear area of the canopy, having a mudguard for protection against foreign object damage (FOD).

The wing is a swept trapezoidal wing that is also cropped, with the purpose of allowing missile rails or ECM pods at the wingtips. The horizontal stabilizers are also of a delta shape, which along the main wings makes of the Su-27 to look like a tailed delta wing configuration. Noteworthy to point out that the main wing merges into the fuselage at the leading-edge extensions (these extensions are slightly curved thus giving the Su-27 its characteristic shape). These wings and configuration in fact bestows the fighter with great manoeuvrability and great control, as it can fly at very low speeds and with an angle of attack of 120°, which result in the Su-27 to be capable of performing the Pugachev’s Cobra and dynamic deceleration. Some versions have their flight controls and manoeuvrability enhanced by the addition of canards located at the leading-edge extensions, as well the lift – which is increased – and a reduction of distances required for takeoff; the Su-27K/Su-33, some versions of the Su-30, the Su-35 and the Su-37 are fitted with those canards. The wings are not the only secret behind the Su-27 performance, for the incorporated fly-by-wire technology also plays its part on yielding the manoeuvrability this fighter has. These characteristics come at hand for the Su-27 in case of dogfighting. The Su-27 is also fitted with twin tales located aft the airframe, over the engine nacelles. They are complemented by small winglets installed immediately below. The engine noozles are ‘extended’ beyond the location of the twin tail, yet located between the horizontal stabilizers. Between the noozles, there is a radome aft the fuselage, acting as a rear prolongation of the airframe and hosting a rear-side radar.

The avionics make of the Su-27 and its versions a formidable opponent, as it is fitted with a Phazotron N001 Myech coherent pulse-Doppler radar, having track while scan and look-down/shoot-down capability, thus making the Su-27 capable of having a lock on its targets. This radar has a range of 80-100 km in horizontal, and of 30-40 km at the rear hemisphere. It is capable of tracking 10 targets and prioritize the target to be intercepted. There is also a SUV-27 fire control system fitted with a RLPK-27 radar sighting system, a OEPS-27 electro-optical system, a SEI-31 integrated indication system, an IFF device/interrogator and a built-in test system. The SUV-27 fire control system is integrated with a PNK-10 flight navigation system, a radio command link, the IFF device, the data transmission, the data transmission equipment and the EW self-defence system. The OEPS-27 is composed of the OLS-27 IRST and the helmet-mount sight that allows lock by look, controlled by the Ts-100 digital (central) computer. In addition, the SEI-31 integrated indication system provides navigation, flight and sight data to the HUD. These avionics, in fact, enables the SU-27 to engage targets beyond the visual range, bestowing a long punch thus making it a serious contender in aerial combat.

These capacities (especially the manoeuvrability, but also the fire power) are somehow complemented by the powerplant, which bestows the fighter in tandem with the aerodynamics and the wing design, its characteristics, yielding also very good combat capabilities. The powerplant consists of a couple of Saturn/Lyulka AL-31F bypass engines with a thrust of 12500 kg (each), yielding a maximum speed of 2500 km/h (1,550 mph). Two engine intakes variable ramps allow the engines to receive the air, while the specific shape allows optimal performance at any given speed and altitude.

The armament tends to vary according to the different versions. The most common one is the 30mm GSh cannon, located at the starboard wingroot. The additional advantage the wings have is that they allow the Su-27 to carry large numbers of weapons and other equipment, as it hosts up to 10 hardpoints. The combination of R-73 (AA-11 ‘Archer’) and R-27 (AA—10 ‘Alamo’) is the most common, but there are various schemes of weaponry according to the different versions and models of the Su-27.

On The Road to Damascus

Russia has waged an extensive air campaign over Syria in order to support the Assad government, which is a very close – in fact, strategic – ally of Russia. This support is aimed at keeping Assad in the power, so Russia can have a platform from which to strengthen its presence in the Middle East, as the civil war unfolds. Given this context, the Sukhoi Su-27 is one of the main tools used by Russia to wage this campaign, making use of both land and sea-based assets, and of varied versions. It is also reported that the deployment of the air assets could help in boost the Russian share in the security and defence markets, by demonstrating the capabilities of the Su-27 in real-time combat. The most prolific ones deployed so far is the Su-27SM3, the Su-30SM and the Su-35S, along with other air assets (like the Su-24 ‘Fencer’). As the air campaign began in September the 30th 2015, with the objectives being ISIS terrorist personnel, facilities, camps, vehicles and facilities, although it has been reported that Russian air strikes have targeted the rebel groups instead of ISIS.

In any case, the role of the ‘Flankers’ has been very important, but some have paid a price. The first assets deployed were the Su-27SM 3 and the Su-30 SM, tasked mainly with air protection and escort the fighter/bombers and strike aircraft Su-24 ‘Fencer’ and Su-25 ‘Frogfoot’, as well as providing escort to bombers. Furthermore, the early deployed Flankers were providing target illumination to the bombers launching airstrikes against their designated targets. After an Su-24 was shot down by Turkey in 2015, Russia decided to deploy the Su-35S, to enhance air superiority and control over the area of operations, along with advanced AA defence systems (such as the S-400) and arming the deployed fighters with live-round missiles.

Another deployed version of the Su-27 is the Su-34, with 14 units carrying precision strikes and having no air escort whatsoever, for they have considerable air-defence capabilities. Noteworthy to point out that Russian air assets are deployed mainly at Latakia and Khmeimim air bases, as well as at the airport in Damascus.

The Navy-operated Sukhois have seen some action over the skies of Syria as well, as they have taken part in combat flights from the deck of the Russian carrier Admiral Kuznetsov. These airplanes too have suffered a series of incidents. On December the 3rd 2016, a Su-33 failed to land after a first equally failed attempt, as the arresting cable snapped thus not stopping the aircraft, which went overboard. This incident prompted the Russian Navy to move all the carrier’s air assets to the Syrian Hmeymim air base, while the problems with the arresting cables are solved.

Variants

  • T-10 (‘Flanker-A’) – The first prototype of the Flanker
  • T-10S – The improved version of the T-10 prototype.
  • P-42 – A version quite similar to the US F-15 Streak Eagle project, it was purposed with beating climb time records, lacking radar, armament and even painting for that.
  • Su-27 – The pre-production series built in small quantities and fitted with the Lyulka AL-31 turbofan engines.
  • Su-27 S (Su-27/ ‘Flanker B’), or T10P – The initial production series version with one seat, equipped with the improved version of the Lyulka turbofan engines, the AL-31F.
  • Su-27 P (Su-27/ ‘Flanker B’) – The standard version yet lacking air-to-ground weapons control system and wiring. These units, denominated as Su-27, were assigned to the Soviet Air Defence Forces, an independent branch from the Soviet Air Force.
  • Su-27 UB (‘Flanker C’) – The initial production of a two-seat operational trainer.
  • Su-27SK – The single-seat export version of the Su-27S, delivered to China in the mid 90’s. The Shenyang J-11 was developed from this particular version.
  • Su-27UBK – The export version of the Su-27UB two-seat version.
  • Su-27K (Su-33 / ‘Flanker D’) – A carrier single-seat capable version featuring folding wings, high-lift devices and a tailhook arresting gear for carrier operations. Near 30 were produced.
  • Su-27M (Su-35/Su-37 ‘Flanker E/F’) – Improved demonstrators for an advanced multi-role single-seat fighter derived from the Su-27S, which included also a two-seated Su-27UB.
  • Su-27PU (Su-30) – The two-seat version of the Su-27, with the purpose of supporting with tactical data other single-seat Su-27P, Mig-31 and other interceptors in service with the Soviet Air Defence Forces. This version resulted in the Su-30, which came to be a multi-role fighter for export.
  • Su-32 (Su-27IB) – A long-range strike version with a side-by-side seating having a platypus-type nose, it was also the prototype of the Su-32FN and the Su-34 ‘Fullback’.
  • Su-27PD – A single seat demonstrator featuring several improvements, including an inflight refuelling probe.
  • Su-30, Su-30M / Su-30MK – A next-generation two-seat multi-role fighter. Some units were used for evaluation in Russia, with 88 units (Su-30, Su-30M2 and Su-30SM) in service with both the Russian Air Force and the Naval Aviation. The Su-30MK became a couple of demonstrators to secure exports, deriving in the Su-30MKA, Su-30MKI, Su-30MKK and Su-30MKM. In detail, the Su-30 has the following (export) versions:
    • Su-30K – Basic export version of the Su-30.
    • Su-30KI – Proposed upgrade for the Su-27S. it was also a proposed export version for Indonesia, with an order for 24 aborted due to the 1997 Asian Financial Crisis.
    • Su-30KN – An upgrade project for two-seat fighters; such as the Su-27UB, the Su-30 and Su-30UBK. Revived as the Su-30M2 after it was briefly cancelled. Belarus was also considering updating former Indian Su-30K to the Su-30KN.
    • Su-30MK – Commercial version of the Su-30M, fitted with navigation and communication equipment made by Hindustan Aeronautics Limited.
    • Su-30M2 – A KnAAPO version based on the Su-30MK2. Around 24 airframes were delivered to the Russian Air Force, and used for combat training aircraft for Su-27SM fighters.
    • Su-30MKI – A version developed in cooperation with India’s Hindustan Aeronautics Limited for the Indian Air Force (hence the acronym ‘MKI’, which stands for “Modernizirovanny, Kommercheskiy, Indiski”, or “Modernized, Commercial, Indian”). It features thrusts vectoring controls and canards. A remarkable feature is that it is equipped with a mixture of avionics with components made in Russia, India, France and Israel.
    • Su-30MKK – A version for export to China (“Modernizirovanny, Kommercheskiy, Kitayiski” / “Modernized, Commercial, China”).
    • Su-30MKM – Developed from the Su-30MKI, it’s a dedicated version for the royal Malaysian Air Force, and like the Su-30MKI, it features thrust vectoring controls and canards as well as avionics from various nations. The HUD, the navigational forward-looking infra-red system and the Damocles laser designation pod are made in France (Thales group of France). The MAW-300 missile approach warning system, the RWS-50 RWR and laser warning sensor are made in South Africa (SAAB AVITRONICS). And the NIIP N011M Bars Passive electronically scanner array radar, the EW system, the optical-location System and the glass cockpit are made by Russia.
    • Su-30MKA – Another version developed from the Su-30MKI for Algeria, featuring a mixture of Russian and French-made avionics.
    • Su-30SM and SME – A version for the Russian Air Force, being based on the Su-30MKI (and even MKM), and considered a 4+ generation fighter. This version is built upon Russian requirements for radar, radio communication systems, friend-or-foe identification system, ejection seats, and weapons, among others. The Bars-R radar and a wide-angle HUD are among the features of this version. The export version was unveiled at the Singapore Air Show 2016, denominated SU-30SME.
    • Su-30MKV – Export version for Venezuela.
    • Su-30MK2V – A variant for Vietnam, having little modifications.
  • Su-27SM (‘Flanker-B’ Mod. 1) – The mid-life upgraded version of the Su-27S, having incorporated the technology fitted in the Su-27M.
  • Su-27SKM – A single-seat multi-role fighter for export, developed from the Su-27SK yet fitted with an advanced cockpit, more-sophisticated self-defence ECM and in-flight refuelling system.
  • Su-27UBM – An upgraded Su-27UB.
  • Su-27SM2 – An upgrade of the Su-27 into a 4+ generation fighter, featuring an Irbis-E radar, upgraded avionics and engines.
  • Su-27SM3 – Similar to the Su-27SM, only that it is a new airframe instead of an updated one.
  • Su-27KUB – A Su-27K carrier version which is a two-seat side-by-side version that is used as carrier version or multi-role aircraft.
  • Su-35 – The most recent developed version of the Su-27, it has upgraded avionics and radar, powered by a thrust vectoring Saturn AL-41F1S engine. It has the following variants:
    • Su-27M/Su-35 – A single-seat fighter.
    • Su-35UB – A two-seat trainer, featuring taller vertical stabilizers (or tails), with the forward fuselage being similar to that of the Su-30.
    • Su-35BM – A single-seat fighter having enhanced avionics and some modifications to the airframe. The denomination “Su-35BM” is an informal one.
    • Su-37 – A thrust-vectoring demonstrator.Su-35S – A version for the Russian Air Force of the Su-35BM.
  • Su-27UB1M – The Ukrainian modernized version of the Su-27UB.
  • Su-27UP1M – The Ukrainian modernized version of the Su-27UP.
  • Su-27S1M – The Ukrainian modernized version of the Su-27S.
  • Su-27P1M – The Ukrainian version of the Su-27P.
  • Shengyang J-11, J-15 and J-16 – The Chinese versions of the Su-27(SK). These versions have also their own sub-variants as it follows:
    • J-11A – Units assembled by both China and Russia, as the parts were provided by Russia with China assembling them. They were latter upgraded with Missile Approach Warning (MAWS), and reportedly new cockpit displays and fire control for R-77 (AA-12 ‘Adder’) or PL-10. 104 built/assembled.
    • J-11B – Produced in China with Chinese technology, it is powered by the Shenyang WS-10A turbofan and being also slightly lighter thanks to the use of composite materials. It features new avionics, glass cockpit, MAWS, and onboard oxygen generation system. It might receive an Active electronically scanned array radar.
    • J-11BS – The twin-seat version of the J-11
    • J-11BH – Naval version of the J-11
    • J-11BSH – Naval version of the J-11BS
    • J-15 – Carrier-based version featuring some structural elements from the acquired Su-33 prototype, as well as avionics of the J-11B
    • J-16 and J-16D – Strike variant and EW variant, respectively. The latter has the wingtip pods resembling the AN/ALQ-218, with the wings and fuselage allowing up to 10 hardpoints yet lacking IRST of the Gsh 30mm cannon.
    • J-11D – Version featuring an electronically scanned array radar, IRST, and capacity to fire heavier imagine/infrared (IRR) air-to-air missiles. Many composite materials are part of the structure, with the engine intakes being the most remarkable one, as it is aimed at reducing radar visibility. It is supposed that new fly-by-wire control system, glass cockpit, improved electronic warfare systems and an enhanced version of the WS-10A engine are fitted in the plane.

Operators

  • Soviet Union/Russia
    Russia is among the main users of the Su-27 and variants, in service with both the Air Force and the Navy, starting its career with the Soviet Air Force and soviet Air Defence Forces. By January 2014, the Russian Air Force was reportedly operating 359 Su-27, of which 225 were of the basic Su-27 model, 70 Su-27MS, 12 Su-27MS3 and 52 Su-27UB. All of these airframes were to be subjected to modernization, with half of them being upgraded to the Su-27MS3. The Russian air force also operates with 3 Su-30, 20 Su-27M2 and 66 Su-30SM. 28 additional Su-30SM are expected as they are in order. 8 were issued to the Russian aerobatic team Russian Knights. 103 units of the Su-32/34 versions are operated by the Russian Air Force. 58 Su-35S are also part of the inventory.
    The Russian Navy (Naval Aviation branch), in turn, was operating 53 Su-27 by January 2014, operating also 15 Su-30SM, being part of an order for 28 of such airframes, with 50 planned.
  • United States
    The US operates with two SU-27 airframes purchased from Belarus in 1995, with two additional former Ukrainian airframes purchased by Pride Aircraft. The US/private owned airframes are used for combat training for US pilots, with strong emphasis on dissimilar air combat training.
  • Ukraine
    The Ukrainian Air Force is having between 50-70 airframes, of which 16 were operational by 2015. They have seen operational action due to the conflict currently taking place at Eastern Ukraine.
  • Belarus
    After the USSR collapsed, Belarus received almost 30 Su-27. Two or three were sold to Angola in 1998, with the remaining 17 Su-27P and 4 Su-27UBM being retired in 2012
  • People’s Republic of China
    The People’s Republic of China is the second main operator of the Su-27, being also the first nation to which the Su-27 was exported by the early 90’s. The Chinese PLAAF was operating 33 Su-27SK and 26 Su-27UBK by January 2013. As China was allowed to produce its own airframes under license, the Shenyang J-11 (95 J-11A and 110 J-11B and J-11BS by the airforce; 48 J-11B and J-11BS by the Naval Aviation), J-15 (around 20 operated by the Navy Air Force) and J-16 (24 units apparently built) came to be the Chinese versions of the Su-27. The PLAAF and the Naval Aviation of China also operates 76 Su-30MKK and 24 Su-30MK2 respectively. 24 Su-35 were ordered, with 4 units received.
  • India
    The Indian Air Force operates 254 Su-30MKI, with the first units manufactured in Russia, and the following units assembles in India and under license by Hindustan Aeronautics Limited. It is the third main user of the Su-27.
  • Indonesia
    The Indonesian Air Force was operating 5 Su-27SK/SKM fighters by 2013. It also operates 18 Su-30MKM/MK2.
  • Vietnam
    The Vietnamese Air Force (Vietnam People’s Air Force was operating 9 Su-27SK and 3 Su-27UBK by 2013, along with 4 Su-30MK and 20 Su-30 MK2V. 12 more Su-30MK2V were received between 2014-2015, making a total of 32 Su-30MK2V.
  • Malaysia
    The Royal Malaysian Air force operates 18 Su-30MKM. A curious fact of the purchasing agreement was for Russia to send the first Malayan cosmonaut to the International Space Station.
  • Mongolia
    The Air Force of Mongolia operates 4 Su-27, with 8 more to be delivered.
  • Kazakhstan
    By 2010 it was operating 30 Su-27, having 12 in order. Reportedly, it operates 6 Su-30SM.
  • Uzbekistan
    34 Su-27 were reportedly operated by this nation in 2013.
  • Algeria
    44 Su-30MKA are part of the Algerian Air Force inventory, with 14 more airframes ordered.
  • Eritrea
    8 Su-27SK/UB were received in 2003, with 9 being on service by 2013.
  • Ethiopia
    In 2013, this nation was operating 12 Su-27, 8 of which were Su-27SK.
  • Angola
    The Western African nation received 8 Su-27, 3 from Belarus. One was reported as shot down by a MANPADS in 2000 during the Civil War. 7 units were in service by 2013. Presumably, 18 Su-30K were ordered.
  • Uganda
    The Ugandan Air Force operates 6 Su-30MK2.
  • Venezuela
    The Venezuelan Air Force operates 24 Su-30MK2, with 12 more being considered for purchase. One was lost during a drug interdiction mission as it crashed.

 

Specifications (Su-27SK)

Wingspan 14,7 m / 48 ft 3 in
Length 21,9 m / 72 ft
Height 5,92 m / 19 ft 6 in
Wing Area 62 m² / 667 ft²
Engine 2 X Saturn/Lyulka AL-31F afterburning turbofans
Maximum Take-Off Weight  30450 Kg / 67,100 lb
Empty Weight 16380 kg / 36,100 lb
Loaded Weight 23450 kg / 51,650 lb (with 56% of internal fuel)
G-limit  9
Climb Rate 59,000 ft/min (300 m/s)
Maximum Speed At high altitude: Mach 2,35 (2500 km/h / 1,550+ mph), At low altitude: 1400 km/h / 870 mph)
Range 6530 Km / 2,193 miles at high altitude; 1340 Km / 800 miles at low altitude
Maximum Service Ceiling 19000 m /62,523 ft
Crew 1 (pilot)
Armament
  • 1 X 30mm Gsh-301 autocannon.
  • 10 harpoints allowing up to 6000 kg/ 13227.73 lbs: 6 X R-27 medium-range air-to-air missiles; 2 X R-73 short-range heat-seeking air-to-air missiles. Other versions can carry a large array of weaponry, such as: (Su-30 and Su-33) R-27ER (AA-10C) and R-27ET, R-73E and R-77 RVV-AE AA missiles; Kh-31P/A, Kh-29T/L, Kh-59ME, Kh-35, and Kh-59MT and MK; rockets; bombs (KAB 500KR, KAB 1500KR, FAB 500T, OFAB 250-270 and nuclear bombs); and ECM pods. (Su-34) R-27, R-73, R-77 AA missiles; Kh-29L/T, Kh-38, Kh-25MT/ML/MP, Kh-59, Kh-58, Kh-31, Kh-35, P-800 Oniks and Kh-65SE or Kh-SD air-to-ground, anti-radar, anti-ship and cruise missiles; bombs and tactical nuclear bombs; and additional fuel tanks; and EW and reconnaissance pods. (Su-35) laser-guided and unguided rockets; R-73E/M, R-74M, R-27R/ET/ER/T, R-77 and R-37 AA missiles; Kh-29T/L, Kh-31P/A and Kh-59M/E air-to-surface and cruise missiles; bombs; and a buddy refuelling pod.
  • The Chinese versions (J-11, J-15 and J-16) carry the Chinese-made PL-12, PL-9 and PL-8 AA missiles, as well as the Russian-made R-77, R-27 and R-73 AA missiles; unguided rockets and free-fall cluster bombs, satellite-guided bombs and laser-guided bombs; ECM pods; and anti-ship and anti-radar missiles.
Avionics
  • Among the avionics of the Su-27, there is a Phazotron N001 Myech coherent pulse-Doppler radar, with track while scan and look-down/shoot-down capability and a range of 80-100 km in horizontal, and of 30-40 at the rear hemisphere, capable of tracking 10 targets and prioritize the target to be intercepted. There is also a SUV-27 fire control system fitted with a RLPK-27 radar sighting system, a OEPS-27 electro-optical system, a SEI-31 integrated indication system, an IFF device/interrogator and a built-in test system. A PNK-10 flight navigation system, a radio command link, the IFF device, the data transmission, the data transmission equipment and EW self-defence system are also part of the avionics. OLS-27 IRST and the helmet-mount sight, a Ts-100 digital (central) computer, a SEI-31 integrated indication system and HUD are also among the standard avionics fitted in the Su-37.

 

Gallery

Su-27B Flanker B Last Production – 20
Su-27 Flanker B First Production – 36
Su-27 Flanker B Last Production – 05

 

 

Sources:

Akulov, A. (2016). Su-34: Going global After Impressive Performance in Syria. Strategic Culture on-line journal, Aviastar.org. (n.d.). Su-27: The History. Aviastar.org, Aviation Voice. (2016). Top Fighter Jets Fighting ISIS in Syria. Aviation Voice, Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH, Bhat, A. (2016). Russia loses Su-33 off Syrian coast, pilot ejects to safety. International Business Times, Chant, C. (2006). Barcos de Guerra. [Warships Today, Fabián Remo & Fernando Tamayo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2004, Donald, D. (2009). Aviones militares: guia visual. [Military Aircraft, Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2008), Friedman, G. (2015). Los próximos 100 años. Pronósticos para el siglo XXI. [The next 100 years. A forecast for the 21st century, Enrique Mercado, trans.]. Mexico, Mexico: Editorial Océano (Original work published in 2009), GlobalSecurity.org. (n.d.). Su-27 FLANKER. GlobalSecurity.org, Majumdar, D. (2016). Take Note, Turkey: Russia’s New Su-35S Arrives in Syria. The National Interest, Mirovalev, M. (September 30, 2016). It’s been one year since Russia began bombing in Syria, and there may be no end in sight. Los Angeles Times, Sharpe, M. (2001). Jets de Ataque y Defensa. [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 1999), Sukhoi Company (JCS) (2017). Su-27SK aircraft performance. Sukhoi Company (JCS),  Summers, C. (2016). A second jet crashed into the Mediterranean while attempting to land on Russian aircraft carrier as it returned from Syria. The Daily Mail Online, Sukhoi Su-27. (2017, February 6). In Wikipedia, The Free Encyclopedia.Sukhoi Su-30. (2017, February 5). In Wikipedia, The Free Encyclopedia.Sukhoi Su-33. (2016, December 17). In Wikipedia, The Free Encyclopedia.Sukhoi Su-35. (2017, February 7). In Wikipedia, The Free Encyclopedia.Sukhoi Su-37. (2017, February 7). In Wikipedia, The Free Encyclopedia., Images: Su-27 Blue Underside by Dmitry Terekhov / CC BY-SA 2.0, Su-27 Camo 69 by Paweł Maćkiewicz / CC BY-NC-ND 2.0, Su-27 Red White and BlueSu-27 Russian Falcons, Su-30 Blue – Russian Knights, Su-30SM Gray 38, Su-30SM Russian Falcons – Gray 55 RainSu-27P Flanker Landing Gear by Pavel Vanka / CC BY-NC-ND 2.0Su-35BM 901 – Su-30MKM 02 Blue CN 722 by Carlos Menendez San Juan / CC BY-SA 2.0, Su-37 Ramp by joabe_brill /  CC BY-ND 2.0, Profiles: Su-27 Flanker B Last ProductionSu-27 Flanker B First Production by Sapphiresoul / GNU Free Documentation LicenseSu-27 Flanker B Last Production – 05 by F l a n k e r / CC BY 3.0Su-30 3 View by Kaboldy / CC BY 3.0