Tag Archives: Archived

Official classification tag

Sukhoi Su-27 Flanker

Soviet Union / Russian Federation (1985)
Fighter Plane – 1,946 Built

Russia might not be the Superpower it once was. But its recent assertiveness indicates that it is willing to return to the stage as a great power, aiming at asserting its own interests at is neighbouring areas. One of the tools to do so is air power, which and although diminished in contrast to its former Cold War scale, is still considerable. The Su-27 and its different variants in service with the Russian Air Force are among the spearhead elements pushing forwards Russia’s interests. And this is not surprising, considering that the Su-27 and its variants are among the most advanced and top-quality technology jet fighters any nation can possess. The Su-27 can be traced back to the same year the F-15 Eagle was under concept and development (1969). The Soviets realized that the features of the F-15 and its technological advancement would threaten Soviet air power, thus prompting the General Staff to issue the requirements for wasit would be the Soviet answer to the Eagle. The new fighter was purposed to be for a long-range fighter, with good short-field performance (or the ability to take off and land on short airstrips, as well as to use austere runways), remarkable manoeuvring and agility, capable of reaching speed up to Mach 2+ speed and capable of carrying heavy weaponry. The Su-27 was purposed, at the same time, at countering not only the Eagle but also the F-14 Tomcat, as well as to complement the Mig-29, as the latter’s role was as tactical superiority fighter, dealing with NATO fighters and strike aircraft. It would operate also as bomber escort. As the requirements proved to be very complex and costly, they were split into two different ones: one for a lightweight fighter (whose outcome was the abovementioned Mig-29), and another for a heavyweight fighter (whose outcome was the Sukhoi Su-29). This fact explains why both airframes are very similar. The first flight took place in 1977.

The Su-27 ‘Flanker’ (as it came to be denominated by NATO) is a very though rival of the F-15. This is possible thanks to the low wing loading and the basic flight power controls, which bestows the fighter agility and good control, even at low speeds and high angle of attack of 120°, at the point ofbeing capable of performing the famous Pugachev’s Cobra manoeuvre. The structure is very similar to that of the Mig-29, clearly being a product of having a parallel development and starting from a similar requirement, although being larger than that of the Mig. The wing is a swept wing cropped delta type, having the tips cropped for missile rails or ECM pods, and blending with the central fuselage at the leading-edge extensions. The horizontal tailplanes are also of delta configuration, taking part of the Su-27 tailed delta wing configuration. Being the first Soviet aircraft in incorporating a fly-by-wire technology, its exceptional characteristics in terms of agility and manoeuvrability are in part thanks to this technology. The engines provide the Su-27 high speed (2500 km/h; 1,550 mph), being slightly lesser than that of the F-15 Eagle; these engines are a couple of Saturn/Lyulka AL-31F turbofans with afterburners. They are installed in two separated pods, each harboring a tail. Hence, it has a twin tail configuration; this and the engine pods configuration make it to be similar to the F-14 Tomcat. This resemblance is reinforced by the fact that there is a space between the pods, increasing the lifting surface and hiding weaponry from the enemy radars.

The last element making the Su-27 an equal to the F-15 is the avionics installed on it. The radar is a Phazotron N001 Myech pulse-doppler radar with ‘track while scan’ and look-down/shoot-down capabilities, complemented by a OLS-27 infrared search and track at the nose, with a range of between 80-100 km. The armament of the Su-27 is no less important, comprised by a 30mm Gryazev-Shipunov Gsh-3101 located at the starboard wingroot, and up to 10 hardpoint with capability of carrying up to 6000kg (13227,73 Lbs), which includes up to six medium-range R-27 (AA-10 ‘Alamo’ in NATO code) and 2-4 short-range heat-seeking R-73 (AA-11 missiles ‘Archer’ in NATO code). Armament deployment tends to vary from version to version, being this the most “standard” configuration.

The Su 27 has proven to be a very good platform for further development, enhancing the characteristics of the basic model as new variants and subvariants are being introduced at the point of constituting new models by themselves. There is even a version which is a strike fighter/fighter-bomber capable of taking ground and naval targets.

One of the first versions that followed is the Su-30 family, known as ‘Flanker-C’ by NATO and based on the Su-27UB training version. This version has enhanced range, thrust vectoring which in turn enhances manoeuvrability while having the same powerplant of the basic model. The avionics are enhanced as well, having an autopilot for all flight stages and low altitude flight in terrain-following radar mode, individual and group combat capabilities against air and ground/sea-surface targets. The automatic control systems interconnected with navigation systems allows automatic mode for route flight, target approach, recovery to airfield and landing approach.

The version that follows is the Su-33, which is the naval version of the Su-27 and is often denominated as Su-27K (‘Flanker-D’), operated by the Russian Navy from the sole carrier it has (the Admiral Kuznetsov). Developed since the Soviet era, it became the first conventional airplane (along with its test pilot, Viktor Pugachev) in landing in the deck of a carrier in November 1989. It was purposed with replacing the less capable Yakovlev Yak-38 and to operate from the projected aircraft carriers, thus requiring the needed structural modifications: reinforced structure and undercarriage, enlargement of leading edge slats, flaperons and similar surfaces, canards, modified rear radome, folding wings and new powerplants (2 x Saturn/Lyulka AL-31F3 with slightly increased thrust). The Su-33 symbolized the Soviet efforts of creating its own fleet of aircraft carriers, which was not materialized as the End of the Cold War took place, as well as to have their own naval-based air power to enhance strategic projection. 1996 marked the year when the Su-33 became fully operational with interception missions, although having limited ground-attack capabilities. Thedetected  limits and issues with the combination fighter-warships , and the budget cuts limited the naval operation of this version, yet air-to-air refuelling and real-life fire trainings have taken place. A two-seat version (SU-27KUB) might emerge any time.

The next version is the Su-32/34, which is the abovementioned strike fighter/fighter-bomber, purposed at replacing the Su-24. Equally based on the Su-27 airframe, its mission is to deal at tactical level with ground and naval targets, more specifically tactical bombing, attack, reconnaissance and/or interdiction. It can operate alone or in groups, under any weather condition and under any environment saturated with AA defences and EW countermeasures. It features canards, a new nose and a side-by-side-seating allowing two pilots, new powerplants (Saturn Lyulka AL-31FM turbofan engines), and a range of 4000 km (2,500 mi). The cockpit provides ample space for the crew to rest, being also pressurized and having at its rear a galley and a toilet. Its electronics – a Helmet Mounted Display System, Khibiny Electronic countermeasures, and a very ample and capable radar complemented by a second radar at the rear – allows the Su-32/34 to scan an area of 200-250 km, to attack four targets either at sea, air or land, and even to be warned against attackers behind and engage them without turning. This version has seen extensive action in Syria.

The version that followed is the Su-35 (‘Flanker-E), an all-weather air superiority and supermanoeuvrable multirole fighter, featuring a structure composed of high-strength composites and Aluminium-lithium alloys, increasing fuel volume while reducing weight. The tail fins are larger, having carbon-fiber-reinforced polymer square-topped tips. Canards were removed while the powerplant was new, two Saturn/Lyulka AL-31FM turbofan engines, which is larger and with more thrust. This version also has new avionics, such as the fire-control system and the N011 Pulse-Doppler radar that allows the fighter to track up to 15 airborne targets and guide six missiles at the same time. The rear radar – a Phazotron N-012 – also complements the fire-control system. LCD screens are also a feature, while the seat is inclined with a 30° angle to allow the pilot to tolerate more -g forces. It can carry a new array of weapons, like napalm; dumb bombs (free-fall iron bombs) and cluster ammunition; air-to air and air-to-surface missiles, with the payload being increased as two new underwing pylons are installed. It has air-to-air refuelling capabilities, increasing operational range (4000 km / 2,222 mi). Only 58 units are in service with the Russian Air Force.

The Su-37 (‘Flanker-F’ and ‘Terminator’) is the most recent version, based on the Su-35, being a single-seat supermanoeuvrable multirole jet fighter, with upgrades such as avionic suite, fire-control systems and thrust vectoring noozles. It also features canards, and improved fire-control systems, with an upgraded N-011M BARS passive scanned array radar, tracking 15 airborne targets and guiding 4 missiles at the same time, complemented by a N-012 rearward facing radar, having also updated electronic warfare support measures, and 12 hardpoints allowing air-to-air and/or air-to-surface missiles. Moreover, the cockpit has 4 LCD multi-function displays, providing air data/navigation, system status, weapons/systems selection and tactical situation information. HUD, an ejection seat with 30° angle of inclination, and a steering with a side-stick and pressure-sensing throttles help the pilot in controlling and navigating the aircraft. This version, however, remained as a technology demonstrator, with a single unit being the only sample of this model.

Russia is not the only country producing the Sukhoi-27, as China, given the airframes that received 8or the technology and license to build them) has developed its own version of the Su-27. The first one is the Shenyang J-11 (NATO code Flanker-B+), which is based on the Su-27SK, in operation with the Chinese People’s Liberation Army Air Force (PLAAF). This version is fitted with Chinese-made improvements to the airframe and avionics (such as radars and avionics suites), as well as weaponry (such as the PL-12 medium-range active radar homing air-to-air missile, and anti-ship missiles). The powerplant was reported to be in principle a Chinese Shenyang WS-10 Taihan (based on the CFM56), yet it seems there is the aim of upgrading the J-11 fleet with either Saturn-117S or Salyut AL-31F-M1.

The second one, being a variant of the Chinese J-11, is the Shenyang J-15 Flying Shark. This version is purposed for aircraft carrier service and equally based on the Su-27K/Su-33, thanks to an unfinished prototype China acquired from, Ukraine. And just like the J-11, is equipped with Chinese avionics, powerplants and weaponry. Since its introduction in 2013, the J-15 has been operating from China’s sole carrier Liaoning, mainly on testing and taking-off/landing drills. This would be the main Chinese carrier-based air defence and attack asset when the carrier – and additional expected units – enter in service with the Chinese People’s Liberation Army Navy (PLAN).

The last Chinese-made version of the Su-27 is the Shenyang J-16, which is a strike fighter and multi-role fighter/bomber based on the J-11B and the Su-30MKK units sold to China by Russia. Of course, this version is equipped with Chinese avionics and powerplants, as well as weaponry, which includes: super and subsonic anti-ship missiles, satellite guided bombs, cruise missiles and ECM jammers. There is even an electronic warfare variant that lacks Infra-red search and track and the 30mm gun.

The Su-27 has seen action after 1985, year in which was introduced in the Soviet Air Force and after entering officially in service in 1990. The first operational even took place in 187, when a Su-27 intercepted a Norwegian P-3 Orion maritime patrol aircraft over the Barents Sea, colliding with it after executing some close passes. During the 1992-1993 Abkhazia War, Russian Su-27 operated against the Georgian forces, with a Su-27 lost due to friendly fire as it was intercepting a Georgian Su-25 on CAS mission. The Su-27s were used again over the skies of Georgia, this time during the 2008 South Ossetia War to gain air superiority over the scenario at Tskhinvali. It is rumoured that the Su-34 also took part during this conflict. Su-34 were also used to bomb ice dams in Vologda Oblast to prevent floods. In 2013, a couple of Su-27 were intercepted by four Japanese Mitsubishi F-2 after entering briefly Japanese air space and flying near Rishiri Island and the Sea of Japan before turning back. Another Su-27 was close to collide with a USAF Boeing RC-135. The S-35 is also in use by the Swift and Russian Knights acrobatic teams. The sole S-37 has been used for flight tests, demonstrations and air shows presentations.

Su-27 in use by other nations have seen some action too. In Ethiopia, during its war against Eritrea, the Ethiopian Sukhois reportedly shot down 4 Eritrean Mig-29 and damaging one; being tasked also with combat air patrols, escort, AA suppression, and even bombing Islamists garrisons. In Angola, one Su-27 was reportedly shot down by a SA-14 man-portable air defence missile system during the civil war. Indonesian Su-27s, meanwhile, were used on exercises with Australia, the US and other countries of the region, as four units took part in such. The most recent action of the Su-27 has been in Ukraine, during the conflict that is currently taking place there, with Ukrainian units tasked with air defence, combat air patrols and escort/interception of civilian flights flying over Eastern Ukraine.

The scenario where the Su-27 have seen some action is in Syria, with a squadron of Su-27M3 deploying as part of the Russian air campaign at this country. Some Russian Air Force Su-30SM have been deployed as well for the same campaign, performing escort and target illumination. The naval version (Su-24K/Su-33) saw very limited action during the 90’s, with those on-board the Admiral Kuznetsov carrier taking part in Russia’s air campaign over Syria as well, alongside the Su-34, which in turn executed precision strikes against both rebel and ISIS targets, forced to fly armed with missiles after a Su-24 was shot down by Turkey. Four Su-35S also took part in the operation.

The Chinese fighters have seen also limited action, mainly for interception of US reconnaissance and patrol aircraft, and tests and drills for take-off and landing on carrier decks (for the Chinese naval version).

The Su-27 and its variants were considerably produced, reaching a number of 809 (Su-27); near 540 (Su-30), with 18 (SU-30MKM), 134 (SU-30MKK/MK2) and 225 (SU-30MKI); 35 (Su-27K/Su-33); 107 (Su-32/34); 15 (Su-27M); 58 (SU-35S) and 4 (Su-35 for China); 1 (Su-37); 235 (J-11); 20 (J-15); and 624 (J-16). Russia (and Sukhoi) are not the only producers, as Irkut Corporation, Komsomolsk-on-Amur Aircraft Production Association (KnAAPO), Shenyang, and Hindustan Aeronautics Limited, all produce the Su-27 and its different variants, including those manufactured abroad Russia with license or being copies of airframe, like the Chinese case. A considerable number of nations are users of the Su-27 and either version, making this aircraft a strong competitor in the international defence industry. In Russia, the Su-27 will be replaced by the 5th generation fighter Sukhoi PAK FA.

Design

The Su-27 airframe is similar to that of the Mig-29, only that its size is larger. In fact, the fuselage has a very characteristic shape at the longitudinal view, with more than half of the forward section being ‘above’ the wing, harbouring the nosecone, the cockpit and canopy, as well as the airbrake (placed behind the cockpit). This one is located at the same area of the wing-edge extensions. This forward area is having a hunchback shape, which gives a great advantage for the pilot, as the height provides a good view, alongside the bubble shape of the canopy. There, a K-63DM series two ejection seat (with an inclination of 17°) is installed, alongside analogue instruments, HUD and head down display data from the radar and the IRST, as well as sensors for the helmet-mounted target designation system and indicators. At the very frontal part of the canopy, there is a small radome or protuberance, where IRST device is installed. Interestingly, the inferior section of this area is not straight; in fact, it has a slight inclination forward. The rear part of the main fuselage is where the engine nacelles, nozzles, air intakes and the vertical stabilizers are located. The landing gear is of tricycle configuration, with the rear wings being retractable to the wing section, and the forward gear being placed below the rear area of the canopy, having a mudguard for protection against foreign object damage (FOD).

The wing is a swept trapezoidal wing that is also cropped, with the purpose of allowing missile rails or ECM pods at the wingtips. The horizontal stabilizers are also of a delta shape, which along the main wings makes of the Su-27 to look like a tailed delta wing configuration. Noteworthy to point out that the main wing merges into the fuselage at the leading-edge extensions (these extensions are slightly curved thus giving the Su-27 its characteristic shape). These wings and configuration in fact bestows the fighter with great manoeuvrability and great control, as it can fly at very low speeds and with an angle of attack of 120°, which result in the Su-27 to be capable of performing the Pugachev’s Cobra and dynamic deceleration. Some versions have their flight controls and manoeuvrability enhanced by the addition of canards located at the leading-edge extensions, as well the lift – which is increased – and a reduction of distances required for takeoff; the Su-27K/Su-33, some versions of the Su-30, the Su-35 and the Su-37 are fitted with those canards. The wings are not the only secret behind the Su-27 performance, for the incorporated fly-by-wire technology also plays its part on yielding the manoeuvrability this fighter has. These characteristics come at hand for the Su-27 in case of dogfighting. The Su-27 is also fitted with twin tales located aft the airframe, over the engine nacelles. They are complemented by small winglets installed immediately below. The engine noozles are ‘extended’ beyond the location of the twin tail, yet located between the horizontal stabilizers. Between the noozles, there is a radome aft the fuselage, acting as a rear prolongation of the airframe and hosting a rear-side radar.

The avionics make of the Su-27 and its versions a formidable opponent, as it is fitted with a Phazotron N001 Myech coherent pulse-Doppler radar, having track while scan and look-down/shoot-down capability, thus making the Su-27 capable of having a lock on its targets. This radar has a range of 80-100 km in horizontal, and of 30-40 km at the rear hemisphere. It is capable of tracking 10 targets and prioritize the target to be intercepted. There is also a SUV-27 fire control system fitted with a RLPK-27 radar sighting system, a OEPS-27 electro-optical system, a SEI-31 integrated indication system, an IFF device/interrogator and a built-in test system. The SUV-27 fire control system is integrated with a PNK-10 flight navigation system, a radio command link, the IFF device, the data transmission, the data transmission equipment and the EW self-defence system. The OEPS-27 is composed of the OLS-27 IRST and the helmet-mount sight that allows lock by look, controlled by the Ts-100 digital (central) computer. In addition, the SEI-31 integrated indication system provides navigation, flight and sight data to the HUD. These avionics, in fact, enables the SU-27 to engage targets beyond the visual range, bestowing a long punch thus making it a serious contender in aerial combat.

These capacities (especially the manoeuvrability, but also the fire power) are somehow complemented by the powerplant, which bestows the fighter in tandem with the aerodynamics and the wing design, its characteristics, yielding also very good combat capabilities. The powerplant consists of a couple of Saturn/Lyulka AL-31F bypass engines with a thrust of 12500 kg (each), yielding a maximum speed of 2500 km/h (1,550 mph). Two engine intakes variable ramps allow the engines to receive the air, while the specific shape allows optimal performance at any given speed and altitude.

The armament tends to vary according to the different versions. The most common one is the 30mm GSh cannon, located at the starboard wingroot. The additional advantage the wings have is that they allow the Su-27 to carry large numbers of weapons and other equipment, as it hosts up to 10 hardpoints. The combination of R-73 (AA-11 ‘Archer’) and R-27 (AA—10 ‘Alamo’) is the most common, but there are various schemes of weaponry according to the different versions and models of the Su-27.

On The Road to Damascus

Russia has waged an extensive air campaign over Syria in order to support the Assad government, which is a very close – in fact, strategic – ally of Russia. This support is aimed at keeping Assad in the power, so Russia can have a platform from which to strengthen its presence in the Middle East, as the civil war unfolds. Given this context, the Sukhoi Su-27 is one of the main tools used by Russia to wage this campaign, making use of both land and sea-based assets, and of varied versions. It is also reported that the deployment of the air assets could help in boost the Russian share in the security and defence markets, by demonstrating the capabilities of the Su-27 in real-time combat. The most prolific ones deployed so far is the Su-27SM3, the Su-30SM and the Su-35S, along with other air assets (like the Su-24 ‘Fencer’). As the air campaign began in September the 30th 2015, with the objectives being ISIS terrorist personnel, facilities, camps, vehicles and facilities, although it has been reported that Russian air strikes have targeted the rebel groups instead of ISIS.

In any case, the role of the ‘Flankers’ has been very important, but some have paid a price. The first assets deployed were the Su-27SM 3 and the Su-30 SM, tasked mainly with air protection and escort the fighter/bombers and strike aircraft Su-24 ‘Fencer’ and Su-25 ‘Frogfoot’, as well as providing escort to bombers. Furthermore, the early deployed Flankers were providing target illumination to the bombers launching airstrikes against their designated targets. After an Su-24 was shot down by Turkey in 2015, Russia decided to deploy the Su-35S, to enhance air superiority and control over the area of operations, along with advanced AA defence systems (such as the S-400) and arming the deployed fighters with live-round missiles.

Another deployed version of the Su-27 is the Su-34, with 14 units carrying precision strikes and having no air escort whatsoever, for they have considerable air-defence capabilities. Noteworthy to point out that Russian air assets are deployed mainly at Latakia and Khmeimim air bases, as well as at the airport in Damascus.

The Navy-operated Sukhois have seen some action over the skies of Syria as well, as they have taken part in combat flights from the deck of the Russian carrier Admiral Kuznetsov. These airplanes too have suffered a series of incidents. On December the 3rd 2016, a Su-33 failed to land after a first equally failed attempt, as the arresting cable snapped thus not stopping the aircraft, which went overboard. This incident prompted the Russian Navy to move all the carrier’s air assets to the Syrian Hmeymim air base, while the problems with the arresting cables are solved.

Variants

  • T-10 (‘Flanker-A’) – The first prototype of the Flanker
  • T-10S – The improved version of the T-10 prototype.
  • P-42 – A version quite similar to the US F-15 Streak Eagle project, it was purposed with beating climb time records, lacking radar, armament and even painting for that.
  • Su-27 – The pre-production series built in small quantities and fitted with the Lyulka AL-31 turbofan engines.
  • Su-27 S (Su-27/ ‘Flanker B’), or T10P – The initial production series version with one seat, equipped with the improved version of the Lyulka turbofan engines, the AL-31F.
  • Su-27 P (Su-27/ ‘Flanker B’) – The standard version yet lacking air-to-ground weapons control system and wiring. These units, denominated as Su-27, were assigned to the Soviet Air Defence Forces, an independent branch from the Soviet Air Force.
  • Su-27 UB (‘Flanker C’) – The initial production of a two-seat operational trainer.
  • Su-27SK – The single-seat export version of the Su-27S, delivered to China in the mid 90’s. The Shenyang J-11 was developed from this particular version.
  • Su-27UBK – The export version of the Su-27UB two-seat version.
  • Su-27K (Su-33 / ‘Flanker D’) – A carrier single-seat capable version featuring folding wings, high-lift devices and a tailhook arresting gear for carrier operations. Near 30 were produced.
  • Su-27M (Su-35/Su-37 ‘Flanker E/F’) – Improved demonstrators for an advanced multi-role single-seat fighter derived from the Su-27S, which included also a two-seated Su-27UB.
  • Su-27PU (Su-30) – The two-seat version of the Su-27, with the purpose of supporting with tactical data other single-seat Su-27P, Mig-31 and other interceptors in service with the Soviet Air Defence Forces. This version resulted in the Su-30, which came to be a multi-role fighter for export.
  • Su-32 (Su-27IB) – A long-range strike version with a side-by-side seating having a platypus-type nose, it was also the prototype of the Su-32FN and the Su-34 ‘Fullback’.
  • Su-27PD – A single seat demonstrator featuring several improvements, including an inflight refuelling probe.
  • Su-30, Su-30M / Su-30MK – A next-generation two-seat multi-role fighter. Some units were used for evaluation in Russia, with 88 units (Su-30, Su-30M2 and Su-30SM) in service with both the Russian Air Force and the Naval Aviation. The Su-30MK became a couple of demonstrators to secure exports, deriving in the Su-30MKA, Su-30MKI, Su-30MKK and Su-30MKM. In detail, the Su-30 has the following (export) versions:
    • Su-30K – Basic export version of the Su-30.
    • Su-30KI – Proposed upgrade for the Su-27S. it was also a proposed export version for Indonesia, with an order for 24 aborted due to the 1997 Asian Financial Crisis.
    • Su-30KN – An upgrade project for two-seat fighters; such as the Su-27UB, the Su-30 and Su-30UBK. Revived as the Su-30M2 after it was briefly cancelled. Belarus was also considering updating former Indian Su-30K to the Su-30KN.
    • Su-30MK – Commercial version of the Su-30M, fitted with navigation and communication equipment made by Hindustan Aeronautics Limited.
    • Su-30M2 – A KnAAPO version based on the Su-30MK2. Around 24 airframes were delivered to the Russian Air Force, and used for combat training aircraft for Su-27SM fighters.
    • Su-30MKI – A version developed in cooperation with India’s Hindustan Aeronautics Limited for the Indian Air Force (hence the acronym ‘MKI’, which stands for “Modernizirovanny, Kommercheskiy, Indiski”, or “Modernized, Commercial, Indian”). It features thrusts vectoring controls and canards. A remarkable feature is that it is equipped with a mixture of avionics with components made in Russia, India, France and Israel.
    • Su-30MKK – A version for export to China (“Modernizirovanny, Kommercheskiy, Kitayiski” / “Modernized, Commercial, China”).
    • Su-30MKM – Developed from the Su-30MKI, it’s a dedicated version for the royal Malaysian Air Force, and like the Su-30MKI, it features thrust vectoring controls and canards as well as avionics from various nations. The HUD, the navigational forward-looking infra-red system and the Damocles laser designation pod are made in France (Thales group of France). The MAW-300 missile approach warning system, the RWS-50 RWR and laser warning sensor are made in South Africa (SAAB AVITRONICS). And the NIIP N011M Bars Passive electronically scanner array radar, the EW system, the optical-location System and the glass cockpit are made by Russia.
    • Su-30MKA – Another version developed from the Su-30MKI for Algeria, featuring a mixture of Russian and French-made avionics.
    • Su-30SM and SME – A version for the Russian Air Force, being based on the Su-30MKI (and even MKM), and considered a 4+ generation fighter. This version is built upon Russian requirements for radar, radio communication systems, friend-or-foe identification system, ejection seats, and weapons, among others. The Bars-R radar and a wide-angle HUD are among the features of this version. The export version was unveiled at the Singapore Air Show 2016, denominated SU-30SME.
    • Su-30MKV – Export version for Venezuela.
    • Su-30MK2V – A variant for Vietnam, having little modifications.
  • Su-27SM (‘Flanker-B’ Mod. 1) – The mid-life upgraded version of the Su-27S, having incorporated the technology fitted in the Su-27M.
  • Su-27SKM – A single-seat multi-role fighter for export, developed from the Su-27SK yet fitted with an advanced cockpit, more-sophisticated self-defence ECM and in-flight refuelling system.
  • Su-27UBM – An upgraded Su-27UB.
  • Su-27SM2 – An upgrade of the Su-27 into a 4+ generation fighter, featuring an Irbis-E radar, upgraded avionics and engines.
  • Su-27SM3 – Similar to the Su-27SM, only that it is a new airframe instead of an updated one.
  • Su-27KUB – A Su-27K carrier version which is a two-seat side-by-side version that is used as carrier version or multi-role aircraft.
  • Su-35 – The most recent developed version of the Su-27, it has upgraded avionics and radar, powered by a thrust vectoring Saturn AL-41F1S engine. It has the following variants:
    • Su-27M/Su-35 – A single-seat fighter.
    • Su-35UB – A two-seat trainer, featuring taller vertical stabilizers (or tails), with the forward fuselage being similar to that of the Su-30.
    • Su-35BM – A single-seat fighter having enhanced avionics and some modifications to the airframe. The denomination “Su-35BM” is an informal one.
    • Su-37 – A thrust-vectoring demonstrator.Su-35S – A version for the Russian Air Force of the Su-35BM.
  • Su-27UB1M – The Ukrainian modernized version of the Su-27UB.
  • Su-27UP1M – The Ukrainian modernized version of the Su-27UP.
  • Su-27S1M – The Ukrainian modernized version of the Su-27S.
  • Su-27P1M – The Ukrainian version of the Su-27P.
  • Shengyang J-11, J-15 and J-16 – The Chinese versions of the Su-27(SK). These versions have also their own sub-variants as it follows:
    • J-11A – Units assembled by both China and Russia, as the parts were provided by Russia with China assembling them. They were latter upgraded with Missile Approach Warning (MAWS), and reportedly new cockpit displays and fire control for R-77 (AA-12 ‘Adder’) or PL-10. 104 built/assembled.
    • J-11B – Produced in China with Chinese technology, it is powered by the Shenyang WS-10A turbofan and being also slightly lighter thanks to the use of composite materials. It features new avionics, glass cockpit, MAWS, and onboard oxygen generation system. It might receive an Active electronically scanned array radar.
    • J-11BS – The twin-seat version of the J-11
    • J-11BH – Naval version of the J-11
    • J-11BSH – Naval version of the J-11BS
    • J-15 – Carrier-based version featuring some structural elements from the acquired Su-33 prototype, as well as avionics of the J-11B
    • J-16 and J-16D – Strike variant and EW variant, respectively. The latter has the wingtip pods resembling the AN/ALQ-218, with the wings and fuselage allowing up to 10 hardpoints yet lacking IRST of the Gsh 30mm cannon.
    • J-11D – Version featuring an electronically scanned array radar, IRST, and capacity to fire heavier imagine/infrared (IRR) air-to-air missiles. Many composite materials are part of the structure, with the engine intakes being the most remarkable one, as it is aimed at reducing radar visibility. It is supposed that new fly-by-wire control system, glass cockpit, improved electronic warfare systems and an enhanced version of the WS-10A engine are fitted in the plane.

Operators

  • Soviet Union/Russia
    Russia is among the main users of the Su-27 and variants, in service with both the Air Force and the Navy, starting its career with the Soviet Air Force and soviet Air Defence Forces. By January 2014, the Russian Air Force was reportedly operating 359 Su-27, of which 225 were of the basic Su-27 model, 70 Su-27MS, 12 Su-27MS3 and 52 Su-27UB. All of these airframes were to be subjected to modernization, with half of them being upgraded to the Su-27MS3. The Russian air force also operates with 3 Su-30, 20 Su-27M2 and 66 Su-30SM. 28 additional Su-30SM are expected as they are in order. 8 were issued to the Russian aerobatic team Russian Knights. 103 units of the Su-32/34 versions are operated by the Russian Air Force. 58 Su-35S are also part of the inventory.
    The Russian Navy (Naval Aviation branch), in turn, was operating 53 Su-27 by January 2014, operating also 15 Su-30SM, being part of an order for 28 of such airframes, with 50 planned.
  • United States
    The US operates with two SU-27 airframes purchased from Belarus in 1995, with two additional former Ukrainian airframes purchased by Pride Aircraft. The US/private owned airframes are used for combat training for US pilots, with strong emphasis on dissimilar air combat training.
  • Ukraine
    The Ukrainian Air Force is having between 50-70 airframes, of which 16 were operational by 2015. They have seen operational action due to the conflict currently taking place at Eastern Ukraine.
  • Belarus
    After the USSR collapsed, Belarus received almost 30 Su-27. Two or three were sold to Angola in 1998, with the remaining 17 Su-27P and 4 Su-27UBM being retired in 2012
  • People’s Republic of China
    The People’s Republic of China is the second main operator of the Su-27, being also the first nation to which the Su-27 was exported by the early 90’s. The Chinese PLAAF was operating 33 Su-27SK and 26 Su-27UBK by January 2013. As China was allowed to produce its own airframes under license, the Shenyang J-11 (95 J-11A and 110 J-11B and J-11BS by the airforce; 48 J-11B and J-11BS by the Naval Aviation), J-15 (around 20 operated by the Navy Air Force) and J-16 (24 units apparently built) came to be the Chinese versions of the Su-27. The PLAAF and the Naval Aviation of China also operates 76 Su-30MKK and 24 Su-30MK2 respectively. 24 Su-35 were ordered, with 4 units received.
  • India
    The Indian Air Force operates 254 Su-30MKI, with the first units manufactured in Russia, and the following units assembles in India and under license by Hindustan Aeronautics Limited. It is the third main user of the Su-27.
  • Indonesia
    The Indonesian Air Force was operating 5 Su-27SK/SKM fighters by 2013. It also operates 18 Su-30MKM/MK2.
  • Vietnam
    The Vietnamese Air Force (Vietnam People’s Air Force was operating 9 Su-27SK and 3 Su-27UBK by 2013, along with 4 Su-30MK and 20 Su-30 MK2V. 12 more Su-30MK2V were received between 2014-2015, making a total of 32 Su-30MK2V.
  • Malaysia
    The Royal Malaysian Air force operates 18 Su-30MKM. A curious fact of the purchasing agreement was for Russia to send the first Malayan cosmonaut to the International Space Station.
  • Mongolia
    The Air Force of Mongolia operates 4 Su-27, with 8 more to be delivered.
  • Kazakhstan
    By 2010 it was operating 30 Su-27, having 12 in order. Reportedly, it operates 6 Su-30SM.
  • Uzbekistan
    34 Su-27 were reportedly operated by this nation in 2013.
  • Algeria
    44 Su-30MKA are part of the Algerian Air Force inventory, with 14 more airframes ordered.
  • Eritrea
    8 Su-27SK/UB were received in 2003, with 9 being on service by 2013.
  • Ethiopia
    In 2013, this nation was operating 12 Su-27, 8 of which were Su-27SK.
  • Angola
    The Western African nation received 8 Su-27, 3 from Belarus. One was reported as shot down by a MANPADS in 2000 during the Civil War. 7 units were in service by 2013. Presumably, 18 Su-30K were ordered.
  • Uganda
    The Ugandan Air Force operates 6 Su-30MK2.
  • Venezuela
    The Venezuelan Air Force operates 24 Su-30MK2, with 12 more being considered for purchase. One was lost during a drug interdiction mission as it crashed.

 

Specifications (Su-27SK)

Wingspan 14,7 m / 48 ft 3 in
Length 21,9 m / 72 ft
Height 5,92 m / 19 ft 6 in
Wing Area 62 m² / 667 ft²
Engine 2 X Saturn/Lyulka AL-31F afterburning turbofans
Maximum Take-Off Weight  30450 Kg / 67,100 lb
Empty Weight 16380 kg / 36,100 lb
Loaded Weight 23450 kg / 51,650 lb (with 56% of internal fuel)
G-limit  9
Climb Rate 59,000 ft/min (300 m/s)
Maximum Speed At high altitude: Mach 2,35 (2500 km/h / 1,550+ mph), At low altitude: 1400 km/h / 870 mph)
Range 6530 Km / 2,193 miles at high altitude; 1340 Km / 800 miles at low altitude
Maximum Service Ceiling 19000 m /62,523 ft
Crew 1 (pilot)
Armament
  • 1 X 30mm Gsh-301 autocannon.
  • 10 harpoints allowing up to 6000 kg/ 13227.73 lbs: 6 X R-27 medium-range air-to-air missiles; 2 X R-73 short-range heat-seeking air-to-air missiles. Other versions can carry a large array of weaponry, such as: (Su-30 and Su-33) R-27ER (AA-10C) and R-27ET, R-73E and R-77 RVV-AE AA missiles; Kh-31P/A, Kh-29T/L, Kh-59ME, Kh-35, and Kh-59MT and MK; rockets; bombs (KAB 500KR, KAB 1500KR, FAB 500T, OFAB 250-270 and nuclear bombs); and ECM pods. (Su-34) R-27, R-73, R-77 AA missiles; Kh-29L/T, Kh-38, Kh-25MT/ML/MP, Kh-59, Kh-58, Kh-31, Kh-35, P-800 Oniks and Kh-65SE or Kh-SD air-to-ground, anti-radar, anti-ship and cruise missiles; bombs and tactical nuclear bombs; and additional fuel tanks; and EW and reconnaissance pods. (Su-35) laser-guided and unguided rockets; R-73E/M, R-74M, R-27R/ET/ER/T, R-77 and R-37 AA missiles; Kh-29T/L, Kh-31P/A and Kh-59M/E air-to-surface and cruise missiles; bombs; and a buddy refuelling pod.
  • The Chinese versions (J-11, J-15 and J-16) carry the Chinese-made PL-12, PL-9 and PL-8 AA missiles, as well as the Russian-made R-77, R-27 and R-73 AA missiles; unguided rockets and free-fall cluster bombs, satellite-guided bombs and laser-guided bombs; ECM pods; and anti-ship and anti-radar missiles.
Avionics
  • Among the avionics of the Su-27, there is a Phazotron N001 Myech coherent pulse-Doppler radar, with track while scan and look-down/shoot-down capability and a range of 80-100 km in horizontal, and of 30-40 at the rear hemisphere, capable of tracking 10 targets and prioritize the target to be intercepted. There is also a SUV-27 fire control system fitted with a RLPK-27 radar sighting system, a OEPS-27 electro-optical system, a SEI-31 integrated indication system, an IFF device/interrogator and a built-in test system. A PNK-10 flight navigation system, a radio command link, the IFF device, the data transmission, the data transmission equipment and EW self-defence system are also part of the avionics. OLS-27 IRST and the helmet-mount sight, a Ts-100 digital (central) computer, a SEI-31 integrated indication system and HUD are also among the standard avionics fitted in the Su-37.

 

Gallery

Su-27B Flanker B Last Production – 20
Su-27 Flanker B First Production – 36
Su-27 Flanker B Last Production – 05

 

 

Sources:

Akulov, A. (2016). Su-34: Going global After Impressive Performance in Syria. Strategic Culture on-line journal, Aviastar.org. (n.d.). Su-27: The History. Aviastar.org, Aviation Voice. (2016). Top Fighter Jets Fighting ISIS in Syria. Aviation Voice, Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH, Bhat, A. (2016). Russia loses Su-33 off Syrian coast, pilot ejects to safety. International Business Times, Chant, C. (2006). Barcos de Guerra. [Warships Today, Fabián Remo & Fernando Tamayo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2004, Donald, D. (2009). Aviones militares: guia visual. [Military Aircraft, Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2008), Friedman, G. (2015). Los próximos 100 años. Pronósticos para el siglo XXI. [The next 100 years. A forecast for the 21st century, Enrique Mercado, trans.]. Mexico, Mexico: Editorial Océano (Original work published in 2009), GlobalSecurity.org. (n.d.). Su-27 FLANKER. GlobalSecurity.org, Majumdar, D. (2016). Take Note, Turkey: Russia’s New Su-35S Arrives in Syria. The National Interest, Mirovalev, M. (September 30, 2016). It’s been one year since Russia began bombing in Syria, and there may be no end in sight. Los Angeles Times, Sharpe, M. (2001). Jets de Ataque y Defensa. [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 1999), Sukhoi Company (JCS) (2017). Su-27SK aircraft performance. Sukhoi Company (JCS),  Summers, C. (2016). A second jet crashed into the Mediterranean while attempting to land on Russian aircraft carrier as it returned from Syria. The Daily Mail Online, Sukhoi Su-27. (2017, February 6). In Wikipedia, The Free Encyclopedia.Sukhoi Su-30. (2017, February 5). In Wikipedia, The Free Encyclopedia.Sukhoi Su-33. (2016, December 17). In Wikipedia, The Free Encyclopedia.Sukhoi Su-35. (2017, February 7). In Wikipedia, The Free Encyclopedia.Sukhoi Su-37. (2017, February 7). In Wikipedia, The Free Encyclopedia., Images: Su-27 Blue Underside by Dmitry Terekhov / CC BY-SA 2.0, Su-27 Camo 69 by Paweł Maćkiewicz / CC BY-NC-ND 2.0, Su-27 Red White and BlueSu-27 Russian Falcons, Su-30 Blue – Russian Knights, Su-30SM Gray 38, Su-30SM Russian Falcons – Gray 55 RainSu-27P Flanker Landing Gear by Pavel Vanka / CC BY-NC-ND 2.0Su-35BM 901 – Su-30MKM 02 Blue CN 722 by Carlos Menendez San Juan / CC BY-SA 2.0, Su-37 Ramp by joabe_brill /  CC BY-ND 2.0, Profiles: Su-27 Flanker B Last ProductionSu-27 Flanker B First Production by Sapphiresoul / GNU Free Documentation LicenseSu-27 Flanker B Last Production – 05 by F l a n k e r / CC BY 3.0Su-30 3 View by Kaboldy / CC BY 3.0

1-f-15a-77-0124-ma_03

F-15 Eagle

usa flag USA (1976)
Tactical Fighter – 1,600 Built

The F-15 Eagle is beyond any doubt one of the most famous air superiority fighters of the second half of the Cold War, and a worthy successor of the also famous McDonnel Douglas F-4 Phantom. For instance, its predecessor was designed to be a fighter with attack capabilities for any weather condition, and the same concept was taken into account when developing the Eagle, only that it was intended mainly for air superiority. Interestingly, and despite the F-4 being a naval plane for most of the part, the F-15 would be a combat eagle on use by the USAF. There is also another thing both planes have in common, despite being the Phantom already in combat and the Eagle yet to be developed: the Vietnam War. As it happens, high number of casualties made the US Navy and the Air Force, along with the influence of Secretary of State Robert McNamara, to look for new models to replace the existing ones, including the Phantom. The introduction of the Mig 25 Foxbat provided the final argument in favour of the development of a new aircraft for air superiority. And with while the Navy would ultimately incorporate the Grumman F-14 Tomcat, the USAF decided to go for its own fighter, resulting in the F-15, being the counterpart of the Tomcat and taking the Mig-25 as inspiration in terms of performance, to say the least.

f-15a-display
F-15A Model on Display

The F-15 Eagle is single-seat – or double seat in tandem in certain versions – twin-engine all-weather tactical fighter/air superiority fighter with attack and bombing capabilities, with cantilever shoulder-mounted wings. As it was briefly mentioned, the Vietnam War gave way for its requirement given the high losses to soviet-made aircraft (often old models) back in 1964, with 1968 being the year of requirements issuing and 1969 the year when development of the Eagle began. The main requirement was for the new fighter to be of air superiority and having secondary attack capacities. McDonnell Douglas was the company that awarded the requirements, thus developing the Eagle from the abovementioned year and flying the first prototype in 1972. NASA, in addition, came to take active part in the development of the F-15, especially on its mission requirements, at the same time of the development by the industry contractors.

The Eagle became to be one of the most advanced fighters of the times, clearly fulfilling its mission as it is considered the best air superiority fighter. The secret of its effectiveness and resilience lies on its structure, which is made of metal and then titanium at most of its components, and the empennage made of composite materials – twin aluminium/composite material honeycomb – and the vertical stabilizers made of boron-composite skin. This allowed the tails and the rudders to be very thin yet resistant. The wing also plays its role in bestowing the flying and combat capabilities of the F-15, as this has a cropped delta shape with a leading-edge sweepback of 45 degrees. There are no leading-edge flaps, and the trailing edge – or posterior area of the wing – is having ailerons and a simple high-lift flap. As a result, the wing’ low loading allows the F-15 to be very manoeuvrable without sacrificing speed in the process. The powerplant (two Pratt & Whitney F100-PW-100 turbofans engines with afterburners) and the avionics also play a role in providing the F-15 with its exceptional qualities: The former by bestowing speeds of up to 2.5 Mach and a good time/altitude ratio, the latter by allowing the crew to track and engage targets at distanced up to 160 km (87 miles) and targets at very low and high altitudes.

The F-15 has proven to be a platform capable of receiving structural and avionics/electronics improvements, further enhancing its combat and flight capabilities, with new radars, computers, weapons controls and armament type, powerplants (Pratt & Whitney F-100-PW-220), warning and navigation systems. The F-15 could even receive low visibility technologies, proving the adaptability and capacity of the aircraft to incorporate the latest technologies, as it is the case of the proposed F-15SE Silent Eagle, where its weapons carrying capabilities are proposed to be equally upgraded. This version could co-operate with 5th generation air assets, let alone to almost operate like one.

The F-15 has witnessed action not only in the air campaigns waged by the USA in the Middle East, the Balkans and Central Asia, but also with other air forces, being the Israeli Air Force where the F-15 have had similar combat intensity, and the Saudi Air Force making some considerable use of their F-15s. With the USAF, the F-15 on its different configurations achieved air superiority by shooting down many air assets of Iraq in air-to-air combats or in the ground, as well as to inflict a serious damage to Iraqi military and governmental infrastructure, contributing at a great extend to the sound victory of the Coalition in 1991. The F-15 even managed to destroy a low flying helicopter with a laser guided bomb. The F-15 kept a watch in enforcing the established no-fly zones after this conflict. The Balkans were another scenario where the F-15s made their presence to be felt, by pounding Serbian ground targets and even scoring 4 enemy kills (Serbian Mig-29s). The Second Iraq War, Afghanistan and strikes against ISIS saw the F-15E mainly in action, attacking important targets on these three scenarios, and even providing Close Air Support (CAS) for the troops in the ground.

With the Israeli Air Force, it achieved its first air-to-air kill, establishing then Israeli air superiority over the skies of Lebanon and against Syrian air assets. It had seen use also as a long-range striker and as a platform for attacking specific targets. Saudi Arabia also had some air kills in the 80’s and during Operation Desert Storm, using the F-15s nowadays to strike important targets in Yemen.

As of now, the F-15 is still in service and production (by Boeing, as McDonnell Douglas was absorbed by this company), with the USAF considering to operate with this fighter until 2025 or 2040 at the latest, and production to be maintained until 2019. So far, 1074 units have been produced (by 2012).

Design

Rear View of the Pratt and Whitney Engines
Rear View of the Pratt and Whitney Engines

The F-15 is an all metal (later on aluminium) semi-monocoque fighter with a shoulder-mounted wing, powered by two engines: 2 Pratt & Whitney F-100-PW-100 (F-15A, F-15B and F-15C) or F-100-PW-220 (F-15DJ and F-15 J), or F-100-PW-229 (F-15E). Two engine air intakes are located at each side of the fuselage, starting from the half area of the cockpit with a intake ramp configuration. The wings have a characteristic shape of a cropped delta shape with a leading-edge sweptback of 45 degrees, starting at nearly half of the wing. It lacks of manoeuvring flaps at the leading edge, having only a simple high-lift flap and ailerons at the trailing edge. As the wing has a low loading with high thrust-to-weight ratio, the F-15 can perform tight turns without any loose of speed, capable also of sustaining high G forces. Noteworthy to point out that the airfoil thickness has a variation of 6% at the wing root, to 3% at the wingtip. The empennage is made out of metal, with the two vertical stabilizers made out of honeycomb twin aluminium and composite materials covered with boron-composite skin, allowing them to be thin but very resisting. This means that the F-15 has two tails, the same way as the Grumman F-14 and the Mig 25. The horizontal stabilizers also have a remarkable characteristic of their own, as they have dogtooth within their structural shape, being able to move independently thus increasing control. The aerodynamic brake is located on the top of the fighter’s structure, behind the cockpit. The landing gear is a retractable tricycle. Noteworthy to point out that the F-15E lack of the typical exhaust petals covering the engine nozzles.

The cockpit is placed high in the frontal part of the aircraft, featuring a one-piece windscreen and a large canopy, allowing a full 360 degrees visibility for the pilot. In most F-15 variants the canopy is designed for one pilot. However, the F-15B, F-15D, F-15DJ and F-15E have a canopy designed for a crew of two: a pilot and a weapons officer in the case of the F-15E, and the student and instructor in the case of the training versions.

The wings and the same structure of the fighter allows it to carry a large number of weaponry and other devices. Among the weaponry normally carried by the F-15, there are AIM-7F/M Sparrow, AIM-120 AMRAAM, AIM—9L/M Sidewinder, as well as the M61 Vulcan Gatling gun at the right wing root. Other armament the F-15 is usually armed with are a varied array of free-fall and directed bombs, rockets, air-ground or anti-ship missiles, such as the AGM-84K SLAM-ER, AGM-84H Harpoon Block II anti-ship missiles, AGM-158 Joint Air-to-Surface Standoff Missile JASSM, AGM-88 HARM anti-radar missiles, and AGM-154 JSOW missiles. ECM pods, external fuel tanks and low-drag conformal fuel tanks (CTFs), which are attached to the sides of the air intakes and cannot be dropped, are usually among the additional equipment carried by this fighter.

f-15i-raam-israel
F-15l Ra’am – Israeli Air Force

The avionics of the F-15 allow an optimal operationalization of the armament carried by this fighter, as well as its navigation and combat-electronic performance and multi-mission capabilities. Among the avionics of the F-15, it could be accounted: Heads Up Display (HUD), the advanced pulse-Doppler Raytheon radars APG-63 and APG-70, the AN/ASN-109 Inertial Guidance System, the Joint Helmet Mounted Cueing System (JHMCS), ECM pods, Hazeltine AN/APX-76 or Raytheon AN/APX-119 IFF device, Magnavox AN/ALQ-128 Electronic Warfare Warning Set (EWWS), Loral AN/ALR-56 radar warning receiver and a Northrop-Grumman Electronics System ALQ-135 internal counter-measures system. All of these comprise the electronic brain of the fighter, which in combination with the powerplant, the aerodynamics and the weapons systems, makes of the F-15 an outstanding air asset that can achieve supreme control over the skies it operates.

As the design of the F-15 allows adaptation and upgrades, all of the versions were receiving gradual upgrades in avionics and engines, being the F-15E the most prominent. Yet some versions operated by other air forces, such as the Israel Air Force and the Republic of Korea Air Force can receive electronic and avionics components developed by those nations, proving that the Eagle is entirely adaptable to receive technology other than of its country of origin. And its versatility allows combat conversions, explaining why a single airframe can have air superiority, attack or electronic warfare missions, deciding the outcome of any campaign either in the skies or the ground.

An Eagle Not to Mess With

f-15e-grand-canyon
F-15E during aerial refueling operations over the Grand Canyon

The F-15 has proven to be a very powerful asset and a though adversary for those obliged to face it, feeling the powerful strike of the F-15. It has a suitable name that makes honour to its combat capabilities, which have been proven in action from the year it was unleashed. During the 1991 Gulf War and the aftermath, the F-15 achieved air superiority and delivered hard blows to the Iraqi military assets, by scoring 32 fixed-wing aircraft as confirmed kills (Iraqi fighters, fighter/bombers, transport airplanes and trainers that fell under the claws of the F-15), and 4 helicopters as kills. Many of these kills were achieved in air-to-air combats or simply by attacking the Iraqi air assets on the ground, being involved also in the hunt for valuable targets or by watching the skies over Iraq and the Balkans. In the hands of Israel and Saudi Arabia, the F-15 Eagle scored 41 and around 4-5 air kills respectively. With Israel, the F-15 left a deep impression on those that were targeted by its bombs. In the Balkans, the F-15 scored four air kills and equally contributed to pound the Serbian military facilities at Bosnia, Serbia and Kosovo.

The Eagle began the 21st century with more capabilities to increase its striking power, as well as seeing more combat in the light of the 9/11 attacks and the campaigns against terrorism. During the Second Iraq war of 2003, the Eagle once and again delivered precision strikes that decimated Iraq’s combat capacities. During the Afghan campaign, it attacked key Taliban and terrorist targets, at the point of even supporting the troops on the ground, and in recent years, it contributed at weakening the military power of Libya during its own Arab Spring, as well as striking important targets in the anti-terrorist campaign over Syria, Libya and Iraq. The F-15 Eagle has been on active duty basically during its entire operational life, being at the very first line.

The Eagle, as a last, could be able to destroy the eyes above the skies, as it was used for experimental tests where it fired a two-staged anti-satellite missile, proving capable for doing so. It has more than fulfilled the requirements set for its development after the nasty experiences of the Vietnam War, war that gave birth to one of the most powerful and memorable birds in all the history of aviation, being the Eagle a milestone by itself.

Variants

  • F-15 Prototypes Series – These series comprised at least 12 different airframes (2 F-15A-1; 3 F-15A-2; 2 F-15A-3; 3 F-15A-4; 1 two-seat F-15B-1 and 1 two-seat F-15B-2), each having a specific purpose during development, like testing the engines, the avionics, the structure, armament and fire control systems, external payload, electronic warfare systems, and even test and demonstrations tasks.
  • F-15A – The first series and operational version of the Eagle, being a single-seat all-weather air superiority fighter version. 384 units delivered.
  • F-15B – Two-seated training version that received once the denomination TF-15A. 61 units delivered.
  • F-15C – An improved version of the single-seat and all-weather superiority fighter version, receiving the last 43 units AN/APG-70 and AN/APG 63(V)1 radar. 483 units delivered.
  • F-15D – Another two-seat version for training purposes. 92 units delivered.
  • F-15E Strike Eagle – The all-weather strike version, as its name indicates, and equipped with conformal external tanks. Optimized for ground attacks, it was one of the main air assets used by the Coalition in Iraq in 1991, by NATO during the Balkans campaigns, the USAF in the second Iraq War, and on neutralizing combat capacities of terrorist groups. introduced in 1987.
  • F-15J – Japan Air Self Defence Force version of the single-seat and all-weather air superiority fighter. 2 units made in the USA, and 139 built under license in Japan by Mitsubishi Heavy Industries.
  • F-15DJ – Japan Air Self Defence two-seat version for training purposes. 12 units built in the USA, and 25 built under license in Japan by Mitsubishi Heavy Industries.
  • F-15SE Silent Eagle – A proposed version with stealth capabilities by reducing the radar cross-section, having also new and specific avionics to be incorporated. This version has given way to the following versions:
  • F-15I Ra’am – Version for Israel and thus operated by the Israeli Air Force with the name of Ra’am or ‘Thunder’. It has two seats and is for ground-attack missions, fitted with Israel-made electronics, including Sharpshooter targeting pods for night-time attacks, Elisra SPS-2110 radar warning receivers, a new central computer and GPS/INS system. Furthermore, the Display and Sight Helmet (DASH) allows the incorporation of all sensors, enhancing targeting. The APG-70I radar allows access to hard targets on the ground, capable also of detecting airliner-size target at distances up to 280 km (182 miles) and a fighter-size target at 104 km (64 miles). It will receive structural reinforcements, AESA radar and new weaponry. Around 25 units.
  • F-15K Slam Eagle – Version for the Republic of Korea (South Korea), with 40% of the airframes comprised of South Korean-made components, including wings, fuselage, avionics, electronics and licence-built engines, with Boeing in charge of final assembly. A first batch was received in 2005 with 40 fighters received, followed by a second batch of 21 units ordered in 2008, having the Pratt & Whitney F100-PW-229 engines. This version has its own particularities, just like the F-15I, with an AAS-42 infra-red search and track device, a customized Tactical Electronics Warfare Suite aiming at reducing weight and enhancing jamming effectiveness, cockpit compatibility with NVG, and VHF/UHF radio with a Fighter Data Link system. Moreover, it is fitted with an advanced APG-63(V)1 mechanical-scanned array radar, upgradable to AESA radar, and having a Joint Helmet Mounted Cueing System. The armament is pretty ‘unique’ as well, as it carries AGM-84K SLAM-ER, AGM-84H Harpoon Block II anti-ship missiles, and AGM-158 Joint Air-to-Surface Standoff Missile JASSM (a low observable standoff and long range cruise missile).
  • F-15S and SA – Variant supplied and developed for Saudi Arabia, with the F-15S having the AN/APG-70 radar and General Electric F110-GE-129C. The F-15SA will incorporate fly-by-wire flight control technologies (that will allow the carriage of weaponry on the unused wing stations, APG-63(V)3 AESA radar, digital electronic warfare systems, infra-red search and track systems and a redesigned cockpit.
  • F-15SG (or F-15T) – Version operated by the Republic of Singaporean Air Force (RSAF) with 24 units. These units operate with AIM-120C and AIM-9X missiles, GBU-38 JDAM bombs and AGM-154 JSOW missiles, complemented with NVG and Link 16 terminals, powered by General Electric F110 engines.
  • F-15QA – 72 units that will be delivered for the Qatar Air Force.
  • F-15H Strike Eagle – A proposed version for Greece (H stand for Hellas, the Greek name of the country) that did not advanced further, as the Greek government chose instead Mirage 2000-5 and F-16.
  • F-15G Wild Weasel – A proposed two-seat version to replace the F-4G in Suppression of Enemy Air Defences tasks, but the F-16 received such capabilities, and the F-15E was capable of carrying anti-radar missiles, like the AGM-88 HARM, thus performing SEAD roles.
  • F-15N Sea Eagle and F-15N-PHX – A carrier capable version proposed in the early 70’s as an alternative to the Grumman F-14 Tomcat. The F-15N-PHX was also a proposed naval version for the US Navy, capable of carrying the AIM-54 Phoenix missile. As naval versions, these featured structural reinforcement at the wingtips, the landing gear and a tailhook for carrier operations. These versions would never see action as the US Navy decided to carry on with the Tomcat.
  • F-15 2040C – A proposed upgrading programme for the F-15C to enable co-operation with the F-22, with characteristics similar to those of the F-15SE and having more air capabilities and combat power. Infra-red search and track, instalment of quad racks (increasing the missile carriage up to 16), Passive/Active Warning Survivability System, conformal fuel tanks, upgraded radar (APG-63(V)3 AESA, and a Thalon HATE communications pod for co-operation with the F-22 are among the proposed upgrades.
  • F-15 Streak Eagle – A research unit without painting and avionics, which broke time-to-climb records. Now part of the National Museum of the United States Air Force.
  • F-15 STOL/MTD – Another experimental unit for short-take-off/manoeuvre technology demonstrator, incorporating canards before the main wings, thrust-vectoring nozzles, and vectorised engine thrusts.
  • F-15 ACTIVE – A modification of the F-15 S/MTD with thrust vectoring nozzles for advanced flight control research. The acronym ‘ACTIVE’ stands for Advanced Control Technology for Integrated Vehicles. NASA, Pratt & Whitney, United Technologies, the USAF, West Palm Beach and McDonnell Douglas Aerospace are in charge of the program. This unit is powered by Pratt and Whitney F-100-PW-229 engines fitted with modified axisymmetric vectoring nozzles
  • F-15 IFCS – Conversion of the F-15 Active into a research aircraft for intelligent flight control systems.
  • F-15 MANX – Intended tailless variant of the F-15 Active that was never materialized.
  • F-15 Flight Research Facility – Two F-15 A acquired by NASA (Dryden Flight Research Center) for Highly Integrated Digital Electronic Control, Adaptive Engine Control System, Self-Repairing and Self-Diagnostic Flight Control System, and Propulsion Controlled Aircraft System experiments.
  • F-15B Research Testbed – Used by NASA (Dryden Flight Research Center) for flight tests.

Operator

  • United States of America
    The F-15 is operated mainly by three services or institutions in the United States. One is the USAF, which operates around 255 F-15 of the C/D versions, with the Air National Guard being the second service and operating 140 of them. In addition, the USAF operates 213 F-15E. Many of USAF F-15 saw extensive action in Operations Desert Shield and Desert Storm in Iraq in 1990 and 1991. On these operations, F-15 of C and D versions gained air superiority, killing 5 Iraqi Mig-29, 2 Mig-25, 8 Mig-23, two Mig-21, 2 Su-25, 4 Su-22, one Su-7, six Mirage F1, one Ilyushin Il-76 cargo airplane, one Pilatus PC-9 trainer, and 2 Mil-8 helicopters. In the 1999 Kosovo campaign, four Serbian Mig-29 were scored as kills by the F-15C.Meanwhile, the F-15E’s hunted SCUD launchers, engaged against Iraqi Mig-29 fighters and even shot down a Mil-24 Hind with a bomb, losing only two units. Iraqi air assets were also destroyed by the F-15E, as well as enemy armoured assets in Kuwait, engaging also in operations intended at killing Saddam Hussein. Operations Southern Watch and Northern Watch, which followed in the aftermath of the Gulf War, saw the F-15E enforcing the no-fly zone, managing to cause one Iraqi helicopter – a Hind – that was attacking a Kurdish site to crash. They also destroyed SAM sites and radars, as well as command and control sites, radio communications and relay stations, and radars. They also executed surveillance and reconnaissance, mission practicing and even strikes against the Iraqi Republican Guard and Baath Party HQs (Operation Southern Watch).In the Balkans, the F-15E were used to strike Serbian targets in both Bosnia and Herzegovina and Kosovo mainly against armour, logistical, and air defences weapons and facilities targets of Serbia, where it executed for the first time, stand-off attacks with the AGM-130 missile. Operations Enduring Freedom and Iraqi Freedom saw the deployment of USAF F-15E for the second time in Iraq and in Afghanistan, following the 9/11 attacks. In Afghanistan, the F-15E engaged in strikes against Taliban and terrorist targets – military structures, supply depots, training camps, and caves – as well as in CAS missions, where they gave support fire to a SEAL team whose helicopter was shot down. In Iraq, in turn, the F-15E attacked key military and governmental sites, airfields – 65 Migs destroyed – and decimating 60% of the Iraqi Medina Republican Guard.Libya, Syria and Iraq are the areas the USAF F-15E are currently in action, attacking ISIS terrorist training camps, facilities, command and control facilities and even vehicles and trucks. But the USAF utilization of the F-15 did not stopped there, as in fact made the Eagle capable of firing anti-satellite missiles from 1984 to 1988, although on an experimental basis.The older F-15C and F-15D models are to be upgraded and to be operated beyond 2025, while the A and B versions were retired after being operated by the Air National Guard. They are intended to be gradually replaced by F-22 and F-35.NASA is the third US operator with a single unit for experimental purposes.
  • Israel
    Israel is another operator of the F-15, which have seen extensive action with the Israel Air Force since 1977. Among its inventory, Israel has F-15A, F-15B, F-15C, F-15D and F-15I, where the F-15 scored its first ait-to-air kill over the skies of Syria by Israeli ace Moshe Melnik. They also saw extensive action over Lebanon, taking down 13 Mig-21 and 2 Mig-25 of the Syrian Air Force. They also escorted the F-16I during Operation Opera, an Israeli strike against an Iraqi nuclear plant, and during the Lebanese Civil War, the Israeli F-15 scored 23 Mig-21, 17 Mig-23 and one Gazelle SA.342L helicopter as air kills. They also attacked a terrorist headquarters in Tunis in 1985, as Israel was the first one in exploiting the air and ground capabilities of the F-15 as well as its range. The F-15I, in turn, can operate Israeli-made infra-red homing missiles in coordination with a helmet mounted sight, as well as air-to-air missiles.
  • Japan
    Japan is another prominent operator of the F-15, as it has license-built version that fulfil its own requirements. The Japan Air Self-Defence Force therefore operates 12 F-15DJ for training purposes, and nearly 155 F-15J for their standard role of air superiority and ground-attack.
  • South Korea
    The Asian nation has enrolled 58 F-15K Slam Eagle, defeating very capable fighters such as Dassault Rafale, the Eurofighter Typhoon and the Sukhoi S-35 during the selection program process for a new fighter. The Korean F-15 incorporate many electronics and avionics components made in South Korea, as well as enhanced radars and other equipment, being mostly assembled in South Korea.
  • Singapore
    40 F-15G are operated by the Republic of Singapore Air Force.
  • Saudi Arabia
    The Middle East Kingdom received 75 F-15C and F-15D, seeing action for the first time in 1984, shooting down two Iranian F-4E Phantom II during an aerial skirmish. The Saudi F-15 would also see action in the 1991 Gulf War, killing two Mirage F-1 of the Iraqi Air Force, losing one during the conflict. Later on, Saudi F-15S have co-operated with Saudi Panavia Tornados in strikes against Houthi insurgents in Yemen, as part of Saudi-led efforts against this group, concentrating on air defence sites, army HQ, airfields, ballistic missile depots and launchers. A single F-15S was lost during the operation’s early stages. This nation has also received F-15SA.

 

F-15C Specifications

Wingspan  13,05 m / 42 ft 10 in
Length  19,43 m / 63 ft 9 in
Height  18,6 m / 13 ft 5,63 in
Wing Area  56,5 m² / 608 ft²
Engine  2 X Pratt & Whitney F-100-PW-100 or PW-200 or PW-229 afterburning turbofans
Maximum Take-Off Weight  30845 Kg / 68,000 lb
Empty Weight  12700 kg / 28,000 lb
Loaded Weight  20200 kg / 44,500 lb
Climb Rate  more than 50,000 ft/min (254 m/s)
Maximum Speed  At high altitude: Mach 2,5+ (2665+ km/h / 1,650+ mph), At low altitude: Mach.1,2 (1450 km/h / 900 mph)
Range  1967 Km / 1,222 miles for combat radius; 5550 Km / 3,450 miles on ferry
Maximum Service Ceiling  20000 m /65,000 ft
Crew  1 (pilot)
Armament
  • 1 X 20mmM61A1 Vulcan 6-barrel rotary cannon
  • 11 hardpoints – two under-wing with each having a pair of missile launch rails, four under-fuselage, and a central pylon station – that could allow up to 7300 kg (16,000 lb) of payload and provisions. This payload could be carried in combination of: 4 X AIM-7 Sparrow; 4 X AIM-9 Sidewinder; 8 X AIM-120 AMRAAM; or 3 external fuel drop tanks of 2300 lts (600 US gallons) or 1 MXU648 Cargo/Travel pod to carry personal belongings or maintenance equipment.
  • Among the avionics of the fighter, that complements its armament and allows a maximization of use and combat, the F-15C has: Joint Helmet Mounted Cueing System (JHMCS); Raytheon AN/PG 63 or AN/PG 70 radars; Northrop-Grumman Electronics system ECM pod; Hazeltine AN/APX-76 or Raytheon AN/APX-119 IFF device; a Magnavox AN/ALQ-128 Electronic Warfare Warning Set (EWWS); a Loral AN/ALR-56 radar warning receiver; a Northrop-Grumman Electronics System ALQ-135 internal counter-measures system; and chaff/flares.

Gallery

1-f-15c-81-0040-zz_03
F-15C 81-0040 – Kadena AB Okinawa, Japan
1-f-15a-77-0124-ma_03
F-15A 77-0124 – Massachusetts ANG
1-f-15d-86-0182-ln_03
F-15D 86-0182 Lakenheath, England
F-15C 80-0010 Aggressor Nellis AFB, Nevada
F-15E 01-2004A LN RAF Lakenheath, UK
F-15J 72-8885 Nyutabaru AB, Miyazaki Japan
F-15J 02-8920 Naha AB, Okinawa Japan

 

 

Sources

Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Boeing. (2016). F-15 Strike Eagle. Boeing. Retrieved from: http://www.boeing.com/defense/f-15-strike-eagle/ on 06.12.2016, Chambers, J. R. (2000). Partners in Freedom. Contributions of the Langley Research Center to US Military Aircraft of the 1990’s (NASA monograph NASA SP-2000-4519). NASA History Division: Washington DC, USA. Retrieved from: https://www.nasa.gov/centers/langley/pdf/70897main_PiF.pdf on 25.11.2016, Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., Donald. D. (2009). Aviones Militares, Guia Visual [Military Aircraft. Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial Libsa (Original work published in 2008)., Dudney, R. S, &. Boyne, W. J (December 2015). Airpower Classics. F-15 Eagle/Strike Eagle. Air Force Magazine, 98 (12), 76. Retrieved from: http://www.airforcemag.com/MagazineArchive/Magazine%20Documents/2015/December%202015/1215classics.pdf on 25.11.2016, GlobalSecurity.org. (2011). F-15 Eagle Fighter. GlobalSecurity.org. Retrieved from: http://www.globalsecurity.org/military/systems/aircraft/f-15.htm on 07.12.2016, Lemoin, J (2002). Fighter Planes. 1960-2002. Retrieved from: http://sim-deck.co.uk/wp-content/uploads/downloads/fighter-planes%201960-2002.pdf on 07.12.2016, Neufeld, J. (1974). The F-15 Eagle. Origins and Development, 1964-1972. Office of Air Force History: USA. Retrieved from: http://www.afhso.af.mil/shared/media/document/AFD-120516-036.pdf on 25.11.2016, Smolka, J. W., Walker, L. A., Maj. Johnson, G. H., Schkolnik, G.S., Berger, C. W., Conners, T, R., Orme, J. S., Shy, K. S., Wood, C. B. (n.d.). F-15 ACTIVE Flight Research Program. Retrieved from: https://www.nasa.gov/sites/default/files/89247main_setp_d6.pdf on 25.11.2016, US Government Accountability Office. (2012). Tactical Aircraft: Comparison of F-22A and Legacy Fighter Modernization Programs (Report GAO-12-524). US Government Accountability Office: Washington DC, USA. Retrieved from: http://www.gao.gov/assets/600/590505.pdf on 25.11.2016, Wikipedia on the MacDonnell Douglas F-15: https://en.wikipedia.org/wiki/McDonnell_Douglas_F-15_Eagle, Wikipedia on the McDonnel Douglas F-15E Strike Eagle: https://en.wikipedia.org/wiki/McDonnell_Douglas_F-15E_Strike_Eagle, Wikipedia on the McDonnell Douglas F-15Stol/MTD: https://en.wikipedia.org/wiki/McDonnell_Douglas_F-15_STOL/MTD, Wikipedia on the Boeing F-15SE Silent Eagle: https://en.wikipedia.org/wiki/Boeing_F-15SE_Silent_Eagle Images: F-15E Grand Canyon by darinm16 / CC BY-ND 2.0, F-15l Raam – Israel by mykaul / CC BY-ND 2.0, F-15 Engines by Rennett Stowe / CC BY 2.0, F-15A Display by Clemens Vasters / CC BY 2.0, F-15E Banking by Jez / CC BY-NC-ND 2.0Side Profile Views by Ed Jackson – Artbyedo.com

 

messerschmitt bf109_e3_neu2_eingezogen

Messerschmitt Bf 109 [OUT OF DATE ARTICLE]

Nazi flag Nazi Germany (1937)
Fighter Plane – 33,984 Built

Restored Bf 109G-10 in flight [luftwaffephotos.com]
The Messerschmitt (Me) Bf 109 is one of the most notable fighters of the Axis countries and a clear symbol of its air power during World War II. Its performance gave Germany the upper hand in the early stages of the war while also taking part in every front until the very end of the conflict in Europe. The Bf 109 was the main fighter of the Luftwaffe, later complemented by the Focke Wulf Fw 190. The Spanish Civil War was the Bf 109 saw its first combat action. It flew also with other nations such as Finland, Bulgaria, Italy, Spain, Switzerland, and Hungary. After the war, it was in service with the Israelis, serving also in the Yugoslavian, Romanian and Czechoslovakian Air Forces. The versatility of the fighter was one of the main factors that allowed it to serve until 1965, with numerous variants.

History

The Messerschmitt Bf 109 is single seat, single engine fighter tasked also with the roles of air superiority, interception, escort and attacking capable of all-weather operations in day or night. It was a light all-metal monocoque design with the rudder being covered with cloth. The wing was a low cantilever design fitted with flaps, while the canopy was enclosed, featuring retractable landing gear and a tailwheel, armed with machine guns and cannons. As a result, the Bf 109 was an advanced design at the time it was introduced. Its development began back in 1934, following a 1933 Reichsluftfarhtministerium study which considered that a single-seat fighter was needed to replace the Arado Ar 64 and Heinkel He 51 biplanes that were the German first-line fighters. Furthermore, it was required for the fighter to develop speeds of up to 400 km/h (250 mph) at 6000m (19,690 ft) for 20 minutes, having an range of 90 minutes. The power plant was intended to be the Junkers Jumo 210 engine of 700 hp, while the armament was intended to be comprised of a mixture of a 20 mm gun and two 7.92 mm guns, or be armed by either the cannon or the two machine guns only. In addition, as Willy Messerschmitt was not authorized by the Reichsluftfarhtministerium to build small passenger planes for Romania, the request of building a fighter came also as a sort of compensation.

Development

Bf 109G flying straight on [gertimga.pw]
Bayerische FlugWerke began its work as it was awarded with the development contract in 1934, with the prototype flying for the first time in 1935, receiving the designation of Bf 109 by the aviation ministry and powered with a Rolls-Royce Kestrel IV engine, as new German-made engines were not yet available. Willy Messerschmitt was the designer behind the Messerschmitt Bf 109, hence the name of the aircraft, and the ‘Bf’ denomination. The development of the new fighter began, initially powered with the Rolls Royce Kestrel engine. The following two prototypes were powered with the Jumo 210A 600hp engines, and the last one was fitted with guns. Reportedly, 10 more prototypes followed in order to test the model. The result was a cantilever low-wing single engine fighter capable of speeds of up to 470 Km/h (Bf 109B) with its Junkers Jumo 210Ga engine. Further models received inverted Daimler Benz V-12 engines or racing engines. These engines yielded speeds of 380 mph (611 kmh) and 464 mph (755 kmh) respectively. Remaining the last a speed record for piston-engine aircraft until 1969. The fighter was very advanced, matching to any fighter in service at the time in combat. The earlier versions were armed with an array of two 7.92 mm machine guns in the forward cowl above the engine in the Bf 109B, while later C models were armed with two additional 7.92 mm machine guns in the wings and a 20 mm gun in the nose.

Presented to the public during the 1936 Berlin Olympics for propaganda purposes, it saw action for the first time during the Spanish Civil War with the German Condor Legion, where it quickly gained air superiority over its Soviet-made rivals Polikarkov I-15 and I-16 fighters with Werner Mölders, a future WWII ace, scoring 14 victories. This conflict also served to test the new fighter in combat and to detect the shortcomings and needed improvements, as well as to test the Luftwaffe’s tactics and doctrines that would be implemented in WWII. When the conflict came to an end, 40 fighters were gifted to Spain following the withdrawal of the Condor Legion.

me109-413f-s
Bf 109G-2 ‘Gustav’ – One of the best preserved 109s

The Bf 109 was considered sufficient for the operational needs of Germany until 1941, the year when it would have fulfilled its objectives. However, as the conflict progressed, the high command realized that the Bf 109 needed further upgrades. As a result, the versions Bf 109E, Bf 109F, Bf 109G, and the lesser known Bf 109K were created. Even so, the model’s many shortcomings persisted, putting it at a disadvantage to its rivals.

The Bf 109 had many advantages such as its good range and the powerful engine along with its reasonable size, agility, high speed, climb rate, dive speed, turn rate, maneuverability, and low cost. But there were other problems that prevailed during its service. The struts of the landing gear were rather fragile and narrow, retracting outwards and not beneath the fuselage. Second, Blitzkrieg hindered the fighter’s success as it had to accommodate for the tactic at the expense of autonomy, which would play an important role in the Battle of Britain. This problem was solved after the battle with the addition of extra drop tanks. Third, it tended to swing sideways during landing and takeoff. Fourth, it had a poor lateral control at high speed. Fifth, during combat when executing very close turning, the wings grooves tended to open, preventing stalling but often acting against the ailerons. And sixth, the length and ground angle of the landing gear ‘legs’ was so that it restricted forward visibility while on ground, forcing pilots to taxi in such a way that the undercarriage was put into heavy stress. This posed a problem for rookie pilots. The narrow wheel track also made the fighter unstable while on ground. The solution for this problem was to transfer the load up through the legs while taking off and landing maneuvers.

Approximately 34,000 Bf 109s were built in Germany from 1936 to 1945, in addition to the 239 made by Hispano Aviacion, 75 built in Romania by IAR and 603 made by Avia, with production lasting until 1958. Some 20 Bf 109s remain now as museum displays.

Design

bf109-engine-bay
Bf 109G-2 ‘Gustav’ photographed at an airshow in the 90s

The Messerschmitt Bf 109 is a very interesting fighter with equally interesting design characteristics. Being lightweight was the main concept of its design, development, and construction. It was also a single engine, single seat fighter with a low cantilever wing, whose sleek monocoque fuselage was entirely made out of light-weight metal. Easy access to the powerplant, weaponry at the fuselage, and other systems was considered also as important during design process, and especially when operating from forward airfields. As a result, the engine cowling was made up of large and easily removable panels, with specific panels allowing access to devices such as the fuel tank, the cooling system, and electrical equipment. The devices containing and holding the engine made it easy to remove or replace it as a unit. The power plant tended to differ from version to version: the early versions were powered by a Junkers Jumo 210g inverted V-12 700 hp, with following versions being powered by a Daimler Benz DB 600A with 986 hp and other – more powerful – Daimler Benz engines (for further information, please see the variants). As the engine was inverted, it was reportedly hard to knock out from below. And it also featured an electrical regulator.

The wing was also full of remarkable details. One of them was the main I-beam spar, placed rather aft than usually placed, with the idea of opening space for the retracted wheel, and creating a D-shaped torsion box. This box had more torsional rigidity and also removed the need for a second spar. In addition, the thickness of the wing was slightly varied, with a cord ratio of 14.2% at the root, and a cord ratio of 11.35% at the tip. The wing was also high-loading. Another feature was the introduction of advanced high-lift devices, with automatic leading edge slats and large camber-changing flaps on the trailing edge. These slats increased the lift of the wing, improving horizontal manoeuvrability. Ailerons that drooped slightly when the flaps were lowered were also fitted in the wings, increasing the effective flap area, especially on the F series. The result was an increase on the wings’ lift. As the armament was placed in the fuselage in the earlier versions, the wing was kept very thin and light.

Another remarkable feature, which was standard in the F, G and K versions, were the introduction of two coolant radiators with a cut-off system so to reduce vulnerability of the cooling system after receiving a hit. For instance, if one radiator leaked as a consequence of an impact, the other still made it possible to fly. Even a 5-minute flight was possible with both radiators inoperable.

bf-109-hispano-built
Bf 109G-4 – Operated and preserved by the Messerschmitt Foundation

The canopy of the Bf 109 was a closed bird-cage design, opening sideways and having armour protection plates in the back. These armored plates also protected the main fuel tanks as it was partially placed under the cockpit floor and behind the rear cockpit bulkhead, having an L-shape. Some variants of the G version even featured pressurized cockpits.

me109f2-jg26-adolf-galland-france1942-7f-s
Bf 109F2 with ace General Adolf Galland in 1942 France

In regards to the armament, it tended to vary from version to version in weaponry, caliber, and location. The early versions normally featured an array of two machine guns mounted in the cowling with a 20mm cannon firing through a blast tube between the cylinders. This display was to be changed after the Luftwaffe got a word about the RAF’s plans to equip its new fighters with a battery of 8 guns. This made the additional guns to be installed at the wings, either 7.92mm MG 17 machine guns or a 20mm MG FF or MG FF/M cannon in between the wheel well and slats. The C version featured the additional two 7.92mm machineguns, where a continuous belt was installed to avoid redesigning the wing and ammunition boxes and access hatches. The gun barrel was placed in a tube between the spar and leading edge.

When cannons were installed on the wings, being longer and heavier, they were placed at a farther area in an outer bay, forcing the spar to be cut with holes so to allow feeding the weapon. A small hatch was incorporated to allow access to the gun, which was able to be removed through a removable leading edge panel. The F version and the following versions had the gun changed from the wings to the nose cone, firing through the propeller shaft. Additional 20mm MG 151/20 cannons were installed in pods under the wings, which were easy to install but also forced a reduction of speed by 8 km/h (5 mph). The last version (Bf 109K) was armed with a MK 108 30mm cannon in each wing.

The additional armament, while increasing the Messerschmitt Bf 109’s firepower, also reduced its performance. Handling qualities and dogfighting capabilities were severely affected, with the tendency to swing like a pendulum while flying.

The Reich’s Warrior of the Skies

me109taxisideview-4f-s
Bf 109G-2 ‘Black 2’ now of the Messerschmitt Museum

When the war started in 1939 with the invasion of Poland, around 320 Bf 109s took part in the invasion under two units (I/JG 21 and I/ZG 2). During that operation, the Bf 109s gained air superiority by destroying the Polish air and ground forces, providing escort to ground attack planes and dive bombers, such as the Junkers Ju 87 Stuka. When the invasion of Norway took place, they faced considerable resistance from the outdated Gloster Gladiators of the Norwegian Air Force, which were reinforced by British fighters from HMS Glorious and two more aircraft carriers. During the Battle of France and the invasion of the Netherlands and Belgium, the Messerschmitt Bf 109s encountered weak adversaries. In France, an ill prepared Armee de l’air was unable to face the force of the Luftwaffe while the German fighters gained air supremacy rather quickly and controlled the French skies. Battle of Dunkirk however began to highlight the limitations of the Bf 109, especially in regards to autonomy, as many were coming from bases within Germany and facing strong opposition from the Royal Air Force.

The Battle of Britain was the first battle where the Bf 109 began to show its limitations, especially that of autonomy, having little time to provide effective escort and air supremacy over the British skies. It also found a fitting rival in the Supermarine Spitfire and Hawker Hurricane, which were able to face the Messerschmitt Bf 109 and even were able to overpower it. The radar installations the RAF also played a role in defeating the Bf 109. Moreover, the attrition suffered during the Battle of France took its toll on the Bf 109 that took part in the campaign. As a result, the Luftwaffe – and namely the Bf 109 – was unable to achieve air supremacy and control the skies of Britain, let alone to defeat the RAF, despite the numerical superiority the Luftwaffe had over the RAF (3000 vs. 700 airplanes).

Russia would be a scenario where the fighter would have some redemption, at least in the first stages. As the Soviet Air Force had inferior assets, quality, organization, and training, the Bf 109 achieved an impressive rate of aerial victories (approximately 9200 in total), creating many aces. In addition, the pilots on-board the Bf 109 had already accumulated experience from the previous campaigns – Spain, Poland, Norway, France and England to name a few – while the Bf 109 was comparatively superior to its Soviet-made rivals. However, the superiority in numbers of the Soviet Air Force began to pay its toll on the fighters. It was during this campaign when the fighter was gradually replaced by the more advanced and robust Focke Wulf FW 190 by Summer 1942.

They also took part in the bombing of Malta, with the mission of countering the Spitfires and Fulmar fighters the British managed to sneak onto the island. Although they managed to reduce the losses on the bombers by increasing the attrition of the adversary’s fighters and ground services, the campaign had a considerable cost for the Bf 109 with 400 lost in action. At the same time, the Bf 109 was seeing action in North Africa, achieving air supremacy in the beginning, but facing adverse conditions later on, such as fuel shortages and a superior number of adversaries, alongside attrition imposed by the Luftwaffe’s own organization and training systems.

The Bf 109 also performed as one of the main air defence assets when the Allies began to wage air and bombing campaigns over Germany, targeting mainly the bombers and being benefited by dispersed ammunition and fuel storages all around Germany. The German air industry did not update its models in time or was simply unable to produce fighters enough to tackle the Allies’ air power. As a result, by 1944 the Bf 109 and other fighters were simply unable to counter the Allies’ air campaign. The Bf 109’s career with the Luftwaffe came to an end in 1945, when Germany was defeated.

bf-109-crashed-exhibit
Bf 109E-3 on display at the Imperial War Museum in Duxford, England

During and after WWII, the Bf 109 was used by other nations, achieving considerable feats while piloting this aircraft and remaining in service for a long period of time. Finland used the Bf 109 during the Continuation War, claiming a victory ratio of 25:1 and operating with them until 1954. Switzerland received a batch of Bf 109s during the war, using them until 1955. The Bf 109 was donated by Germany and built under license by Spanish air company Hispano Aviacion during and after the war, remaining in service until 1965. Many took part in the film Battle of England. Israel also used Czech-made Bf 109s that fought during the Independence War, scoring 8 victories.

Prototypes

  • Bf 109V1Powered with a Rolls Royce Kestrel and with a two-blade Härzel propeller, awarding the fighter contest. Unarmed.
  • Bf 109V2 – Powered with a Junkers Jumo 210A of 610 hp, armed with two 7.92 machine guns over the engine cowling.
  • Bf 109V3 – Similar to the Bf 109V2, becoming the Bf 109B-0

Production Versions

  • Bf 109AThe A was powered by a Junkers Jumo 210D 661 hp engine, armed with two 7.92 mm MG 17 machine guns in the engine cowling, with a third added experimentally in the propeller shaft.  Many saw action in the Spanish Civil War with the Condor Legion.
  • Bf 109BThis constitutes the first series version, delivered on February 1937, featuring a shortened nose cone. Powered by a Junkers Jumo 210D inverted V-12 cylinder of 635 hp, liquid refrigerated and capable of reaching a speed of 467 km/h with two propellers. It was fitted with a variable-pitch propeller. Its armament consisted of two 7.92mm Rheinmetal-Borsig MG 17 machine guns above the engine. They saw action in the Spanish Civil War.
  • Bf 109CThe second series version. Powered by a Junkers Jumo 210G 690 hp engine, reaching similar speeds as well. The armament consisted of two 7.92mm MG 17 machine guns with two installed over the engine and two at the wings (thanks to the reinforced wing), having the 20mm MG FF cannon added for the first time on the C-2 at the propeller shaft. They also saw action in the Spanish Civil War.
  • Bf 109D  – The third series had a Daimler Benz DB 600Aa of 986 hp, being the first series in having this engine as a powerplant, yielding a speed of 516 km/h. however, D-0 and D-1 were powered by a Junkers Jumo 210D engine. It was the standard fighter prior the war. The armament was the same as the C series. Initially transferred to night fighter units, it was assigned to training tasks.
  • Bf 109EThe fourth series of the Bf 109, of which more than 4000 units built were built. The E-1 was powered by a Daimler Benz DB 601A-1 of 1075 hp with three propellers, which required movement of the main radiators beneath the wingroots. The E-3 was powered with a Daimler Benz DB 601A of 1100 hp. The E4 had a Daimler Benz DB 601Aa inverted V-12 of 1175 hp, receiving a Daimler Benz BD601N engine later for high especially altitudes. As a result, this series could reach speeds of 560 -570 km/h. The Bf 109E-5 and E-6 were powered by a Daimler Benz 601N of 1200 hp. The E-7 received Daimler Benz DB 601A, DB 601Aa and DB 601N engines. The E-8 had had a Daimler Benz DB 601E of 1350 hp. The armament consisted of four 7.92mm MG 17 machine guns and 4 X 50kg bombs or one 250kg normally on the earlier E variants (E-1 to E-4), the E-2 having the 20mm engine-mounted cannon. The E-4, however lacked the engine gun, armed instead with the two 7.92mm machine guns in the engine cowling and two 20mm guns at the wings. The following Bf 109Es (E-5 to E-9) were normally used as fighter bombers, carrying a 250 kg bomb. The E-5 and E-6 were reconnaissance fighters lacking the 20mm guns and having the cameras behind the cockpit. The E-7 was armed with two 7.92mm MG 17 machine guns on the engine cowling and two 20mm MG FF guns on the wings. The E-8 was armed with 4 X 7.92mm machineguns, while the E-9 had only the two 7.92mm machineguns in the engine cowling, being a reconnaissance fighter. Noteworthy to point out, the E-4 had four important sub-variants: E-4/B with a 250 kg (550 lb) bomb, as it was a fighter bomber; E-4 trop, fitted for tropical service; the E-4/N with the Daimler Benz 601N engine; and the E-4/BN, with the 250 kg (550 lb) bomb and the same engine as of the E-4/N. The E-7 also had as remarkable sub-variants: E-7/Trop, fitted for service in the tropics; E-7/U2, fitted for ground attack and with more armour; and the E-7/Z, with nitrous oxide injection system.
  • Bf 109F – The F series were powered by the Daimler Benz DB 601N of 1159 hp (F-1 and F-2), and a DB601E of 1300 hp (F-3 and F-4), with the F-3 reaching speeds of 620 km/h. The F-1 was armed with two 7.92 mm MG 17 machineguns and a slow firing 20mm gun firing through the nose and propeller cone. The F-2 as armed with rapid firing two 15mm MG 151s and a 20mm MG FF at the nose. The F-3 was powered with a Daimler Benz DB 601E of 1350 hp, with a rapid firing 20mm gun of and enhanced armour. The F-4 was armed with two 13mm MG 151, a 20mm MG FF, and 15mm MG 151s each on pods under the wing, featuring enhanced armour. The F-5 was lacking the 20mm gun, as it was a reconnaissance fighter. The F-6 had the same mission while having no weapons whatsoever, but reportedly never came to service. The F series normally featured a drop air fuel tank. It was the most advanced in terms of manoeuvrability and aerodynamics.
    • The F-4 had two important sub-variants: F-4/R1, armed with two 20mm MG 151 cannons in underwing gondolas; F-4/Z with a GM-1 boost. There was also a F-4 trop, fitted for service in the tropics.
  • Bf 109GThe most important version with 23,500 fighters built by the end of the war. It was powered by a Daimler Benz DB 605A-1 of 1475 hp, a Daimler Benz DB 605D of 1800 hp with a MW50 injection. It could reach speeds of 469 km/h to 690 km/h. The armament consisted of two 7.92mm MG 17 or two 13mm MG 131 over the engine cowling and a 15mm MG 151 on the G-1 series. The G-2 was powered by the same engine and a similar armament, except that it was armed with the 20mm MG FF cannon. The G-3 and G-4 had the same powerplant anda different radio, the G-3 also having a pressurized cockpit. The G-5 (pressurized fighter) and G-6 were armed with a 20 or 30mm MK 108 at the nose cone, two 15mm MG 151 in the wings. They had a rudder made out of wood. The G-8 was a reconnaissance fighter, the G-10 powered with a Daimler Benz DB 605D of 1850 hp, the G-12 a training version with double controls, two-seat with a tandem cockpit, and the G-15 and G-16, which were enhanced versions of the G-6 and the G-14 respectively. The G-14 was a version armed a 20 mm MG 151 cannon, and two 13 mm MG 131 machineguns, capable of receiving two extra underwing 20mm MG 151 cannons or rocket launcher tubes. Of the G series, many were armed with two 210mm rocket launchpads under the wings or bombs.
    • The G-1 had the G-1/R2 and G-1/U2 sub-variants, a reconnaissance fighter and a high altitude fighter, respectively.
    • The G-2 had the G-2/R1 (A long-range fighter-bomber with a 500 kg [1100 lb] bomb), the G-2/R2 (reconnaissance fighter), and the G-2 trop (for the tropics). The G-4 also had the G-2/R2 (reconnaissance), G-2/R3 (long range reconnaissance fighter), G4 trop (tropicalized), G-4/U3 (reconnaissance) and G-4y (command fighter).
    • The G-5 had the G-5/U2 (high altitude fighter with a GM-1 boost), G-5/U2/R2 (high altitude reconnaissance fighter with the GM-1 boost), G-5/AS (high altitude fighter with a Daimler Benz DB 605AS engine, and G-5y (command fighter) sub-variants. The G-6 had, in turn, the G-6/R2 (reconnaissance fighter), G-6/R-3 high-altitude reconnaissance fighter with GM-1 boost), G-6 trop (tropicalized), G-6/U2 (with a GM-1 boost), G-6/U3 (reconnaissance fighter), G-6/U4 (light fighter with a 30mm cannon at the propeller shaft), G-6y (command fighter), G-6/AS (high-altitude fighter with Daimler Benz DB 605AS engine), G-6/ASy (high-altitude command fighter), G-6N (night fighter with two underwing 20mm MG 151 cannons), and G-6/4U N (night fighter with a 30mm cannon at the propeller shaft) sub-variants.
    • The G-10 and G-14 each has also their own sub-variants. The G-10 had the G-10/R2 (reconnaissance), G-10/R6 (bad-weather fighter with a PKS 12 autopilot) and G-10/U4 (with a 30 mm cannon in the engine) sub-variants. The G-14 had the G-14/AS (High altitude with a Daimler Benz DB 605ASM engine), G-14/ASy (high-altitude command fighter), G-14y (command fighter), and G-14/U4 (with a 30mm engine-mounted cannon).
  • Bf 109HThis version was powered with a Daimler Benz DB 601E and DB 605A, reaching speeds of 620 km/h. Discarded after operational problems.
  • Bf 109K – Powered with a Daimler Benz DB 605 ACM/DCM of 1550 hp stabilized at 2000 hp with a MW 50 injection. The armament consisted of two 15mm MG 151 on the engine cowling, and a 30 mm MK 108 or 103 cannon. Many were armed with two 210mm rocket launchpads under the wings or bombs. Other proposed versions never came to service.
  • Bf 109TAttempted version for use in aircraft carrier, made out from modified existing versions and equipped with a tail-hook and catapult-devices, increased ailerons, slats and flaps. The armament consisted of two 7.92 machine guns mounted above the engine and two 20mm guns in the wings. Never operated in the carrier, and were reassigned to training missions.
  • Bf 109XExperimental aircraft.

Licensed-built versions

The Bf 109 was also built in other countries, such as Romania, Spain, Switzerland, and Czechoslovakia, having different powerplants and armament.

  • S-199 – Built by Avia for the Czech and Israeli air forces and powered by a Junkers Jumo 21 1F of 1350 hp and armed with two 13mm MG 131 machine guns on the engine cowling and two 20mm MG 151 machineguns under the wings.

The Spanish Series

  • HA-1109 and HA-1112 BuchonThe Spanish made versions of the Bf 109. The HA-1109 (also denominated HS-1109-J1L) was powered by a Hispano-Suiza 12Z-89 V-12 of 1300 hp engine, armed with two 12,7mm machineguns at the wings or 20mm Hispano 404 guns. The HA-1109-K1 had a De Havilland Hydromatic propeller, armed with two 20mm cannons and underwing rockets, followed by the HA-1109-K1L. The HA-1112-K1L seemingly featured a three-bladed propeller, powered by a Rolls Royce Merlin engine.
  • HA-1112-M1L BuchonPowered with a Rolls Royce Merlin 500-45 of 1400 hp engine.

Operators

  • Germany – The main builder and user of the Bf 109, being its standard fighter up to 1942, when the Focke Wulf began to steadily replace it as main fighter of the Luftwaffe, mainly in the Russian Front. It served in basically all of the German campaigns during the war, as well as in the defence of Germany against the Allied incursions and the Spanish Civil War. Many famous German aces, such as Werner Mölders, Adolf Galland, and others fought with the Bf 109, scoring most of their victories. Its most excruciating test was at the Battle of Britain, where its limitations became evident, thus being unable to fully control the skies over Britain. On the Russian Front, it scored the largest amount of air and land kills against their Soviet counterparts.
  • Finland – The Scandinavian nation operated 159 Bf 109s after it ordered initially 162 fighters: 48 G – 2s, 11 G-6s and 3 G-8s). Three were destroyed en-route. They were used during the Continuation War, achieving notable feats. The Bf 109s were intended to replace the Fokker D.XXI, Brewster Buffalo and Morane MS-406 fighter Finland had inthose days. Remained in service until 1954.
  • Switzerland – The Swiss Air Force operated 10 D-1s, 83 E-3a variants, 2 F-4s and 14 G-6s, using them to safeguard its neutrality and to fight off many German and Allied airplanes that violated the Swiss air space.
  • Spain – Spain operated D-1s, E-3s, 15 F-4s and possibly B versions of the Bf – 109. A Spanish volunteer detachment – Escuadrilla Azul – operated in Russia in assistance to Germany and operating under German units and command, using E-4, E-7, E-7/B, F-2, F-4, G-4 and G-6 variants. The Hispano Aviacion HA-1112 is the Spanish-built version of the Messerschmitt Bf 109. In service after the war until the mid-Sixties, many Spanish Bf 109s were featured in some WWII movies, such as The Battle of England.
  • Israel – The recently formed Israel Air Force operated the Avia-built version of the Messerschmitt Bf 109, as it bought some fighters from Czech Republic. Operated during the Independence War, it scored 8 kills.
  • Italy – By 1943, a considerable amount of Bf 109s were operated by the Regia Aeronautica, while the established Italian Social Republic after the fall of the fascist government operated 300 G-6s, G-10s, G-14s, 2 G-12s, and three K-4s.
  • Bulgaria – Being an ally of Germany, it received 19 E-3s and 145 fighters of the G-2, G-6 and G-10 versions were operated by the Bulgarian Air Force.
  • Romania – The Royal Romanian Air Force operated with 50 E-3s and E-4s, 19 E-7s, 2 F-2s, and 5 F-4s. In addition, it operated with around 235 G-2s, G-4s, G-6s, G-8s and 75 locally built IAR 109-6as. The Bf 109 were used after the war until 1953.
  • Hungary – Being an ally of Germany, the Royal Hungarian Air Force co-operated with the Luftwaffe using around 500 Bf 109Gs.
  • Croatia – The Independent State of Croatia operated with 50 Bf 109s of the E-4, F-2, G-2, G-6, G-10 and K versions. Initially operating on the Eastern Front, they were re-deployed to defend their national territory against allied fighters.
  • Czechoslovakia – Operated license-built Avia S-99/S-199. 603 were built and after the war, the Junkers Jumo 211F engine was used as powerplant. Reportedly, the Czechoslovakian made versions had a tendency to suffer accidents while landing.
  • Slovak Republic – Two air forces within the nation operated with the Bf 109: The Slovak Air Force, loyal to the Axis, operated 16 E-3s, 14 E-7s, and 30 G-6s. The Slovak Insurgent Air Force, loyal to the Allies, operated 3 G-6s.
  • Yugoslavia – The Royal Serbian Air Force operated 73 E-3s, and the post-war Yugoslav Air Force operated many Bf 109s that belonged to the Independent State of Croatia and Bulgaria.
  • Japan – 5 E-7 were purchased in 1941, used mainly for trials and tests.
  • United States – Some captured Bf 109 served with the US.
  • United Kingdom – Some captured Bf 109s operated with the RAF.
  • Soviet Union – Bf 109s that were captured operated with the Soviet Air Force.

Specifications (Bf 109 G-6)

Wingspan  9,92 m / 32 ft 6 in
Length  8,95 m / 29 ft 7 in
Height  2,60 m / 8 ft 2 in
Wing Area  16,05 m² / 173,3 ft²
Propeller Diameter  3 m/ 9 ft 10 in
Engine  1 Daimler Benz DB 605A-1 liquid-cooled inverted V-12 of 1,455 hp
Maximum Take-Off Weight  3400 Kg / 7,495 lb
Empty Weight  2247 kg / 5,893 lb
Loaded Weight  3148 kg / 6,940 lb
Climb Rate  17 m/s ; 3,345 ft/min
Maximum Speed  640 km/h / 398 mph
Range  850 Km / 528 miles; 1000 Km / 621 miles with a droptank
Maximum Service Ceiling  12000 m /39,370 ft
Crew  1 (pilot)
Armament  

  • 2 X 13mm (0.51 caliber) MG 131 machine guns
  • 1 X 20mm MG 151/20 cannon at the nose cone of the engine
  • 1 X 30mm MK 108 cannon at the nose cone of the engine
  • 2 X 20mm MG 151/20 cannons at pod installed on the wings (optional)
  • 2 X 210mm Wfr. Gr. 21 rockets
  • 1 X 250 kg (550 lb) or 4 X 50 (110 lb). 1 X 300 litre (79 gallons) fuel drop tank

Gallery

messerschmitt bf109b_2_farbe2
Bf 109 B-2, II/JG 132 “Richthofen”
messerschmitt bf109_wespe
Bf 109 E-7/B, Zerstörergeschwader 1
messerschmitt bf109_g10_eskorte
Bf 109 G-10, JG 3 “Udet”, Eskortflugzeug für Sturmbockstaffeln
messerschmitt bf109_e3_neu2_eingezogen
Bf 109 E-3
messerschmitt bf109_e3_farbe
Bf 109 E-3, III./JG 2, Frankreich 1940
messerschmitt bf109_e1_eingezogen
Bf 109 E-1
messerschmitt bf109_e_frankreich
Bf 109 E-3, III./JG 27, France 1940
messerschmitt bf109_2_farbe
Bf 109 E-3, III/JG 26

bf-109-underside-flight

Sources

Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Braas, N., & Bradic, S. (n.d.). Profile: Messerschmitt Bf 109G. LET LET LET Warplanes., Cau, P. (2011). Batallas del Mundo. [Battaglie, Maria Pilar Queralt, trans.]. Madrid, Spain: Editorial Tikal (Original work published in 2006)., Chant, C (2001). Aviones de la Segunda Guerra Mundial [Aircraft of World War II, Fabian Remo Tamayo & Fernando Tamayo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., Chant, C. (1999). La Maquinaria de Guerra Nazi. [The Nazi War Machine, Macarena Rojo Gonzalez, trans.]. Madrid, Spain: Editorial Agata (Original work published in 1996)., Donald. D. (2009). Aviones Militares, Guia Visual [Military Aircraft. Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial Libsa (Original work published in 2008)., Elting, J. R., vonLuttichau, C. V. P., & Murray, W. (1996a). El Tercer Reich, Guerra Relampago, (11-1). [Lighting War, Domingo Santos, trans.]. Madrid, Spain: Editorial Rombo (Original work published in 1978)., Elting, J. R., vonLuttichau, C. V. P., & Murray, W. (1996b). El Tercer Reich, Guerra Relampago, (11-2). [Lighting War, Domingo Santos, trans.]. Madrid, Spain: Editorial Rombo (Original work published in 1978)., Feltus, P. (n.d.). World War II Begins. US Centennial of flight Commission., Gibelli, N. J. (1972). La Ciudadela del Mediterraneo. In La Segunda Guerra Mundial (Vol.2. pp. 101–120). Buenos Aires, Argentina: Editorial Codex., Gunston, B. (1995). Guía Ilustrada de los Cazas y Aviones de Ataque Aliados de la Segunda Guerra Mundial (V). [An Illustrated Guide to Allied Fighters of World War II, Gearco, trans.]. Barcelona, Spain: Ediciones Folio (Original work published in 1981)., Hannah, M., & Brown, E. (1999). Flying the Bf 109: Two experts give their reports. Flight Journal (Dec. 1999)., Hawks, C. (2014). The Messerschmitt Bf 109. Chuck Hawks., MacDonald, J. (1993). Grandes Batallas de la II Guerra Mundial (pp. 20-31) [Great Battles of world War II, Luis Ogg, trans.]. Barcelona, Spain, Edicioned Folio (Original worlk published in 1993)., Murawski, M. J. (2016). Messerschmitt Bf 109 C/D in the Polish Campaig 1939. Kagero., Murray, W. & Millet, A. R (2005). La guerra que había que ganar [A War to be Won, Critica S.L, trans.]. Barcelona, Spain: Critica. (Original work published in 1998)., Musciano, W.A. (2006). Spanish Civil War: German Condor Legion’s Tactical Air Power. Historynet., Ralby, A. (2013). Atlas of Military History: from Antiquity to the Present Day. Bath, UK: Parragon Books., Rickard, J. (26 March 2007). Messerschmitt Bf 109F (“Friedrick”). History of War., Sundin, C. (2016). Messerchmitt Bf 109 E-7. Luftwaffe in profile.Tillman, B. (TBA). Luftwaffe’s Bf 109E “Emil”: The Battle of Britain Messerschmitt Menace. Flight Journal, 50-53.Messerschmitt Bf 109. (2016, October 19). In Wikipedia, The Free Encyclopedia.Messerschmitt Bf 109 variants. (2016, October 13). In Wikipedia, The Free Encyclopedia. Images: Bf-109 Underside Flight by Tony Cyphert / CC BY-BC-ND 2.0, Bf-109 Crashed Exhibit by Secret Pilgrim / CC BY-SA 2.0Bf-109 Hispano Built by Alan Wilson / CC BY-SA 2.0, Bf109 Straight On by Geoff Collins / CC BY-BC-ND 2.0Bf109 Engine Bay by Roland Turner  / CC BY-SA 2.0, Profiles by B. Huber / CC BY-SA 2.0

 

 

 

Vought F4U Corsair

sweden flag USA (1942)
Naval Fighter Plane – 12,571 Built

black-and-white-f4u

The F4U Corsair is another most famous fighter and fighter-bomber of WWII, although it saw action mostly against the Japanese in the Theatre of the Pacific, therefore being primarily used by the US Navy and the Marines. This airplane in particular was specifically designed for aircraft carriers, being a naval aircraft in essence, although initial doubts over its performance on-board an aircraft carriers made it to serve initially as a land-based asset. It saw also action during the Korea War as a ground attack and Close Air Support (CAS) aircraft, and with the French in the Indochina, Algeria, and Suez Canal crisis. It also saw some service in the Atlantic during WWII, mainly with the British Fleet Air Arm, where reportedly provided air cover to the airplanes attacking the battleship Tirpitz, and served in the Indian and Pacific Oceans. The Corsair contributed to change the balance over the skies of the Pacific by shooting down many Mitsubishi A6M Zeros, although not as much as the Grumman F6F Hellcat.

The Corsair is single-seat and single engine fighter/fighter-bomber for day and night-time, featuring a characteristic inverted gull wing (Similar to that of the Junkers Ju-87 Stuka and the Loire-Nieuport 40) and a very long propeller-blade. The development of the Corsair began following a request by the US Navy for twin and single-engine fighters in 1938, with the single-engine required to obtain the maximum speed possible and a stalling speed of no more than 110 km/h (70 mph), and a long range. Interestingly, the initial requirements comprised the aircraft to carry anti-aircraft bombs to be dropped on enemy formations. That same year, Vought – the builder company – was awarded a contract to start with the development of the Corsair.

The Corsair was a pretty advanced aircraft for the times, and this characteristic meant that its development would find several problems that required solution, which in turn, were quite remarkable. Even so, the Corsair required improvements while in service, which does not deny the fact that it was one of the greatest and unique airplanes of the war, let alone a good complement to other aircraft carrier-based fighters and among the best naval fighters in the war.

One of the main features during development was the incorporation of the largest engine available, the Pratt & Whitney R-2800 V-18 Double Wasp of 2250 hp, requiring the installation of a wide three-blade Hamilton propeller. This installation had two visible effects on the design: First, the characteristic shape of the airframe, where the bow is basically the area where the big and long engine is located, almost displacing the cockpit further aft. Second, it yielded speeds of up to 652 km/h (405 mph), making it the first single-engine American design to reach such speed. But the first problems emerged, especially in regards to diving speed that, although achievable, meant considerable damage to control surfaces and access panels, as well as problems with the engine. Spin recovery standards also needed to be revisited.

The wing itself, along with the longitudinal shape, were both a challenge when designing the frame. In regards to the inverted gull wing, it was purposed to make the width and the landing gear as short as possible, benefiting also the minimization of drag, as the anhedral of the center section gave an optimal meeting angle between the wing and the fuselage. Yet the weight of the wing alone neutralized those effects. But it also had the problems when recovering from developed spins, as the shape of the wing interfered with the elevator. It also had problems with the starboard strip, that used drop without warning, requiring the installation of small stall strips on the leading edges. The port wing also had the potential of stalling and dropping in failed landings, which was further dangerous if throttle was abruptly increased in such cases. The inverted gull wing was also a product of solving the problem of the landing gear, as they needed to be tall enough to keep the propeller away from the ground (the same problem the Saab J-21 had). It simply shortened the length of the legs, while the landing gear was able to retract and rote 90° into an enclosed wheel well, maintaining the streamline of the wings.

The Corsair, however, was benefited during its development thanks to the experiences of other air forces when the war sparked in Europe. As a result, the set of 2 X 7.62mm synchronized engine cowling-mount machine guns, and the 2 X 12.7mm wing machine guns was deemed unsuitable, prompting the armament scheme to be modified. Three 12.7mm machine guns were fitted on each wing, increasing the firepower of the Corsair.

redbull-f4u-corsair-and-b25-mitchell
A Corsair and Mitchell bomber, fly together at an airshow.

As it was abovementioned, other problems prevented the Corsair to serve as a carrier-based fighter until 1944, mainly those related to the type of landing required in that type of vessel. Not only the wing-related problems when performing this manoeuvre, but also the location of the cockpit plus the long bow made landings particularly dangerous for new pilots. Furthermore, during landing approaches manoeuvres, the oil from the hydraulic cowl flaps had the tendency to spatter onto the windscreen, compromising visibility, and the oleo struts had bad rebound when landing, making the entire aircraft to bounce upon landing. The top cowl flap down was sealed, while a valve was fitted to the landing gear legs in order to solve the issues, solution that were, on the other hand, implemented by the British firstly. It had its first flight in 1940, entering in service in December 1942 intended as a naval fighter, but these problems delayed its utilization as carrier-borne fighter and the US Navy initially preferring the F6F Hellcat, but it also meant that the Marines would use the Corsair as their main air assets, and it was with this branch that the Corsair began to carve its reputation. It entered in service in the late 1942, where the Marines began to make use of it at the Battle of Guadalcanal and the Solomon Islands, where its first debut was rather disappointing. But once the Marines learned how to maximize the advantages of the Corsair, they began to contest the air supremacy the Japanese had. It also saw extensive action as a fighter-bomber/attacker in the Marshall Islands, Palaus, Iwo Jima and Okinawa.

It was the British the ones that solved the operational problems of the Corsair for naval use, as they began to operate with the Corsair in 1944, on-board the HMS Victorious. Those Corsairs saw action as carrier-borne aircraft by supressing Flaks and providing escorts to aircraft performing raids against the Kriegsmarine battleship DKM Tirpitz in three raid operations: Operation Tungsten, Operation Mascot and Operation Goodwood. Later on the British Corsairs were deployed in the Indian Ocean and the Pacific, attacking Japanese targets on April 1944.

The Corsair saw action in post-WWII conflicts such as the Korean War, the Indochina War, among others. Many served with other air forces as surplus or donated aircraft, where it served more than 30 years after WWII was over, when it scored its last air victories and gave an honourable closure to an era past gone. 10 F2G ‘Super’ Corsair series also served as civilian racers after the war.  A total of 12571 Corsairs were built, being in service with the US Navy, the Marines and other air forces from 1942 to 1979, attesting the good quality of the aircraft and its endurance, being produced until 1953. A total of 15,386 Mustangs were built.

Design

The Corsair is a low inverted gull wing fighter, with a single tail and a single engine: Pratt & Whitney R-2800 V-18 Double Wasp of 2250 hp, with a wide propeller fitted as to maximize the power yield. As a result of the size of the engine, the bow or nose of the Corsair is particularly long, which made the cockpit to be located further aft. The relocation and reconfiguration of the armament – which was placed at the wings – and the resulting relocation of the fuel tank in front of the cockpit contributed to its location in the airframe, which in turn had to be elongated.

The wings with their characteristic shape were the result of the need for shortening the legs of the landing gear and for accommodating also a folding wing, while being located also well ahead the pilots’ cockpit, making the Corsair to have a cross shape. This wing design also resulted in the Corsair having remarkable aerodynamics over similar airplanes of its type. The shape of the wing was also beneficial in the sense that the meeting angle between the wing as the fuselage reduced drag and saved the utilization of wing root fairings, although the bent wing tended to neutralize such benefits given its weight. On a similar way to the Saab J 21, the supercharger air intakes, alongside the oil coolers, were placed at the wings, this case on the anhedraled center section of the wings. The combination of the propeller diameter, the engine and the wing’s shape and length – alongside the resulting aerodynamics – made the Corsair the fastest naval aircraft the US had at its disposal. The flaps were changed to a NACA slotted type while the ailerons were increased in span.

The fuselage, mainly the large panels, were made of aluminium and attached to the frames by spot welding, which eliminated the use of rivets. The top and the bottom areas of the outer wings were made out of fabric, as well as the ailerons, the elevators – which were also made of plywood – and the rudder. At the rear an IFF (Identification Friend or Foe) transponder device was installed.

The landing gear consisted typically of two ‘legs’ at the wings and a rear small wheel, with the carrier-based version having also a tail hook for the arresting cable. All of the set was retractable, only that the ‘legs’ at the wings rotated 90° and then swivelled backwards, a trait that common among many US fighters. Noteworthy to remark that the landing gear was hydraulically operated, alongside the cooling flaps, the wing flaps, the wing folding and locking, the arresting gear, the gun charging, and the dive breaks.

The aft cockpit had some interesting features and modifications resulting from the assessed hazards while landing on an aircraft carrier. As this problem was the result of the nose and the location of the same cockpit, a rectangular plexiglass panel was fitted in the lower center section, so to allow the pilot to see below and perform carrier landings with more safety. In addition, armour plates were applied to the canopy area, with the windscreen being a 38mm bullet-proof installed internally and the behind the curved windscreen. To aid the pilot’s rear view, half-elliptical planform transparent panels were placed at each side of the structure right behind the cockpit, yet the view provided was rather limited.

The aft section of the Corsair is also full of noticeable characteristics, with a projecting fuselage tip where the vertical stabilizer is placed, which is large. The horizontal stabilizer is, in turn, placed ‘aft’ of the tail.

The Corsair’s armament was originally a set of two 7.62mm machine guns at the frontal section of the nose, and two 12.7mm machine guns, one at each wing. But as the abovementioned reports from the war in Europe obliged the armament to be modified, the final disposition was of 6 X 12,7mm machineguns at the wings, three on each side.

Death has bent wings.

F4U Climb

The Corsair was the most effective fighter the US Navy and the USMC had from the moment it was introduced and entered combat in the Solomon Islands in 1943. It was appraised by the pilots due to its performance and its capacity to remove the threat posed by the Mitsubishis A6M Zeros, as well as to break Japanese bombing raids. It was also capable of outfling and outfighting any land-based aircraft. It was capable of performing interception, bombing, ground-attack and fighter missions. The Corsair was a fighter that was also an ace-maker, with Kenneth Walsh (21 kills), Gregory “Pappy” Boyington (28 kills) and Joe Foss (26 kills). It was under Boyington lead that his squadron, the “Black Sheep” were the most effective squadron, scoring 97 kills and 103 damaged airplanes on the ground. Noteworthy to remark, the Corsair was also appraised by Admiral Nimitz giving its performance.

As the Corsair was cleared for carrier use, it began to operate on-board USS Essex and USS Bunker Hill. The Corsair also performed dive bombing missions in the Marshal Islands as it dropped more than 90718 kg (200000 lbs) of bombs against Japanese installations. It also took part in combats at China Sea, Okinawa, Iwo Jima, Formosa and the Philippines. It also took part on the Saigon and Tokyo Raids, which were diversionary attacks prior to Okinawa. It was also during Okinawa where they had to operate as fleet air defence against the Kamikaze attacks in the earlier stages of the battle, performing CAS with bombs, rockets and Napalm once the threat was neutralized. They reportedly achieved remarkable feats, like keep flying after ramming an enemy. The Corsairs scored 2140 Japanese airplanes with only 189 Corsairs lost, along with 14 warships and 33 merchants sunk (Saigon raid). These scores earned the Corsair Nimitz’s appraisal and a US government citation, and the builder granted an “E” after the War.

The Corsair was among the few WWII-era aircraft to serve right into the earlier days of the Cold War, as it took part in low altitude attack fighter-bombing and CAS missions in Korea, as well as heckling the enemy in night missions. It also attacked enemy installations It dropped bombs, Napalms, rockets and cannons the same way as in WWII, being both aircraft and pilots both veterans of that conflict, and operating from WWII aircraft carriers (USS Essex and USS Bon Homme Richard). As tough as it was, it was able to cary alarge payload and remain more time in the combat zone for CAS missions, and even the Corsair even managed to kill a North Korean Mig-15. The Corsair also had a high rate of availability and hard resistance against enemy fire.

One last dogfight over the jungle

F4U in flight

When the 1969 ‘Soccer War’ sparked between Honduras and El Salvador, both nations were having among their air forces inventories some WWII-era fighters, namely F4U/FG-1 and P-51D/TF—51 fighters. These airplanes were to perform the last dogfight between WWII-era (or piston-propelled engine) airplanes, like two medieval knights clad in armour, ready to joust for a last opportunity as to write the last chapter of an era. The morning of the 17th of July, 1969, the encounter was bound to take place. As Honduran Captain Fernando Soto was leading a group of three F4U-5 to strafing missions at the border, one of the Corsairs was attacked by two Salvadorian P-51, with Capt. Soto shooting it down. But there was to be a second encounter between the veteran aircraft, as late on the same day, during a bombing mission alongside another F4U-5, they encountered Salvadorian FG-1. The result was that both FG-1 were shot down, making of Capt. Soto the only “Ace” of the War.

P-51 of the Salvadorian Air Force, piloted by US mercenaries, patrolled the Salvadorian skies and border, looking also for the Honduras Corsairs, with no avail.

Variants

  • F4U-1 (Corsair Mk I)/FG-1 – This was the first production series of the Corsair, being characterized by a ‘bird cage’ canopy and a low seating position, featuring also the definitive abovementioned modifications for the series-production models, including the 6 X 12,7mm machine guns’ configuration. An additional pair of auxiliary fuel tanks were installed in each wing edge A two-seat trainer was built but was not accepted by the US Navy. The Corsairs in service with the Marine Corps did not had folding wing capacity neither they were fitted with an arrester hook but a pneumatic tail wheel, as they were land-based, receiving the designation FG-1 and being built by the Goodyear. Those with the British Fleet Air Arm were denominated Corsair Mk I.
  • F4U-1A (Corsair Mk II) – A post-war denomination introduced to differentiate the mid-to-late production batch. This version – which would be the second production version – would have a new type of canopy, similar to a Malcolm hood type – like that of the Spitfire – and with only two frames. It had a simplified windscreen, which improved visibility overall along with the canopy being taller. That the pilot’s seat was raised 180mm (7 in), in combination with a lengthened tailwheel strut, meant that visibility was also improved, solving the problems posed by the long nose. This is the version that, along canopy modifications, also introduced wing and undercarriage oleo struts modifications, becoming in the US Navy carrier-based version. This version also received a new power plant, the R-2800-8W water-injection engine, and the capacity to carry a center-section fuel drop tank. Goodyear also built a variant of this version, land-based and without folding wing capacities. Those in service with the British had their wings modified – shortened by 2cms/8 in – for use in their carriers, denominated FG-1A.
  • F3A-1 (Corsair Mk III) – Denomination for those built by the Brewster, which none of them reached front-line units as the building both production and quality control were poor, noticeable after having speed restrictions and broken wings (due to poor quality wing fittings).
  • F4U-1B – Unofficial post-war denomination to identify Corsairs modified for Fleet Air Arm use.
  • F4U-1C – Ground attack and fighter version, with the 6 X 12,7mm guns replaced by a set of 4 X 20mm AN/M2 (Hispano-Suiza) cannons thus providing considerable firepower for ground attack missions. Based on the F-4U-1. This version had a remarkable performance in the Battle of Okinawa, as it was introduced in 1945.
  • F4U-1D/FG-1D/F3A-1D (Corsair Mk IV and Mk III) – Ground attack and fighter version, developed and built in parallel to the F4U-1C. It had the new engine fitted in the F4U-1A, yielding speeds of up to 684 km/h (417 mph). It also carried an increased payload of rockets and a twin-rack plumbing for an additional belly drop fuel tank, which increased firepower but also drag. The range was also increased, meaning it could perform long missions. A single piece – Malcolm hood type – canopy was adopted firstly as a standard for this version, then for the following Corsairs. Goodyear and Brewster also produced this version, under denominations FG-1D and F3A-1D, respectively.
  • F4U-1P – Photo-reconnaissance version.
  • XF4U-2 – Nigh-time fighter version fitted with two auxiliary fuel tanks.
  • F4U-2 – Experimental carrier-based night-time fighter. Armed with 5 X 12,7mm guns, with the starboard gun being replaced by an Airborne Intercept radome containing a radar. 32 were modified by Naval Aircraft Factory, ant two more were modified in the front-line. It saw action in the Solomon Islands and in Tarawa.
  • XF4U-3 – Experimental version used to test different engines that never entered into combat. Goodyear also produced some units of this version, denominated FG-3. A single XF4U-3B was produced with some modification, intended to be issued to the British Fleet Air Arm.
  • XF4U-4 – Version with new engine and cowling.
  • F4U-4 – A naval fighter/fighter bomber version, being the last one taking part in WWII, as it was introduced by late 1944. It was powered by a 2100 hp dual-stage-supercharged V18 cylinder engine, with its power boosted to 2450 hp when the cylinders were injected with a water/alcohol mixture. An air scoop was fitted under the nose, while the wing fuel tanks were removed. The propeller was also changed from a three blade to a four blade type. The new engine, the mixture and the new propeller blades allowed the F4U-4 to reach speeds of up to 721 km/h (448 mph) and a better climbing rate (4500 ft/min / 1180 m/min). A flat bulletproof windscreen was also installed, avoiding optical distortions. Versions with wingtip tanks and a six-blade contra-rotating propeller were proposed but ultimately rejected by the US Navy.
  • F4U-4B – Corsair that were set to be delivered for the British Fleet Air Arm, but were confiscated by the US.
  • F4U-4C – A version with an alternate weapons set of 4 X 20mm AN/M2 (Hispano-Suiza) cannon. 300 delivered.
  • F4U-4E/F4U-4N – Night fighters with the starboard wing radar radome. The F4U-4E was equipped with an APS-4 search radar, and the F4U-4N was equipped with an APS-6 search radar. These Corsairs would have an armament of 4 X 20mm AN/M2 (Hispano-Suiza) cannons. These Corsairs served in the Korean War.
  • F4U-4K – Experimental drone version
  • F4U-4P – A photo-reconnaissance version.
  • XF4U-5 – Version with new engine cowling.
  • F4U-5 – A modified version of the F4U-4, introduced in 1945 and aimed at increasing the Corsair’s performance and introduce many of the suggestions issued by the pilots. It was powered with a Pratt & Whitney R-2800-32(E) engine with a two-stage supercharger of 2850 hp. Automatic blower controls, cowl flaps, intercooler doors and oil cooler for the engine were fitted. Spring tabs for the elevators and rudder, a modernized cockpit, a retractable tailwheel, heated cannon bays and pitot head were also fitted. The cowling was lowered two degrees, and the wings were all-metal. 223 units delivered.
  • F4U-5N – A radar equipped version. 214 units delivered.
  • F4U-5NL – A winterized version equipped with rubber de-icing boots on the leading edge of both wings and tail. 72 units delivered and 29 units modified from F4U-5N.
  • F4U-5P – A long range photo-reconnaissance version. 30 units delivered.
  • F4U-6/AU-1 – A re-designated AU-1 (which in turn, was based on a modified F4U-6), which was the ground-attack version in use by the Marine Corps. The AU-1 had extra armour protecting both pilot and fuel tank, as well as extra racks, and the oil coolers relocated inboard to reduce changes of ground fire damage. The supercharger was redesigned for low-altitude operations. Capable of carrying up to 3720kg (8,200lbs) of bombs and of reaching speeds of 383 Km/h (238mph) or 479 Km/h (298mph) when armed with bombs or rockets and with one or two fuel tanks. At empty payload this version could reach speeds of 626 Km/h (389mph). produced in 1952 and retired in 1957, seeing action in the Korea War.
  • F4U-7 – Version based on the AU-1 for service with the French Navy.
  • FG-1E – Goodyear-made Corsairs FG-1 with radar equipment.
  • FG-1K – Goodyear-made Corsairs FG-1 used as drones.
  • FG-3 – A turbosupercharger version from modified FG-1D airframes.
  • FG-4 – Goodyear-made Corsairs F4U-4 that were never delivered.
  • Super Corsairs (F2G-1 / F2G-2) – Versions developed after the war, powered by a Pratt & Whitney R-4360 Was major with 4-row 28-cylinder radial engine and a teardrop/bubble canopy. The F2G-1 had a manual folding wing and a 4,3m (14ft) propellers, the F2G-2 had hydraulic operated folding wings, 4m (13ft) propellers and carrier arresting hooks. Development problems delayed and finally ended further developments, with the F2G-2 becoming racing planes.

Operators

  • f4u-4-vmf-124-13-kenneth-a-walsh-okinawa-06-45_03
    U.S. Navy F4U-4 – VMF 124 No 13 – June 1945
  • United States of America – The Corsair was primarily used by the US Navy and the United States Marine Corps in most of the campaigns of the Pacific War. It started its service at Solomon Island in 1943 as fighter in the hands of the USMC, where three famous Pacific War American Aces marked their scores with Corsairs. It also took part of dive bombing operations in the Marshal Islands, seeing also action in the China Sea, Okinawa, Iwo Jima, Formosa, the Philippines and also in the Tokyo and Saigon Raids. In Okinawa, it became the main defence against Kamikaze attacks. The Korean War brought the Corsairs back given its capacity to carry large and heavy amounts of payload/ordnance, performing ground-attack and CAS missions, used by the USMC. Many were also sold as surplus aircraft, serving in the air forces of Argentina, El Salvador and Honduras.
  • f4u-1f-mk-1-1855-nas-faa-5f-jt150-10-43_03
    Royal Navy F4U-1 (F.Mk.1) 1855 NAS FAA – Oct 1943
  • United Kingdom – 2,012 Corsairs were issued to the British Royal Navy Fleet Air Arm in 1943, where the wings were clipped 8 inches in order to increase storage in the lower carrier decks, being the British Corsairs the first ones to be used in on an aircraft carrier. The Corsair also took part as escort fighter and anti-air defences in three operations – Operation Tungsten, Operation Mascot and Operation Goodwood – against German battleship DKM Tirpitz. In 1944, British Corsairs took part in operations at the Indian and the Pacific Ocean, remarkably used in Java as bombers. It was during Corsair service with the British, that enhancements for carrier operation were made.
  • French Navy F4U-7 - 14F Aeronavale No.133704 - Circa 1956
    French Navy F4U-7 – 14F Aeronavale No.133704 – Circa 1956
  • France – France and its naval air branch or Aéronavale operated with 69 AU-1 and 94 F4U-7s from 1954 to 1964. It was introduced to replace the Supermarine Seafires, Grumman Hellcats, Curtiss Helldivers and SBD Dauntless that equipped the naval air service. They operated from 4 carriers – Arromanches, Dixmude, La Fayette and Bois Belleau – that were part of the French Navy. 4 squadrons – the 14F, 12F, 15F and 10F – were operating with the Corsair, alongside two training squadrons – 10S and 57S. French Corsairs intervened firstly in Indochina, as they were handed by the US (AU-1 Korean War veterans) and where they were well received by French troops and pilots. In Indochina 6 Corsairs lost and 2 pilots dead.
  • The Corsairs also operated in Africa, namely in Algeria, Suez and Tunisia. In Algeria, they provided fire support, bombing, reconnaissance and protection of airborne troops. There were some considerable losses due to accidents and AA fire took place. In Suez, they took part in operations from carriers Arromanches and La Fayette, attacking the Cairo-Almanza airfield with only one loss against 12 planes damaged and 1 damaged of the Egyptians. The last action the French Corsairs saw was in Tunisia, where they provided support to besieged troops at a French airbase after Tunisian independence, attacking also Tunisian troops and vehicles. 3 Corsairs were lost due to the AA. The French reportedly used the Corsairs to experiment with anti-tank missiles, but they were never used. As new carriers and new air naval assets were introduced, the Aéronavale withdrew its Corsairs.
  • f4u-1a-rnzaf-22sqn-49944-1944_03
    Royal New Zealand AF F4U-1A – 22 Sqn 49944 – July 1944
  • New Zealand – The New Zealand air force shifted from the P-40 to the Corsair in 1944, receiving in total 424 airframes as a lend-lease, with 13 squadrons operating it. The RNZAF operated with F4U-1A, F4U-1D and FG-1D, concentrating on attacking the bypassed islands with ground support, escort and air patrols. Only 17 Corsairs were lost, as the Japanese air superiority was, by the time the Corsairs were received, almost neutralized. A squadron equipped with Corsairs served an occupation duty for two years once the Pacific War was over.
  • Argentina – Argentine acquired the day-time and night-time fighter versions of the Corsairs (26 F4U-5/5N/5NL) in 1957, being incorporated to the Argentinian aircraft carrier ARA Independencia. As the abovementioned versions were fitted with Radar, Argentina became the first nation in the region to operate aircraft with radars. They intervened during the 1958 border incidents with Chile, and in the period of 1959-1960, the Corsairs were used as submarine chasers – equipped with depth charges – following the detection of unidentified submarines. They also took part during the political revolt of 1963, being 1964 their last year of operational service during another set of border incidents with Chile. They were withdrawn from service in 1968.
  • Honduras – The Honduras Air Force operated the Corsair from 1956 to 1979, with 19 units. The Honduran Corsairs also took part in the 1969 ‘Soccer War’, where a single Corsair scored three victories against two Salvadorian Corsairs and one Mustang, piloted by Capt. Fernando Soto. These were the only air-to-air victories of the war. The Honduras Corsairs also performed strafing missions at the border. The Corsair that scored those victories is now a war memorial.
  • fg-1d-el-salvador-fas-201-67087-1958_03
    El Salvador Air Force FG-1D – 67087 – Circa 1958
  • El Salvador – The Salvadorian Air Force operated the Corsair from 1957 to 1976, with 25 F4U-/FG-1D. They took part in combats during the 1969 ‘Soccer War’, where took some losses in the hands of the Honduras Air Force operating similar F4U-4 and F4U-5 fighters.
  • Germany – Germany captured only one British Corsair that was forced to land in Norway due to technical issues while taking part in Operation Mascot.
  • Japan – Japan also captured two Corsairs after emergency landings, with one possible tested in flight.

 

F4U-4 Specifications 

Wingspan  12,49 m / 41 ft 0 in
Length  10,27 m / 33 ft 8 in
Height  4,5 m / 14 ft 9 in
Wing Area  29,17 m² / 314 ft²
Engine  1 Pratt & Whitney R-2800-18W 18 cylinder radial engine of 2,250 hp
Propeller Diameter  4,06 m/ 13 ft 4 in
Maximum Take-Off Weight  6149 Kg / 13,556 lb
Empty Weight  4174 kg / 9,202 lb
Loaded Weight  5626 kg / 12,405 lb
Maximum Speed  718 km/h / 446 mph
Range  2511 Km / 1,560 miles
Maximum Service Ceiling  12650 m /41,500 ft
Climb Rate  3050m in 5,1 minutes (22.1 m/s; 4,360 ft/min)
Crew  1 (pilot)
Armament
  • 6 X 12,7mm (0.50 caliber) M2Browning machine guns or 4 X 20mm AN/M2 cannons.
  • Up to 1000 kg (4000 lbs) of bombs.
  • 8 X 127 mm high velocity aircraft rockets.

Gallery

f4u-4-vmf-124-13-kenneth-a-walsh-okinawa-06-45_03
U.S. Navy F4U-4 – VMF 124 No 13 – June 1945
U.S. Navy F4U-1 VMF 123 no. 15 ‘Daphne C’ – July 1943
f4u-1a-vf-17-jolly-rogers-17640-bighog-11-43_03
U.S. Navy F4U-1A – VF-17 17640 ‘Big Hog’ – Nov 1943
U.S. Navy F4U-1D - VMF-451 20141 - Apr 1945
U.S. Navy F4U-1D – VMF-451 20141 – Apr 1945
Royal Canadian Navy FG-1D - 1841 Sqn BuNo 76236 - Aug 1945
Royal Canadian Navy FG-1D – 1841 Sqn BuNo 76236 – Aug 1945
f4u-1a-rnzaf-22sqn-49944-1944_03
Royal New Zealand AF F4U-1A – 22 Sqn 49944 – July 1944
Royal New Zealand AF F4U-1 - No. 21 Sq NZ5315 BuNo 49909 - Jun 1944
Royal New Zealand AF F4U-1 – No. 21 Sq NZ5315 BuNo 49909 – Jun 1944
f4u-1f-mk-1-1855-nas-faa-5f-jt150-10-43_03
Royal Navy F4U-1 (F.Mk.1) 1855 NAS FAA – Oct 1943
French Navy F4U-7 - 14F Aeronavale No.133704 - Circa 1956
French Navy F4U-7 – 14F Aeronavale No.133704 – Circa 1956
fg-1d-el-salvador-fas-201-67087-1958_03
El Salvador Air Force FG-1D – 67087 – Circa 1958

 

 

Sources

Aviation Publications (1977). Pilots Manual for F4U Corsair., Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Chant, C (2001). Aviones de la Segunda Guerra Mundial [Aircraft of World War II, Fabian Remo Tamayo & Fernando Tamayo, trans.]. Madrid, Spain: Editorial LIBSAD’Angina, J. (2014). Vought F4U Corsair. Oxford, UK: Osprey Publishing., Gunston, B. (1995). Guía Ilustrada de los Cazas y Aviones de Ataque Aliados de la Segunda Guerra Mundial (II). [An Illustrated Guide to Allied Fighters of World War II, Gearco, trans.]. Barcelona, Spain: Ediciones Folio (Original work published in 1981)., Gustin, E. (n.d.). Chance Vought F4U Corsair. F4UCorsair.com.HISTARMAR (n.d.). Chance-Vought F4U-5 Corsair. Fundación HISTARMAR.Lyford, C., & Tillman, B. (2014). Corsairs vs. Mustangs: The last dogfight. The Flight Journal, 16-24.Marsaly, F., & Bocognano, J. (2002). Les Corsairs de la Royale. Aérostories.org.Rochotte, L. (1999). Les Corsair Français. Net-Marine.Sherman, S. (2012). Vought F4U Corsair. Acepilots.com.The National WWII Museum (n.d.). Airplanes in the Us Freedom Pavilion: The Boeing Center.UTDallas (n.d.). Chance Vought/LTV History.Vought.org. (n.d.). F4U Corsair – WWII Record. Vought.org.Werbaneth, J. P. (2009). His Majesty’s Corsairs. Avalanche Press.Vought F4U Corsair. (2016, September 11). In Wikipedia, The Free Encyclopedia. Images: Black and White F4U by Brian Struble / CC BY 2.0,   F4U in FlightF4U Climb by Airwolfhound / CC BY-SA 2.0, Royal Navy F4U by Tony Hisgett / CC BY 2.0,  Redbull F4U Corsair and B25J Mitchell by Ronnie Macdonald / CC BY 2.0,   Side Profile Views by Ed Jackson – Artbyedo.com, Additional Side Profile Views by Brendan Matsuyama

Saab J 29A Tunnan - 29606 Side Profile View

Saab 29 Tunnan

sweden flag Sweden (1950)
Fighter Plane – 662 Built

The Saab 29 Tunnan was a single-seat, single-engine transonic aircraft and first-generation jet fighter. It was a small aircraft with a single central air intake placed at the nose, a bubble cockpit and  thin sweptback wings. It was the very first Western European design to have a swept wing layout of 25 degrees rearward, incorporating many of the latest technologies of the time. Saab obtained access to WWII German studies involving swept wings and their positive effects in regards to speed in Switzerland, and as a result, the J 29 Tunnan came to be similar to the German Luftwaffe’s Messerschmitt Me P1101 project.

Nazi P.1101 vs Saab Tunnan

The Tunnan acheived a top speed of 1035 km/h which made it one of the fastest aircraft in the world in 1950. The nickname: ‘Flying Barrel’ was coined due to the shape of the fuselage, which came to resemble the shape of a barrel due to the large cross section of the engine and the size of the engine itself with a tapered nose and aft section. The Tunnan’s ungainly and small appearance could be deceiving  however it was fast enough to set several world speed records and also had a very good agility. However, the aircraft proved challenging for inexperienced pilots. The 29 was comparable to its contemporaries: the US-made F-86 Sabre and the Soviet-made Mig-15.

The development aimed initially at producing a fighter-interceptor, but reconnaissance and ground attack versions were also developed and produced, however a training version was not produced due to time constraints of the production schedule. Sweden was developing a strong air defence system that enabled it to take advantage of innovations introduced in WWII. As a result, by late 1945 the development of the Tunnan began, with the Swedish Royal University of Technology and the National Aeronautical Research Institute taking part by providing wind tunnel testing that defined the general aerodynamics of the Tunnan. Just like the Saab J32 Lansen, a single Saab Safir was modified, fitting swept wings to its airframe in order to test the design of the wings alone.

Four prototypes were built during the development process, with the first two lacking any sort of weaponry carrying heavy testing equipment instead, and the third prototype carrying four 20mm Hispano Mark V cannons. These prototypes tested different aerodynamic features, such as the location of the airbrakes – either in the fuselage or on the wings, as well as the configuration of the ailerons and flaps. The prototypes also hinted that the Tunnan design would be able to reach and even exceed the maximum Mach they were designed for. Once in service the Tunnan broke many records. It set a world speed record on a 500 km closed circuit as it reached a speed of 977 km/h in 1954. The reconnaissance version set also a record of 900.6 km/h in a closed circuit of 1000 km.

In 1948, the J 29 Tunnan flew for the first time, in service with the Flygvapnet from 1951 until 1976, with 662 fighters built from 1950 to 1956 making the Tunnan the most numerous aircraft produced Saab, as well as the longest lived design in service. It also served with the Austrian Air Force with 30 units in service until 1973. A single J 29F still can be seen flying at airshows around Europe.

Design

The Tunnan is a thin 25 degrees swept back laminar-flow mid-wing fighter, having a single tail and a single engine, featuring the design similar to most of the first generation jet fighters: a single engine with a central straight-through airflow system that maximized thrust. Two tubular pitot sensors were located at the wing tips. For lateral stability during take-off and landing, automatic-locking leading edge slots were fitted in the wings and were also interconnected with the flaps. It was later on enhanced with the installation of an afterburner and of dog-tooth leading edge in the wings – which increased the Mach speed the Tunnan could attain. Trim tabs and dive brakes were also incorporated to the design, being initially placed on the wings and later re-located to the fuselage, directly forward of the main landing doors.

The Tunnan also featured a bubble shaped canopy with the cockpit located right above the engine air intake, and forward the wing’s leading edge. The canopy was opened by sliding backwards, allowing the pilot to access and exit. The design also took advantage of the already existing ejector seat developed in 1943 by Saab, complemented by an explosive jettison system to remove the canopy in case of ejection. The landing gear was of tricycle configuration, with the rear wheels retracting into the fuselage, which contributed in making the wings thin, and a single wheel gear at the nose. The vertical stabilizer had a tapered edge, being straight trailing edge with a blunt tip, with the tail section placed above and behind the engine exhaust nozzle. In turn, the horizontal stabilizer is mounted practically at the base of the tail. The Tunnan proved to be not only a very capable and agile fighter, but also proved very durable in sorties. During a UN mission in the Congo it received intensive ground fire without sustaining any noticeable damage.

The engine, along with its aerodynamic characteristics, made of the Tunnan a fast fighter. The powerplant consisted of a DeHavilland Ghost turbojet engine producing 5000 lbs of thrust. This engine was deemed suitable for the fuselage of the Tunnan, replacing the originally planned DeHavilland Goblin, and had the advantage of making maintenance easy with the engine cowling able to be removed as a single piece.

The armament of the Tunnan consisted of four 20mm Hispano Mark V cannons placed in pairs on both sides under the nose. The pylons were capable of carrying 75mm air-to-air rockets, 145mm anti-armour rockets, 150mm HE (High Explosive) rockets and/or 180mm HE anti-ship rockets. Later versions were capable of using Rb24/AIM-9 Sidewinder air-to-air missiles. Fuel air-drop tanks could be used as napalm bombs.

Swedish Resolve

Tunnan Banking Maneuver
Tunnan Banking Maneuver

The Tunnan is the product of Swedish concerns about its security during World War II, in the face of Germany’s rapid annexations of both Norway and Denmark and acknowledging the country was unable to resist such aggression. But there were also of concerns that Sweden was falling behind after the rapid development of technologies and innovations brought about during the war. Sweden’s isolation in this aspect was exacerbated by the degree of defense secrecy by both the Axis and Allied countries. As a result, an effort was made in order to strengthen defensive capabilities with the focus being placed on the development of modern aircraft to bolster air defence, exploiting the war-time innovations in power – namely the recently introduced jet propulsion technologies as well as other advances in aircraft design. The new technologies were exploited after Sweden obtained access to research after the war. The already existing Saab J 21R was utilized to make the transition between the piston and jet propelling engines and to provide a temporary solution, but it was deemed necessary to develop a much more modern aircraft in order to keep the air defences fit. The Tunnan became the solution, making the Swedish Air Force the 4th largest during the mid-century.

Peacemaker from the North

All the aircraft produced by Saab and in service with the Flygvapnet from 1948 to 1989 saw relatively little combat. The Tunnan constitutes the only exception, as it saw extensive use during conflict in Central Africa. As the crisis in the Congo unfolded in 1961, Sweden contributed five J29B Tunnans that were tasked with protecting UN’s air transport and providing fire support to cover UN ground troops when needed, constituting the F22 unit. In 1962, four additional J29Bs and two J29Cs were sent. The 11 Tunnans provided by Sweden to the UN mission comprised the only air component of the UN at the time. As the crisis evolved and the additional six Tunnan were required, air superiority was achieved along with ground attack missions that involved the utilization of the fighter’s 4 Hispano cannons and rockets. The missions mainly focused attacks on military trains and airfields at Katanga, as other aerial assets from Ethiopia – F 86 Sabres – and India – Canberra light bombers – withdrew. When the UN peacekeeping mission was over in 1963, four of the Tunnans returned to Sweden, while the remaining met an ignominious ending, destroyed at the base, as it was deemed prohibitively expensive to return them.

Variants

  • J 29 – Four prototypes built in 1948-1950, for the development process only.
  • J 29A – Fighter version. Armed with four 20mm Hispano Mark V cannons, and 12 75mm anti-armor rockets. Later series relocated the wing-mounted dive brakes into the fuselage. Remained in service until 1965. 224 delivered.
  • J/A 29B – Fighter/attacker version. It featured an increased 50% fuel capacity and wing hardpoints with provisions to carry bombs, rockets – 8 or 14 80mm or 145mm anti-armour; 8 or 14 150mm HE; 2 or 4 180mm anti-ship – and fuel drop-tanks that could be used as napalm bombs. Served until 1965. 332 delivered.
  • J 29C – Reconnaissance version for day and night operations. It carried between 5-6 cameras in a modified nose, being unarmed cameras replaced the 4 guns. It received the same wing enhancement of the J 29E. It also became the first jet-powered photographic-reconnaissance aircraft introduced by a non-aligned nation, as well as the first Swedish aircraft to be equipped with radar warning receivers. An antenna for backwards-looking radar was placed at the tail cone, being afterwards relocated  This version set a new speed record back in 1955, reaching speeds 900.6 km/h (559.6 mph) in a closed circuit of 1000 kms (621.4 miles). 76 delivered.
  • J 29D – A single unit to test the DeHavilland Ghost RM2 turbojet fitted with an afterburning thrust, later upgraded to J 29F.
  • J 29E – Fighter version, which incorporated an enhanced wing design by fitting leading edge dogtooth, aimed at increasing critical Mach number. It also increased load factor. Same armament configuration as the J 29B. Upgraded to the J 29F version. 29 delivered.
  • J 29F – Fighter version, which were modified J 29B and J 29E airframes. This version featured the enhanced wing design of the J 29E, and the DeHavilland Ghost engine equipped with an afterburner. This version was also optimized to carry two Saab Rb24 (AIM-9 Sidewinder) missiles in 1963, having the same armament payload of the J 29B. It also performed in the role of aggressors, and performed target towing. Most were retired by 1967. 308 converted aircraft.
  • SK 29 – Planned training version. It could have featured a two-seated cockpit, with seats placed side-by-side, no armament and limited fuel capacity. Cancelled.
  • J 29R – All-weather fighter version equipped with an air intercept radar. Cancelled.

Operators

  • Sweden – The Flygvapnet operated the Tunnan from 1951 to 1967, having 665 units operating, all of the J 29A, J/A 28B, J 29C, J 29E and J 29F versions. Some were kept for countermeasures trainers and target towing duties until 1976. 11 J 29Bs and J 29Cs took part in the United Nations Operation in the Congo (ONUC), being the only Tunnan, and actually the only aircraft during the Cold War of the Swedish Air Force to take part in combat operations abroad.
  • Austria – The Österreichische Luftstreitkräfte (Austrian Air Force) operated 15 restored J 29Fs by Saab in 1961, where they formed the first Jagdbomber Staffel. An additional 15 restored J 29Fs were sold to Austria, where the two guns on the port side could be replaced by three cameras, which were moveable during flight forming the second Jagdbomber Staffel in the Austrian Air Force. These remained in service until 1972.

 

J 29F Tunnan Specifications

Wingspan 11 m / 36 ft 1 in
Length 10.23 m / 33 ft 6.7 in
Height 3.75 m / 12 ft 3.6 in
Wing Area 24.15 m² / 260 ft²
Engine 1 DeHavilland Ghost 50 Turbojet (Svenska Flygmotor RM2B Turbojet)
Maximum Take-Off Weight 7,530 kg / 16,600 lb
Empty Weight 4,580 kg / 10,097 lb
Loaded Weight 13,529 kg / 35,273 lb
Maximum Speed 1,035 kmh / 643 mph (1,075 kmh / 668 mph in full afterburner)
Range 1,500 Km / 932 miles
Maximum Service Ceiling 13,700 m / 45,000 ft
Climb Rate 2,400 m/min (7,874 ft/min)
Crew 1 (pilot)
Armament
  • 4 X 20 mm Hispano Mark V located at the nose
  • 2 Saab Rb 24 (AIM-9 sidewinder) missiles
  • 75mm air-to-air rockets
  • 80mm or 145mm anti-armour rockets, 150mm HE rockets, and/or 180mm HE anti-ship rockets.
  • 4 X SKa 10 cameras, 1 X SKa 15 camera for mapping, and 1 X SKa 5.
  • 2 X fuel drop tanks that could be used as napalm bombs.

Gallery

Saab J 29A Tunnan - 29606 Side Profile View
Saab J 29A Tunnan – 29606
Saab J 29A Tunnan - 29670 Side Profile View
Saab J 29A Tunnan – 29670
Saab S 29C Tunnan - Congo Conflict of 1961 Side Profile View
Saab S 29C Tunnan – Congo Conflict of 1961
Tunnan Landing Gear
Tunnan Landing Gear
Tunnan Front View
Tunnan – Front View
Tunnan Afterburner
Tunnan Afterburner
Tunnan Banking Maneuver
Tunnan Banking Maneuver
Tunnan Taxiing
Saab J29 Tunnan – 29670
S 29C Tunnan in UN service in 1961
S 29C Tunnan in UN service in 1961
Nazi P.1101 vs Saab Tunnan
The P.1101 of Nazi Germany compared with Saab’s Tunnan a few years later



Sources

Ängelholms Flygmuseum (n.d.). Flygplan J29 Tunnan Historia.Aviastar.org (n.d.). Aircraft Profile #36. Saab J.29.DefenceViewpoints. (2015). Five generations of US jet fighters.Dorn, W. (2013). The UN’s First “Air Force”: Peacekeepers in Combat, Congo 1960 – 1964.Goebel, G. (2016). The SAAB 29 Tunnan & SAAB 32 Lansen. Air Vectors.Guttmann, J (1998). Defining the Jet. HistoryNet.Henriksson, L. (2010). J 29 – SAAB “Flygande Tunnan” (1951-1979).Johnson, D. (2010). Messerschmitt Me P.1101. Luft46.com., Liander, P. (2002). För 50 år sedan… J 29 Tunnan gör entré. FlygvapenNytt, (2), 34-35, Saab. (2014). J-29 Tunnan in UN Service.Saab. (2015). J-29 Tunnan Fighter, Attack and Surveillance Aircraft.Saab. (n.d.). 1940’s.Wagner, P. J. (2009). Air Force Tac Recce Aircraft. Pittsburgh, Pennsylvania: RoseDog Books.Werner, B. (2011). J29 Tunnan, Saab.Saab 29 Tunnan. (2016, July 16). In Wikipedia, The Free Encyclopedia. Images: Tunnan-29670-1997 by Rob Schleiffert / CC BY-SA 2.0, Tunnan Underside + Tunnan Gear by Alan Wilson / CC BY-SA 2.0, Tunnan Taxiing by Anemone Nemorosa / CC BY 2.0, Tunnan Afterburner by SteveH1972 / CC BY-ND 2.0

 

Saab Lansen J32D - 32606 Side Profile View

Saab 32 Lansen

sweden flag Sweden (1952)
Fighter Plane – 452 Built

A tandem two-seat, single-engine transonic aircraft. Intended initially as an attack aircraft, it was later developed into fighter, reconnaissance, and ECM versions thanks to the aircraft’s size, which allowed the development of the aforementioned variants. The aircraft also had low swept back wings and similar elevators located on the tail. Developed in order to replace the WWII-era light bombers, attack and reconnaissance Saab B 18/S 18, the Saab J 21R/A 21R, and provide a ground-attack complement to the Saab J 29 Tunnan. It was also developed after Flygvapnet requested an aircraft capable of attacking anywhere along Swedish long coastline within one hour after taking off from a central location, and to be capable of operating in any weather conditions, and in both day and night.

Development of the Lansen

Saab J32D Lansen - 32606

Lansen development began by 1946 with the project P1150, where a configuration of two engines was at first considered but latter scrapped given many accidents with foreign aircraft having such display. A Saab 91 Safir, a piston/propeller engine training light aircraft was modified by incorporating the swept back wings intended for the Lansen, in order to test the design. Its first flight took place in 1952, being a very advanced concept in both design and configuration, as it was an aircraft with the best design and quality in comparison to any other European design of the times. In fact, it is among the first designs in incorporating a radar. Another interesting fact is that the Lansen was the first aircraft to be designed upon a mathematical coordinate system, instead of blue prints. It also broke the sound barrier in 1953, as it exceeded Mach 1 while performing a shallow dive. In 1956 it entered in service with the Flygvapnet. 452 aircraft were built between 1954 and 1960, remaining in service until 1997, although three Lansen with experimental, research and test and trial tasks were still operating as of 2012.

Design

Saab Lansen and Hawker Hunter in Formation
Saab Lansen and Hawker Hunter

The Lansen is designed as a swept back low-wing fighter, with a single tail and a single engine, a Volvo Svenska Flygmotor RM6A, enabling a maximum speed of 1123 km/h. The Lansen was among the first aircraft to be built specifically for attack missions. Its airframe was a sleek, streamlined and clean design, in which every line was calculated using a mathematical early computer-based design. It could sustain +12g and -8g. Its low wings had a 35° sweep and a composition of up to a 10° laminar profile, having hydraulically-boosted ailerons. One-section stall fences were installed on the wings, a pitot tube on the right wing and three hardpoints. The landing gear was of tricycle configuration.

The engine was originally intended to be the Swedish STAL Dovern RM4, but as it was not ready by the time the prototypes were completed. The Svenska Flygmotor RM6A, a Swedish version of the Rolls-Royce Avon, was the used in the Lansen. The afterburner was of Swedish design. The air intakes for the engine were located at both sides of the fuselage, forward of the wing root and cockpit.

Radar

The Lansen is among those first designs implementing onboard radar. The radar array was a PS-431/A based on the French design that worked in coordination with the anti-ship Rb04C missile, one of the first “fire and forget” missiles. As not all the squadrons were equipped with radar, and usually only one aircraft of the group would carry a navigator, the Lansen  equipped with both radar and a navigator would be the leader of the group guiding the other aircraft to the target. The radar would work in tandem with a Saab S6 computerized fire-control system, a Hughes AN/AAR-4 infrared search & trach (IRST) sensor, with the radar gunsight indicating to the pilot when there would be an optimal firing solution (these systems were mostly equipped in the J32B). The S32C was equipped with a radar warning receiver, and the J 32E was equipped with jamming devices instead of the radar in the nose. All aircraft were equipped with Saab ejection seats for the crew.

Weaponry

An RB-04 Anti Ship Missile equipped on an A32A
An RB-04 Anti Ship Missile equipped on an A32A

The Lansen would carry a varied array of weaponry depending on mission and version. The basic weapons were 4 X 20 mm Bofors (or Aden M/55 30 mm) guns located at the nose, 2 Saab 304/Rb 04 anti-ship missiles or 12 or 24 unguided rockets (60, 63, 75, 135, 145 and 180 mm), and up to 12 iron-bombs (15, 50, 80, 120, 250, 500, 600 kg). it could also carry 4 Rb 24 AIM Sidewinder missiles, ECM pods, target towing pods, jamming equipment, cameras, and chaff dispensers.

A Versatile Advanced Aircraft and Potential Nuclear Warrior

Saab J32E - 32512
Saab Lansen J32E – 32512

The Lansen was a large airframe providing a versatile platform to carry a variety of different arms depending up on mission.  Along with the Saab AJ 37 Viggen, the Lansen was a contender to carry nuclear weapons as a deterrent to protect the region, but ended up never being utilized in this role. It would have been interesting to see how a nuclear-armed version of the Lansen might have worked. But even if the Lansen in the end was not a nuclear warrior, it could boast of having a very advanced capability thanks to its design process, which was the first to be designed using a computer. Furthermore, it is among the first post-war designs to have incorporated its own radar, in addition to being among the first operational swept back wing designs.

Variants

  • A 32A – The ground attack and maritime strike version of the Lansen, and the basic one. Armed with four Bofors 20mm guns on the nose, with a special device to deflect the empty casing from entering the air intakes. The fuel tank nose was also protected with a neoprene cover to protect from the casings impact. The aircraft could also carry one of the first “fire and forget” missiles, the anti-ship Rb04/Saab 304 missile. It could also carry bombs and rockets of varied calibres and payload. This version was intended to carry the nuclear weapons developed by Sweden, should it nuclear programme was not cancelled by the 60’s. Remained in service until 1978. 287 delivered.
  • J 32B – All-weather fighter version, mainly used in adverse climate conditions and at night. Armed with four 30mm Aden cannons with the casing being retained, sparing the protective measure implemented on the J 32A. 4 Air to air Rb24/ AIM 9 Sidewinder missiles and 75 m/57 mm rockets were also part of this version’s armament, all being fired by radar sighting. There was a radar display for the pilot and not exclusively for the navigator, allowing targeting without visual thanks to the fitted IR sensor (AN/AAR-4) on the wing. Remained in service until 1973. 118 delivered.
  • S 32C – Maritime surveillance and photo reconnaissance version. Fitted with a PS-432/A radar with longer instrumented range, and four cameras (SKa 17 and SKa 18), latter, SKa 23, SKa 15 and Jugner FL S2 cameras were fitted. All the cameras were for low, high and night takes. Twelve additional British 75 kg photo flash bombs were also used, mainly on the wings. Chaff dispensers and RWR gear – to give visual and aerial warning – were installed. In service until 1978. 44-45 delivered.
  • J 32D – Target towing version modified from six J 32B airframes. Remained in service until 1997. 6 delivered.
  • J 32E – ECM version from modified 15 J 32B. Also tasked with ECM warfare and ECM training. The radar was replaced by a G24 radar-jamming device against ship and land-based radars, and two chaff dispenser were incorporated. It also carried 120kg dummy bombs.  Remained in service until 1997. 15 delivered.
  • J 32AD – A proposed daytime fighter version purposed to replace the J29 Tunnan. It would have been a single seat fighter with four 20 mm guns and a fifth 30 mm gun, all located on the nose. It would have been armed also with rockets and missile but lacking a radar. Never developed and instead 120 Hawker Hunters entered in service, filling the gap between the J 29 Tunnan and the J 35 Draken.
  • J 32U – Another proposed fighter version with enhanced performance than the J 32B, with a Rolls-Royce RA 19R engine, a supplementary rocket engine, a thinner wing with 40° of sweepback, and a flying tail. Political decisions and considerations of replacing the Lansen with other types of aircraft after 8 years of service prevented this development to see the light.

Operators

  • Sweden – The Flygvapnet was the only operator of the Lansen, having this aircraft in service from 1956 to 1997. 118 airframes where of the J 32A version; 118 airframes where of the J 32B version – 6 were modified to the J 32D and other 15 were modified to the J 32E versions – and 44-45 airframes where of the S 32C version. 452 J 32 Lansen served in total with the Flygvapnet until 1997. Three Lansen remained in service by 2012 with experimental and research purposes.

 

Lansen Specifications

Wingspan 13 m / 42 ft 7 in
Length 14.94 m / 49 ft 0 in
Height 4.65 m / 15 ft 3 in
Wing Area 37 m² / 529,8 ft²
Engine 1 Svenska Flygmotor (Rolls-Royce Avon) turbofan RM6A
Maximum Take-Off Weight 13,600 Kg / 29,982 lb
Empty Weight 7,438 kg / 16,397 lb
Loaded Weight 13,529 kg / 35,273 lb
Maximum Speed 1,125 km/h / 699 mph
Range 3,200 Km / 1,988 miles
Maximum Service Ceiling 16,000 m /52,493 ft
Climb Rate 60 m/s (11,811 ft/min)
Crew 2 (pilot & navigator)
Armament
  • 4 X 20 mm Bofors or Aden0 M/55 30 mm guns located at the nose.
  • 2 Saab 304/Rb 04 anti-ship missiles.
  • 12 or 24 unguided rockets (60, 63, 75, 135, 145 and 180 mm).
  • Up to 12 iron-bombs (15, 50, 80, 120, 250, 500, 600 kg). It could have also carried nuclear bombs, in case Sweden would have continued its nuclear programme.
  • 4 Rb 24 AIM Sidewinder missiles.
  • ECM pods, target towing pods, jamming equipment, cameras, and chaff dispensers

Gallery

Saab J32E Lansen - 32620 - Side Profile View
Saab J32E Lansen – 32620
Saab J32E Lansen - 32512 - Side Profile View
Saab J32E Lansen – 32512
Saab J32E Lansen - 32507 Side Profile View
Saab J32E Lansen – 32507
Saab Lansen J32D - 32606 Side Profile View
Saab Lansen J32D – 32606
Saab J32 Banking Maneuver
Lansen Banking Maneuver
An RB-04 Anti Ship Missile equipped on an A32A
An RB-04 Anti Ship Missile equipped on an A32A
Saab J32D Lansen - 32606
One of many still airworthy Lansens enjoying retirement at an airshow.
Saab J32E Lansen equipped for ECM
Saab J32E Lansen
Saab Lansen and Hawker Hunter in Formation
Saab Lansen and Hawker Hunter
Saab J32E - 32512
Saab Lansen J32E – 32512


Sources

Aguilera, R. D. (2015). Saab 32 LansenBergmans, W. (2011). J32 Lansen, SaabFortier, R (1997). Photo Essay Collection. Shield and Sword: Fighter Aircraft Development in the 1950s. Ottawa, Canada: National Aviation Museum.Globalsecurity.org (2012). Swedish Nuclear Weapons.Goebel, G (n.d.) The Saab 29 Tunnan & Saab 32 Lansen.Jackson, R. (2010). 101 Great Fighters. New York, NY: Rosen Publishing.Saab (2015). Saab 32 Lansen.Saab (n.d.) 1950’s.,  Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA, WarbirdsUpdate (2013). The Swedish Air Force Historic Flight from Within the Cockpit. Warbirds News.Saab 32 Lansen. (2016, June 12). In Wikipedia, The Free Encyclopedia.X-Plane.org (2008). Dispersed Basing. X-Plane.org. Images: Saab Lansen 32606 by MrTMan / CC BY-SA 2.0, Saab Lansen 32512, Lansen & Hunter by Alan Wilson / CC BY-SA 2.0, Saab J32E Lansen by Leonid Kruzhkov / CC BY-ND 2.0,  RB-04 Anti-Ship Missile by AdurianJ / CC BY 2.0Plane Profile Views by Ed Jackson

 

The Red Baron's Fokker Dr.1 475/17 - March 1917

Fokker Dr.I

German Empire Flag German Empire (1917)
Fighter Plane – 320 Built

The Fokker Dr.I was a triplane built by Fokker-Flugzeugwerke during the First World War. The design, based off of Britain’s Sopwith Triplane, is well known thanks to the Red Baron, Manfred von Richthofen, for being the plane in which he scored his final kills.

A Borrowed Idea

In the early part of 1917 the Sopwith Triplane of the Allies began appearing on the battlefield, quickly trouncing German Albatros D.III fighters with its superior maneuverability and climbing ability. The Idfleig, the German bureau overseeing aircraft design immediately ordered development of a triplane, known as dreidecker (3 winged) in German.

Nearly all of the German aircraft manufacturers followed suit. Fokker set about to develop its own triplane by modifying an unfinished prototype biplane. This initial prototype, like Sopwith’s design, utilized a rotary engine and steel tube fuselage. However the initial prototype, the V.4 did not have external interwing bracing. The next prototype, the V.5 introduced bracing between the wings to minimize flexing on the upper wing. The prototypes were met with much excitement for their exceptional maneuverability and climb rate over anything else the Germans had previously produced. The Red Baron himself, Manfred von Richthofen was believed the Dr.I held much promise for the fortunes of German air power and demanded his superiors to commence production immediately, as well as promising his men that they would soon be able to “move like devils and climb like monkeys.”

Construction

Replica Dr.1 in a Black and White Striped Livery
Replica Dr.1 in a Black and White Striped Livery

The appearance of the Dr.1 is characterized by its three-wing design – therefore dubbed a ‘triplane.’ The design also featured small sustentation surface of an aerofoil shape mounted between the wheels of the landing gear. The tail was also completely mobile with unbalanced ailerons possessing more surface area than the ailerons of the upper wing. The wings had deep section hollow box-spars that provided lightweight strength to the wings. The lack of interplane struts on the initial prototype resulted in excessive wing vibration during flight, so interplane struts were added. The ribs were of plywood, as well as the leading-edges covers at the spar, with the leading-edges made of wire. The middle wings had some cut-outs to improve downward visibility of the pilot. The fuselage was constructed using welded steel-tubing bracing with diagonal wires to create the rigid box-shaped structure, being a fabric-covered with triangular plywood fillets, except the undercarriage and center-section, which were made of steel streamlined tubing.

The tail-plane had a triangular shape, being framed in steel tubing the same way as the balanced rudder and elevators. The wheels featured an elastic shock cord, while a steel-tipped tailskid was installed at the rear.

Evaluation

The first prototype Dr.1 flew in July of 1917. Production of the Dr.I commenced on August 11th of 1917. In preproduction the triplane carried the designation F.I. Two were made and issued to Richthofen and Leutenant Werner Voss. These two aces promptly used these planes on the battlefield, scoring kills within the first few days of flying in early September. Voss took to the skies on August 28th and by September 11th had scored 8 kills.

The result of this evaluation period led Voss and Richthofen to recommend the Dr.I for production as soon as possible, declaring it superior to the Sopwith Triplane. Orders were placed for 300 Dr.I’s.

On September 14th the commander of Jasta 11, OberLeutnant Kurt Wolff was shot down whilst flying Richthofen’s F.I by a new Sopwith Camel of Britain’s Naval 10 squadron. Voss, whilst flying on September 23rd, scored his 48th victory just before being shot down in an epic dogfight wherein he managed to damage all 7 of his opponent’s SE-5a’s in the skirmish.

The Fokker Dr.I in Use

Replica Dr.1 in Flight
Replica Dr.1 in Flight

The Dr.I, upon its arrival to the battlefield in October was well regarded for its climbing ability and light controls. The ailerons were not very effective, however the tailplane elevator and rudder controls were very yielding. Rapid turns to the right were very quick thanks to the directional instability afforded by the rotation of the rotary engine, a characteristic that was taken advantage of by pilots.

Although not a particularly fast plane, it balanced this shortcoming with great maneuverability thanks to its light weight, while also having good upward visibility. It also had a decent climb rate, characteristics that all seemingly made the Dr.I a formidable adversary to its Allied opponent, the Sopwith Camel. This made of the Dr.1 a good aircraft for dogfights, yet structural and construction problems in the wings would hamper the aircraft’s promising initial assessment.

The Dr.I was armed with twin 7.92 Spandau machine guns, which could fire simultaneously or independently in synchronization with the propeller.

The Dr.I, for all its improvements over previous German aircraft, had numerous  shortcomings. Among them was its tendency to ground looping upon landing. This occurs when the aircraft tilts on landing such that one wing makes contact with the ground. For this reason skids were attached to the wingtips of the lower wing on the production version. Also while the Dr.I had excellent climbing ability, its dive and level flight speed were less than desirable, leaving it vulnerable to faster Allied planes in many situations.

Wing Problems

Following the proper introduction of the production model Dr.I in October, by the end of the month two consecutive top wing failure accidents promptly caused all triplanes to be grounded. The wing structure of the Dr.I was thoroughly investigated and numerous problems were discovered, the first of which was weak attachment of wingtips, ailerons, and ribs. Further, the doping of the fabric and wood varnishing was found to be of poor and inconsistent quality, leading to water absorption and premature rot in crucial wing spars.

Fokker’s corrective action was to improve quality control on the production line, as well as modifying and repairing existing models. The problem was believed to have been solved, and the Dr.I continued to see use well into 1918, but later the wing failures returned.

Much later in 1929, research at NACA revealed that a triplane configuration like the Dr.I’s exerted as much as 2.5 times more lift coefficient on the upper wing. The extreme difference in this force no doubt contributed to many of the wing failures seen in the Dr.I over its operational lifespan. Examples such as this show the importance of research and competence in advanced aerodynamics during the design phase of an aircraft.

Legacy

As had been seen in September 1917, the Dr.I was inferior to the capabilities of the British Sopwith Camel by the time production had commenced. Despite this, German production went on for the initial 300 ordered.

Fokker D.VII would eventually replace the Dr.1 on the battlefield, with surviving dreideckers relegated to training and home defence units, re-powered with a Goebel Goe II 100 hp engine. By the time of the armistice was signed, the Dr.1 was tested by Allied pilots at fighter flying schools in Nivelles (Belgium) and Valenciennes (France), being deemed as an aircraft with impressive performance.

Variants

  • V.4 – The initial prototype
  • V.5 – First production prototype
  • V.6 – Enlarged prototype powered with a Mercedes D.II engine
  • V.7 – Prototype with Siemens-Halske Sh.III engine

Dr.1 Specifications

Top Wingspan 7.12 m / 23 ft 4 in
Mid Wingspan 6.23 m / 20 ft 5 in
Lower Wingspan 5.7 m / 18 ft 8 in
Length 5.77 m / 18 ft 11 in
Height 2.95 m / 9 ft 8 in
Wing Area 18.66 m² / 200.85 ft²
Engine 1  9-cylinder rotary Oberursel UR II engine (110 HP), or a LeRhône Type 9Ja (110 HP)
Maximum Take-Off Weight 586 Kg / 1,291 lb
Empty Weight 406 kg / 895 lb
Loaded Weight 586 kg / 1,291 lb
Climb Rate 5.7 m/s (1,122 ft/min) or 1000 meters in 2’45’’
Maximum Speed 185 km/h / 115 mph at sea level; 165 km/h / 102,5 mph at 4000 m
Range 300 Km / 186 miles
Maximum Service Ceiling 6100 m /20,000 ft
Crew 1 (pilot)
Armament 2 X 7.92 mm Spandau 08/15 with 500 rounds each

Gallery

The Red Baron's Fokker Dr.1 475/17 - March 1917
The Red Baron’s Fokker Dr.1 475/17 – March 1917
Fokker Dr.1 217/17 - March 1917
Fokker Dr.1 217/17 – March 1917
Fokker Dr.1 152/17 - March 1917
Fokker Dr.1 152/17 – March 1917
Replica Dr.1 in a Black and White Striped Livery
Replica Dr.1 in a Black and White Striped Livery
Replica Dr.1 Ready for Takeoff
Replica Dr.1 Ready for Takeoff
Closeup of Replica Dr.1's Cockpit
Closeup of Replica Dr.1’s Cockpit
Fokker Dr.1 9 Cylinder Rotary Engine
Fokker Dr.1 9 Cylinder Rotary Engine
Replica Dr.1 in Flight
Replica Dr.1 in Flight

Sources

Guttman, R. (2011). The Triplane Fighter Craze of 1917. HistoryNet., Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Donald. D. (2009). Aviones Militares, Guia Visual [Military Aircraft. Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial Libsa.Dwyer, L. (2013). Fokker Dr.I Triplane. The Aviation History Online Museum.Leivchentritt, L. (2013). Fokker Dr.I Specifications. Fokker Dr.I.com., Old Rhinebeck Aerodrome (2016). Fokker Dr.1 Triplane. Cole Palen’s Old Rhinebeck Aerodrome.The Aerodrome (2016). Fokker Dr.I. The Aerodrome.Fokker Dr.I. (2016, June 19). In Wikipedia, The Free Encyclopedia. [Images] Dr1 Black-White Livery by Neal Wellons / CC BY-NC-ND 2.0Dr1 Dark Red by Geoff Collins / CC BY-NC-ND 2.0, Dr1 Cockpit by Phil Norton / CC BY-NC-ND 2.0, Dr1 Flight by Ian / CC BY 2.0, Dr1 Engine by Erik Wessel-Berg / CC BY-NC-ND 2.0Plane Profile Views by Ed Jackson

Saab J35J Draken - 35556 - Side Profile View

Saab 35 Draken

sweden flag Sweden (1960)
Fighter Plane – 651 Built

A single-seat, single-engine interceptor/fighter for all-weather conditions, with low double delta wings, the Saab 35 Draken was developed in order to replace the Saab J29 Tunnan and the Saab J32 Lansen. Its first flight took place in 1955, being amongst the most advanced and remarkable fighters of its time. In 1960 it entered in service with the Flygvapnet.

Development of the Draken

Draken development started in 1949, following a requirement by the Flygvapnet for a single-seat cost-efficient interceptor with supersonic capabilities and high climbing rates, able to operate in short airstrips – or even highways, roads and unprepared runways – and easy to operate with high adaptability. As a result of both the requirements and development process, the result was a double-delta winged fighter that became the first European supersonic fighter, and also a high performance air-defence asset for Sweden. And on a similar fashion as the JAS 39 Gripen and JAS 37 Viggen, it was required the Draken to be serviced, refuelled and armed up to ten minutes by untrained ground personnel. A brake parachute was incorporated to reduce landing distance. Interestingly, a prototype was built expressly to test the double-delta wing concept: such was the Saab 210 ‘LilDraken’.

J35J in Flight - Swedish Air Force
J35J in Flight – Swedish Air Force

The Draken is also a product of the needs from a neutral nation willing to keep its neutrality, and geographically placed between the two block. This reason explains the requirements, but especially its high climbing rate capabilities, so to be able to engage high-altitude bombers and fighters – namely Soviet Union bombers and fighters. It also explains the need for STOL capacities, as the Flygvapnet was implementing a system of dispersed bases, asking for highways and roads to be used as airstrips from where the aircraft could be operating, and also to reduce damage and increase survival in case of attack.

Its very unique and remarkable double-delta wing design is also explained by the technical abovementioned requirements, which gave the aircraft very good high and low speed performances. This design made the Draken capable of executing the “Cobra” manoeuvre, and also to stand well against more recent designs, as air exercises in Austria evidenced. During development it was able to unintendedly exceed Mach 1 on its first afterburner flight. It could also sustain a force of 10G turning force. And it also had a safety feature, with the introduction of a ram turbine, placed under the nose, to provide emergency power.

Despite being conceptualized as an interceptor, it performed well in dogfights and was able to undertake ground attack, training, and reconnaissance missions as well. And it proved to be a very tough and resistant design, as it is among the few jet fighter designs to be in service for 50 years. Austria, Denmark, Finland, Sweden and US National Test Pilot School were the operators of the Draken.

The design was so unique that, in fact, the Draken was studied for the design and development of the F16XL experimental prototype.

Between 600 and 650 Draken were built, serving with the Flygvapnet until 1998, with the Finnish air force until the year 2000, the Danish air force until 1993, and the Austrian air force until 2005. The Draken also flew with the Flygvapnet ‘Acro Delta’ acrobatic team.

Design

The Draken is designed as a tailless middle double-delta wing fighter, with a single tail and a single engine (A Volvo Svenska Flygmotor RM6C, bestowing a maximum speed of 2125 km/h / 1,317 mph). Its double-delta wings allow good high and low speed performances. It also provided good fuel and armament capacity. The engine air inlets are located mid-wing at each side of the cockpit, featuring a characteristic egg shape.

Considered an easy-to-fly platform, yet not suitable for untrained pilots given the high sensibility controls, and being prone to ‘superstalls’ as a very stable platform with good low flight.

Although the avionics were in principle basic, the radar was a very sophisticated one – A PS-02/A based on the French radar Thompson-CSF Cyrano – integrated with an Ericsson version of a radar Thompson-CSF Cyrano S6 fire control system. It also incorporated VHF/UHF radio, a radio altimeter, a transponder, an IFF (Identification Friend or Foe) system, and the Swedish version of the Lear-14 autopilot. The seat of the pilot was reclined 30 degrees, similarly like the Viggen, to allow the pilot to resist G-forces. And the cockpit was fitted with air-conditioning and pressurization.

J35J Green Camouflage
J35J Green Camouflage

The engine in combination with the design, made the Draken a very manoeuvrable and fast fighter jet, with the braking parachute assisting the aircraft in the landing, reducing the distance required to reach a full stop. Earlier version of the Draken had two 30 mm Aden M/55 cannons, with later versions having only one cannon. Also some export versions kept the two cannons configuration.

An Advanced Cold Warrior

The Draken can boast not only being a radical and new design thus making it a very advanced one by the first decades of the Cold War. It was among the first fighters in incorporating an on-board radar and the earlier version of the data-link system, whose enhanced version was incorporated in the J 37 Viggen and the JAS 39 Gripen. Indeed, the Draken incorporated the STRIL 60 ground-control network that enable Draken pilots a firing guidance through the on-board instruments, being the system also capable to resist electronic jamming. Aside the fact of being the first European supersonic jet fighter, the Draken was the first fighter to have STOL capacities, and it was an aircraft that gathered valuable intelligence by producing photographic material of many new Soviet aircraft during the 70’s and 80’s. It also had a superior service ceiling in comparison with fighters of its times. Being a very resisting and long-endurance fighter, many pilots of the Draken stated that it was able to take on much newer designs.

Variants

  • J 35A – The first version of the Draken. Capable of performing fighter tasks. A small retractable wheel was placed on the rear fuselage as the angle of the nose was required to be elevated during landings to stop the airplane. But the wheel was also placed as the fuselage was enlarged, as the EBK 66 afterburner was incorporated. This version had 2 Aden 30mm cannons, installed on each engine air take, 2 to 4 Rb 24 (Swedish version of the AIM-9B Sidewinder missile) and a central fuel tank or an additional Rb 24. The afterburner installation allowed the Draken 35A to carry Bofors 135mm rockets (up to 12) in rocket pods. This version had basic avionics, being upgraded with the SB6 fire-control system, which included an infrared search and track sensor (IRST). 90 aircraft produced.
  • J 35B – Interceptor and fighter version. Its development began in 1956, before the J 65A was developed. It initially performed training task until better engines and avionics were available. This model then incorporated the air-to-ground STRIL 60 system, and new radar and fire-control systems that enhanced collision course interceptions. It had an ejection seat that allowed the pilot to eject at zero altitude. This version was armed with two 75mm Bofors cannons, folded-fin air-to-air unguided rockets, and for ground-attacks, 135mm rockets. 73 produced.
  • Sk 35C – Trainer version. Two-seat aircraft build upon J 37A airframes, being exported to Denmark and Finland. The second section was raised for the instructor’s place – being located right behind the pilot/student – and fitted with a 3D stereoscopic periscope. Upgraded with afterburners and improved avionics. The tail section was shortened, and the aircraft could be easily re-modified to its J 35A version if necessary. 25 delivered.
  • J 35D – Fighter version, equipped with a better engine – a Svenska Flygmotor RM6C – that made this version the fastest (up to Mach 2), which allowed increased payload, but also meant increasing fuel capacity. Its avionics were also upgraded, receiving a Saab FH-5 autopilot, an Ericsson PS-03 radar coupled with a Saab S7A fire-control system and a new ejection seat, replaced latter with a seat that allowed ejection on zero/zero conditions. 120 delivered.
  • S 35E – Reconnaissance version. It was unarmed but equipped with ECM measures. Fitted with seven cameras: a vertical-looking camera; a forward-looking camera on the nose; a downward/vertical looking with wide-angle camera and two sideways-looking cameras; and two long focal length vertical cameras. A downward-looking periscope and a voice recorder were fitted to allow the pilot to aim the cameras and make comments on the imagery. Latter improved with afterburners, chaff dispensers and two radar alerts, and the ability to carry on the central pylon a night-time Vinten Blue Baron multisensory night photography device. 60 delivered.
  • J 35F – Fighter version. It had improved avionics and electronics, such as integrated radars, radios, aim, infrared target seekers, and missile systems. In fact, it had the STRIL 60 incorporated. It was the version with enhanced armament, such as two semi-active radar homing Rb 27 AAM missiles, and two Rb 28 or Rb 24 AAM missiles. As a result of the new avionics, the second 30 mm cannon was supressed. Used by 18 squadrons in the Flygvapnet. 208 delivered.
  • J 35F2 – A J 35F fitted with a Hughes Aircraft Company N71 infrared sensor.
  • J 35J – Fighter version that kept the Draken in the inventories of the Flygvapnet, co-operating with the J 37 Viggen. It has six pylons, which increased the payload. It incorporated enhanced fire-control systems, infrared sensors, radar, altitude warning systems, navigation systems, IFF and modernised cockpit electronics. It also had a slightly improved RM6C engine that provided more speed. 76 delivered.
  • 35H – Proposed export version for Switzerland. None built or delivered
  • 35XD – Export versions for Denmark. It comprised the F-35 strike aircraft, TF-35 two-seat trainer and the RF-35 reconnaissance jets. Overall the 35XD were the heaviest aircraft of the Draken family, as they were optimized for strike missions. 51 delivered.
  • 35XS – Export version for Finland, some of which were locally assembled by Valmet under license in Finland. The received/assembled aircraft were the interception, fighter-bomber and training versions. 48 delivered.
  • 35BS – Used J 35B bought by Finland
  • 35FS – Used J 35F bought by Finland
  • 35CS – Used Sk 35C bought by Finland.
  • 35Ö – Version for Austria. Used J 35Ds that were refurbished and modernised by Saab, with extra 1000 flying hours, radar warning receivers, the radar of the J 35D, and chaff dispensers. Like the earlier version of the Draken, it was armed with the two 30 mm Aden cannons. 24 delivered.

Operators

  • Sweden – The Flygvapnet had 544 Draken: 90 J 35A; 73 J 35B; 25 Sk 35C; 120 J 35D; 60 S 35E; 208 J 35F; and 76 J 35J. Many were upgraded or modified airframes, so the number is an approximation. Many were sold to other countries.
  • Austria – The last exporter of the Drakens. The Österreicher Luftstreitskräfte received 24 J 35Ö – ex-Swedish J 35D – to replace the J 29F Tunnan in 1987. Initially many Draken (5 Sk 35C) remained in Sweden for training purposes, being replaced later by a simulator. The Austrian Draken were originally armed with two 30mm Aden cannons, as AIM missiles were restricted by a treaty after WWII. But as the crisis escalated in former Yugoslavia by 1993, deeming that cannons were not enough to protect the airspace, Austria acquired AIM 9P3 and AIM 9P5 Sidewinder missiles from the US and equipped them on the Draken.
  • Finland – The second exporter of Drakens, receiving 12 all-weather J 35XS interceptors, 7 ex-Swedish J 35BS, 24 ex-Swedish J 35FS and 5 ex-Swedish Sk 35CS, all to serve with the Suomen Ilmavoimat. Most of the received aircraft were delivered in kit form and assembled by Valmet in Finland, and had also two Aden 30 mm cannons. Finland used the Draken as interceptors and fighter-bombers, and retired them in 2000.
  • Denmark – The first country in exporting the Draken, with units being received in 1970. As the original version was the least favoured during the competition for a new Danish fighter, Saab created a new version (J 35XD), based on the J 35F. the structure was strengthened in order to allow more payload – 9 reinforced pylons – with simultaneous use possible. The landing gear was reinforced with an added arrestor hook, and had two Aden 30 mm cannons, as well as extra fuel capacity. Being a European cost-effective platform, plus the improvements, made the Kongelige Danske Flyvevåben to choose the Draken. 20 A 35XD ground attack fighters (denominated F35), 30 S 35XD reconnaissance (denominated RF35), and six Sk 35XD training (denominated TF35) were purchased. 7 additional aircraft were purchased to be cannibalized. Danish training and reconnaissance versions were fitted with cannons and pylons to carry weapons, thus having secondary combat capabilities. 5 further Drakens (TF35) were purchased. Receiving upgrades in the following years, the Draken were retired from Danish service in 1993.
  • US National Test Pilot School – Operated 6 Drakens, formerly Danish Air Force jets training and reconnaissance versions.

Draken Specifications

Wingspan 9.42 m / 30 ft 10 in
Length 15.20 m / 49 ft 10 in
Height 3.8 m / 12 ft 7 in
Wing Area 49.22 m² / 529.8 ft²
Engine 1 Svenska Flygmotor Turbofan RM6B
Maximum Take-Off Weight 10,089 Kg / 22,200 lb
Empty Weight 6.590 kg / 14,500 lb
Loaded Weight 16,000 kg / 35,273 lb
Maximum Speed 1,900 km/h / 1,200 mph
Range 3,250 Km / 2,020 miles
Maximum Service Ceiling 18,000 m /59,100 ft
Climb Rate 200 m/s ( 12,000 m/min / 40,000 ft/min )
Crew 1 (pilot)
Armament • 1 Aden 30mm Cannon
• 6 hardpoints that could allow 1700 kg of payload. A pod for a 135mm Bofors M70 rockets; air-to-air Rb 24, Rb 27 or Rb 28; external fuel tank; iron bombs; cameras.

 

Gallery

Saab J35J Draken - 35556 - Side Profile View
Saab J35J Draken – 35556
Saab 35Ö Draken - 351408 - Side Profile View
Saab 35Ö Draken – Austrian Air Force
Austrian Air Force Saab J35Oe Draken 351421
Saab J35Ö Draken – Austrian Air Force

Sources

Ängelholms Flygmuseum (n.d.). Flygplan J65 Draken Operational History.Boyne, W (December 2011). Airpower Classic. J35 Draken. Air Force Magazine, 94 (12), 68.Cpt. Moore, V. (2005). A Dragon’s Farewell. Warbirds, 28 (8), 12-16., Guerras del Siglo XX (1994). Guerras del Siglo XX, Aviones. Madrid, Spain: Editorial Altaya., Liander, P. (1999). Draken pensionerad. FlygvapenNytt, (1), 24-27.Martin, G. (2012). The Draken: One of Sweden’s finest fighters. Aircraft Information.Piccirillo, A. C. (2014). Elegance in Flight. Washington, DC: National Aeronautics and Space Administration., Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., WarbirdsUpdate (2013). The Swedish Air Force Historic Flight from Within the Cockpit. Warbirds News., Saab 35 Draken. (2016, April 2). In Wikipedia, The Free Encyclopedia.Winchester, J. (2012). Jet Fighters: Inside & Out. New York, NY: Rosen Publishing.X-Plane.org (2008). Dispersed Basing. X-Plane.org., Images: Draken in Flight by Alan Wilson / CC BY-SA 2.0, J35J Draken Exhibit by Alan Wilson / CC BY-SA 2.0

 

Spandau LMG08/15 1918 - Side Profile View

Spandau LMG 08

German Empire Flag German Empire (1915)
Machine Gun – 23,000 built

The Spandau LMG 08 was the air cooled aircraft version of the German Army’s MG 08 machine gun. The infantry version of the MG 08, like the Vickers Machine Gun, was water cooled and based on the design of Hiram Maxim’s famed Maxim Gun.

Design

After the success of the MG 08 in infantry use, Spandau set about lightening the weapon and adding large slots to the water jacket for aircraft use.  The first letter in lMG 08 is actually a lowercase L which stands for luftgekühlt meaning air cooled. From the beginning the lMG was designed to fire in a fixed position from an aircraft.

Early Spandau LMG 08 Triple Mount
Early “Overlightened” LMG 08

Early designs had so many cooling slots that the weapon was considered “over-lightened” and the rigidity of the cooling jacket was considered “fragile.” Various slot patterns were experimented with until the final design of the LMG 08/15, a refined version of the weapon with many improvements as well as a lighter weight. The final weight for the refined lMG 08/15 came out to 26 lbs compared with 57 lbs for the original iteration of the MG 08. The various versions of the lMG were all designed to be interchangeable so aircraft could be easily upgraded to newer versions. Like the Vickers, the closed bolt design lent itself to easy synchronization with the propellers, with most German fighters appearing with twin LMGs by late 1916 with the introduction of the Albatros D.I and D.II.

The ammunition belt of the lMG 08 utilized the design of the Parabellum MG14 for its light weight, rather than that of the infantry version of the MG 08. After a cartridge was fired the belt was fed into a side chute on the side of the breech block. The chute would guide the empty belt into a storage compartment to prevent the empty belts from interfering with any aircraft mechanisms.  Empty cartridge cases however were expended out of a round hole on the receiver just under the barrel on all version of the MG 08. In most aircraft the empty cases were guided out of the aircraft.

Use of the Spandau lMG 08

The lMG 08 was used on almost all German fighter aircraft of the WWI period. After its introduction in 1915, synchronization technology was rapidly being developed. On the Fokker E.I the introduction of the synchronizer system with a single mounted lMG 08 led to a period of German air superiority over the Western Front known as the Fokker Scourge. Later aircraft almost universally used a twin synchronized setup, including Germany’s most famous ace, Baron von Richthofen ‘The Red Baron.’

Twin Synchronized lMG 08s on a replica Fokker DR.I
Twin Synchronized lMG 08s on a replica Fokker DR.I

There were various styles of cocking handles in use, seemingly dependent upon pilot preference. Safety interlocks were also introduced to ensure the safety of the ground crew who at times could be in the line of fire. Another modification seen in aircraft use was a countdown style rounds counter.

Spandau lMG 08 Gun Specifications

Weight 12 kg / 27 lb
Length 1.45 m / 4 ft 9 in
Barrel Length 720 mm / 28 in
Cartridge 7.92mm x 57
Action recoil with gas boost
Rate of Fire 400 to 500 rounds/min
Muzzle Velocity  860 m/s  /  2,821 ft/s
Effective Firing Range 2,000 m / 2,200 yd
Maximum Firing Range 3.500 m / 3,800 yd (indirect fire)
Feed System 250 round fabric belt

Gallery

Spandau LMG08/15 1918 - Side Profile View
Spandau lMG 08/15 – 1918

Sources

Fokker E.I. (2016, April 21). In Wikipedia, The Free Encyclopedia.Synchronization gear. (2016, May 15). In Wikipedia, The Free Encyclopedia.MG 08. (2016, March 22). In Wikipedia, The Free Encyclopedia.The Vintage Aviator (n.d.), The Spandau LMG 08/15, Images: Fokker DR.I Spandau Guns – 2013 by Julian Herzog / CC BY 4.0

Saab Viggen - Takeoff

Saab S37 Viggen

sweden flag Sweden (1971)
Multirole Fighter Plane – 329 Built
The Saab Viggen is a single-seat, single-engine fighter with a low double delta wing and with two canards equipped with flaps, intended to replace the Saab J35 Draken. Its first flight took place in 1967. When it entered service in 1971 with the Flygvapnet, the Swedish Air Force, it was the most advanced fighter jet in Europe until the introduction of the Panavia Tornado (1981). It was also the first canard-designed aircraft to be produced in a large quantity.

Development of the Viggen

Development for the Viggen began in 1952, with the development period of 1958 to 1961 being crucial for the airplane, as it was decided to integrate the System 37 as standard arms control. This system would end integrating radar, air-defence screens (Stril 60), and computers, and the Viggen were intended to be the platform for such system. This system made the aircraft extremely advanced in comparison to other designs. Along with the Draken it was the precursor to the advanced datalink system the Gripen would later incorporate. Like most of Swedish designs, it also had short taking-off landing (STOL) capabilities (500 meters), thanks to canards, a thrust reverser – that allowed the aircraft to reverse on the ground, and an afterburner to facilitate short take offs. The engine and the remarkable HUD capability also assisted in landing operations.

Interestingly, it can withstand a force of 12G, but operational limit is 7G. It is also a multirole aircraft. However the multirole ability resides more in a basic airframe giving way to different versions: fighter-bomber, attack, tactical reconnaissance, sea reconnaissance, training, and fighter. Given the specific defence conditions of Sweden, the aircraft was required to be easily maintained and serviced by airmen with little training, within a time of 10 minutes.

329 Viggens were built, and served in the Flygvapnet until 2005. Noteworthy to mention that the Swedish Air Force was the main and only user of the Viggen. Agreements with the United States provided technology enough to increase the performance of an already advanced fighter, making it one of the most advanced during most of its service life.

Design

Saab Viggen - BankingThe Viggen is designed as a low double delta wing fighter, with a single tail and a single engine (A Volvo Turbofan Flygmotor RM8B, the most powerful installed in a jet fighter upon its introduction, achieving a maximum speed of Mach 2. It has canards with flaps that provide lift for both flight and taking-off and landing. Assessed as a very stable platform with good low flight, the canards and the combination of the engine, the thrust reverser, the HUD, and the afterburner allows for STOL capabilities (Taking off: 400 mts/ 1310 ft; landing: 450-500 mts/1640 ft).

The wings were provided with dogtooth at the attack border, in order to improve stability at high incidence angles. The structure was built with aluminium with a honeycomb structure, with the rear being totally of aluminium, allowing the Viggen to withstand the stress of no-flare landings, while the vertical stabilizer, or tail, was made tall given the requirements the large anti-ship missiles existing back then imposed on the design. It has a “hump” on the dorsal area to reduce drag. An interesting feature of the tail is that it can be folded, so to enhance the storage in underground and/or smaller hangars. Earlier version of the Viggen did not have an internal cannon, as it was considered by the days a close-range combat was not necessary, an approach that also affected other designs, such as the American Phantom F4. Further variants incorporated an internal cannon. The pilot seat was angled by 19 degress so to allow the pilot to resist better G forces.

A Cold Warrior with Digital Features

Saab Viggen - CockpitThe Viggen was intended to be a single pilot fighter, making the introduction of advanced avionics a requirement as there would be no navigator. As a result, the Viggen incorporated the CK 37 (Centralkalkylator) computer, the first airborne computer with integrated circuits, and that even remained in service with the Flygvapnet fleet of Viggens until the early years of the 21st century. During the development of the Viggen’s electronic components, operational aspects like vibration, exposure to strong forces and even crashes were considered, resulting in a very strong computer with a strong hardware capable of resisting crashes while keeping valuable information of the aircraft. It was also a very valuable computer for the Viggen, as it was able for assisting the pilot and aircraft missions and control of the aircraft.

Another important avionics element of the Viggen, working in tandem with the integrated computers, was the radar, an Ericsson PS-37 X radar. This radar was able to perform air-to-ground and air-to-air telemetry, search, track, terrain avoidance and cartography tasks. The further versions of the Viggen received enhanced avionics and electronic/digital components, enhancing their capabilities and mission performance.

Guardian of Neutrality

The Viggen is a pure product of the times it was designed and the context in which Sweden was a neutral country forced to increase its military power in order to safeguard its neutrality during the heated days of the Cold War. As Sweden was a close neighbor to the Soviet Union, many incidents between the two nations took place. Those incidents prompted Sweden to have an alert service, with round-the-clock radar surveillance, fighters and attackers on high readiness for combat, among other measures. The design therefore was intended to meet the defence needs of Sweden and the missions of the Flygvapnet.

Saab Viggen - TakeoffA first requirement was for the Viggen to have STOL capabilities, so to be able to operate from damaged runways – or runways and highways – and also from secondary airfields. The aim of such operational conditions was to increase the survival of air assets and to difficult the destruction, blocking or dispersion of such assets by an aggressor. A second requirement was the Viggen to be serviced, refuelled and rearmed in less than ten minutes by untrained personnel. This, considering that Sweden’s particular defence conditions required small and dispersed air and field bases, having little personnel and facilities. In fact, and thanks to this system, the Viggen was able to execute up to 11 sorties within a period of 24 hours. In addition, the Viggen became the main asset of Swedish air defence, intercepting, patrolling, and monitoring Soviet and Western activities and flights. This explains the multi-role capacities of the Viggen, or at least to have served as a basis for different versions using the same airframe. It also allowed Sweden to demonstrate its readiness. During the S-137 Soviet submarine incident, the submarine ran aground on the Swedish archipelago and Soviet surface vessels closed in on the Swedish coast to attempt a rescue, armed Viggens were put into the air so to ward-off the Soviets. Also, with the routine of the American SR 71 Blackbird path known, the Viggen was able to get radar-lock on the SR71 despite the jamming measures of the reconnaissance plane and thanks to coordination with ground-based radars. It is the only aircraft that managed to lock onto the SR 71.

Variants

  • AJ 37 – An all-weather attack aircraft with air-to-air secondary capacity. Considered outdated, it lacked a gun, but had increased bombing precision thank to its HUD and Weapons Aiming Computer System. Armed with rockets and iron bombs for strike missions, and Saab 305/Rb 05 or Sidewinders and 30mm cannon pods for air-to-air. It also had anti-ship capabilities thanks to the Saab 304 anti-ship missile. 108 delivered.
  • Sk 37 – Training version, with a second cockpit and the avionics and fuel removed, also lacking a radar array. It had instead of the internal fuel tank, a permanent fuel tank under the belly. It also had a shorter range. The second cockpit has two periscopes to provide forward view. It was tasked with providing pilots conversion and supersonic training. It also had secondary combat capacities. 10 were converted to electronic warfare trainers (SK 37E). 17 delivered.
  • SF 37 – All-weather reconnaissance version and intended to substitute the S35E. The nose had a peculiar form thanks to the fact that the recce equipment was placed there, with seven cameras. On the hardpoints further reconnaissance equipment was placed. One camera can take infrared pictures, two vertical cameras can take shots for high-altitude, and four cameras for low-altitude shots. It had the same armament as of the JA 37 interceptor version yet lacking of radar. 28 delivered.
  • SH 37 – Single seat version fitted for sea surveillance and attack/anti-ship roles, armed usually with the Saab 305 anti-ship missile and other ground-attack weaponry. It could also carry Sidewinder missiles for self-defence. 28 delivered.
  • JA 37 Jaktviggen – All-weather interceptor version of the Viggen, powered with a Flygmotor RM8B. Incorporated an internal 30 mm Oerlikon cannon, and could operate AMRAAM, Sidewinder or Rb71 Sky Flash missiles. Armed also with radar and infrared homing missiles. It also had upgraded avionics, such as a long-range Ericsson UAP-1023 pulse Doppler radar, enhancing target acquisition, and new computers that enhanced as well the aircraft performance. In fact, there is a coupling of radar gunsighting with the autopilot, presenting a lock information to the pilot’s HUD while increasing the cannon lock thus reducing the workload for the pilot. It also had an inertial navigation system. Furthermore, it provides tracking for land, air and sea-borne targets while resisting to ECM attacks. Some were upgraded with airframes, avionics and software modified for international duties (JA 37C, JA37D, and JA37DI) 149 delivered.
  • Saab 37 Eurofighter – Proposed replacement for NATO F-104 Starfighter. None built.
  • Saab 37 X – Proposed version to be exported to Norway. None built.

Operators

  • Sweden – The Flygvapnet has 329 Viggens, 108 of which are AJ 37, 17 were Sk 37, 28 were SF 39, 28 were SH 37, and 149 were JA 37.

Viggen Specifications

Wingspan 10.6 m / 34 ft 9 in
Length 16.40 m / 53 ft 9 in
Height 5.6 m / 18 ft 4 in
Wing Area 46 m² / 500 ft²
Engine 1 Volvo Flygmotor Turbofan RM8
Maximum Take-Off Weight 20,500 Kg / 45,194 lb
Empty Weight 11,800 kg / 26,014 lb
Loaded Weight 16,000 kg / 35,273 lb
Maximum Speed 2,125 km/h / 1,320 mph
Range 2000 Km / 1,242 miles
Maximum Service Ceiling 18,000 m /59,100 ft
Climb Rate 203 m/s ( 12,000 m/min / 40,026 ft/min )
Crew 1 (pilot)
Armament • 1 Oerlikon KCA 30mm cannon (JA 37)
• 7 hardpoints that could allow 6000 kg of payload. A pod for Aden 30 mm cannon; 135mm Bofors M70 rockets in pods for six rockets; air-to-air Saab 305/Rb 05, Rb71 Sky Flash, AMRAAM or Sidewinder missiles; air-to-surface or Maverick missiles; Anti-ship Saab 304; 120 kg iron bombs.

Fighter Pilots and Fighter Jets

Fighter pilots play an important role in the military. Fighter pilots do more than fly the world’s most advanced fighter jets like Saab S37 Viggen. They work with tactical aircraft to destroy enemy targets. Fighter pilots have a wide range of responsibilities in their respective military Department of Defense. An excellent fighter pilot might be awarded honors, such as challenge coins, aviator badges, etc. If you are interested in plane encyclopedias, or if you are looking for interesting things related to the Air Force, pilots, and fighter jets, you can try customizing Air Force Challenge Coins on GS-JJ, which would be excellent military-related gifts and souvenirs.
challenge coin

Sources

Anrig, C. F (2005). Flygvapnet, The Swedish Airforce in an Era of Transition. Air Power Revue, (4) 36-44.Ängelholms Flygmuseum (n.d.). Flygplan J37 Viggen., Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Boyne, A (July 2014). Airpower Classic. JA37 Viggen. Air Force Magazine, 97 (7), 76.Lemoin, J (2002). Fighter Planes. 1960-2002., Groebel, G (2016). The SAAB 37 Viggen., Jiewetz, B (n.d.). Central Computer for aircraft Saab 37, Viggen. DATASSABs Vänner.SAAB (n.d.). Saab 37 Viggen. Brochure., Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., WarbirdsUpdate (2013). The Swedish Air Force Historic Flight from Within the Cockpit. Warbirds News., Saab 37 Viggen. (2016, May 1). In Wikipedia, The Free Encyclopedia., Gunston, Bill and Mike Spick. Modern Air Combat: The Aircraft, Tactics and Weapons Employed in Aerial Warfare Today. New York: Crescent Books, 1983. Images: Saab Viggen Banking by Alan Wilson / CC BY-SA 2.0, Saab Viggen Intake by Houser Wolf / CC BY-ND 2.0, Saab Viggen Gear by Alan Wilson / CC BY-SA, Saab Viggen Takeoff by Alan Wilson / CC BY-SA, Saab Viggen Cockpit by Per80 / CC BY-SA 3.0, Saab Viggen Engine Inspection by Rune Rydh / Flygvapenmuseum / CC BY 4.0

Gallery