Tag Archives: Archived

Official classification tag

Manfréd-Weiss XNI-02 Kaméleon [Fictional]

Hungarian Flag Kingdom of Hungary (1944)
Fictitious Jet Attacker / Dive Bomber – 1 Scale Model Built

The original photo published on the XNI-02. (Repülés Magazine)

The Manfréd-Weiss XNI-02 Kaméleon (Chameleon) is a fictitious Second World War Hungarian jet-powered attacker aircraft written about in the April 1980 edition of the Hungarian aviation magazine Repülés (Flight) as an April Fools joke. The brainchild of Hungarian author György Punka, the XNI-02, though meant as a harmless April Fools joke, unfortunately fooled unsuspecting readers and caused controversy within the military aviation fanbase. As a result, numerous websites, magazine authors, armchair historians and casual readers are still convinced to this day that the XNI-02 Kaméleon was an authentic project undertaken during the war and believes it existed.

Alleged History

According to the April 1980 edition of the Hungarian aviation magazine “Repülés”, while working for the Hungarian Manfréd Weiss Steel and Metal Works, (Weiss Manfréd Acél- és Fémművek, also known as “Csepel Works”) engineer Pál Nemisch designed a jet attacker aircraft in 1944. Due to the frequent Allied bombing and Hungary’s shortage of supplies, Nemisch presumably decided to base his design off pre existing components taken from other aircraft. Christened the “XNI-02”, the aircraft gained the nickname of Kaméleon (Chameleon) due to the number of parts incorporated from foreign designs. The XNI-02’s construction consists of a concoction of German, American and indigenously manufactured parts. Further details of the XNI-02’s design process are unknown, as Punka did not expand on them.

The mock guncam footage of the XNI-02 getting shot down. (Repülés Magazine)

Construction of the XNI-02 is presented as having began in mid to late 1944, after parts for the aircraft were collected. The prototype began assembly in Kőbánya, Hungary, but construction was relocated to an underground aircraft production facility near Augsburg, Germany. This can possibly be accredited to Operation Margarethe, the German occupation of Hungary to ensure their loyalty to the Axis. The XNI-02’s development team would once again be relocated to Austria, near Wiener Neustadt prior to November. The XNI-02 prototype was presumably completed by the Wiener Neustädter Flugzeugwerke factory and made its maiden flight on November 6th.

On April 1st of 1945, Lieutenant R. Taylor from the USAAF 385th Fighter Group was patrolling Austrian airspace in search of Axis fighters with his North American P-51 Mustang. While flying near the town of Linz, he spotted a rather peculiar looking aircraft flying to his starboard side at an altitude of approximately 9,840 ft / 3,000 m. While trying to get behind the mysterious fighter, Lt. Taylor inadvertently revealed his presence to the aircraft which led to it speed away. Determined to chase down this mysterious aircraft, Lt. Taylor proceeded with the chase. For some odd reason, the aircraft Lt. Taylor was chasing began to slow down and extended its landing gears. Now in a position to engage the aircraft, Lt. Taylor fired towards the unidentified aircraft. Failing to shoot it down in the initial pass, Lt. Taylor pulled off and reengaged it. This time, the burst of gunfire from his Mustang seemingly crippled the unidentified aircraft and thus forced the pilot to bail out. The aircraft crashed shortly thereafter. After returning to the 385th Fighter Group’s homebase in Foggia, Italy, the guncam on Lt. Taylor’s Mustang was examined and the film revealed that the mysterious aircraft Taylor shot down was the sole XNI-02 (the guncam still frame in the magazine was created using Punka’s model). This, however, was unknown to them at the time. This information would be revealed later on from an unnamed technician who provided pictures and some information regarding the XNI-02 after the war. On that day, the XNI-02 was supposed to be performing a weapon firing flight test, but this would never occur as Lt. Taylor was able to successfully shoot down the prototype. In Lt. Taylor’s private log book, he recorded the victory as: “Unidentified jet over Linz. 10:35, 1945 April 1st”. The reasons why the XNI-02 test pilot decided to slow down and extend his landing gear are up for personal interpretation, as the story is fictitious in itself. The test pilot may have believed he lost Lt. Taylor and decided to prepare for landing, or this was an indication that the XNI-02 was experiencing mechanical problems and needed to perform an emergency landing. Realistically though, the story was written in this way to cover up Punka’s XNI-02 model’s inability to retract its landing gears. It is unknown whether or not the radioman was present onboard the aircraft at the time of its shootdown.

The Wiener Neustädter Flugzeugwerke factory was also in the process of building the reconnaissance variant of the XNI-02 in 1945. The incomplete fuselage of this variant was destroyed by advancing Soviet troops when they overran the factory. Other than the attacker / dive bomber and reconnaissance variant, there was also plans to produce a night fighter and trainer variant for the XNI-02. These plans, however, were never acted upon due to the advancing Allied troops. Details of these variants are unknown as Punka did not write about them.

Supposed Design

 

As mentioned before, the XNI-02 Kaméleon is a fictitious jet fighter created by Hungarian author György Punka. All known photos of the XNI-02 are sourced from a model Punka created. Using components from several model kits, Punka was able to create a fairly realistic and convincing model. The XNI-02 model uses a North American P-51B Mustang’s fuselage, a set of the iconic gull wings from the Junkers Ju 87 Stuka (the model also uses the Ju 87’s horizontal stabilizer as an anhedral outer section of the regular wings), the Lockheed P-38 Lightning’s nose, and the BMW 003’s two engine cowls were taken from a Sud Aviation Caravelle passenger jet model. The combination of parts used for this aircraft is attributed to the fact that Hungary was unable to manufacture its own aircraft components. However, parts of the tail and nose were constructed using plastic and wood. In the original article written by Punka, only Stuka parts were mentioned. This could mean that the P-51 fuselage was either taken from captured models or the Hungarians reverse engineered it and indigenously produced them with modifications. The fuselage would have been reinforced with steel plates for protection, though every other part of the aircraft was constructed using wood and plastic.

The XNI-02 would have had space for two crew members, a pilot in the plexiglass cabin and a gunner / radio operator which would be housed in the nose (likely in a prone position). The gunner would be able to remotely control two 12.7x81mm Gebauer GKM 1940.M machine guns located under the nose help from a monitor. (The machine guns are not believed to have been installed on the prototypes.)

The XNI-02 was powered by two BMW 003 turbojet engines given to the Hungarians by the Germans. They are mounted on the rear fuselage on either side accompanied by a slight bulge in the fuselage which would have held the fuel tanks. It would appear that the fuel weight impacted the performance of the XNI-02 but guaranteed an increase in endurance and distance. The exact variant of the engines is unknown. The armaments consisted of two 30x184mm Rheinmetall-Borsig MK 103 autocannons and two remote-controlled 12.7x81mm Gebauer GKM 1940.M machine guns. The MK 103 cannons were mounted in the nose while two Gebauer GKM 1940.M machine guns were envisioned to be mounted under the nose. As an attacker, the XNI-02 prototype theoretically would have been able to mount two 550 lb / 250 kg bombs or four 8.26 in / 21 cm Werfer-Granate 21 rockets under the fuselage or wings.

The production variant of the XNI-02 would have had ejection seats for both crewmen, but this feature was not installed on the prototype. Curiously enough, the original prototype concept would have had a propeller-driven engine, but due to time constraints this experimental concept was not tested and jet engines were mounted right away.

Conclusion

Though the XNI-02 Kaméleon is a fictitious aircraft, the design of it would have been quite modern and advanced, but also unusual and with plenty of quirks that signal it as a fake design. The monitor assisted remote gunner system is an example of this. Though Punka was able to sell a convincing story of the XNI-02 Kaméleon, there are some questionable details which impact the veracity. For one, the fact that the Hungarians would have received BMW 003 turbojet engines in 1944 is quite unrealistic. At that time, German would have likely reserved their resources for use against the Allied forces. The basis of the design, although creative, would have imposed an issue for production facilities. The basis of the design resides on the availability of spare parts from existing aircraft, and if such parts were not available, the XNI-02 would have needed extensive modification to accommodate different parts.

Despite these flaws, Punka’s creation most certainly made an interesting and, to some degree, convincing story which made a great April Fools article. However, not everyone realized that this was, in fact, an April Fools joke and some took this as a real aircraft. This caused many other magazines and websites to write their own articles on the XNI-02, stating that it was a real project. The XNI-02 was even able to convince some Hungarian veterans, which led them to contact each other to see if anyone knew if this was a real project.

Variants

 

  • XNI-02 Attacker / Dive Bomber – Attacker variant powered by two BMW 003 turbojet engines. One prototype was built and was destroyed on April 1st of 1945 when Lieutenant R. Taylor of the 385th Fighter Group shot it down during a test flight.
  • XNI-02 Reconnaissance – Reconnaissance variant of the XNI-02. One incomplete prototype was in construction presumably at the Wiener Neustädter Flugzeugwerke factory in Austria. The prototype was destroyed by the Soviet troops.
  • XNI-02 Night Fighter – Intended night fighter variant. Details unknown.
  • XNI-02 Trainer – Intended trainer variant. Details unknown.
  • XNI-02 Night Bomber – Intended night bomber variant. An IR (Infrared Radiation) bombsight would have been installed in the nose for use by the radio operator / gunner (bombardier in this context).

Operators

  • Kingdom of Hungary – The XNI-02 Kaméleon was intended for use by the Royal Hungarian Air Force.

Gallery

Credits

English Electric / Avro Canada Canberra T.25 “Hoverberra” [Fictional]

Canada flagUK flag Canada / United Kingdom (1960)
Fictitious Experimental VTOL Aircraft Variant – 1 Converted

The prototype Canberra T.25 during it’s first vertical flight. The Avro-Stroker B.69-420 jet engines would explode and destroy the plane just seconds after this photo was taken. (British Archives)

The English Electric Canberra T.25 (nicknamed Hoverberra by the designer team) was an experimental VTOL variant of the British Canberra jet bomber which was patented and developed by Avro Canada designer Richard Stroker. With a standard Canberra B.2 converted to mount two experimental Avro-Stroker BS.69-420 turbojet engines, the aircraft was given the experimental title of T.25 and was vertically flown for the first time on April 1st of 1960. Unfortunately, the first and only test flight resulted in catastrophic failure when the two experimental Avro-Stroker J-69-420 engines spontaneously combusted and exploded shortly after the T.25 got off the ground. Soon after, all work on the project was halted.

History

In the recent months, an experimental variant of the English Electric Canberra jet bomber was discovered in the National Archives in Greater London. Surprisingly enough, the variant was developed in the Dominion of Canada, which never officially operated or received any Canberras! This experimental variant bears the title of Canberra T.25 and was a testbed for an obscure Canadian developed turbojet engine designated as the “Avro-Stroker BS.69-420”. Much of the information regarding this variant has been lost to history, but the fundamentals appear to have been recorded by a variety of sources. Although Canada was never a recipient or official operator of the English Electric Canberra jet bomber, a single example of the Canberra B.2 found its way to Canada in February of 1959. Details of this purchase are not known, but it would appear that the aircraft was purchased by a civilian firm. As such, the aircraft was stripped of much of its military equipment.

Sometime in late 1959, a relatively unknown Avro Canada employee known by the name of Richard Stroker (referred as “Dick” by most) patented a turbojet engine which he had been working on since 1951. Stroker was part of the occupational forces in Germany after the war, and he was one of the engineers who were tasked with studying experimental Nazi hoverjet technology. Details on the precise technologies he was tasked to study are unclear. It would appear that the Avro Canada had taken an interest in this experimental engine Stroker developed, and decided to manufacture a small batch for trials. The engine received the designation of “Avro-Stroker BS.69-420” and it would appear that only four examples were manufactured. Wishing to test the engines, Avro Canada reached out to the Canadian government for permission to utilize a test frame. With the rather small size of the turbojet engines, they were envisioned to power the aircraft horizontally, allowing it to lift upwards. Previous work done on the VZ-9 Avrocar assisted with this engine’s development. As the Canberra B.2 was obtained recently, the Canadian government allocated it to the Avro Canada designers. It would appear that the British Ministry of Aviation was notified of this development, and they took a keen interest in the modification. Soon after, a team of twelve British engineers were dispatched to Canada to observe and assist in the project’s development.

By March 3rd of 1960, much of the modified Canberra’s design was completed. The Canberra received the official designation of Canberra T.25 within the United Kingdom and was nicknamed “Hoverberra” by the design team. Two BS.69-420 turbojet engines were mounted within the bomb bay and rear fuselage at a 90-degree angle. According to official engine bench tests, the BS.69-420 was capable of producing 4410 lb (2,000 kg) of thrust, which would have barely been able to power the Canberra, even with most of its military equipment stripped. As such, the Canberra T.25 was transported to the Toronto Malton Airport (today known as Pearson International Airport) on March 27th. Preparations were being made to initiate the Canberra T.25’s first vertical flight. The Canadian test pilot’s full name is unknown, but documents identified him as “Pranks.” Soon after, all preparations for the Canberra T.25’s first flight was complete. The test flight was to take place within a hangar, as the maiden flight’s purpose was to see if the aircraft could get off the ground at all, and did not instruct the pilot to fly high.

On April 1st at 0500 hours exact, the two BS.69-420 turbojet engines were ignited and the Canberra T.25 slowly lifted itself into the air. Canadian and British engineers and designers observed this process at a safe distance. Twelve seconds after the aircraft began hovering, a strange sound was reported by Pranks which he described as “a high pitched screeching.” As this was unusual and did not occur during engine bench tests, Pranks was ordered to immediately shut down the engine and descend. Just as this command was spoken, the B.69-420 turbojet engines exploded which completely destroyed the Canberra T.25 and killed Pranks. Two nearby engineers were also injured by flaming debris, one was severely burnt while the other made it off with relatively light injuries. Soon after this tragic incident, the Canadian government ordered the immediate cessation of work on this project.

As not much documentation seems to exist on this obscure project, much of the developmental history and post-cancellation history is unknown. However, the Canberra T.25 “Hoverberra” holds a special spot in aviation history as Canada’s indigenous endeavor to produce a VTOL aircraft. It is recorded that Richard Stroker soon resigned from Avro Canada following the catastrophic disaster. He soon moved from Toronto to Medicine Hat where he opened up a restaurant with his wife. He died in 1996 after suffering from colonl cancer.

Operators

  • Dominion of Canada – The Avro Canada firm developed the Canberra T.25 with assistance from British engineers. The aircraft would have likely entered service as a photo reconnaissance aircraft
  • United Kingdom – The Ministry of Aviation took great interest in the Canadian VTOL development of the Canberra and provided personnel assistance to the Avro Canada designers. It is unknown whether or not they would have adopted the type for service.

Sources

  • Fiddlesworth, R. (1962). Completely Reliable Report on Jet Aircraft: Ministry of Fictitious Aircraft & Aviation.
  • Realname, J. (1960). April 1st Report on VTOL Technology: The Canberra T.25
  • Stroker, R. (1959). Engine Patent: VTOL BS.69-420 Turbojet

Republic F-74 Thundercloud (Fictional)

usa flag USA (1946)
Fictional Prototype Fighter Bomber – 11 Built

Inspired by the Kyushu J7W and Curtiss-Wright XP-55, the P-later-F-74’s radical wing designs lifted its position in aviation history to the jet age’s dawn. With a canard layout and its inverted, swept-back gull wings, this little-known fighter-bomber was a broad new attempt at close air support by Republic Aviation. Meet the unnamed member of the “Thunder family” – F-74 Thundercloud.

History

After Japan’s surrender in 1945, the U.S. Naval Technical Mission to Japan immediately commenced. Found at an abandoned hangar of the Itazuke Air Base, an aircraft with a radical design caught everybody’s eyes. This is the Kyushu J7W Shinden, an interceptor with a canard layout and a pusher engine at the back, similar to the U.S. Army’s XP-55 Ascender. Along with other interesting Japanese designs, the J7W was dismantled, crated, and shipped to the U.S.

Immediately after the Second World War, USAAF launched their next generation multirole strike fighter program. The winning project of the contract would be awarded the codename P-74. However, most major companies such as North American and Lockheed were busy creating their first jets, leaving Republic Aviation the only participant. Impressed by the J7W’s perfect integration of nose-mounted weapons and the large but streamlined fuselage that houses powerful engines, Republic decided to give it a shot, as a then-intermediate candidate of the P-84 Thunderjet.

Design

The F-74 was an all-metal, monocoque, low-wing cantilever monoplane. Its unique canard layout consisted of a pair of compound delta wings that integrated an inverted “gull wing” design with a pair of dihedral wing tips that houses the ailerons, and a pair of smaller, less swept back trapezoidal canards at the front of the aircraft, immediately behind and above the modular weapon bay. Two vertical stabilizers are positioned at the joint between the main wing and the wingtips, with anti-skid wheels on the bottom. A pair of long and narrow side intakes drew upcoming air into the rear-mounted, air-cooled radial engine (R-3350 or 4360) that drove a set of four wide paddle blade style constant speed propellers [1].

The nose-mounted weapon bay could be easily swapped at any frontline airfield to suit different combat scenarios, ranging from the basic “six-pack” .50 machine guns to a pair of powerful 37mm cannons. The powerful R-4360 engine also allowed an assortment of weapons to be carried under its wing pylons, ranging from unguided rockets, general purpose and napalm bombs, to machinegun pods that further enhance the aircraft’s firepower.

Not Your Average Cumulonimbus

Only one year after Republic “won” the contract by being the sole participant, on 17th August 1946, the XP-74-A-0-RE prototype flew for the first time. With a R-3350 engine and simulated counterweights instead of guns, the aircraft displayed favorable control characteristics. Its low-speed handling was surprisingly well for an aircraft this size, thanks to its large wing area and powerful pitching leverage provided by the front-placing canards. The only two complaints of the test pilot were its large torque on the takeoff roll and the fragile rear propeller he broke on landing. The first problem was addressed by applying more trim, with the second one solved by adding a pair of anti-skid wheels under the vertical stabilizers.

However, the Army paused the XP-74 project in favor of the jets. The project was also overshadowed inside Republic themselves, because their jet replacement of the P-47 Thunderbolt – the XP-84 Thunderjet – already took to the skies six months before XP-74 did. All testings were halted and the project group was dissolved, despite the emergence of another high-altitude interceptor variant, the XP-74B.

Luckily, the newly-formed USAF changed the fate of this plane one year later. Facing threats of probable “Communist-containing” wars (Korean War and subsequently Vietnam War), the Air Force needs a reliable attacker with a large payload as a suitable backup to the new and unreliable jets. The Thundercloud was revived under the name of F-74. Republic offered the USAF an improved version, dubbed as the F-74D. With a powerful R-4360 radial engine and four 20mm AN/M3 cannons, this machine could rain down deadly ordnances at an incredible efficiency [2]. Five D-variants fought during the Korean War, with one of them later modified for the Project GunVal, carrying four T-160 cannons as an experimental configuration. After the retirement of all F-74s, some were acquired by NACA and later NASA as X-74s for experimental airfoil research.

Variants

  • XP-74A-0-RE – Initial prototype for the USAAF. First flight on 15th Aug. 1946. No armament, R-3350 engine.
  • YP-74A-1-RE – Small pre-production series starting from Dec. 1946. Armed with 6 Browning M3 12.7mm MGs. 5 built.
  • P-74B – High-altitude heavy interceptor variant. 2x 37mm M10 cannons and 2x M3 12.7mm MGs. R-4360 engine with supercharger. None built.
  • F-74D-1-RE – Ground attack variant for the USAF. 4x 20mm AN/M3 cannons, R-4360 engine without supercharger. 5 built, 3 converted from A-1 variant in 1949.
  • F-74D-2-RE – Testbed for T-160 autocannons during Project GunVal in 1953. 4x 20mm T-160 cannons. 1 converted from F-74D-1.
  • X-74A – Two aircraft served for NACA and later NASA for experimental airfoil research. R-4360 engines with supercharger. 2 converted from YP-74A pre-production models.

Operators

  • [USA] – Evaluated by the U.S. Army and later Air Force. 8 deployed in the Korean War. Retired 1953[3]. 2 used by NACA/NASA. Fate unknown.

 

Republic XP-74/YP-74/F-74 Specifications

Wingspan 41 ft 2 in / 12.54 m
Length 44 ft 2 in / 13.46 m
Height 15 ft 1 in / 4.59 m with landing gears
Wing Area 322.05 ft² / 29.92 m²
Engine 1x R-3350-23 (2,200 hp) (A model only)

1x R-4360-31 (3,000 hp) (other variants)

Empty Weight 11,000 lb / 4763 kg
Maximum Takeoff Weight 19,000 lb / 8618 kg
Fuel Capacity 1514 L internal, up to 3x 416L drop tanks
Climb Rate 15m/s at sea level (D-1 model)
Maximum Speed 430 mph / 692 kmh at 10,000 ft / 3,048 m
Cruising Speed 400 mph / 644 kmh
Range 750 mi / 1207 km on internal fuel, D model
Maximum Service Ceiling 36,900 ft / 11,200 m for A-1

26,000 ft / 7,925 m for D-1

Crew 1x Pilot
Armament A-1:

6x 12.7mm Browning M3 (400 rpg)

B:

2x 12.7mm Browning M3 (400 rpg)

2x 37mm Browning M10 (60 rpg)

D-1:

4x 20mm AN/M3 (250 rpg)

D-2

4x Ford T-160 (150 rpg)

Gallery

 

Sources

“Literally Fake News”, The Fake News Department of the United States of America, September 1946., “The Republic F-74D” official promotion booklet, Republic Aviation, 1949., “A Brief History of the Rice Field Attackers in Korea and Vietnam”, Tingwong Sum, 1983., Images: Side Profile Views by Ed Jackson – Artbyedo.com

 

Project 337 [Fictional]

Soviet Union (1941)
Biological Weapon – 1 Built

With recent study trips to Russia, the Plane Encyclopedia team has been working closely with the Russian Archives to record and scan aircraft performance data and various other aviation related documents. While doing this, the team has accidentally rediscovered a series of then-classified documents regarding a secret biological weapon designed in 1941 intended to be used on Berlin in an attempt to stop or at least delay the German advance on Moscow. Classified “Project 337” by the Soviets, the weapon would have been able to bring havoc on any city it was deployed on. Come read the story of the newly discovered Project 337!

History

In the early stage of Operation Barbarossa during the shift of fall to winter, the Soviet high command became increasingly worried and desperate for a way to halt or at least delay the seemingly unstoppable German advance. On September 29th of 1941, a top secret meeting was held at the Kremlin to discuss the current losses of the Soviet Union, and how to replace the lost equipment. With mostly desperate ideas such as using outdated equipment such as 19th century rifles and cannons taken from stockpiles. Finally, a serious and feasible idea was brought up, which was to bomb Berlin with biological weapons, causing the city to plunge into chaos, and to warrant the retreat of the Germans. With Stalin liking the idea, he immediately agreed and ordered the project to be finished no later than November 29th.

Unfortunately, the dimensions, location, team and materials used to develop Project 337 is unknown as the documents that specifies these are still classified and withheld by the Russian government. What is known however, is that the disease which would be used in Project 337 was tularemia.

This rather unclear photo shows what appears to be the finished Project 337 prototype, resembling a huge metallic peanut with the black canopy.

With extensive research in the Russian archives, two photos of Project 337 were able to be obtained. The first photo shows the roof of the weapon, which consisted of a bowl shaped canopy with more than a dozen holes. This would have been how the tularemia bacteria would be released. The second photo shows what seems to be the finished Project 337 prototype, which looked like a huge metallic peanut with the black canopy.

The upper section of the weapon, which consisted of a bowl shaped canopy with more than a dozen openings. This would have been how the tularemia bacteria would have been released.

On December 1st of 1941, Project 337 was completed and was now ready to be tested on Berlin. To carry such a weapon, the Soviet Air Force began looking for a capable heavy bomber which would be able to fly at tall heights. Although scarce, the bomber chosen was the Petlyakov Pe-8 bomber. A single Pe-8 was transferred from the Far East Regiments and modified to carry Project 337. As for personnel, experienced pilots Lieutenant Igor N. Timoshenko, Junior Lieutenant Dima I. Pokryshkin and Lieutenant Mikhail Gorkin were chosen to complete the task of dropping the prototype biological weapon on Berlin. These pilots were not told of the contents they were carrying, and was only instructed to fly to Berlin, drop the payload and return to base as the Soviets still wished to maintain the secrecy of the project.

On December 5th, Lieutenant Igor N. Timoshenko, Junior Lieutenant Dima I. Pokryshkin and Lieutenant Mikhail G. Gorkin took off in the Pe-8 carrying Project 337 at 8:31 PM from an undisclosed secret airfield. With the intent of maintaining stealth, the Pe-8 crew would have maintained radio silence in order to not get detected. Approximately 1 hour and 14 minutes into the flight, the Soviet ground crew were surprised to receive an emergency radio call from the aircrew. According to the recently declassified Soviet documents, the ground crew reported that Lieutenant Gorkin shout in the radio in panic that the Pe-8’s inner starboard engine caught fire, and that the plane was rapidly losing altitude. Lieutenant Gorkin decided the best thing to do was to perform an emergency landing, and he made this decision known to the ground crew. Unfortunately, the documents stated that contact was lost with the crew during the botched emergency landing. One of the documents dated April 1st of 1944 stated that efforts to locate the Pe-8 has failed, and that the plane likely crashed into a body of water. Due to the loss of the sole bomb, tests were unable to be completed and the project was set back. This led to the eventual abandonment of the project as the Soviets couldn’t afford to spend more time development such a weapon.

The final document which referenced Project 337 dated April 20th of 1948 mentioned that the incident which caused the destruction of the Pe-8 was improper maintenance. It is said that the mechanics responsible for the maintenance were executed, while the radio crew were sent to the gulag. Timoshenko, Pokryshkin and Gorkin’s families were all sent a letter stating that they died in combat as heroes. In conclusion, Project 337 can be considered a failure. With the current evidence that the Plane Encyclopedia team has, it is reasonable to assume that the Pe-8 carrying Project 337 is perhaps still out there buried beneath layers of mud, sand, or water, never to be seen by mankind again.

Sources

Rep. No. Поддельный источник, используемый для апрельских дураков (04.01.1944) (1944).

Rep. No. Полностью реальный источник, а не подделка (04.20.1948) (1948).

Doc. No. Я люблю Энциклопедию (01.14.1943).

 

Me 209 v1

Messerschmitt Me 209

nazi flag Nazi Germany (1938)
Racing Plane – 3 Built

The Messerschmitt Me 209 (also known as the Bf 109R) was a racing plane designed by Willy Messerschmitt in 1938. The Me 209 would later establish a new world record which would not be beaten until 30 years later. Although commonly associated and confused with the Me 209 fighter plane designed in 1943, it holds no association at all other than the name. To this day, only the fuselage of Me 209V1 has survived and is now on display in a museum in Krakow.

History

Conceived in late 1937 by Willy Messerschmitt, the primary and sole focus of the Me 209 was speed. On August 1, 1938, the first test flight of the Me 209V1, piloted by Hermann Wooster, had lasted only 7 minutes due to engine and coolant problems.

Messerschmitt Me209 v4

Even though established practice dictated that if an aircraft had more than a dozen problems, it was to be abandoned, however Nazi officials were unwilling to give up on this promising aircraft due to the potential impact the aircraft could generate. Eventually, on April 26, 1939, piloted by Fritz Wendell, the Me 209 set the speed record it would hold for 30 years, though the He 100, the previous record holder, was suspected to have been able to break this record had it flown at a higher altitude but was prohibited from doing so by Nazi officials.

The designation Bf 109R was used for propaganda uses in order to cause confusion with the Luftwaffe’s primary fighter, the Bf 109, to maintain an image of invincibility which persisted until the Battle of Britain.

Design

Me 209 v4
Me 209 v4

The Me 209 had a unique design, featuring a cockpit placed far back at the rear and a cross shaped tail section. A difference between the Me 109 and 209 was that it had a broad-track, inward-retracting undercarriage mounted in the wing section, instead of the fuselage. There was no tail wheel, instead using a spring loaded metal skid, which retracted into the lower part of the tail.

Because of the success of the racer, the Nazis attempted to arm it. The main factor that had inhibited adding weaponry was the fact that wings were almost entirely taken up the engine’s liquid cooling system, which was massive. The engine consumed 2 gallons (9 liters) of coolant water a minute. Holding 50 gallons (450 liters) of coolant, it had a flight time of approximately 35 minutes.

Test Flight:

On August 1st of 1938, the Me 209V1 flew for the first time. Piloted by Hermann Wurster, the test flight lasted only 7 minutes. Unfortunately, Wurster found the plane very unsatisfactory. In a Messerschmitt AG document found post-war by the Allies, it was found that Wurster made several complaints about the Me 209.

  • The engine ran unevenly
  • The high temperature reached by the coolant fluid resulted in unsatisfactory cooling
  • Cockpit ventilation was inadequate, and engine gasses entered the cockpit, which necessitated the constant use of an oxygen mask
  • The landing gear could not be extended at speeds greater than 155 mph (250 km/h)
  • The main wheels tended to drop out of their wheel wells during high speed maneuvers
  • Fuel filler caps loosened at high speed
  • Undercarriage hydraulic oil escaped from its reservoir and sprayed on the windscreen
  • The takeoff run was excessive, and the takeoff characteristics dangerous
  • Visibility from the cockpit was limited
  • Marked instability noted during climbing maneuvers
  • The rudder was inadequate to control the plane’s yaw movement
  • When banking at full throttle, the plane rolled itself over
  • Stick forces were excessive and tiring
  • At speeds around 100 to 105 mph (160 to 170 km/h) the controls softened up
  • Landing characteristics were extremely dangerous
  • On touchdown, the plane swerved violently
  • It was impossible to employ the brakes during the landing run, as immediately when they were applied, the aircraft swerved from the runway

Fate:

The only remaining Me 209V1’s fuselage, formerly part of Hermann Göring’s personal collection, currently lies in the Polish Aviation Museum in Kraków, Poland. Germany has offered to purchase the Me 209 but has been unable to do so.

Messerschmitt Me 209 V1
Me 209 at the Polish Aviation museum in Krakow, Poland

Variants

  • Me 209V1: The first version of the Me 209, which used the Daimler-Benz DB 601A and had steam cooling.
  • Me 209V1 (mod. 1939): This was the variant that set the speed record of 755.138 km/h (~469.22 mph). It was fitted with the DB 601ARJ engine, a modification of the DB 601A, which brought the total horsepower up to 2,300, from 1,800. It suffered greatly from overheating when operating at full power.
  • Me 209V2: It crashed during a test flight and was completely destroyed, and was subsequently abandoned.
  • Me 209V3: Originally intended to break the speed record, it was made too late. Instead, it became a test bed for improvements.
  • Me 209V4: One built. It was to be armed with two 7.92 mm MG 17 machine guns in the cowling and 20 mm MG FF/M cannon firing through the propeller hub. It also would have had lengthened wings and vertical stabilizer, strengthened undercarriage, a stock DB 601N engine, and did not feature a surface evaporation cooling system. Tests showed that the modifications made the plane inferior to the Bf 109E series, and was therefore abandoned.

 

Me 209 Specifications

Wingspan 25 ft 7 in / 7.8 m
Length 23 ft 9 in / 7.24 m
Height 3.2 m / 10 ft 6 in
Engine 1x Daimler-Benz DB 601A (1,800 hp)
Maximum Speed 469.22 mph / 755.138 km/h
Crew 1 (pilot)
Armament V1-V3: None (Unarmed)
V4:

  • 2x 7.92 MG 17 in engine cowling
  • 1x 20mm MG FF/M

Gallery

Me 209 v1
Me 209 v1
Me 209 v4
Me 209 v4

Sources

Wang, G. (2013). 极速烈鸟——梅塞施米特Me 209高速验证机:Me 209V1 的反击. [online] Afwing.com.Lepage, J. (2009). Aircraft of the Luftwaffe. Jefferson, NC: McFarland, p.220.

IK-3-161.Eskadrilla,-51.Grupa-No.10 - April 1941

Rogožarski IK-3

kingdom of yugoslavia flag Yugoslavia (1940)
Fighter Plane – 12 Built

History

The first domestic aircraft factory in Yugoslavia was established in Novi Sad under the name “Ikarus” on November 20, 1923. In 1924, Ikarus delivered two new training planes for the armies of the Kingdom of Serbs, Croats, and Slovenes which were designed in the factory. The first trainer model was delivered in April 1924 designated the “Мали Брандербург-Serb” (Small Brandenburg), which was a direct copy of Brandenburg B.I. The second plane was delivered in June 1924, a copy of school hydroplanes “IIIM” (School Mercedes/Школски Мерцедес-Serb.). Both of these aircraft did not fall far behind foreign aircraft in terms of its technical and flying characteristics, of the same intended roles which strengthened the morale of the Army and the domestic constructors, opening prospects for the domestic production of new planes.

In April 1924, another aeroplane factory was built in Belgrade: “The first Serbian aeroplane factory Živojin Rogožarski – Прва Српска фабрика аероплана Живојин Рогожарски-Serb.” They joined Ikarus as the only aircraft factories in Yugoslavia. Živojin Rogožarski was initially only building parts for the aircraft but later they began to build entire planes. From 1928, these two factories supplied around 100 training aircraft and seaplanes to the army of the Kingdom of Serbs, Croats and Slovenes and Maritime Aviation.

During the late 1930’s and early 1940’s, the company Ikarus started to design and later produce two new types of fighter aircraft, the IK-2 and IK-3. The IK-2 was a “high wing” plane, with the wings set on top of the fuselage, equipped with the Hispano-Suiza 860 hp engine and armed with one 20 mm cannon and two machine guns set above the engine. The machine guns were initially Darn type caliber 7.7 mm but this was later replaced with the new Browning 7.92 mm. The IK-2 was constructed by a team of engineers Ljubomir Ilić and Kosta Sivčevićem. Ikarus built small batch of 12 aircraft plus two prototypes in 1939. While in production the IK-2 was considered obsolete and production of the fighter ceased, nevertheless, the IK-2 saw some use in World War ll but all the planes were lost.

Designed as a successor to the older IK-2, the IK-3 was Yugoslavia’s first modern single-seat fighter. It was conceived in 1933 as a fighter utilizing the cantilever low-wing with a cockpit that was fully enclosed as well was fully retractable landing gear. On the tail or fuselage, the planes would carry a small black military-tracking number. The IK-2 used numbers from 2,101 to 2,112 and the IK-3 used 2.151 to 2.163. At the time of its construction, the IK-3 was equally matched to its contemporaries, representing a very advanced solution behind which stood a team of ambitious and young engineers Ljubomir Ilić,  Kosta Sivčevićem, and Slobodan Zrnić j.

Prototype

IK-3 Prototype
IK-3 Prototype

After some statistical and aerodynamic calculations in 1936 were completed, a 1:10 wooden scale model of the IK-3 was built. The model was tested in the Eiffel wind tunnel in Paris. The planned Hispano-Suiza 12Y Engine had already been tested in earlier IK-2 aircraft. The contract to build the prototype IK-3 was signed on March 31, 1937 with Rogožarski. The first prototype IK-3 was completed on 14 April 1938, piloted by Captain Milan Bjelanović. By the end of 1938, the first factory tests were completed. Despite the good flying qualities, the pilots noticed some problems. The complaint by pilots was related to the shape of the windshield and canopy of the cockpit, while the army suggested adding two additional machine-guns in the wings. Some additional problems cropped up including engine overheating and unsuitable landing gear doors. The majority of these problems were corrected in the first batch of planes produced.

On 19 January 1939, an accident occurred while examining the behavior of the plane in flight, the right wing completely separated from the fuselage. This accident claimed the life of pilot, Captain Milan Pokorni. No domestic or foreign investigators were able to clearly determine the exact cause of the crash. In any case, the wings were reinforced during wing construction and production continued.

Production

IK-3 fresh after construction without camouflage
IK-3 fresh after construction without camouflage

The loss of the IK-3 prototype did not postpone the production of new fighters. On 26 November 1938, a contract between the state and the factory was signed which authorized the production for a new batch of 12 aircraft. Delivery of the planes was planned for the end of 1939, but the beginning of World War II affected the production process. Delays in deliveries and the rising costs of raw materials postponed the completion of the first batch. The first aircraft of the series were delivered on 15 December 1939. The deliveries and production were again postponed due to a worker strike in the aviation industry, lasting until July 1940.

In March of 1940, the factory offered an improved version of the IK-3 called the IK-3 ll. The factory originally offered the production of 50 new aircraft but this was rejected by the state who instead ordered production for only 25 aircraft. It was thought that the production of 50 aircraft could not be achieved because it was impossible to obtain the necessary materials and equipment from abroad due to the war. The Command of the Royal Yugoslav Army demanded improved aerodynamics, a more powerful engine, self-sealing fuel tanks, armored glass, armored seats etc. In the end, only one plane (number 7) from the first series was modified into a prototype for the second series.

Prior to the War

IK-3 51st Independant Fighter Group, Belgrade-Zemoun, April 1941
51st Independent Fighter Group, Belgrade-Zemoun, April 1941

After the end of production, all operational aircraft were allocated to the 51st Independent Fighter Group at Zemun which was part of the 6th Fighter regiment. Squadrons 161 and 162 were both given 6 aircraft.

In its first year of service, an IK-3 was lost when one of the squadron commanders, Captain Anton Ercigoj, was making a “mock attack” on a Potez Po.25 over the Sava and Danube rivers. After passing below the Potez, he went into a climb with the intention of performing a loop. His rate of climb was too steep and the aircraft fell into a spin at low altitude and hit the water. Caption Anton Ercigoj did not survive the crash.

The introduction of new planes offered the opportunity for pilots of the IK-3 to test it against the Yugoslav Messerschmitt Bf 109E in “mock dogfights”. The evaluation after the dogfight concluded that the IK-3 had several advantages over the Bf 109E. The IK-3 was more maneuverable in level flight, enabling it to quickly get behind a pursuing Bf 109E by making tight horizontal turns.

In combat

IK-3 No. 2158
IK-3 No. 2158

For the attack on Yugoslavia, the Axis forces amassed around 2236 warplanes in Austria, Hungary, Italy, Bulgaria, and Romania with some 1062 bombers, 289 reconnaissance planes, and 885 fighter planes.

The Yugoslavian Air Force had around 420 combat aircraft, in various conditions. They had about 147 modern bombers including the German Do. 17, Britain Bristol Blenheim, and the Italian SM.79. There were also about 131 reconnaissance planes, including 11 British Bristol Blenheims, about 120 outdated Brege 19 and Potez Po.25 aircraft, and over 100 combat aircraft including 61 German Me-109E, 35 British Hawker Hurricanes, some of which had been built in the “Zmaj” factory in Zemun. Yugoslavia also had a whole series of IK-3 aircraft, minus one lost in pilot training. In addition to these forces, Yugoslavia also controlled 30 two-engine Hawker Furys, 8 IK-2’s, 2 Avia BH-33’s, and 2 two-engine Potez Po.63’s. In essence Yugoslavia controlled a much smaller force than Germany but it was made up of some of the most modern aircraft of the time.

Out of the 12 IK-3 of the first series, only 6 were fully operational by 5 April 1941. One aircraft was lost in the 1940 accident, and 5 were in different states of repair: 3 in the Rogožarski factory, and two in the aviation workshop at Zemun airport. The units equipped with the IK-3 had the task of preventing the deployment of the enemy air force above the territories of Northern Serbia and parts of Vojvodina. The majority of the IK-3’s were used in the defense of the capital Belgrade, bolstered by fighters from the 102nd fighter squadron equipped with Me-109E’s.

On 6 April 1941, at about 0600, the commander of the First Air Base, Major Marko Konrad, informed the commander of the 6th Fighter Regiment that the Germans attacked Yugoslavia and that air attacks on Belgrade should be anticipated. At about 0645, the observation service TVO (teritorijalne vazdušne osmatračke službe-Territorial airborne observation services) reported two large formations of aircraft were flying in from the north towards Belgrade. At about 0650, commander of the 6th Fighter Regiment, Major Adum, ordered all three squadrons 161, 162, and 102 up for patrols. These patrols were led by First Class Captain Gogić, Sergeant Semiz, First class Captain Poljanec, Sergeant Vujić, and Lieutenant Borčić.

In their first battle, pilots with their IK-3’s shot down six German planes while only losing one IK-3, in which Lieutenant Dusan Borčić was killed, and one lightly and two heavily damaged aircraft that did not participate in any further combat. By the end of the day, two more German bombers were shot down, but this group remained with only three operational IK-3 aircraft.

IK-3 Summer of 1940 flown by Savo Poljanec, commander of 162nd Squadron
IK-3 during Summer of 1940, flown by Savo Poljanec, commander of 162nd Squadron

On April 7, Sergeant Semiz, during an intercept with German bombers, was hit by German machine guns fire. 36 bullets hit his plane and 20 bullets hit his engine and ignited it. Although he was wounded, he managed to return to the airport in Zemun. The loss of his aircraft was compensated by the IK-3 ll (the only aircraft of the second series to be constructed) that was under repair in the Rogožarski factory. The combat state of this unit remained at three operational aircraft.

By the end of the day on April 7, the remaining aircraft were relocated to the auxiliary airport, Veliki Radenci II. Commander Major Adum was replaced, and Captain First Class Gogić was promoted to this position. In the following days, there was no action due to bad weather. On 11 April, at around 1000, one German Me-110 attacked Veliki Radenci II but did not cause any damage. Sergeant Samiz with his plane pursued and managed to shoot it down. On the same day at around 1200, a group of about 20 Me-110’s were attacking the airport Veliki Radenci I. Several of the 51st group took off, the pilots were First Class Captain Gogić and Sergeant Vujičić, managing to shoot down two attacking German planes.

At around 1700 on 11 April, a German armored column was spotted approaching from the North. Part of the non-flying group of the Yugoslavian Air Force had been ordered to withdraw in the direction of Sarajevo, airplanes and pilots stayed at the airport. On 12 April, they were supposed to be transferred to Sarajevo, but this did not happen. Because of the speed of the German attack and the inability of pilots to fly in time, they decided to destroy all the remaining planes in order to prevent them from falling into German hands.

Operators

  • Kingdom of Yugoslavia (Kraljevina Jugoslavija) – Were used during the “April War” and most were lost in combat or were destroyed
  • Nazi Germany – Captured at least 5 to 7 planes in different states. One complete surviving IK-3 was used for flying test performance.
  • Turkey – Was considering the possibility of buying the license for the production of the IK-3, but World War II prevented any plans for this program.

IK-3 Specifications

Wingspan  33 ft 10 in / 10.3 m
Length  26 ft 3 in / 8 m
Height  10 ft 8 in / 3.25 m
Wing Area  178 ft² / 16.5 m²
Wing Loading  32.6 lb/ft²  /  159.4 kg/m²
Engine  One 980hp (731kW) Avia-built Hispano-Suiza 12Y29 liquid-cooled V-12 piston engine
Maximum Take-Off Weight  5799 lb / 2630 kg
Empty Weight  4560 lb / 2068 kg
Fuel Capacity  330 L
Climb Rate  16,000 ft / 5,000 m in 7 minutes
Maximum Speed  328 mph / 527 kmh
Cruising Speed  249mph / 400kmh
Range  488 mi / 785 km
Maximum Service Ceiling  30,800 ft / 9,460 m
Crew  1 (pilot)
Armament
  • One Oerlikon FF 20 mm cannon – fixed forward-firing cannon in the propeller hub
  •  Two 7.92 mm Browning/FN machine guns with 500 rounds per gun – fixed forward-firing machine guns in the upper part of the forward fuselage

Gallery

IK-3 Prototype - 1940
IK-3 Prototype – 1940
IK-3 51.Grupa, 6.Lovacki Puk No.2158 Br.9 April 1941
IK-3 161.Eskadrilla, 51.Grupa No.218 April 1941
IK-3-161.Eskadrilla,-51.Grupa-No.10 - April 1941
IK-3 161.Eskadrilla, 51.Grupa No.2159 Br.10 – April 1941
Possible markings for captured IK-3 being tested by a German research unit
IK-3 Prototype
IK-3 Prototype
IK-3 Prototype
IK-3 Prototype
IK-3 51st Independant Fighter Group, Belgrade-Zemoun, April 1941
51st Independant Fighter Group, Belgrade-Zemoun, April 1941
IK-3 without camouflage
IK-3 without camouflage
IK-3 No. 2158
IK-3 No. 2158
IK-3 fresh after construction without camouflage
IK-3 fresh after construction without camouflage
IK-3 Summer of 1940 flown by Savo Poljanec, commander of 162nd Squadron
IK-3 during Summer of 1940, flown by Savo Poljanec, commander of 162nd Squadron

Sources

Kratka istorija vayduhoplovstva u Srbiji, Čedomir Janić i Ognjan petrović, Beograd 2011., Babac, D. (2008). Elitni vidovi jugoslovenske vojske u Aprilskom ratu. Beograd: Evoluta.Chant, C. (1999). Aircraft of World War II. London New York: Friedman/Fairfax Publishers Distributed by Sterling Pub. Co.Rogožarski IK-3. (2017, July 4). In Wikipedia, The Free Encyclopedia.Military Factory. (2015). Rogozarski IK-3 Fighter.Paquet, B. (n.d.). Rogozarski Ik-3. Passion Aviation. Images: All photographs in this article are in the public domain, Plane Profile Views by Ed Jackson

 

1.-F-14A-VF-1-BuNo-162597_03 Tomcat

Grumman F-14 Tomcat

usa flag USA (1974)
Tactical Fighter Plane – 712 Built

The F-14 Tomcat is the most iconic Cold War US Naval fighter, next to the McDonnel Douglas F-4 Phantom. It is also a replacement for the F-4 Phantom and the failed F-111B, incorporating the lessons and experiences acquired during Vietnam as well, like the F-15 Eagle. It has a similar origin to that of the F-15, but it is also the result of two additional factors. First, the Navy’s quest to find a Fleet Air Defence asset, with long-range and high-endurance interceptor characteristics to defend the aircraft carrier battle groups, mainly against long-range anti-ship missiles launched from Soviet bombers and submarines, in addition to intercepting those same Soviet bombers. It also needed a more capable radar and provision for longer range missiles. The role of then Secretary of Defence Robert McNamara was also crucial in this case, as he directed the Navy to take part in the Tactical Fighter Experimental program. But the Navy stepped out in fears that the USAF’s need for a low-attack aircraft would hamper the fighter abilities of the new airplane. Second, the ongoing TFX F-111B project was facing a large number of issues in the late 60s that made both the Navy and Grumman, which happened to be the builder of the F-111B alongside General Dynamics, to consider a new option with better capabilities and less operational and development issues. The F-111B proved unsuitable for the conditions of the Vietnam War and had no long-range missile capability. The Naval Air Systems Command (NAVAIR) also had a role, as it issued requirements for a tandem two-seat, twin-engine fighter with mainly air-to-air capacities capable of reaching speed of up to 2.2 match and able to operate with a new generation missiles. It was also directed to have a secondary Close Air Support (CAS) role and incorporate an internal M61A1 20mm Vulcan cannon, correcting the mistake made with the previous Phantom F-4, as it had no internal gun for close-range combat. A feat achieved by the Tomcat was that it had its first flight 23 months after the contract was awarded, making the of the Tomcat a milestone in the development of new air assets. NASA also had an important role during the development stage as it did with the F-15 through the Langley Research Centre, mainly related to the F-14’s most advanced feature: the geometrically variable wings. But it also played a role in the overall design of the fighter, working very closely with Grumman providing the company with technical assistance and data.

Characteristics

F-14B Tomcat aircraft from VF-101 circa 2004

The F-14 Tomcat is a double-seat tandem, twin-engine, double-tail, all-weather carrier-based fighter and interceptor and later gaining multi-role capability, with numerous remarkable features. The glove-mounted swept wings have variable geometry capability, in the same manner as the General Dynamics F-111, the Mig-23 Flogger, and the Panavia Tornado. When the wings were positioned rearwards, it was fitted for high-speed intercept missions. When swept outwards, the wings naturally increased drag, allowing lower speed flight and a lower stall speed. The control of the wing movement was automatic with manual control if needed. The flat area between the engines nacelles, at the rear of the fighter, purposed to contain fuel and avionics components, such as the controllers for the wing-sweep mechanism, flares and chaff and other flight assist functions. This results in a wide space between the two nacelles giving the Tomcat it’s characteristic shape. Its design is based in the aforementioned requirements, which required the new fighter to carry a combination of AIM-9 Sidewinder short-range missiles, AIM-7 Sparrow medium-range missiles, and long-range AIM-54 Phoenix missiles, alongside the 20mm M61A1 Vulcan cannon. As Grumman was awarded with the contract in 1968, it incorporated two features of the unsuccessful F-111B project: the two Pratt & Whitney TF-30-P3 engines and the required AWG-9 radar for the AIM-54 Phoenix. If one observes carefully, it can be concluded that there are many similarities between the F-111 and the F-14, not only the geometrically variable wings.

The F-14 Tomcat became the Naval equivalent of the F-15, as it was equally as capable as the Eagle, with the addition role of an embarked fighter, performing maritime air superiority, fleet defense, long-range interception, and tactical aerial reconnaissance missions. Despite the quite similar structure of the Eagle, the two fighters are very different, and not only because of their purposed missions. The F-14 reportedly relied more on airborne surveillance and identification systems for beyond visual range firing.
The F-14 structure is made of 25% titanium, such as the wing structure, pivots, and both upper and lower wing flight surfaces, with electron beam welding used in their construction. The same fuselage, in combination with the wing, provide the F-14 with exceptional performance in combination with the capability provided by the variable sweep wings, provided the between 40-60% of the airframe’s lift. In fact, it allowed a Tomcat to land safely after suffering a mid-air collision that removed more than the 50% of its right wing. The wings, with their variable geometry, allowed the aircraft to reach an optimum lift-to-drag ratio according to the variation in speed, which in turn permitted the aircraft to perform various missions at different speeds. The aircraft’s twin tail configuration helped it in maneuvers at high angles of attack and contributed in reducing the height of the aircraft, making it more conducive to storage in the limited height of an aircraft carrier’s lower decks. The powerplant also allowed the Tomcat to have a good performance, but it suffered from teething problems in its early years, later requiring modifications. The Tomcat had its first flight in December 1970. The first versions were powered by two Pratt & Whitney TF-30-P412A turbofan engines, yielding speeds of up to 1,563 mph (2,517 km/h) at high altitude. But this initial engine was deemed as unreliable as it caused 28% of the Tomcat’s accidents, mainly due to compressor stalls. As a result, the powerplant had to be improved, and later versions had the were replaced with the General Electric F-100-GE-400 turbofan engine. The Tomcat also had advanced avionics that gave it superior air-to-air and later on, enhanced air-to-ground capability.

An F-14D Tomcat attached to the “Bounty Hunters” of VF-2 makes a sharp pull-up in full afterburner circa 2003

The F-14, was subject to numerous improvement programs in avionics and engines, as well as weaponry. For instance, in 1994, the Low Altitude Navigation and Targeting Infrared System for Night (LANTIRN) was incorporated on the right wing glove pylon, which enhanced the Tomcat’s CAS and air-ground attack capabilities. In addition to the pod, other upgrades in avionics and cockpit displays allowed the usage of precision-guided weaponry, enhanced defensive systems, displays and control devices and even structural improvements. A Global Positioning System and Inertial Navigation System (GPS-INS) was integrated in the LANTIRN pod. Between the late 80s and early 90s, the Tomcat was able to operate with free-fall iron bombs, thus having limited ground-attack capabilities that were enhanced by the aforementioned improvements in avionics. Many proposed improved versions were drafted, but they were ultimately rejected given technical assessments and political reluctance to develop and introduce them, considering that new and more advanced and/or comparatively lower costs alternatives were already introduced or were at their late stage of development.

Tomcats in Combat

F-14D Tomcat on the deck of the USS John C. Stennis

The F-14 saw its good share of action after being introduced in September 1974, with the first missions being implemented in the last days of the Vietnam War, providing top cover for the evacuation air route through combat air patrols. During the Cold War and in the North Atlantic, it was a routine for the F-14 to execute long-range interceptions of Soviet bombers and maritime reconnaissance aircraft that were flying too close to the aircraft carrier groups, such as the Tupolev Tu-95, Tupolev Tu-16 Badger, Tupolev M-4 Bison, Antonov An-12 Cub and Illyushin Il-38 May. In addition, NATO exercises in the Northern region of the Atlantic usually garnered the attention of the Soviets, while their routine flights from the Kola Peninsula to Cuba prompted these interceptions on a weekly, if not daily basis. The F-14 also saw some action in the Lebanese Civil War, with combat air patrols while American nationals were evacuated in 1976, and again between 1982 and 1986, with further combat air patrols and Tactical Air Reconnaissance Pod System (TARPS) missions to spot artillery positions firing against the international peacekeeping force and to provide naval gunfire support with intelligence on targets. During these operations, many F-14s were attacked by Syrian anti-aircraft fire that never managed to strike any targets, prompting retaliatory strikes where the F-14 provided cover to attacking airplanes, and also prompting the battleship USS New Jersey to open fire against Syrian AA batteries. Syrian Migs engaged but did not attack the Tomcat. Tomcats also took part in the failed operation to free the American hostages in Iran.
It was in Libya where the F-14 became very famous, during a series of incidents between the USA and Libya throughout the 80’s, where the F-14 managed to shoot down 4 Libyan aircraft, 2 Sukhoi Su-22 Fitters, and 2 MiG-23 Floggers, while also sinking a corvette and a patrol boat, and damaging many more, including surface-to-air missile (SAM) sites. During these incidents, the F-14 provided combat air patrols and interceptions, supporting various missions, such as Operation Arid Farmer, Prairie Fire and El Dorado Canyon, even outmanoeuvring 2 MiG-25 Foxbats that were intercepted. During these interventions, Tomcats were also attacked by SAMs and air-to-air missiles fired by Libyan air assets, suffering no casualties. Similar incidents took place in Somalia in 1983, where two F-14s were attacked by SAMs while performing photo-reconnaissance over the port of Berbera, being confused with Ethiopian MiG-23s. Photo-reconnaissance, damage assessment, and combat air patrols were also executed by Tomcats during the Invasion of Grenada. During the hijacking of the Italian cruise ship Achille Lauro, the F-14s monitored activities around the vessel alongside combat air patrols, managing also to force the airliner carrying the terrorists that hijacked the ship to land in a NATO air base in Italy. During the “Tanker War”, an episode of the Iran-Iraq, the F-14 provided Navy vessels with combat air patrols and escort missions, alongside fighter cover during Operation Nimble Archer and Operation Praying Mantis.

F-14D on the deck of the USS Harry S. Truman in the Persian Gulf circa 2005

The last scenarios where the F-14 saw action was in Iraq during Desert Shield and Desert Storm, where it provided combat air patrols in protection of naval and land forces deployed at sea and in Saudi Arabia, deterring Iraqi advances. Escort for attack aircraft, long range defence of naval assets, combat air patrols, and TARPS patrols were among the additional missions carried out by the Tomcats during the campaign, pinpointing SCUD launchers, and performing battle damage assessments. A single F-14 was lost due to a SAM missile, while an Mi-8 helicopter was the only air kill achieved by the Tomcat, as Iraqi air assets tended to flee when engaged by the Tomcat, being shot down by other fighters instead. After the 1991 Gulf War, Tomcats enforced no-fly zones and executed bombings with advanced ordnance, such as the GBU-24 Paveway III and GBU-10/16/24 laser-guided bombs, making use of the LANTIRN pod and of night vision systems for the first time. During the Second Gulf War and its aftermath, and during Operation Enduring Freedom in Afghanistan, Tomcats executed strike and CAS missions, deploying the JDAM bombs for the first time in combat and against high profile targets. They also acted as Forward Air Controllers for other air assets. Another scenario was in the Balkans, where the F-14 was also deployed, using laser-guided bombs and performing combat air patrol, escort, strike missions, Forward Air Controllers and TARPS tasks.

As Iran was a key US ally up until the 1979 Revolution, it received F-14s to ward-off Soviet MiG-25 reconnaissance flights over Iran. After the Revolution and the following Iran-Iraq War, the Iranian Tomcats saw extensive combat, scoring several air kills, reportedly 160, and managing to intimidate its adversaries, against the loss of 16 Tomcats due to combat and accidents. This was an impressive feat as the Tomcats were not operational and crews lacked training and experience. Reportedly, Iranian Tomcats were escorting Russian bombers performing air strikes against ISIS in 2015, the last to remain in active service.
US Navy Tomcats were retired from service in September 2006, marking the end of an era to a plane that has reached an almost mythical fame in service. They were replaced by the Boeing F/A-18E/F Super Hornet. 712 units were produced between 1969 and 1991, of which 79 were delivered to Iran in the second half of the 70’s.

Design

Tomcat of VF-101 circa at an airshow 2004

The F-14 is composite-construction fighter, with aluminium around 25% of the structure and boron among its structural components, with glove-mounted wings, powered by 2 Pratt & Whitney TF-30-PA412A on the earlier F-14A, and 2 General Electric F-110-GE-400 on the F-14B and F-14D, located within two engines nacelles on either side of the aircraft. These engines are fed by two rectangular air intakes placed at each side of the fuselage, located right just aft of the second crewman’s position. These intakes are equipped with movable air ramps and bleed doors to regulate airflows and to prevent disruptive shockwaves. A bleed system was also installed to reduce engine power during missile launches. The nacelles and engine exhausts are widely separated by a flat area containing avionics systems. A small flat and rectangular radome, fuel tanks and the air brakes are also located midship. A fuel dump is located at the very rear. It has machined frames, titanium main longerons and light alloy stressed skin, with the center fuselage possessing fuel-carrying capacity. The radome at front hinges upwards to allow access to radar.
Although the shape of the Tomcat’s airframe significantly contributed to its lift and light maneuverability, it was still one of the largest and heaviest fighter in service with the US Navy. Another outstanding characteristic of the F-14 is the geometrically variable wings, which are swept and can variate from 20° to 68°, and up onto 75° to overlap the horizontal stabilizers and facilitate storage in the aircraft carrier hangars. The wings can be automatically or manually varied inflight and by the Central Air Data Computer, that gives the variation according to the speed. The wings on asymmetric configuration manage to keep the plane flying and to land; even landings with an angle of 68°in case of emergencies. At high-speed interception, they are entirely swept back, while in low-speeds they are swept forwards. The wing pivot points in the wing gloves are spaced enough to allow instalment of weaponry by a pylon on each side, and the centre of lift moved less, reducing trim drag, at the point of allowing the required high-speed of 2.0 Mach. There are no ailerons and wing-mounted spoilers provide control during roll. There are full-span slats and flaps. The superior and inferior surfaces of the wings are of titanium, with the wing carry-through is a one-piece electron beam-welded aluminium alloy structure with a 6.71m span. Fins and rudders are of light alloy honeycomb sandwich. The aft part of the Tomcat is also where the two twin tails are placed, right at the top of the engine nacelles, in the middle, and with the horizontal stabilizers placed side to side of the aft area of the nacelles. The tails have multiple spars, honeycomb trailing-edges and boron/epoxy composite skins. The landing gear is of the characteristic tricycle type, with the forward gear being beneath the nose, and the rear gears which are retractable, located at the “shadow” of the wings. This area was reinforced in order to withstand with the force that landing and taking-offs from aircraft carriers usually require. An arresting hook is placed beneath the rear fuselage area, in a small ventral fairing.

F-14D Super Tomcat maneuvers in the Persian Gulf circa 2005

The cockpit is placed at the forward fuselage of the fighter, having two seats in tandem where the crew consisting of a pilot and radar intercept officer are seated. The seats are Martin-Baker GRU-7A ejection seats. Flight controls are hybrid analog-digital type with the pilot being the one only in charge of controls. The avionics within the cockpit comprise of a Kaiser AN/AVG-12 HUD along a AN/AVA-12 vertical and horizontal situation display, communications and direction-finders embedded in the AWG-9 radar display, the Central Air Data Computer (CADC) made by GarretAiResearch with a MOSFET-based Large-Scale Integration chipset MP944. This is reportedly one of the first chip microprocessors in history. In addition, a Northrop AN/AXX-1 Television Camera Set (TCS) for long-range target identification, mounted in the undernose pod and having two cockpit selectable Fields of View (FOV), which replaced the original AN/ALR-23 IRST with idium antimonide detectors. This device allows pilots to visually identify and track objectives within distances of 97 km (60 mi). Information gathered from the pod can be recorded by the Cockpit Television System (CTS). An AN/ALR-45 radar warning and control system, a Magnavox AN/ALR-25 radar warning receiver, a Tracor AN/ALE-29/39 chaff and flare dispenser device, which is installed at the very rear, and a Sanders AN/ALQ-100 deception jamming pod. The canopy is a bubble-shape that provides 360° view, being beneficial in air-to-air combat, which is complemented and enhanced by a set of four mirrors for each crew member.

The wings do not carry any weapon stations, but the wing pivot point beneath the wing glove and the fuselage itself are the areas where the payload is carried. The normal configuration of weaponry was 4 AIM-54 Phoenixes, 2 AIM-7 Sparrows and 2 AIM-9 Sidewinders, but this configuration varied depending of operational needs. In addition, bombs such as Mk-80 free-fall iron bombs, Mk-20 Rockeye II cluster bombs, JDAM precision bombs and Paveway laser-guided bombs were also part of the payload, mainly in case of CAS and strike/attack missions. AGM-88 HARM and AGM-84 HARPOON were tested and deemed possible for use in the Tomcat. For close-quarter-combat, the F-14 is fitted with an internal multi-barrel M61A1 Vulcan Gatling gun of 675 rounds, located at the left area of the nose. TARPS pods for reconnaissance, LANTIRN targeting pod and 2 external fuel tanks are also among the payload that the Tomcat could carry in missions.

The F-14 Tomcat owes its exceptional performance to the combination of powerplant, avionics, the swept variable wings and the fuselage. For instance, the relatively wide airframe provided the Tomcat with 40-60% of its aerodynamic lifting position in conjunction with the wings, thanks to the structure’s components that reduced weight while increasing resistance to G forces. In addition, the range, payload, acceleration and climb were enhanced by these factors. The engine gave the Tomcat remarkable acceleration, speed and climbing characteristics, with a maximum speed of 1,584 mph (2548 km/h). The wings also provided good capability, such as variable speeds, enabling the Tomcat to accomplish a wide array of missions, and better capacity to hold at a designated area for a prolonged period of time. Agility is also a strong suit for the Tomcat, being able to perform high-performance maneuvers, thanks to the pitch authority resulting from the design of the airframe. The deadly and spectacular characteristics of the F-14 are complemented by the very capable and advanced avionics systems that enabled it to carry out its missions, enhanced by the aforementioned improvements in this area. The Hughes AN/AWG-9X radar with integrated Identification Friend-Foe (IFF) can track up to 24 targets thanks to the Track-While-Scan (TWS), Range-While-Search (RWS), Pulse-Doppler Single-Target Track (PDSTT), and JAT (JAT). 6 targets located within distances of up to 97km (60 mi) can be engaged through the TWS while devising and executing fire control solutions for these targets. While the Pulse-Doppler mode allows firing of cruise missiles thanks to the same radar detecting, locking and tracking small objects at very low altitude. For self-defence and situational awareness, the F-14 is fitted with electronic countermeasure (ECM), Radar Warning Receivers (RWR) which could calculate direction and distance of enemy radars and even to differentiate between the varied types of radars, chaff/flare dispensers, a precise inertial navigation system, and fighter-to-fighter data link. These were complemented later by the installation of a GPS device to enhance navigation. Upgrades in avionics allowed the F-14 to depend less on USAF AWACS or other air assets with target designators, as during Desert Storm and the interventions in the Balkans the Tomcat depended of other air assets to identify its targets.
The Tomcat’s capacity to receive upgrades along its flight and combat capacities were made evident during its service time, as new avionics were fitted in the early 90’s, and as the Tomcat in American and Iranian hands was capable of scoring and outperforming adversarial air assets, let alone their capacity to damage and sink naval assets and AA assets of the adversary. It even managed to avoid missile fire and to retaliate under US Navy service, with the exception of the one unit that was shot down during Desert Storm.
A legendary and fearsome cat beyond the screens: naval power in the air
Grumman has had a tradition of designing and building some of the most legendary and almost unmatched naval fighters in history, like the Grumman F6F Hellcat. The F-14 Tomcat was a continuation of such traditions, being considered the best naval interceptor built ever made. It also honored its predecessor, the venerable Phantom F-4 II, as it maximized US naval power by taking it into the air. Like an enraged cat protecting its territory and even fighting back, it was able to defend the aircraft carrier groups and the airspace it was ordered to defend, and even to strike back against its aggressor when needed. Its sole presence was so imposing that after Iraqi air assets suffered heavily at the hands of the Tomcat with both the U.S. and Iran, they usually elected to flee when Tomcats were detected. But like a cat ambushing its prey, the enemy air assets fled from the Tomcat only to be destroyed by other fighters. The Libyans and Syrians who opened fire with their SAM missiles against the Tomcat had to watch in shock how the Tomcats paid them back either by attacking the AA themselves or by directing fire against such positions. What is more astonishing is that losses from SAMs were almost zero, with only one F-14 lost during Desert Storm. In other incidents, the missiles never scored a hit. The Tomcat also let its might to be felt during the series of crises between the US and Libya in the 80’s, destroying 4 fighters and delivering a heavy blow to Libyan naval assets and AA artillery. Even downgraded versions of the Tomcat, facing limited supplies and logistics, managed to yield very impressive performance. During the Iran-Iraq War it scored a large number of air kills with few losses of its own, evidencing that even with trimmed claws, it was able to terrify and eliminate its prey.

But the F-14 was also able to impose itself without firing a single shot. When not hunting, it was able to guard the skies and waters it was tasked to protect. It managed to monitor the surroundings of a hijacked cruise line ships, and to force an airliner carrying the terrorists who hijacked the vessel to land in a base where they were apprehended. It also enforced the no-fly zone over Iraqi skies after the First Gulf War and punished the Serbians hard along with other air assets during the Kosovo intervention. It also intercepted aircraft that were a serious threat for its aircraft carriers. The Tomcat was also an avid sentinel, as it executed very effective and successful surveillance of enemy territory and assets.
The Tomcat was further immortalized in the movie Top Gun, where it was the main star of the film. Despite this well-deserved fame and exceptional performance, the Tomcat saw service only until the early days of the 21st century, as it was deemed “outdated” given its age, and was admittedly very expensive to maintain, operate, and upgrade. Like the F-15, it was a product of the experiences the US faced during the Vietnam War. Considering the performance the Tomcat had and its very active service throughout its career, it fulfilled its purpose. If the Tomcat were further modernized with the proposed versions by Grumman, it could have been an overhauled Cold War-era air asset still able to deliver a powerful punch in the modern era. Yet financial restrictions and the emergence of new technologies doomed this fighter to be retired from service sooner than its half-brother the F-15. The mark it left in aviation and history will be hardly matched in the future: many remain as monuments or museum pieces, as a memory from a bygone era. The remaining Tomcats still in service are those of Iran as of this writing.

Variants

  • F-14 Prototypes (YF-14A) – The first 12 F-14A were used initially as prototypes. Two were lost during trials.
  • F-14A – It is the first basic version of the Tomcat, powered by two Pratt & Whitney TF-30-P412A turbofan engines, and equipped with the AWG-9 radar for the AIM-54 Phoenix missiles originally intended for the F-111B. This version received upgrades in electronics, such as AN/ALR-67 Countermeasure Warning and Control System (CWCS), a LANTIRN pod and Programmable Tactical Information Display, improved engines, and a Digital Flight Control System which enhanced flight safety and control in the 90’s, and new precision strike munitions. 478 F-14A models were delivered to the US Navy, with 79 delivered to Iran. The 80th F-14A intended for Iran was delivered to the US Navy instead. There were plans for replacing the TARPS pod with a TARPS Digital Imaging System.
  • F-14B (or F-14+ / F-14B Upgrade or “Bombcat”) – Both an upgraded version of the F-14A and also a very limited new-built version of the same airframe, initially denominated as F-14A+. The previous engine was replaced with new General Electric F-110-GE-400 engines, enhancing capability and maneuverability while eliminating throttle restrictions or engine trimming, and even the need for afterburner launches. The avionics were similar to that of the F-14A except in the newly acquired advanced ALR-67 Radar Homing and Warning (RHAW). Further avionics were fitted during a life extension and upgrade program, including: Fatigue Engine Monitoring System, AN/ALR-67 Countermeasure Warning and Control System, Gun Gas Purge redesign, Direct Lift Control/Approach Power Compensator, AN/AWG-15F Fire Control System, Engine Door Tension Fittings and an Embedded GPS Inertial (EGI) navigation system. Other upgrades comprised a MIL-STD-1553B Digital Multiplex Data Bus, programmable multi-Display indicator group, another AN/AWG-15H fire control system, a AN/ALR-67D(V)2 Radar Warning Receiver, and Mission Data Loader, among others. It took part in the 1991 Gulf War. Further upgrades packages made the airplane to be denominated also a F-14B Upgrade “Bombcat”. 48 F-14A airframes were upgraded to the F-14B standard, while 38 new F-14B examples were manufactured. The upgraded airframes were denominated as F-14B after a proposed enhanced F-14B interceptor was rejected.
  • F-14D Super Tomcat – This was the final version of the legendary Tomcat, after the F-14B version was restricted by the Navy, prompting further modifications and upgrades to existing airframes and building some new ones under this standard. It was powered by 2 General Electric F-110-GE-400 engines, which provides the fighter with a higher top speed, improved thrust and quicker response. It also provided more endurance and striking range, increased climb rate and no need to use afterburner, although safety concerns were the main reason for this. New avionics were installed in this version, including a more powerful AN/APG-71 radar, better controls and digital displays that facilitates better control and navigation by automation and simplicity, decreased Weapon Replaceable Assemblies (WRA), new signal processors, data processors, receivers and antenna. IRSTS and the Air Force’s Joint Tactical Information Distribution System (JTIDS) were installed, enhancing security of digital data and voice communication and providing accurate navigation capabilities. A proposed new computer software to allow operation with AIM-120 AMRAAM missiles was considered but not implemented. In the mid 2000’s, a Remotely Operated Video Enhanced Receiver (ROVER III) upgrade was fitted in some F-14D airframes. 37 new units were built and delivered, while 18 F-14A were modified to the new standard. This was the most capable and powerful version of the Tomcat.
  • F-14B interceptor versions and F-14C – The F-14B was intended to be an enhanced version of the previous F-14A with better Pratt & Whitney F-401 turbofan engines that was rejected. The F-14C was a proposed enhanced version of the F-14B (or F-14A+ for clarity) with better avionics and weapons, better radar and fire control systems. Although rejected, many of the intended improvements were later on incorporated in other operational versions. A proposed enhanced interception version based on the F-14B to replace the Convair F-106 Delta Dart was also cancelled.
    F-14D Super Tomcat (proposed) improved versions
    These were proposed versions of the F-14D by Grumman to the US Navy and Congress, which were ultimately rejected.
  • F-14D Quickstrike – A proposed enhanced version of the F-14D Super Tomcat fitted with navigational and targeting PODS, additional hardpoints and a radar with ground-attack capacities, intended to replace the then retiring Grumman A-6 Intruder.
  • F-14D Super Tomcat 21 – As the Quickstrike was rejected by the US Congress, Grumman proposed the Super Tomcat 21 version as a cheaper version to the Navy Advanced Tactical Fighter programme. Among the proposed improvements were a better AN/APG-71 radar, new and more powerful General Electric F-100-129 engines capable of providing supercuise speeds of up to 1.3 Mach and having thrust vectoring nozzles, along enhanced control surfaces and fuel capacity. They would have improved takeoff and landing approaches at lower speeds.
  • F-14 Attack Super Tomcat – It was reportedly the last of the Super Cat proposed enhanced versions, with even more improvements in control surfaces, fuel capacity and an Active Electronically Scanned Array (AESA) radar from the also cancelled McDonnell-Douglas A-12 Avenger II attacker.
  • F-14 Advanced Strike Fighter (ASF) – Another rejected proposed version proposed under the Navy Advanced Tactical Fighter programme, as it was deemed too costly. The Navy then decided to pursue the F/A-18E/F Super Hornet.

Operators

  • United States of America
    The US Navy was the main operator of the Tomcat, which began operating it in 1974 in squadrons VF-1 “Wolfpack” and VF-2 “Bounty Hunters” embarked in the aircraft carrier USS Enterprise. It began operations during the American evacuation of Saigon, being also very active in performing fleet defence interceptions especially in the North Atlantic, escorting many Soviet bombers and maritime reconnaissance airplanes. During the Lebanese Civil War it executed combat air patrols and TARPS missions to detect targets for naval gun fire. Noteworthy to point out that it began its career also as a photo-reconnaissance platform, as it replaced the RA-5C Vigilante and RF-8G Crusaders in such missions. Tomcats were attacked by Syrian air assets and AA without any losses and often fleeing once engaged by the F-14s. It also had a very limited role during the failed operation to free the American hostages in Iran.
    Libya and the Mediterranean Sea was one of the areas where US Navy-operated Tomcats saw intensive action, as incidents and tensions between the US and Libya were common during the 80’s. The F-14s contained and pushed back Libyan air assets, as they managed to shoot down 2 Sukhoi Su-22 Fitters and 2 MiG-23 Floggers, and even to outmaneuver 2 incoming MiG-25 Foxbats. They also managed to destroy two Libyan naval units and damage another two, whilst additionally taking out several SAM sites. It was during these incidents that the F-14 proved its value and capacities, by successfully defending the aircraft carrier group, avoiding enemy fire and even returning fire. The F-14s were also active in Somalia, where they were attacked by mistake, and in Grenada, where they supported intervention on the island. The F-14 also had a remarkable anti-terrorist action, as it monitored activity near the hijacked Italian cruise Achille Lauro, and then managed to intercept the Egyptian airliner carrying the terrorists that hijacked the cruise ship, forcing it to land at a NATO air base in Italy, where the terrorists were apprehended by Italian and American security forces.
    The Persian Gulf was another area where the US Navy Tomcats saw a good share of action, with the combat air patrols and escort missions it provided to US air and naval assets, as well as with fighter cover during two retaliatory operations after Iran attacked and threatened commercial and US Navy vessels. With the First Gulf War, Tomcats executed combat air patrols protecting allied forces in the area and preventing a potential Iraqi incursion into Saudi Arabia, along with escorting attack aircraft, long range defence of naval assets, combat air patrols and TARPS patrols. Tomcats also identified individual SCUD missile-launchers. During this conflict, a single F-14 was shot down by a SAM missile, with one of the crew falling prisoner to the Iraqis. The F-14 managed to score a single air kill, a Mi-8 helicopter, as its sole presence usually prompted Iraqi air assets to flee, only to be shot by other American air assets in the area, such as the F-15. In the period between the 1990 and 2003 wars, it enforced the no-fly zone and took part in punitive air strikes against Iraqi assets as well, using advanced ordnance like GBU-24 Paveway III and GBU-10/16/24 laser-guided bombs, and making use of the LANTIRN pod and night vision technology for the first time. Further CAS and strike missions were executed during the Second Gulf War in 2003 and afterwards, using JDAMS bombs for the first time against important military and governmental targets, acting also as Forward Air Controllers for other warplanes. In Afghanistan they had similar missions, spearheading Operation Enduring Freedom and taking off from the Indian Ocean in some of the longest range missions for Tomcats.
    And a final area where the Tomcats saw considerable action was in the Balkans, where they used laser-guided bombs, conducted combat air patrols, escorts, strike missions, Forward Air Controllers and TARPS missions. As they were not fitted with LANTIRN pods, F/A-18s had to assist in pinpointing the designated targets.
    The first US Navy female pilot had her first flight in an F-14 Tomcat.
    The US Navy retired the F-14 from service in 2006, with its role being taken now by the F/A-18E/F Super Hornet.
  • Iran
    Iran is the only foreign operator of the F-14 Tomcat, as it received 79 units in the late 70’s thanks to its strategic alliance with the US in the region during the Cold War and up until the Iranian Revolution of 1979. They saw extensive action in the 1980-1988 Iran-Iraq war, engaging Iraqi air assets on numerous occasions. It is reported that the Iranian Tomcats scored 160 air kills, which included: 58 MiG-23, 33 Dassault Mirage F-1, 23 MiG-21, 23 Su-20 and Su-22, 9 Mig-25, 5 Tu-22, 2 MiG-27, one MiL Mi-24 helicopter, 1 Dassault Mirage 5, 1 B-6D (Xian H-6), 1 Aerospatiale Super Frelon helicopter, and two unspecified aircraft. The only losses in combat were 3 Tomcats downed by Iraqi air assets and 4 losses from SAMs, 2 that disappeared and 7 that were lost to non-combat incidents. During this conflict, the F-14 Tomcat demonstrated its capabilities, at the point of intimidating and deterring the Iraqi Air Force, and despite being a downgraded version of the Tomcat in terms of avionics. By 2015, an estimated of 20-30 airframes remained on active duty with the Islamic Republic Iran Air Force (IRIAF), and were reported to escort Russian Tu-95 Bear bombers carrying out bombing against ISIS terrorists’ positions.

 

F-14D Specifications

Wingspan  64 ft / 19.55 m (wings extended)

38 ft / 11.65 (wings swept)

Length  62 ft / 19.1 m
Height  16 ft / 4.88 m
Wing Area  565 ft² / 52.49 m²
Engine  2 x General Electric F-100-GE-400 afterburning turbofans
Maximum Take-Off Weight  74,350 lb / 33,720 kg
Empty Weight  43,735 lb / 19,838 kg
Loaded Weight  61,000 lb / 27,700 kg
Climb Rate  over 45,000 ft/min (230 m/s)
Maximum Speed  At high altitude: Mach 2.34 ( 1,544 mph / 2,485 kmh )
Range  575 mi / 926 km for combat radius; 1,840 / 2,960 for ferry
Maximum Service Ceiling  50,000 ft / 15,200 m
Crew  2 (pilot and radar intercept officer)
Armament
  • 1 X 20mm M61A1 Vulcan 6-barrel rotary cannon
  • 10 hardpoints – six under the fuselage, two under the nacelles, and two on the wing gloves, all allowing up to 6600 kg (14,500 lb) of ordnance and fuel tanks. The payload was varied in deployment and type, usually being 6 AIM-7 Sparrow, 4 AIM-9 Sidewinder and/or 6 AIM-54 Phoenix (and MIM-23 Hawk in the case of the IRIAF). Up to 6622 kg (14,599 lb) of air-to-ground were also carried, including Mk 80 free-fall iron bombs, Mk 20 Rockeye II cluster bombs, Paveway laser-guided bombs, and JDAM precision-guided munition bombs. 2x 267 1010 l fuel tanks were carried as well.
  • The fighter/naval interceptor had avionics both part of its structure and carried in the hardpoints. Among those at the hardpoints were the TARPS and the LANTIRN targeting pods. Among its onboard avionics were a Hughes AN/APG-71 radar, an AN/ASN-130 inertial navigation system (INS), Infra-Red Search and Track (IRST) and Track Control System (TCS). It also had a AN/ALR-45 and AL/ALR-67 (F-14D) RWR, a AN/ALQ-167 ECM pod and a AN/ALQ-50 towed decoy (the two last ones in the F-14D).

Gallery

1.-F-14A-VF-1-BuNo-162597_03 Tomcat
F-14A VF-1 “Wolfpack” BuNo 162597 circa 1987 loaded with AIM-9s, AIM-7s, and AIM-54s
F-14B Tomcat aircraft from VF-101 circa 2004
An F-14D Tomcat attached to the “Bounty Hunters” of VF-2 makes a sharp pull-up in full afterburner circa 2003
Tomcat of VF-101 circa at an airshow 2004
F-14D Tomcat aircraft of VF-124 flying over part of California circa 1991
F-14D Tomcat makes a near supersonic fly-by above the flight deck of the USS Theodore Roosevelt on July 28, 2006 just prior to its retirement in September 2006
Test fire of AIM-54C Phoenix from F-14D “Jolly Rogers” circa 2002
F-14D on the deck of the USS Harry S. Truman in the Persian Gulf circa 2005
F-15D Tomcat on the deck of the USS John C. Stennis
F-14D Super Tomcat maneuvers in the Persian Gulf circa 2005
Tomcat in formation with Croatian Air Force MiG 21s circa 2002
Tomcat on display, note it’s low height profile to facilitate carrier operations and storage
A Tomcat with its wings fully extended for low speed maneuvers
F-14A as viewed from rear, note the space between the engines affording the Tomcat significant lift from its airframe
The 6 barrel, 20mm vulcan cannon with its panels removed

Sources

Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH., Chambers, J. R. (2000). Partners in Freedom. Contributions of the Langley Research Center to US Military Aircraft of the 1990’s (NASA monograph NASA SP-2000-4519). NASA History Division: Washington DC, USA.,  Cooper, T. (2006). Persian Cats. Air&Space., Donald. D. (2009). Aviones Militares, Guia Visual [Military Aircraft. Visual Guide, Seconsat, trans.]. Madrid, Spain: Editorial Libsa (Original work published in 2008)., Dudney, R. S, &. Boyne, W. J. (January 2015). Airpower Classics. F-14 Tomcat. Air Force Magazine, 98 (1), 76., GlobalSecurity.org (2016). F-14 Tomcat. GlobalSecurity.org., Goebel, G. (2016). [1.0] Creating the Tomcat. AirVectors.net., Goebel, G. (2016). [2.0] Iranian Tomcats / Tomcat Improvements. AirVectors.net., Lemoin, J. (2002). Fighter Planes. 1960-2002., N.R.P. (2015). Origins – The Story of the Legendary F-14 Tomcat., National Naval Aviation Museum (2016). F-14A Tomcat. National Naval Aviation Museum., Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., Sponsler, G. C., Gignoux, D., Dare, E., & Rubin N. N. (1973). The F-4 and the F-14., U.S. General Accounting Office. (1972). The F-14 Aircraft., F-14 Tomcat operational history. (2017, June 14). In Wikipedia, The Free Encyclopedia.Grumman F-14 Tomcat. (2017, June 19). In Wikipedia, The Free EncyclopediaImages: Tomcat Gun by Jeff Kubina / CC BY-SA 2.0, Tomcat Rear Engines by kevinofsydney / CC BY 2.0Tomcat Wings Extended by D. Miller / CC BY 2.0Tomcat Display by Eric Kilby / CC BY-SA 2.0Side Profile Views by Ed Jackson – Artbyedo.com,  Note: Images not credited are in the Public Domain

 

The Importance of Military Heritage

Plane Encyclopedia Supports Military Heritage

Military events have significantly influenced history, and this is why military heritage is considered to be extremely important as captured by online resources such as Plane, Tank and Naval Encyclopedia. Many of the most significant events shaping history have associations with national defence and conflict across the globe. Preserving military heritage helps us to comprehend important societal ideals and traditions. Every country is unique with regards to its military heritage and how it is expressed through events such as air shows, festivals, museums and military parades.

Military heritage events serve as a way for people with vested interest therein or simply the casual and curious among us to learn more about a countries military history. Military heritage events exist because of people with similar interests who come together to honour and celebrate their shared military heritage. The seventh annual Military Festival was held at the Voortrekker Monument in South Africa on 1 May drawing roughly 4000 visitors. Exhibits included modellers, private military memorabilia, re-enactors of South African conflicts and their equipment as well as the South African National Defence Force (SANDF) displaying a Olifant Mk2 and Rooikat 76D.

An anti-poaching demonstration was carried out by Group73 using Alouette helicopters.

Plane Encyclopedia donated a one of a kind “South African Gripen-C poster design” as an incentive for visitors to take part in a research initiative carried out by a local university in establishing their motivation for attending the military festival.  The Gripen C was designed by our very own Edward Jackson while the vehicle specifications were researched by Dewald Venter from Tanks Encyclopedia.

 

Meteor Missile

The Meteor is an active radar guided beyond visual range (BVR) air to air missile produced by MBDA. It has entered service with the Swedish Air Force as of April 2016 on the JAS 39 Gripen. The notable feature of the Meteor is it’s ramjet technology, which enables the missile’s rocket motor to be throttle controlled, which combined with the missile’s advanced guidance make it extremely responsive to it’s target’s evasive maneuvers.

Development

The Meteor was developed in response to several European nations’ need to begin considering the next generation of air to air missiles, with the ability to not only engage conventional manned airborne threats, but also unmanned vehicles and cruise missiles. The missile will be utilized by the air forces of the UK, Germany, Italy, France, Spain and Sweden. The Meteor will eventually by equipped by the Eurofighter Typhoon, the Dassault Rafale, the Saab Gripen, and eventually Britain’s F35 Joint Strike Fighters with the introduction of its Block 4 software.

The Meteor is being manufactured at MBDA’s facility in Lostock, Scotland.

Characteristics

The propulsion system, a ramjet, utilizes solid fuel with a variable ducted flow. The “no escape zone” is reportedly larger than any other air to air missile in production due to the missile’s ability to engage “maximum thrust” when in final pursuit of the target. The weapon’s electronics and propulsion control unit (ECPU) adjusts the cruise speed depending on launch conditions and the target’s altitude by controlling the ramjet’s intake ducts. The unit monitors the remaining fuel, maintaining ‘cruise’ mode whilst avoiding “full throttle” until the final stage of closing in. The ‘no escape zone’ is a cone shaped area calculated by the guidance software wherein the target will be unable to evade using it’s own maneuverability. As soon as the target is within the ’no escape zone’ the missile will usually accelerate to full throttle.

Externally, the Meteor has two square intake sections affixed to the aft of the length of the missile. The Meteor only has four rear fins for maneuverability but they enable it to perform bank to turn maneuvers.

In addition to it’s active radar guidance seeker, which is shared with the MICA and ASTER series of missiles, the Meteor possesses two-way data link capabilities that allow it to continue communication with the targeting systems on the airframe it was fired from which itself may be receiving linked targeting information from other sources. This allows the weapon to more reliably pursue targets through cluttered countermeasure environment and report back it’s functional status. The guidance section also has its own IMS or inertial measurement system, enabling the missile to ‘dead reckon’ it’s location in the battle space relative to where it was launched from in it’s terminal phase.

The high explosive blast fragmentation warhead utilizes both impact and RF proximity fuzes which detonate to inflict ‘maximum lethality.’   It is capable of rail or ejection launching.

The maximum range of the missile is classified, but a report noted during a head on engagement test mentioned a distance “well in excess of 100 kilometers.”

The Meteor features an active radar guided seeker head which is capable of engaging in all weather.

Meteor Missile (Live Warhead & Motor)

Specifications

Length 3.7 m / 12 ft 1.7 in
Diameter 178 mm / 7 in
Weight 190 kg / 490 lb

References

MBDA. (2017). Meteor., Pocock, C. (2012). There’s no escaping MBDA’s Meteor missile. AIN Online., Beckhusen, R. (2016). The world’s best aircraft-killer missile is now in service (and its not American). The National Interest., Majumdar, D. (2015). The U.S. military’s ‘top guns’ in the air have a big weakness. The National Interest.Meteor (missile). (2017, May 6). In Wikipedia, The Free Encyclopedia.

AIM-9M Side View

AIM-9 Sidewinder Missile Series

usa-flag United States (1956)
Air to Air Missile – Over 200,000 Built

Sidewinder AIM-9B missile

The Sidewinder is a supersonic, heat seeking, air to air missile for use by fighter aircraft. The missile was originally developed for the U.S. Navy for fleet defense, but was subsequently adapted for wider usage by the U.S. Air Force. The AIM-9 achieved the first successful combat use of a guided air to air missile. It has become the most used missile by Western air forces, with it’s low cost and reliable track record. Its code word is “FOX-2,” which refers to the launch of an infrared guided missile. The Sidewinder is estimated to have 270 aircraft kills. An example of the current unit cost of one Sidewinder is $603,817 for one AIM-9X Block II (2015).

The AIM-9 Sidewinder is the world’s most successful short-range air-to-air missile, and will remain the U.S. military’s main “dogfight” AAM until at least 2055.

History

AIM-9 Prototype (1951)

In the 1950s the United States Navy went about developing a short range air to air missile that could be used during combat. The missile was originally developed by the United States Navy at Naval Air Weapons Station China Lake, California. William B. McLean were experimenting with proximity fuzes sensitive to infrared heat. Being involved in R&D, it was not officially sanctioned for their office to develop weapons. As such their ‘intelligent’ fuze was kept under wraps and developed by volunteers using spare parts for several years, with the ultimate goal of building a heat seeking air to air missile. The final design featured a gyroscopic mirror spinning at around 4,000 RPMs behind a glass cover on the front of the missile. It utilized a lead-sulfide detector as it’s ‘eye’ which kept the assembly focused on the infrared source of the target. Issues with roll and target tracking were overcome with the invention of ‘rollerons’ which were wheels mounted to the tail fins of the missile to stabilize it in flight. The guidance section utilized circuits comprised of 14 tubes and 24 moving parts, a remarkable achievement in the 1950s.

After it became clear that its new technologies offered superior performance over the USAF’s own AIM-4 Falcon, the Air Force began using the Sidewinder on most of its combat aircraft.

The first kill from a Sidewinder missile was on September 24th 1958, when F86 Sabers belonging to The Republic of China Air Force (ROCAF) ambushed a flight of MiGs belonging to the People’s Republic of  China (PLAAF) during the Second Taiwan Strait Crisis .

During this conflict, one AIM-9B struck one of the PLAAFs MiG-17s without detonating, enabling the pilot to safely bring the aircraft back to base. The Soviets used this to reverse engineer their own copy of the Sidewinder, dubbed the Vympel K-13 or AA-2 Atoll (NATO).

AIM-9s were used extensively in Vietnam by the USAF and the US Navy. The two services combined scored 82 air to air victories out of 452 Sidewinders fired, resulting in a kill probability of 18%. Sidewinders of this period often flew up into the exhaust of their targets before detonating just aft of the wing.

Today though various upgrades and variants the AIM-9 is being used by most Western countries, with many more equipped with the Soviet copied K-13.

Sidewinder Operation

The missile’s primary components consist of an infrared guidance section with active optical target detection, a high explosive warhead, and rocket motor. The principles of the infrared guidance allow it to ‘home in’ on a target aircraft’s exhaust heat signature. The missile’s seeker must be cooled to extremely low temperatures to achieve effective operation. This operation makes the missile a ‘fire and forget,’ and relatively immune to electronic countermeasures.

Early versions of the missile had to be fired at the rear of the target to maintain an effective lock. The seventies saw the introduction of the AIM-9L which was capable of “all aspect” usage, meaning it could be fired at a target from all directions. This even meant that a target could be engaged head-on, a factor that has since significantly impacted aerial combat doctrines.

The Sidewinder is also capable of being equipped to rotary wing aircraft, such as the AH-1 SuperCobra. AIM-9Xs have also been successfully tested against ground targets and have proven useful against light ground targets.

Variants

  • AIM-9B – The first joint service production version of the Sidewinder, utilizing an uncooled detector with thermionic (i.e. vacuum tube circuits) and possessing a top speed of around 1.7 mach, making its combat debut in 1958.
  • AIM-9D – The first Navy version implemented numerous changes and upgrades. The seeker head was now cooled and the warhead size was more than doubled to 25 lbs. The 9D and all other subsequent models could achieve speeds of 2.5 mach or above. The 9D also achieved dozens of kills during Vietnam.
  • AIM-9E The first USAF version, utilizing a peltier electronic cooling device for its seeker head, meaning that the seeker could remain in continuous operation during flight. It also integrated a few solid state components into the guidance section. The canards were changed to a square tip double delta arrangement  to improve angle of attack performance. Around 5,000 9Bs were rebuilt as 9Es. The 9E achieved six kills during the Vietnam period.
  • AIM-9G – The 9G was an upgrade of the 9D for the Navy, utilizing a Sidewinder Extended Acquisition Mode (SEAM) allowing the missile to be slaved to the onboard radar or helmet sight.
  • AIM-9H – This version was a further evolution of the 9G produced in the early 70s and seeing limited use during Vietnam. It retained the G’s optical system, but the electronics were upgraded to solid state. A thermal battery replaced the previous turbo alternator. It also had an increased tracking rate and stronger actuators. The 9Hs fired in Vietnam reportedly had the best kill rate of any missile of the period.
  • AIM-9J – The Juliet was developed from the 9E for use by the USAF in the early 70s, and saw changes to the forward canards, offering incremental improvements in maneuverability, speed, and range. 6,700 built and widely exported.
  • AIM-9L – The first ‘all-aspect’ Sidewinder. With the introduction of the Lima in 1976, the missile was once again a joint-service model, developed from the 9H and capable of hitting a target from any direction, including head on. Characterized by a now standard natural metal finish on the guidance control section, it first saw combat with 2 US Navy F-14 Tomcats shot down 2 Libyan Su-22 Fitters in the Gulf of Sidra in 1981. In the Falklands conflict it saw large scale use by the United Kingdom, achieving an 80% kill ratio as compared to the Vietnam era versions with around a 15% kill ratio.
  • AIM-9M – An evolution of the Lima with upgrades only to the guidance section, improving capabilities against infrared countermeasures and ‘background rejection.’ The Mike was first deployed in 1982. Subvariants of the Mike include versions for the Navy and Air Force and were the mainstay of the USAF and USN short range AA capability from the 80s to the introduction of the 9X.
  • AIM-9R – The 9R was a prototype project that began in the late 80s that aimed to introduce digital imaging and programmable software into the guidance section allowing for aiming of the vulnerable area of a target. The R was being developed by the Naval Weapons Center and had flown live fire trials until the early 90s when its funding was cut in the wake of the collapse of the Soviet Union.
  • AIM-9X – In the mid eighties the Soviet Union developed and deployed successful infrared countermeasures (IRCM) that reduced the effectiveness of existing Sidewinders. After various stalled efforts in the late 80s, the U.S. began working with Raytheon and Hughes on the 9X during the 90s. Upon introduction in 2003 the 9X ushered in Joint Helmet Mounted Cueing System (JHMCS) compatibility, allowing a pilot to lock on to a target simply by looking at it. This capability drastically increases combat effectiveness, along with “Lock-on After Launch” capability which allows for use in internal launch bays such as the F-35 and F-22.

 

Operators

  • United States
  • Canada
  • Australia
  • United Kingdom
  • Japan
  • Iran
  • Israel
  • South Korea
  • Saudi Arabia
  • Portugal
  • Belgium
  • Brazil

Gallery

AIM-9M Side View
AIM-9M Side View
AIM-9 Prototype (1951)

Sidewinder AIM-9B missile
AIM-9B

AIM-9P Sidewinder IR AAM
AIM-9P

AIM-9J Launch from F4E Phantom
AIM-9X Launch from F-16 Fighting Falcon
AIM-9X in flight
Technicians prepare to load AIM-9P Sidewinder and AIM-7E Sparrow missiles onto an F-4C Phantom II aircraft of the 154th Composite Group, Hawaii Air National Guard.
AIM-9M Arming Mechanism (Trainer)
F-15C Eagle carrying two AIM-9 Sidewinders and four AIM-120 advanced medium-range air-to-air missiles (AMRAAMs) on its fuselage weapons stations.
2 F-15 Eagles armed with AIM-9 Sidewinder air-to-air missiles (wing pylons) and AIM-120 advanced medium range air-to-air missiles.
AIM-9M and AIM120 AMRAAM
AIM-9M loaded internally into an F-22 weapons bay
AIM-9X being test fired from an F-35
AIM-9M and AIM-120 loaded on an F-14 Tomcat
AIM-9M launch from an FA-18F
AIM-9L Front Section

References

 

AIM-9 Sidewinder. (2017, March 16). In Wikipedia, The Free Encyclopedia., AIM-9 “Sidewinder” Air-to-Air Missile. (2014). THE 456th FIGHTER INTERCEPTOR SQUADRON., Holloway, D. (2013). Fox two! Aviation History, Kopp, C. (2005). The Sidewinder Story. Australian Aviation.; Images: F-15C-AIM9 AIM120-1998F-15C-Formation by Expert Infantry / CC BY 2.0F-15E-Pylon-AIM120-AIM9 by LH Wong,  AIM-9 Sidewinder Seeker Head by LH WongAIM-9 Arming Mechanism by Peter Miller / CC BY-NC-ND 2.0, AIM-9L Front Section by Nova13 / CC BY-SA 3.0